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Quantifying the physical mechanisms responsible for the transport of sediments,
nutrients and pollutants in the abyssal sea is a long-standing problem, with internal
waves regularly invoked as the relevant mechanism for particle advection near the sea
bottom. This study focuses on internal-wave-induced particle transport in the vicinity
of (almost) vertical walls. We report a series of laboratory experiments revealing that
particles sinking slowly through a monochromatic internal wave beam experience
significant horizontal advection. Extending the theoretical analysis by Beckebanze
et al. (J. Fluid Mech., vol. 841, 2018, pp. 614–635), we attribute the observed
particle advection to a peculiar and previously unrecognized streaming mechanism in
the stratified boundary layer originating at the lateral walls. This vertical boundary
layer streaming mechanism is most efficient for significantly inclined wave beams,
when vertical and horizontal velocity components are of comparable magnitude. We
find good agreement between our theoretical prediction and experimental results.

Key words: boundary layer structure, internal waves, sediment transport

1. Introduction
Internal waves are ubiquitous in the global oceans, where they play a critical

role in transporting sediments, nutrients and pollutants from localized sources to
remote places (Alford 2003), with potentially strong influence on marine ecosystems
(Woodson 2018). Many efforts have been undertaken to understand the behaviour of
particles in the ocean. For the upper ocean, particle advection, dominated by ocean
currents and surface waves, is reasonably well understood (van Sebille et al. 2018).
In contrast, the mechanisms dominating suspended particle advection in the stratified
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interior and near the bottom of the abyssal ocean remain to be established clearly.
In analogy to surface waves being important for particle advection near the surface,
it is regularly invoked that internal waves must be relevant for particle advection
near the sea bottom, both vertically through mixing related to breaking of waves
and horizontally through induced (Lagrangian) transport. While internal-wave-induced
sediment transport has been observed on continental shelves (Hosegood, Bonnin &
van Haren 2004; Butman et al. 2006; Quaresma et al. 2007), field observations in
the abyssal sea are largely hampered by the technical challenges.

Recent studies indicate that mixing in the vicinity of steep ocean topography
is much stronger than previously thought (Mashayek et al. 2017; McDougall &
Ferrari 2017), suggesting strong erosion of nearly neutrally buoyant particles into
the water column right above the bottom. Coincidentally, internal wave motion is
typically also enhanced above rough topography (Wunsch & Ferrari 2004; Garrett &
Kunze 2007). This raises the question of how internal wave motion may facilitate
advection of slowly sinking particles in the vicinity of steep topography. This study
investigates boundary layer effects near steep topography on internal-wave-induced
particle advection. Steep refers to the slope tan α of the topography with respect
to the horizontal being significantly larger than the slope tan θ of the internal wave
propagation.

We analyse a series of laboratory experiments (partially reported in chap. 5
in Horne (2015)) revealing that slowly sinking particles experience significant
horizontal advection in the vicinity of an internal wave beam. Peculiarly, the observed
particle advection is strongly dependent on the wave frequency ω0 relative to the
Brunt–Väisälä frequency, N0 =

√
−(g/〈ρ̄〉)(dρ̄/dz), where g is the acceleration of

gravity, ρ̄(z) is the component of the density that monotonically increases with
depth and is stationary, 〈ρ̄〉 is the vertical average of ρ̄(z); therefore, the full density
profile can be written as ρ0 = ρ̄(z)+ ρ, where ρ represents the density perturbations.
The goal of this study is to understand and rigorously describe the dynamics that
dominates the experiments. We provide strong evidence that the observed particle
displacement is facilitated by an internal-wave-induced horizontal mean flow.

Our theoretical analysis, extending the work by Beckebanze et al. (2018) to weakly
nonlinear internal waves, highlights a previously unrecognized lateral-wall streaming
mechanism. Streaming refers to irreversible mean flow generation through nonlinear
internal wave interactions, in analogy to acoustic streaming (Lighthill 1978). Typically,
streaming results in strong horizontal mean flow generation if mean vertical vorticity
is produced. Here, ‘strong’ refers to persistent, cumulative transfer of energy from the
wave field into the mean flow. Strong mean flow generation is known to occur due to
horizontal cross-beam variation (Bordes et al. 2012; Kataoka & Akylas 2015; Semin
et al. 2016; Couston et al. 2018; Beckebanze, Raja & Maas 2019), with important
modifications by planetary rotation (Grisouard & Bühler 2012; Fan, Kataoka & Akylas
2018), and upon reflection where incident and reflected beams interact (Thorpe 1997;
Grisouard et al. 2013; Zhou & Diamessis 2015; Raja 2018). Renaud & Venaille
(2019) recently also found strong mean flow generation in a flat bottom boundary
layer.

Our detailed analysis demonstrates that the lateral-wall streaming is related to a
peculiar difference in the lateral boundary layer thickness for vertical and horizontal
velocity components, first noted by Vasiliev & Chashechkin (2003), and recently
linked to intensified wave field damping by Beckebanze et al. (2018). The lateral-wall
streaming is strongest for significantly inclined wave beams, when vertical and
horizontal along-wall velocity components are of similar magnitude, in agreement
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with the experimentally observed dependency on the wave frequency. Note that
we refer to such angles as significantly inclined angles to contrast them with the
ocean environment, where most dominant waves have low frequency, and thus low
angles. We remark that the previously unknown lateral-wall streaming was only
recognized due to the absence of known streaming mechanisms in the experimental
set-up. As such, it is likely to have also occurred in other laboratory experiments
on internal waves, among which are the experiments on internal wave attractors
by Hazewinkel (2010) and Brouzet et al. (2017), and possibly also in Semin et al.
(2016). Importantly, this streaming mechanism in the stratified boundary layer is
absent in homogeneous fluids, and thus fundamentally different from the well-known
homogeneous streaming mechanisms summarized in Riley (2001). In the ocean, the
stratified streaming mechanism may be secondary to the homogeneous streaming
mechanism because the most energetic part of the oceanic internal wave field is
quasi-horizontal.

The structure of this paper is as follows. In § 2 we report the laboratory set-up,
including a detailed description of a newly developed particle injector in § 2.1.
The experimental results (§ 3) are the motivation for the theoretical derivation of
the internal-wave-induced mean flow near the lateral walls, presented in § 4. The
multiple-scale analysis may be skipped as the main theoretical results are summarized
in § 5, where we compare them to the experimental results. Oceanic circumstances
for which our results are potentially important, as well as possible extensions and
limitations of our study, are discussed in § 6.

2. Experimental set-up

A rectangular tank of inner size L×W ×H = 156× 17× 42.5 cm3, corresponding
respectively to coordinates x, y and z, is filled up to ∼37 cm with a linearly salt-
stratified fluid by using the two-bucket method (Fortuin 1960; Oster & Yamamoto
1963). Vertical density profile measurements are performed with a conductivity probe.
The fluid densities at z = 33.6 cm, where the particles enter the fluid, and bottom
(z= 0) are ρ0 = 0.998 g cm−3 and 1.039± 0.002 g cm−3, respectively, corresponding
to a buoyancy frequency N0= 1.1± 0.03 rad s−1. Internal plane waves are created by
an internal wave generator based on the set-up developed by Gostiaux et al. (2007).

The wave generator consists of 50 plates stacked vertically. Each plate extends over
the full width of the tank W and is 6.5 mm high. We use the upper 25 plates (from
z=17.35 cm to z=33.6 cm) for the forcing in the present experiments. We install the
plates such that the oscillating plates mimic a sinusoidal vertical profile, with upward
phase propagation and vertical wavelength Lz=3.9 cm composed by 6 plates, over the
vertical extent of 4.17Lz = 16.25 cm. Figure 1(a) shows a composite snapshot of the
steady-state wave beam and the column of settling particles described in § 2.1, here at
x= 40 cm. The colour map visualizes the horizontal density perturbation, ∂xρ, derived
from synthetic schlieren, which can be converted to any wave beam field quantity.

Eleven experiments are performed for imposed wave frequency ω0 in the range
0.125–0.785 rad s−1, all for fixed wave maker amplitude A0= 0.9 cm. The generated
internal wave beam with characteristic wavelength L0=Lz cos θ propagates downwards
and to the right at angles θ = sin−1

[ω0/N0] = 0.11–0.8 rad with respect to the
horizontal. Table 1 summarizes the parameter values and ranges explored in this work.
The along-beam decay (figure 1b) is extracted from a time series of 175 s (frames
at 4 Hz), starting 50 s after the onset of the wave maker, filtered at the forcing
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FIGURE 1. (Colour online) (a) Snapshot of the experimental internal wave beam,
generated by the wave maker on the left (x = 0 cm) and extending over the full width
of the tank (in the y direction), propagating downwards to the right with an angle
θ = sin−1

[ω0/N0] = 15◦ with respect to the horizontal, and intersecting the sinking
particle column, here at x = 40 cm from the wave maker. The colour map visualizes
the horizontal density gradient, ∂xρ (here, the vertical background density gradient is
72 kg m4). (b) Spatially averaged along-beam decay of the wave field (normalized)
extracted from ω0-filtered time series (blue), with the grey shading indicating two standard
deviations. The observation matches the theoretical exponential decay (derived in § 4)
including both internal shear and lateral-wall friction (black line). Taking only internal
shear dissipation into account (red dashed line) overpredicts the wave beam strength at
x= 60 cm by approximately 80 % (≈1− 0.16/0.09).

frequency ω0 = 0.22 rad s−1 for this case, and spatially averaging over 2 cross-beam
wavelengths (300 data points). The exponential decay only matches the theoretical
decay rate upon incorporating lateral-wall friction, emphasizing the importance of the
lateral walls in the present experiments. The theoretical decay rates are derived in § 4.
Viscous attenuation reduces the wave beam strength by ∼99.7 % at the end of the tank
(x= 156 cm), making a sponge layer unnecessary. The wave field is observed using
the synthetic schlieren technique, with a computer-controlled video camera (Allied
Vision Technologies Stingray) with a CCD matrix of 2452 × 2054 pixels, which
measures the variations of the gradient of density of the fluid (Sutherland et al. 1999;
Dalziel, Hughes & Sutherland 2000). The conversion of pixels to distance varies by
approximately 5 % throughout the tank, being 26 pix cm−1 at the back (y = −W/2)
and 28.5 pix cm−1 at the front (y = W/2) of the tank. We apply the conversion
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Parameter Dimensional, in experiments Non-dimensionalized

Wave frequency ω0 = 0.125–0.785 rad s−1 1
Along-beam velocity

amplitude
U0 = A0ω0 = 1–7 mm s−1 1

Cross-beam wavelength L0 = cos θLz = 2.76–3.88 cm 1
Vertical wavelength Lz = 3.9 cm 1/cos θ = 1.006–1.435
Angle θ = sin−1

[N0/ω0] θ = 0.11–0.79 rad θ , same values
Brunt–Väisälä frequency N0 = 1.1 rad s−1 N =N0/ω0 = 1/sin θ = 1.4–8.8
Amplitude of wave maker

forcing
A0 = 9 mm U0 cos θ/(L0ω0)= ε cos θ = 0.23

Width of the tank (in
the y direction)

W = 2lyL0 = 17.0 cm 2ly = 4.4–6.2

Height of wave maker
and beam

4.17Lz = 16.25 cm 2h= 4.17/cos θ = 4.2–5.9

Boundary layer thickness d0 =
√
ν/ω0 = 1.1–2.8 mm δ = d0/L0 = 0.04–0.08� 1

Decay rate due to internal
shear

β1/L0 = 0.02–0.08 cm−1 β1 = 0.07–0.2

Decay rate due to wall
friction

β2/L0 = 0.005–0.02 cm−1 β2 = 0.02–0.06

Stokes number at wave
maker

ε =U0/(ω0L0)= 0.23–0.33 ε, same value

Stokes number at particle
column

ε18cm = 0.05–0.15� 1 Same values

TABLE 1. Parameter values of the experiments and their corresponding non-dimensional
values. Note that the Stokes number εx = ε exp[−(β1 + β2)x/L0], quantifying the weak
nonlinearity of the wave field, decreases strongly with distance to the wave maker. Both
ε and δ are sufficiently small for our perturbation analysis to be valid.

26.8 pix cm−1 to the experimental data to match the experimentally determined wave
beam height (in pixels) to the theoretically known wave beam height.

2.1. Sinking particle column
We developed a particle injector that allows for the production of a column of particles
of controlled particle density, raining into the stratified fluid in a rectangular section,
which embraces the full width of the tank (from wall to wall). The particle injector is
placed at 18, 25 or 40 cm to the right of the wave generator. It is only at 18 cm that
the particle column is located outside of the wave beam bottom reflection region for
all tested wave frequencies, in which case we can rule out streaming effects associated
with the interaction of incident and reflected beams. For this reason, we only analyse
experimental particle column dynamics injected at an 18 cm distance from the wave
maker.

The particles are injected between two vertical acrylic plates (see figure 1a) and
slightly below the free surface through a slit in a copper tube, the slit extending along
the entire y direction, from wall to wall. The distance between the acrylic plates (in
along-wall x direction) is fixed at 3 cm for the present experiments. Beforehand, the
particles are mixed with fresh water (density ρ0 = 0.998 g cm−3) and surfactant to
avoid clustering during the immersion in the stratified fluid. The fresh water, acting
as a carrier for the particles, drags the suspended particles from a small container
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FIGURE 2. (Colour online) Snapshots at four instances (here, the wave period is T= 20 s)
of the sinking particle column at 18 cm from the wave maker, intersected by the wave
beam between the blue dashed lines. The wave maker is switched on at time t = 0
with a fully established column of sinking particles (panel a). The maximum horizontal
displacement, δxmax, of the left edge of the sinking particle column is illustrated in
panel (d).

(particle reservoir) through the copper tube to its slit transect. A peristaltic pump
guarantees that the same amount of fluid is pumped into the slit transect of the
copper tube as is sucked out of it. A constant flow rate of 20 ml min−1 for the
carrier fluid results – after an initial transient phase – in a stationary homogeneous
column with packing fraction φ∼O(10−2). We verified experimentally that this small
packing fraction does not affect the internal wave field.

The granular column consists of polystyrene grains with density ρp = 1.055 ±
0.01 g cm−3. (The particle density reported by the particle producer and in Horne
(2015) is 1.05 g cm−3, without any margin of error. Our own measurements –
inferring particle densities from the height where particles come to rest in a linearly
stratified fluid – revealed a slightly larger average particle density, with an estimated
error of 0.01 g cm−3.) The particle size of O(100) µm was intended to be identical in
all experiments. Indirect measurements of the prevailing particle sizes, derived from
an experimental Doppler shift and explained in § A.4, indicate that the prevailing
particle diameter increased in consecutive experiments, ranging from 40 to 240 µm.
We believe that the carrier fluid segregated the particles, dragging smaller particles
more efficiently, thereby first removing predominantly smaller particles from the
particle reservoir. Only after comparison with our theoretical results – when repeating
the experiments was no longer possible – did we realize that it would have been
desirable to use higher-quality particles, with better-characterized particle sizes.

3. Experimental results
For each experiment, the wave maker is turned on once the column of settling

particles is fully established in the quiescent stratified fluid (figure 2a), as described
in § 2.1. The wave beam builds up quickly (over a few wave periods) and is in
the steady state throughout most of the experiment, lasting 730 s (in some cases
750 s), corresponding to 15 to 90 wave periods, depending on the imposed wave
frequency, ω0. We observe that the internal wave beam perturbs the column, moving
it back and forth with the wave beam motion, thus imprinting wiggles on the column
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FIGURE 3. (Colour online) Displacement δx of the left edge of the sinking particle
column (at 18 cm from the wave maker and for ω0 = 0.31 rad s−1), as a function of
height z (vertical) and time t (horizontal). Particles are subject to wave beam motion
between the two blue dashed horizontal lines. The four black arrows at the top indicate
the corresponding snapshots in figure 2; the three horizontal arrows at the left indicate
the vertical levels at which time series are shown in figure 4(a). The column phase speed,
ωc/kz=ω0/kz+ w̄p, (indicated by four red dot-dashed lines, matching observed phase lines)
differs from the wave beam phase speed, ω0/kz = 0.195 cm s−1, (four blue dashed lines)
due to a Doppler shift. The average particle sinking velocity w̄p is accurately determined
from the difference between ω0 and the experimentally estimated column oscillation
frequency ωc; see also figure 4(b). The curved downward-sloping lines show theoretical
particle trajectories based on the average sinking velocity (here w̄p ≈ −0.03 cm s−1 at
z = 20 cm) determined from the Doppler shift, with the factor 2/3 slowdown from the
surface towards the bottom due to a decreased density difference between the stratified
fluid and the sinking particles (see § A.4).

snapshots in figures 1(a) and 2(b–d). In addition, throughout the experiment, the
particle column is slowly shifted towards the wave maker (figure 2b–d), which is of
particular interest because the driving mechanism behind this leftward particle column
motion was initially unknown. We present the displacement of the left edge of the
sinking particle column, δx, for the same experiment, as a function of height z and
time t in a contour plot in figure 3, and at three vertical levels in figure 4(a). We
find that the column displacement increases linearly from top to bottom of the wave
beam interaction zone (figure 2c–d), suggesting that the settling particles are exposed
to a depth-independent transport mechanism as they sink through the wave beam.
In figure 2(d), the particles below the wave beam have been displaced horizontally
before they fell out of the wave beam. This can also be deduced from figure 3,
especially in the lower right corner of the plot.

Despite the overall movement to the left, we also observe that some particles are
transported to the right (slightly visible in figure 2d). We interpret this transport to
the right as a clear indication that the quasi-two-dimensional wave beam facilitates a
particle transport that is non-uniform in the cross-tank direction (y), consistent with
our theoretical explanation developed in § 4.
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FIGURE 4. (Colour online) (a) Time series of the horizontal displacement δx of the left
edge of the sinking particle column for the experiment with ω0 = 0.31 rad s−1 at three
heights: near the top of the wave beam (black), half-way through (red) and near the lower
edge of the wave beam (blue). The corresponding simulated mean column displacements
(see § 4) are superimposed (smooth lines). (b) Corresponding spectra of experimental
displacement time series, clearly peaking at the Doppler-shifted particle column frequency
ωc/ω0 = 0.84 ± 0.02, which gives an accurate sinking velocity estimate, w̄p = 0.33 ±
0.04 mm s−1. (c) Maximum horizontal displacement of the sinking particle column at the
end of the experiments, for 11 different wave frequencies, all with N0 = 1.1 rad s−1.

We find that the strength of the horizontal column displacement, δx, is strongly
dependent on the imposed wave frequency, ω0. This is visualized in figure 4(c), where
we present the maximum displacement of the left column edge, δxmax, for all eleven
experiments. The maximum displacement, illustrated in figure 2(d), ranges from 0.3 to
5 cm to the left across the eleven experiments, with one exception for the experiment
with the largest wave frequency (ω0= 0.785), where we find a transport of ∼1 cm to
the right. It is the peculiar horizontal displacement, the apparent non-uniformity in the
cross-tank direction, and its strong dependence on the wave frequency, that we intend
to explain by the theory developed in § 4.

4. Theory on mean flow generation at lateral walls

In this theoretical part we employ small-amplitude expansions to derive asymptotic
expressions for monochromatic quasi-two-dimensional internal wave beams between
two lateral walls, with viscous dissipation taken into account due to shear in the cross-
beam direction and friction with the lateral walls. The exact solutions to the linearized
equations, constructed in § 4.1, are used in § 4.2 to compute the induced mean field. In
particular, we focus on the previously unrecognized mean vertical vorticity production
in the stratified lateral-wall boundary layers, which drives a strong horizontal mean
circulation.

4.1. Internal wave beam between lateral walls
For this theoretical analysis, we shall work with dimensionless variables (listed in
table 1), employing 1/ω0 as the time scale and the wavelength, L0, as the length
scale. The velocity is non-dimensionalized by U0 = A0ω0, which is the along-beam
velocity amplitude based on an empirical parameterization by Mercier et al. (2010)
for a vertically oriented, horizontally oscillating wave maker.
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856 E. Horne and others

Denoting the dimensionless coordinates also by (x, y, z), we consider a linearly
stratified Boussinesq fluid with scaled Brunt–Väisälä frequency N = N0/ω0 = 1/sin θ
in an infinite domain between two lateral walls at y=±ly =W/2L0 and for x > 0.

The equations governing the dimensionless velocity field u= (u, v,w), buoyancy b,
and pressure p of the Boussinesq fluid are given by

∂tu+ ε(u · ∇)u=−∇p+ δ21u+ ẑb, ∂tb+ ε u · ∇b=−N2w, ∇ · u= 0. (4.1a−c)

Here, ε = U0/(ω0L0)� 1 is the Stokes number, and δ = d0/L0 � 1 is the thickness
of the Stokes boundary layer, d0 =

√
ν/ω0, scaled by wavelength L0, and where ν =

1 mm2 s−1 is the kinematic viscosity. We assume δ� ly (that is, the dimensional half-
width of the domain, W/2= lyL0, is much larger than the Stokes boundary layer width,
d0). We solve (4.1) with no-slip boundary conditions, u= 0 at y=±ly by expanding
the velocity vector u in δ and ε,

u(t)=

 u0(t)
δv1(t)
w0(t)

+
ū(εt)
v̄(εt)

0

+ ε
 ū1
v̄1
w̄1

+O(δ2, δε, ε2), (4.2)

and similarly for buoyancy b and pressure p, valid for the time range t ∈ [0,O(ε−1)].
Additionally, we make the Ansatz that u0

= [u0, δv1, w0] oscillates at the imposed
wave frequency, 1, (dimensionally ω0). The overbar denotes the mean components,
either varying only over the slow time, τ = εt, or being constant, as is the case
for the slaved mean flow, ū1 = [ū1, v̄1, w̄1]. The slowly varying mean flow, ū(εt) =
[ū, v̄, 0], also referred to as vortical induced mean flow (Beckebanze et al. 2018) or
strong mean flow (Bordes et al. 2012; Dauxois et al. 2018), is initially zero (ū(0)=0).
Our objective is to understand how the leading-order wave field, u0

= [u0, δv1,w0]e−it,
forces the vortical induced mean flow at O(ε), possibly leading to O(ε0)-amplitudes
for the vortical mean flow amplitudes, ū(εt) over 1/ε time scales. We do not study
wave–mean flow interactions (that is, possible feedbacks of the mean flow on the wave
field).

Two-dimensional wave beam
Motivated by the experiments, we consider the internal wave energy propagation

to be downwards along coordinate ξ = x cos θ − z sin θ , implying that the phase
propagation is upwards along ζ = x sin θ + z cos θ . The leading-order velocity field
of transversally uniform wave beams solving (4.1) at O(δ2, ε0)-accuracy with free-slip
conditions at the lateral walls can be expressed as

u0 = [u0, v0,w0] = [cos θ, 0,−sin θ ]U, with U =
1

2π

∫
∞

0
Û(k)eikζ−(β1+β2)(x/ cos θ)−it dk.

(4.3)
Here, β1 and β2 are the viscous decay rates corresponding to internal shear dissipation
and friction with the lateral walls, respectively. The physical quantities are always the
real part of the presented expression. The spectrum Û(k) of the along-beam velocity
component is presumed to vanish for negative wavenumbers, k < 0, because the
phase propagation is primarily along positive ζ . (It is known (Mercier et al. 2010;
Beckebanze et al. 2019) that the upper and lower edges of the wave maker act as
line sources, also radiating waves upwards. These upward-propagating waves, hardly
visible in the experimental velocity field (figure 1a), are not relevant for the dynamics
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FIGURE 5. (Colour online) Snapshot of the theoretical along-beam velocity, U, in the
centre plane, y = 0, with parameter values corresponding to the experiment with ω0 =

0.31 rad s−1. The velocity vector u0 = [u0, 0, w0] is presented at x = 15 cm along three
cross-tank transects (z= 19.9, 22.95, 26 cm, blue arrows) and along a vertical transect in
the centre plane (red arrows). For visualization purposes, the magnitude of the vector u0
is elongated by a factor 3 in the along-phase propagation direction, ζ . Note that near the
lateral walls, the velocity vector u0 is not aligned with the along-beam direction, ξ . As a
result, the in-product of u0 with ∇u0 (pointing along the phase propagation direction, ζ )
is non-negligible (see also figure 6a), causing strong mean flow generation near the lateral
walls (shown in figure 7).

discussed here.) Replicating the laboratory experiment, we consider the along-beam
velocity spectrum

Û(k)=
sin[h cos θ(k− 2π)]

π(k− 2π)
, (4.4)

generated by a wave maker of height 2h with vertical wavenumber 2π cos θ at x= 0,
as depicted in figure 5.

The along-beam decay rate due to shear in the cross-beam direction ζ can be
derived in various ways (see §6 in Voisin (2003) for an overview) and is given
by β1 = δ

2 tan θk3/2. For the laboratory experiments with the cross-beam widths
2h cos θ = 4.17, the spectrum Û(k) peaks sharply at the imposed wavenumber 2π,
justifying the use of the simplified internal shear decay rate β1 = 4π3δ2 tan θ for
k = 2π. The decay rate β2 obviously vanishes for free-slip conditions at the lateral
walls, and is determined next upon imposing no-slip boundary conditions.
Lateral boundary layer

Following the analysis by Beckebanze & Maas (2016) and Beckebanze et al. (2018),
we consider the momentum equations for u0 and w0 with subscript-derivative notation
and in stretched transverse coordinate η= δ−1y:

− iu0 =−p0x + u0ηη , i cot2 θ w0 =−p0z +w0ηη . (4.5a,b)

Imposing no-slip boundary conditions at the walls, η = ±δ−1ly, and interior velocity
field (4.3), gives

u0 = cos θ(1− Ex)U, Ex(η)=
cosh[i−1/2η]

cosh[i−1/2δ−1ly]
,

w0 =−sin θ(1− Ez)U, Ez(η)=
cosh[i1/2 cot θη]

cosh[i1/2 cot θδ−1ly]
.

 (4.6)
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858 E. Horne and others

The non-planar orbital structure of this along-beam velocity vector, [u0, w0], is
illustrated in figure 5. The velocity vector u0 = [u0, 0, w0] has a non-zero divergence
near the lateral walls due to the presence of stratification. Please note that for
homogeneous lateral boundary layers, in which Ez and Ex are identical, the velocity
vector u0 would be divergence-free. It is only due to the difference between Ex

and Ez (caused by the stratification that modifies the vertical momentum equation
in stretched coordinates, (4.5)) that we must include a O(δ)-velocity term to satisfy
the divergence-free constraint. Hence, by the continuity equation u0x + w0z =−v1η at
O(δ0) in stretched coordinate (η), and using the impermeability boundary conditions
v1 = 0 at y=±ly, we find the O(δ) transversal velocity

v1 = sin θ
(

i1/2 cos θ
sinh[i−1/2δ−1y]
cosh[i−1/2δ−1ly]

− i−1/2 sin θ
sinh[i1/2 cot θδ−1y]
cosh[i1/2 cot θδ−1ly]

− i1/2eiθ y
ly

)
Uζ .

(4.7)
The slow O(l−1

y )-decay of v1 towards the interior, −i1/2 sin θeiθUζy/ly, requires an
additional viscous attenuation factor, exp[−β2ξ ] with decay rate β2 = δl−1

y Re[i−1/2

sin θeiθk], to satisfy the O(δ)-continuity equation (Beckebanze & Maas 2016). Again,
we may replace k by the dominant wavenumber, 2π. Despite the relatively thin
boundary layers, we find that the friction with the lateral walls almost doubles the
decay at 60 cm from the wave maker for the experiment depicted in figure 1.

4.2. Induced Eulerian mean flow
In this section, we construct the so-called induced mean flow, u= [ū(εt)+ ū1, v̄(εt)+
v̄1, w̄1], generated through the time-averaged Reynolds stresses at O(ε). Balancing
time-independent terms in the buoyancy equation at O(ε), one readily finds the vertical
induced mean flow

w̄1 =−
ε

N2
〈Re[u0

] ·Re[∇b0]〉 =−
ε

2N2
Re[u0

· ∇b∗0] =
ε

2
Im[u0

· ∇w∗0], (4.8)

where u0
= [u0, δv1, w0], b0 = −iN2w0, and 〈·〉 stands for time-averaging over

one wave period, 2π. This weak (order-ε) induced mean vertical flow (in the
Eulerian framework), also referred to as slaved mean flow, is exactly balanced
by the vertical Stokes drift of the wave beam velocity field, u0, which we show in
§ A.2. Consequently, net mass transport can only take place in the horizontal plane,
and we thus focus on the horizontal induced circulation.

Using a Helmholtz decomposition, the horizontal induced mean velocity field
can be split into [ū, v̄] = [Ψ̄y + φ̄x, −Ψ̄x + φ̄y], where Ψ̄ and φ̄ are the stream
function and flow potential, respectively. The flow potential describing the horizontal
slaved mean flow, [ū1, v̄1] = [φ̄x, φ̄y], is set by the vertical slaved mean velocity, w̄1,
through the continuity equation, φ̄xx + φ̄yy = −w̄1Z , and does not change over time
for steady-state wave fields. Whereas the flow potential, φ̄, investigated by Kistovich
& Chashechkin (2001), Tabaei & Akylas (2003) among others, may be relevant
for truly two-dimensional wave fields (where φ̄y = 0), it is typically secondary to
the vortical flow described by the stream function, Ψ̄ , in the quasi-two-dimensional
and three-dimensional configurations (Beckebanze et al. 2019). The mean vortical
flow associated with Ψ̄ can persistently accumulate energy until a strong large-scale
circulation is established. The slow evolution equations of the potentially strong
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FIGURE 6. (Colour online) (a) Spatial structure of along-wall Reynolds stress, F̄,
expression (4.10), for parameter values corresponding to the experiment with ω0 =

0.31 rad s−1, at z= 20.5 cm, vanishing almost everywhere except within a distance (1+
cot θ)d0 = 0.78 cm of the lateral walls (indicated by solid lines). This distance is the
sum of the homogeneous boundary layer thickness, d0=

√
ω0/ν = 0.18 cm, (dashed lines)

and the (stratified) boundary layer thickness of the vertical velocity component, d0 cot θ =
0.69 cm. (b) Simulated mean flow in the x direction, U0ū, along a cross-tank transect (y)
at three vertical levels and x= 17 cm, at times t= 5T and t= 37.5T . The thick light blue
line corresponds to the theoretical steady-state mean velocity, derived in § 4.3.

horizontal vortical induced mean flow associated with stream function Ψ̄ , and no-slip
boundary conditions at the tank boundaries, x= 0, lx and y=±ly, are given by

1h∂τ Ψ̄ = ε
−1δ212

hΨ̄ + F̄y with F̄=−〈Re[u0
] ·Re[∇u0]〉,

Ψ̄ (x,±ly)= Ψ̄y(x,±ly)= 0, Ψ̄ (0, y)= Ψ̄x(0, y)= Ψ̄ (lx, y)= Ψ̄x(lx, y)= 0.

}
(4.9)

Here, 1h is the horizontal Laplace operator, and τ = εt is the slow time over which
the time-averaged O(ε)-Reynolds stress divergence, εF̄, acts as a O(1)-source of mean
vertical vorticity. We also decoupled the three-dimensional induced mean flow problem
into independent two-dimensional planar problems by neglecting shear in the vertical
direction. This is an appropriate simplification, because lateral-wall friction turns out
to dominate induced mean flow damping.

A lengthy but straightforward small-amplitude expansion (see § A.1) simplifies the
mean Reynolds stress divergence, F̄, to

F̄=−
1
2

Re[u0
· ∇u∗0] =

sin θ cos2 θ

2

5∑
n=1

Im
[

an
cosh[cnδ

−1y]
cosh[cnδ−1ly]

]
Im[UU∗ζ ] +O(δl−1

y , δ
2)

with a1 =−1−
ie−iθ

cos θ
, a2 = 1, a3 = tan θ, a4 =−1, a5 = 1+ i,

c1 = i−1/2, c2 = i1/2 cot θ, c3 = i−1/2(cot θ + 1),
c4 = i1/2(cot θ + 1), c5 =

√
2.


(4.10)

Here, we have absorbed the effects due to along-beam viscous dissipation in
O(δl−1

y , δ
2). The spatial structure of the mean Reynolds stress divergence, F̄, which

is practically zero everywhere except in a neighbourhood of δ(1 + cot θ) near the
lateral walls (dimensionally d0(1 + cot θ)), is presented in figure 6(a). Importantly,
the magnitude of this O(δ0)-Reynolds stress divergence is independent of viscosity;
it is the width δ(1+ cot θ) of the non-zero forcing regions of (4.10) that vanishes in
the inviscid limit (δ→ 0).
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FIGURE 7. (Colour online) Visualization of the along-wall induced velocity, U0ū, (in
mm s−1) at time 5T = 100 s, in three horizontal planes (z = 14, 20.5 and 27 cm). The
rectangular region where particles sink, centred at x= 180 mm, is sketched by the black
box, and the wave beam motion is confined to the region between the blue dashed lines.
Note that velocities in the boundary layer are a magnitude larger compared to the interior
flow, and that the bottom of the plot (z= 13 cm) does not correspond to the bottom of
the tank (z= 0).

Scaling analysis also reveals that the forcing due to transversal advection,
〈Re[u0

] ·Re[∇v1]〉, is at most O(εδ), hence it does not contribute to the leading-order
Reynolds stresses at O(ε). Note also that in the interior, the largest Reynolds stresses
are O(εδl−1

y ) due to viscous dissipation by the lateral walls, and O(εδ2) due to internal
shear dissipation. We solve (4.9) numerically on a rectangular grid, as explained in
§ A.3. Snapshots of the simulated induced mean flow in three horizontal planes
are shown in figure 7, with three corresponding cross-tank transects in figure 6(b).
Simulated induced mean velocities and associated particle column displacements for
different wave frequencies are presented in figure 8.

4.3. Steady-state-induced mean flow
The objective is to derive a simple expression for the horizontal induced mean velocity.
We simplify the problem by assuming the domain to be infinitely long in the along-
tank x direction. Spatial variance of the Reynolds stress divergence F̄ in the cross-tank
y direction is much stronger than the decay in the along-tank x direction, exp[−2(β1+

β2)x/cos θ ], which is the square of the wave beam decay due to viscous dissipation.
Hence, we may assume that F̄ varies predominately in the cross-tank y direction. By
(4.9), εF̄y is balanced by δ212

hΨ̄ , reducing to

δ2Ψ̄yyyy =−εF̄y ⇔ δ2ūyyy =−εF̄y. (4.11)

Direct integration, and incorporating the boundary condition ū = 0 at y = ±ly,
symmetry around y= 0 and zero net mass transport,

∫ ly
−ly

ū dy= 0, gives

ū= ε
sin θ cos2 θ

4
Im[UU∗ζ ]

(
5∑

n=1

Im

[
an

c2
n

(
1− 3

y2

l2
y

+ 2
cosh[cnδ

−1y]
cosh[cnδ−1ly]

)])
. (4.12)
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FIGURE 8. (Colour online) (a) Blue dots with error margins show the maximum observed
displacement of the sinking particle column at the lower edge of the interaction zone with
the wave beam. Black dots show the simulated column displacement, where we used the
Doppler-shifted sinking velocity to determine how long particles take to sink through the
wave beam with height 16.25 cm. (b) In the solid line, the theoretical steady-state-induced
mean flow (see (4.13)) is compared with the simulated induced mean flow at x= 165 cm
(black squares). The blue dots show the observed column displacement divided by its
residence time in the wave beam interaction zone, with a maximum of 365 s.

We present this steady-state-induced mean velocity in figure 6(b) along a transect
from wall to wall at x = 18 cm, and in figure 8(b) at the centre of the particle
column, (x, y) = (18, 0) cm, as a function of wave frequency ω0. Note that some
simulated mean velocities exceed the theoretical steady-state mean flow. This reveals
that our assumption on the forcing F̄ being uniform along the x direction slightly
underestimates the simulated steady-state mean velocity. The theoretical time scale to
reach the steady state is given by W2/(4ν)∼ 2 hours, though it appears to be already
reached towards the end of the presented experiments.

Dimensionalizing expression (4.12), and approximating the sum by (sin θ +
1)/(2 cos2 θ), we find a characteristic value for the interior induced mean return
flow:

U0ū(y= 0)≈−
π

4
sin θ(1+ sin θ)

U2
0

L0ω0
. (4.13)

Interestingly, the magnitude of the steady-state-induced mean flow is independent
of viscosity (ν) and of the distance between the lateral walls (W). This implies that
the steady-state mean flow does not vanish in the limit of zero viscosity, whilst the
driving Reynolds stress does vanish for zero viscosity. It is the time scale over which
the steady state is reached that approaches infinity as viscosity vanishes or when the
width of the domain goes to infinity.

The assumption that the y-variations of F̄ are much stronger that the x-variations is
appropriate if the along-wall forcing region (of size 2h cot θ ) is much larger than the
wall-to-wall distance (2ly). For relatively large wall-to-wall distances, ly� h cot θ , two
separate circulation cells are established in the vicinity of the walls.

In § 6 we consider oceanic conditions in which the interior return flow, equation
(4.13), may be relevant.

5. Comparison between theoretical and experimental results
This section is devoted to a detailed comparison between the experimental results in

§ 3, and the theory derived in § 4, providing strong evidence that the observed particle
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862 E. Horne and others

displacement is facilitated by the previously unrecognized internal wave lateral-wall
streaming.

The theoretical results derived in detail in § 4 can be summarized as follows:

(i) The lateral walls modify the otherwise two-dimensional internal wave field. The
most noticeable effect of the lateral walls on the linear internal wave beam
dynamics is the additional viscous attenuation due to boundary friction, as
discussed in § 3 and shown in figure 1(b).

(ii) Whereas in the interior the linear wave velocity vector is practically orthogonal
to the phase direction, resulting in negligible nonlinear terms, this is not the case
in the lateral boundary layers (figure 6a). The stratification causes differences
in the boundary layer thickness for vertical and horizontal velocity components,
producing strong nonlinearities near the lateral walls. The nonlinear Reynolds
stresses, driving a mean flow, are strongest for strongly inclined beams, when
vertical and horizontal velocity components are of similar magnitude. The strong
dependency on the wave frequency ω0 is a manifestation of the underlying
dependency on the wave beam slope, tan θ =ω0/

√
N2

0 −ω
2
0.

(iii) The directly forced mean flow in the lateral boundary layers and in the direction
of the horizontal beam propagation is balanced by a return flow through the
interior. The return flow is initially nearly uniform in the interior if the stretch
of along-wall forcing exceeds the wall-to-wall distance.

If the experimentally observed particle transport is facilitated by streaming at the
lateral walls, then the observations should be consistent with the described theoretical
results. We can compare temporal evolution, spatial patterns and ω0-dependence of
the particle displacement. In figure 4(a) we compare simulated and experimental
evolution of the column edge at three vertical levels of the interaction zone of the
sinking particle column and the wave beam. Whereas we find very good agreement
at the top level, we attribute discrepancies at the middle and lower levels primarily to
uncertainties in the residence time of particles within the interaction zone. Figure 7
illustrates that the directly forced flow at the lateral walls (in red) and the interior
return flow (in blue) strongly decay with distance to the wave maker. Particles subject
to the return flow are thus accelerated as they approach the wave maker – a feedback
process that we did not take into account in the numerical simulations.

While the strength of the directly forced mean flow at the lateral walls varies
strongly in the cross-tank direction, the return flow is initially roughly uniform in
the cross-tank direction (see profile at t = 5T in figure 6b). This is consistent with
the observations: the sinking particle column is shifted to the left in the interior,
maintaining a sharp left edge, while the particle advection to the right near the tank’s
boundaries blurs the right edge of the particle column (visible in the snapshots in
figure 2c,d).

The strongest evidence for the lateral-wall streaming mechanism generating the
observed horizontal particle displacement can be seen in the matching frequency
dependency, presented in figure 8. Albeit large discrepancies at particular frequencies,
it is the overall strong variation with ω0 that matches surprisingly well. An exception
is the experiment with the largest wave frequency (ω0 = 0.785 rad s−1), which
clearly shows transport towards the opposite direction, at odds with the boundary
layer streaming hypothesis. It appears that the horizontal mean velocity field has
changed sign, generating transport to the right, blurring the left column edge (not
shown). It may be useful to remark that for this particular experiment, the beam
slope, tan θ = 0.87, exceeded the maximum wave maker inclination, Lz/(2πa0)= 0.69,
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implying (theoretical) fluid motion through the wave maker plates, with possibly
unknown nonlinear dynamics occurring at the wave maker.

Last but not least, we also find reasonable agreement between theoretical induced
mean velocities and velocities inferred from the observed particle displacement
(figure 8b).

6. Discussion and conclusions

Our study has revealed a previously unknown streaming mechanism by internal
waves at the lateral walls. It was only due to the absence of known streaming
mechanisms in this experimental set-up that the previously unrecognized streaming
mechanism was discovered. As such, it seems plausible that the mechanism we
describe also played a role in other internal wave experiments. The horizontal
particle advection observed by Hazewinkel (2010) in the vicinity of an internal wave
attractor (see figure 7.3 of the thesis) appears to be such a candidate, especially given
the thin tank width of only 12 cm. Strong evidence of the lateral-wall streaming
at play is also provided by the three-dimensional numerical simulations by Brouzet
et al. (2016), where they found a lateral boundary layer intensified mean circulation
in the vicinity of wave attractor branches (their figures 7 and 8). While it remains
challenging to disentangle mean flow generation mechanisms in more complicated
set-ups, we do believe that our lateral-wall streaming mechanism contributed to the
induced mean flow observed both numerically and experimentally by King, Zhang &
Swinney (2010) for tidal flow over three-dimensional topography.

Bordes et al. (2012) had also observed the generation of a mean flow in a
stratified fluid, which was approximately an order of magnitude larger than what
we observe. However, the mechanism was different, since it was based on transverse
non-uniformity of the wave field, with a wave generator that did not span across the
whole tank. This is not the case in our set-up, thus discarding this mechanism as a
possible explanation for our observation of the mean flow.

It should be noted that the presented laboratory experiments were not designed to
investigate the lateral-wall streaming mechanism and that the theoretical background
was only provided when the experiment was not longer available. For future
experiments we propose to include horizontal particle image velocimetry measure-
ments, to get a more direct observation of the induced mean flow, especially near the
lateral walls. Additionally, it was unclear until detailed comparison with our theory
that the particle sizes varied strongly among the eleven experiments. This prevented us
from using the traditional expression (A 7) to determine the sinking velocity. Instead,
we derived the sinking velocity accurately from the Doppler-shifted column oscillation
frequency, and subsequently used the expression (A 7) to infer the prevailing particle
diameter, finding a factor of five difference among the eleven experiments. We believe
that the large spread in particle size is caused by segregation of the carrier fluid in
the newly designed particle injector. Changes in particle sizes among experiments
may be prevented by using higher-quality particles with better-characterized particle
sizes.

In the ocean, sites where internal waves propagate between two almost-vertical walls
over distances longer than the channel width are sparse. A topographic feature similar
to our laboratory set-up is the 500 m deep channel between two coral atolls studied by
Rayson et al. (2018). As the length of the channel, roughly 10 km, exceeds the cross-
channel width of 2–3, we may apply our simple expression (4.13) for the return flow.
Using the observed M2 velocity amplitude of 0.2 m s−1, a wavelength of 800 m (we
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estimated a quarter wavelength from spatial variances in their figure 14), and Brunt–
Väisälä frequencies ranging from 10−3 to 0.5× 10−2, we find a (theoretical) induced
mean return flow of 1–5 cm s−1. This is small compared to the observed, bottom-
intensified mean current in excess of 1 m s−1 (Rayson et al. 2018). Nevertheless, it
indicates that the streaming at the lateral walls can be relevant in the ocean. While
it is legitimate to neglect the Coriolis effect at the coral atolls (taking it into account
modifies the angle θM2 by only 6 %), this may not be appropriate closer to the poles.
Our analysis is not applicable to sites where the Coriolis frequency is similar to the
strongest tidal component, typically M2. In spite of decreasing the slope tan2 θ = (ω2

0−

f 2
0 )/(N

2
0 −ω

2
0) upon incorporating the Coriolis effect f0 – thereby reducing the strength

of the lateral-wall streaming – we do believe that the overall streaming is intensified in
the presence of rotation due to the appearance of additional nonlinear terms associated
with the rotational part of the wave field.

The directly forced mean flow in the vicinity of the boundary may be relevant
for the transport of suspended sediment, nutrients and litter that is (occasionally)
lifted into the near-bottom water column. Our theoretical analysis has revealed
that mean flow generation is strongest for wave frequencies near the Brunt–
Väisälä frequency (justifying the Coriolis effect to be neglected). Hence, we expect
that small-scale internal wave packets associated with frequencies close to the local
Brunt–Väisälä frequency (N0) may facilitate along-boundary particle transport upon
oblique reflections at steep topography, with ‘oblique’ meaning that the incident and
reflected beams do not fall into the same vertical slice.

We speculate that there exists a continuous transition from our streaming mechanism
at lateral (vertical) walls to the streaming mechanism over a flat bottom, recently
investigated by Renaud & Venaille (2019). The viscous boundary layer description
by Kistovich & Chashechkin (1995a,b) for supercritical internal waves reflecting at
inclined boundaries may be a good starting point to extend the lateral-wall streaming
analysis to oblique wave beam reflections at inclined boundaries. Furthermore, we
propose to compute the boundary streaming upon oblique reflection at inclined walls
for wave packets, both for well-studied spherical Gaussian shapes (Sutherland 2010)
as well as elongated beam-like packets (Fan et al. 2018).
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Appendix A
A.1. Derivation of the Reynolds stress divergence expression, equation (4.10)

We split F̄ = −(1/2)Re[u0 · ∇u∗0] = −(1/2)Re[u0u∗0x
+ w0u∗0z

] − (1/2)Re[v1u∗0η ] into
its along-wall components and wall-normal component, and derive their explicit
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expressions separately. Using Ux= sin θUζ +O(δl−1
y , δ

2) and Uz= cos θUζ +O(δl−1
y , δ

2)

allows us to write the time-averaged along-wall advection of u0 at O(δ0)-accuracy as

−
1
2

Re[u0u∗0x
+w0u∗0z

] =−
cos2 θ sin θ

2
Re[(−Ex

+ Ez
+ ExEx∗

− EzEx∗)UU∗η]

=
cos2 θ sin θ

2
Im
[
−

cosh[c1δ
−1y]

cosh[c1δ−1ly]
+

cosh[c2δ
−1y]

cosh[c2δ−1ly]
+

cosh[c5δ
−1y]

cosh[c5δ−1ly]

−
cosh[c4δ

−1y]
cosh[c4δ−1ly]

]
Im[UU∗ζ ], (A 1)

because Re[UU∗ζ ] = 0, and constants cn are defined in (4.10). Here, we have
approximated ExEx∗ by (cosh[c5δ

−1y])/(cosh[c5δ
−1ly]), which neglects a term of

e−|O(δ−1ly)| ∈ O(δl−1
y ), and similarly for EzEx∗ . The along-wall advection thus sets the

amplitudes a2 = 1 and a4 = −1 in (4.10), and contributes to a1 = −1 − ie−iθ/cos θ
and a5 = 1 + i. The remaining terms in the summation of (4.10) originate from
the wall-normal advection term, −(1/2)Re[v1u∗0η ]. Writing the y-velocity component
v1 = sin θ cos θ(−iEx

η + i tan2 θEz
η − i1/2((eiθδη)/(cos θ ly)))Uζ in terms of Ex

η and Ez
η

gives at O(δ0)-accuracy

−
1
2

Re[v1u∗0η ] = −
sin θ cos θ

2
Re
[(
−iEx

η + i tan2 θEz
η − i1/2 eiθδη

cos θ ly

)
Uζ · cos θEx∗

η U∗
]

=
sin θ cos2 θ

2
Im
[
−iEx

ηE
x∗
η + i tan2 θEz

ηE
x∗
η − i1/2 eiθδη

cos θ ly
Ex∗
η

]
Im[U∗Uζ ]

=
cos2 θ sin θ

2
Im
[

i
cosh[c5δ

−1y]
cosh[c5δ−1ly]

+ tan θ
cosh[c2δ

−1y]
cosh[c2δ−1ly]

−
ie−iθ

cos θ
cosh[c1δ

−1y]
cosh[c1δ−1ly]

]
Im[UU∗ζ ]. (A 2)

Here, we approximated (y/ly) sinh[c∗1δ
−1y] by cosh[c∗1δ

−1y], which again neglects
a term of e−|O(δ−1ly)| ∈ O(δl−1

y ). We also exploited the simple relation Im[U∗Uζ ] =

−Im[UU∗ζ ], and similarly for the term involving Ex∗
ζ . Evidently, the wall-normal

advection sets a2 = tan θ , and contributes +i to a5 and −ie−iθ/cos θ to a1.

A.2. Misconceptions concerning Stokes drift
Horne (2015) suggested that the Stokes drift of the wave beam facilitated the observed
particle transport, motivated by simple calculations adopted by Hazewinkel (2010).
This appendix points towards subtle misconceptions that led both Hazewinkel (2010)
and Horne (2015) to misleading interpretations of their experimental results.

By definition, the Stokes drift is the difference of the time-averaged Lagrangian and
Eulerian flow (Longuet-Higgins 1953):

uS = 〈uL〉 − 〈u〉 = ε
〈
∇u(x, t) ·

∫ t

0
u(x, t′) dt′

〉
+O(ε2), (A 3)

with the time-averaging over one wave period, 〈·〉 := 1/T
∫ t0+T

t0
·dt, starting at arbitrary

time t0. Horne (2015) made the inappropriate choice t0 = 0 in his analysis, which
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corresponds to assuming all particles enter the wave beam at one particular point in
time, rather than at any (random) point in time during one wave cycle. Repeating the
analysis by Horne (2015), we find a particle column widening without net horizontal
displacement upon averaging t0 over [0,T]. Both Hazewinkel (2010) and Horne (2015)
assumed 〈u〉 = 0, an assumption that is not true at O(ε), the leading order of the
Stokes drift. It is well known (Wunsch 1971; Ou & Maas 1986; Zhou & Diamessis
2015; Beckebanze et al. 2019) and straightforward to determine from (A 3) that the
vertical Stokes drift component is identical (with opposite sign) to the vertical induced
mean velocity, 〈w〉 = w̄1, given by (4.8), such that the Lagrangian mean flow in the
vertical direction vanishes at its leading order:

〈wL〉 = 〈w〉 +wS = 0+O(ε2). (A 4)

For two-dimensional fluids, mass conservation and the presence of vertical walls
also require the horizontal Lagrangian mean flow component to vanish. This simple
analysis stresses that horizontal cross-beam variations are necessary to generate net
particle transport.

A.3. Numerical simulations

We solve (dimensionalized) (4.9) for the stream function Ψ̄ n
0 at time t = n dt

numerically on a rectangular domain, (x, y) ∈ [0, 80] × [−8.5, 8.5] cm2, with 151
grid points in each direction, and time step dt = 1 s. Employing standard central
difference discretization in space and Euler backward (EB) in time we obtain:

(L̃− dtνB̃)Ψ̄ n+1
0 = L̃Ψ̄ n

0 + dtU2
0k0F̄y. (A 5)

Here, L̃ is the conventional 5-node discretized Laplace operator with Dirichlet
boundary constraints, and B̃ is the conventional 13-node discretized biharmonic
operator, using Dirichlet boundary constraints for first-neighbour nodes outside the
domain and Neumann boundary constraints for second neighbours. While L̃ and B̃ are
sparse, the related inverse, T̃ = (L̃− dtνB̃)−1, computed only once and used iteratively
to solve (A 5) forward in time, is an almost full m × m-matrix, with m = 1492.
Conveniently, most matrix elements of T̃ are negligibly small, and we can set matrix
elements below a certain threshold (here 10−8) to zero – retaining only 20 % non-zero
matrix elements – without noticeable effects on the simulation.

Simulations with grid size 101 × 101 reveal increases of 1–10 % in simulated
particle displacements after 730 s. This numerical error is acceptable, as it is of the
same order as the approximations associated with the perturbation expansion and
smaller than uncertainties of the experimental results. Simulations for the induced
mean horizontal flow with free-slip boundaries predict particle displacements by a
factor ∼10 larger, clearly indicating that the induced mean flow is damped primarily
by lateral-wall friction.

A.4. Particle trajectory and sinking velocity from Doppler shift
In order to compare the experimental results (§ 3) on particle advection with the
theoretical wave-induced mean flow (§ 4) we briefly discuss the relevant particle
dynamics.
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The time scale associated with adjustment to the motion of the fluid for neutrally
buoyant spherical particles is 2a2/9ν (Maxey & Riley 1983), where a is the particle
radius. For our experiments, the adjustment time for the suspended particles is of the
order of a few milliseconds. As such, the particle motion, up, can be described as
a superposition of the mean particle sinking velocity, w̄p, and the motion of a fluid
parcel at the particle’s position, xp(t)= [xp(t), yp(t), zp(t)]:

up = u(xp(t), t)+ ẑw̄p(zp(t)). (A 6)

The Stokes particle sinking velocity is given by

w̄p(z)=
2a2g
9ν

(1− zN2
0/g− ρp/ρ0) < 0, (A 7)

where ρp= 1.055± 0.01 g cm−3 is the particle density, which is larger than the fluid
density at the bottom of the tank, ρ0 = 1.039± 0.002 g cm−3.

As mentioned in § 2.1, the particle radius a varies strongly among the eleven
experiments, making (A 7) useless to determine the sinking velocity. Instead, we
make use of a Doppler shift to determine the particle sinking velocity, as explained
in the following. We can approximate the trajectory of a particle passing z at time t′,
by zp(t)= (t− t′)w̄p. Inserting this linearized particle trajectory into the leading-order
wave beam field quantity (for example, u0(x, y, z, t) ∝ exp[i(kxx + kzz − ω0t)]), we
find that the velocity of the sinking particle column edge is given by uc(x, y, z, t)∝
exp[i(kx + kz(z − zp(t)) − ω0t)], which oscillates at the Doppler-shifted frequency
ωc = kzw̄p + ω0. We can accurately extract the Doppler-shifted column frequencies
from the time series (see figure 4a,b), allowing us to determine the mean sinking
velocity

w̄p =
ωc −ω0

kz
< 0. (A 8)

without knowledge of the particle sizes. Subsequently, we can determine the particle
size from the sinking velocity, using (A 7). For our experiments, we found that the
particle diameter ranged from 40 to 240 µm, with an increase of particle size in
consecutive experiments. The value of 200 µm, reported by Horne (2015), falls into
this range, but is clearly not representative for all experiments. As mentioned above,
we believe that the large spread in particle sizes is caused by segregation of the carrier
fluid that transports the particles from the particle reservoir to the particle injector.

Note that due to the stratification, the density difference, ρ̄(z) − ρp, reduces by
approximately a factor 2/3 from top to bottom in the laboratory experiments with
N0 = 1.1 ± 0.03 rad s−1, fresh water (with density 0.998 g cm−3) at the surface
and particle density ρp = 1.055 ± 0.01 g cm−3. For the linear stratification, it is
straightforward to solve żS

p(t) = w̄S
p = w̄S(zS

p(t)) for the associated particle trajectories
starting at the particle injector, z= h, at time t= t0:

zp(t)= h(−0.5+ 1.5 exp[−2(t− t0)w̄p(h)/(3h)]). (A 9)

This particle trajectory is superimposed on the space–time particle column displacement
diagrams (figure 3).
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