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Abstract
The tracking of virtual particles is one of themain numerical tools to understand the global dispersion
ofmarine plastic debris and has been successful in explaining the global-scale accumulation patterns
of surfacemicroplastic, often called ‘garbage patches’. Yet, the inherent inaccuracies in plastic input
scenarios and ocean circulationmodel results produce uncertainties in particle trajectories, which
amplify due to the chaotic property of the surface ocean flow.Within this chaotic system, the
subtropical ‘garbage patches’ correspond to the attractor. These factsmake the large scale surface
ocean circulation amixing dynamical system,whichmeans that the information of a particle’s initial
location is lost over time.We usemixing entropy andMarkov chainmixing of the transfer operator
associatedwith surface ocean transport to quantify the time scales ofmixing for the global surface
ocean in each subtropical basin. In the largest parts of all basins we findmixing times in the order of or
below 10 years, which is lower than typical simulation times for surface plastic transport simulations.
Maximummixing times ofmore than 10 years are found in some parts of theNorth and South Pacific.
Our results have important implications for global dispersionmodelling offloatingmaterials on the
basin scale: precise initial information has little relevance for long term simulations, and there is a
temporal limit after which the backtracking of particles is notmeaningful anymore.

1. Introduction

Plastic debris is very common in today’smarine environment. It can be found in the open ocean and on beaches,
but also inmore remote habitats such as the polar regions and deep sea sediments [1–4]. Sources of debris can be
land based (e.g. rivermouths) ormarine (e.g. shipping vessels) [3, 5, 6]. Once in the ocean, buoyant plastic debris
can be transported over large distances by the surface ocean currents. An important tool to understand these
pathways on the global scale has been numericalmodelling [7], mostly Lagrangian particle tracking.Most of the
currently existing numerical studies restrict themselves to the surface ocean, and they successfully reproduce the
large scale features of surfacemicroplastic distributions, which are the accumulation patterns in each individual
subtropical gyre [8–13]. Figure 1 shows the result of a typical simulation of an initially uniformparticle
distribution after 10 years (see section 2 for simulation details). The high concentrations in the subtropical gyres
aremainly caused by the converging Ekman currents in the subtropics [14, 15] and are often called ‘garbage
patches’.

The success of these surface transport simulations is to some extent surprising. Recent experimental and
theoretical studies clearly suggest that initially buoyantmicroplastic particles are likely to sink due to biofouling
[16–18], such that the actual particle dynamics is unlikely to bewell-represented by surface transport alone.
Furthermore, the accumulation in the subtropical gyres is a feature that is present in long termdistributions of
differentmodeling studies that use different initial particle input scenarios (e.g. uniform, realistic, release at once
or continuous) and different circulationmodels [8–12]. The presence of large scale robust features in different
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models to some extend seems to argue against the usage of realistic, small-scale input scenarios tomodel long
term global plastic distributions, e.g. based on population densities [8, 10]. Particles seem to accumulate in
similar regions in the long run, with the particle history only playing aminor role.

In this article, we address this issue: our hypothesis is that the surface ocean current in each basin ismixing on
time scales of several years, which is in the order of typical time scales of interest for global plastic transport
modelling. Themixing propertymeans that individual surface particles ’forget’ their history, and particle
densities, i.e. particle distributions normalised to unity, converge to the subtropical accumulation regions almost
independently of initial conditions or small perturbations of the flow, such as sub-surface advection. The basic
idea is illustrated infigure 2, that shows the initial (a) andfinal (b) positions of virtual particles as a scatter plot in
theNorth Pacific. In thefigure, particles originating from the eastern andwestern parts of the basin are labelled
with different colours.While there are a few regions (mostly close to coasts) that remain dominantly red or blue,
the colours apparently have completelymixedwithin the centre of the basin after 10 years.

For the applicationwe present here, the property of ’history loss’ of an individual particle results from the
combination of two features that are inherent to all simulations using Lagrangian particle tracking on the
oceanic scale: the chaotic behaviour of trajectories, and the finite accuracy of ocean circulationmodels. For
plasticmodelling, plastic input scenarios are an additional source of uncertainty. The chaotic behaviour implies
that two initially close particles will separate exponentially and thus very quickly go independent pathways [19].
Small errors in initial conditions, differences in trajectory integration schemes and numerical errors amplify,
such that the correlation between initial andfinal particle densities decays over time. This decay of correlations is
expected to be present in a chaotic system such as the surface ocean, but to our knowledge the time scales of this
process at the ocean surface have not been analyzed so far.

Understanding these time scales is important due to several reasons. From a practical perspective, specifying
detailed initial particle positions is not necessary if particles are advected formuch longer than the typicalmixing
time scale. This alsomeans that far beyond such a time scale, initial information does not havemuch relevance
forfinal particle densities, i.e. for particle distributions normalised to unity. Consequently, such amixing time

Figure 1.Concentration of approximately 1million initially uniformly distributed particles after 10 years. The concentration
(logarithmic scale) is computedwith a 2° square binning. The converging Ekman currents in the subtropics lead to the accumulation
of particles in these regions, called garbage patches. The simulation details are described in section 2.

Figure 2. Initial and final positions of particles that are coloured according to their initial position. The red and blue particles are
apparently completelymixed after 10 years in the centre of the subtropical gyre.We refer for simulation details to section 2.
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also poses a natural limit for backtracking, i.e. when using Lagrangian particle tracking to investigate where
plastic debris or other floatingmaterial came from. This is again illustrated in figure 2(b), where blue and red
particles aremixed to length scales below the typical spatial resolution of ocean circulationmodels. It is then
virtually impossible to accurately track individual particles back to their origin: loosely speaking, almost any
origin (here east or west)within a specific basin is possible.

In this paper, we analyse the convergence to the subtropical accumulation regions and the property of
mixing at the ocean surfacewith twomethods:mixing entropy for a full time dependent particle transport
model, and the concept ofmixing time of theMarkov chain given by the discretised transfer operator associated
with the annual advective transport of particle densities. Both full particle simulations and transfer operator
methods are common tools tomodel long termmarine plastic debris transport, such that the relevance of our
results can be directly interpretedwithin these two frameworks. Ourmethods reveal that on time scales of about
10-15 years,mixing is very relevant for basin scale transport simulations.

2.Methods

Allmethods in this paper are based on the advection of virtual passive particles constrained to the global ocean
surface. Surface ocean velocityfields are obtained from a 1/12° globalNEMOORCA-N006 simulation [20] that
is forced by theDrakkar forcing consisting of wind, heat and freshwater fluxes derived from reanalysis and
observed data [21]. The hydrodynamic data is provided on theORCAgrid [22]. Our dataset starts on January 5,
2000, and has a temporal resolution of 5 days.We use the Parcels framework version 1.1.0 [23] (http://
oceanparcels.org) for the particle advectionwith theC-grid interpolation scheme described in [24]. Trajectories
are integratedwith the 4th-order Runge-Kuttamethod, with a time step of 10minutes. Our simulations capture
the transport of passive particles, i.e. we do not include any additionalmechanisms of beaching, sinking or other
removal from the sea surface. The code for advecting particles and for data analysis can be found on https://
github.com/OceanParcels/surface_mixing.We note again thatwe use the term particle density to refer to a
particle distribution normalised to unity.

2.1. Entropy ofmixing
The entropy ofmixing is the Shannon entropy [25] related to probabilities derived from spatial distributions of
particles that belong to different species. It describes howwell-mixed particles of different species are, i.e. how
fast information on particle species is lost when transported by a given flow (see [26] and references therein).

In order to study themixing process within each basin (see the definition of the basins in section 2.3), we start
from an initially uniformdistribution of particles on a global 0.2°×0.2° grid (approximately 1million
particles) on the beginning of our dataset (January 5, 2000), and advect them for 10 years. Each particle receives a
fixed label i corresponding to its initial positionwithin the bins of a 5°×5° lattice. This choice is to ensure that
there are enough particles for each label to compute spatial densities based on particle statistics. It is coarser than
the choice of binning for theMarkov chainmodels, for whichwe are not limited by thefinite number of particles
(see section 2.2). Let ti k,r ( ) denote the discretised density of particles with label i evaluated in spatial grid cell k
(taken to be 5°×5° aswell), computed based on the particle distribution at time t. The (local) entropy ofmixing
at time t and bin k (called Sk(species) in [26]) is then defined as:

S t p t p tln , 1k
i

i k i kå= -( ) ( ) ( ) ( )∣ ∣
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p t
t
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i k

i i k

,

,å
r
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is the conditional probability tofind a particle of label i in afixed bin k after advection for time t. The entropy is a
measure of how strongly particles of different types aremixedwithin a cell k, larger values of Sk corresponding to
strongermixing.With our definition of particle labels, the entropy ofmixing is ameasure of the loss of the
information regarding the origin of a particle. Note that we only use the densities i k,r to compute the entropy,
which is independent of the actual number of particles placed in a respective bin i, as long as it is unequal of zero.
Consequently, our results also apply to globally non-uniform particle distributions that initially have a non-
vanishing number of particles in each bin.

Aswe are interested in themixing property in each basin separately, we compute Sk for each individual basin
byfirst dividing the ocean into five ocean basins (see section 2.3). This is justified by the fact that the different
subtropical gyres are only weakly connected [27] on the time scales of interest for plastic transportmodelling
(few decades). Themaximumentropy is reached for a distributionwhere all pi k∣ are the same and therefore equal
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to
M

1 , whereM is the number of labels in a respective basin. This yields amaximumvalue of S Mlnk
max = for all

k. Note that entirely particle depleted regions have Sk=0 by definition.

2.2.Markov chainmixing
The secondmethod is based on approximating ocean surface transport by afiniteMarkov chain given by a
transitionmatrix. Transitionmatrices have been used tomodel passive particle advection at the ocean surface
based on surface drifters [8, 9] and based on ocean circulationmodel output [27]. Our approach to compute the
transitionmatrix is similar to the one of [27].

We compute a global annual transitionmatrix by advecting an initially uniform particle distribution, with
particle spacing of 0.1° in longitude and latitude, for a certain time intervalΔt.We then divide the ocean intoN
square-bins of some sizeΔx×Δx in longitude and latitude, and calculate the share Pij

t t t +D of particles
travelling froma bin i=1, ...,N at time t to any other bin j N1 ,...,= after a time intervalΔt. This share is then
interpreted as the probability for a particle starting at bin i to travel to bin j in timeΔt. Similar to [27], we use
Δt=60 days andΔx=2° formost parts of this paper, and form the product of sixmatrices tomodel the
advection for 360 days:T P P P...t t t t t t0 1 1 2 5 6=   · · · , where t0=January 1, 2001, t1=t0+60 days,
t2=t1+60 days, etc. For computational convenience, wemodel annual transport as the transport for
360 days. Note that the choice of t0=January 1, 2001 is different from the starting time for the entropymethod
becausewewant theMarkovmatrix to correspond to one specific year and our dataset for the ocean current
starts only on January 5, 2000.We also vary the parametersΔx,Δt and t0 to analyse the robustness of our results.

ThematrixTmodels the advection of a discretised particle density for one year as a stochasticMarkov chain.
If ρ(t) is anN-dimensional row-vector representing such a density at time t (the beginning of the year), the
density one year later can be computed based on the transitionmatrix as

t t T1 . 2r r+ =( ) ( ) ( )

Note that transportmodelling with transitionmatrices is expected to bemore diffusive thanwith individual
particles [28]. In addition,modelling the advection of tracers with annual transitionmatrices assumes the ocean
current to be time-periodic. Despite these drawbacks, transitionmatrices take into account some of the
commonproblems of plastic transportmodelling at the ocean surface: initial conditions and the ocean currents
are not known to infinite precision. In addition, tools from finiteMarkov chain theory are readily available to
study themixing behaviour.

FromMarkov chain theory, it is known (e.g. [29]) that the transitionmatrix has at least one stationary density
π satisfying

T with i N0, 1, ... , 1. 3i
i

N

i
1

 åp p p p= = =
=

( )

The stationary density of theMarkov chain is sometimes also called invariantmeasure. If theMarkov chain is
irreducible and aperiodic, there is only one such stationary density and an arbitrary initial density will be
attracted to this unique stationary density in the course of time [29].

For the ocean, however, each individual subtropical basin has an (approximately) invariantmeasure, the
‘garbage patches’, such that theMarkov chain is not irreducible. Aswe are interested here in themixing process
within each individual basin, we project the transitionmatrix onto each basin separately (section 2.3) and
normalise the rows to obtain fiveMarkov chains, one for each subtropical basin. Each of thesefiveMarkov
chains has one unique stationary density corresponding to the ‘garbage patch’ of the respective basin. It is
important to note that the projection is an approximation, as some of the garbage patches are only
approximately stationary [8, 30] infinite time (a few decades), see section 2.3.

LetΩ denote the ocean surface in a basin. The total variation distance (TVD) between a density ρ andπ, is
defined by (see e.g. [29]):

d A A, max
1

2
. 4

A i
i iår p r p r p= - = -

ÍW
( ) ∣ ( ) ( )∣ ∣ ∣ ( )

Here, ρ(A) denotes the probability tofind a particle in the set A Î W given the probability density ρ of
particles over the ocean surfaceΩ. As both ρ andπ are densities, i.e. 1i i i ir på = å = , it is easy to see that

d0 , 1 r p( ) , where d(ρ,π)=1 if the two densities ρ andπ have disjoint support, i.e. when ρiπi=0 for
every i. Also, d(ρ,π)=0 if the densities are equal to each other. For an irreducible aperiodicMarkov chain, i.e. a
Markov chainwith a unique invariantmeasureπ, the distance d(ρ(t),π) of an arbitrary initial density ρ(t=0) to
the stationary densityπ decreases over time and converges to zero. Let δ k denote the density with 1i

kd = if i=k
and 0 otherwise. For each k, we define themixing time tk as the smallest integer n (in years) that satisfies
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d T , . 5k n d p <( ) ( )

As is common inMarkov chain theory [29], we take ò=1/4, but also test ò=1/10 to see how themixing
time changes.

Finally, it is easy to see that themaximummixing time for all the δ k in a basin is also themaximum for all
other possible densities, as a discretised density in afixed basin can bewritten as ak k

kr d= å , with a 1k kå = .
Using this definition of ρ and a 1k kå = , it follows from the triangle inequality that
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Thus, d T d T, max ,n
k

k nr p d p( ) ( ) for any ρ in afixed basin, whichmeans that themixing time of an
arbitrary initial density in a basin is lower or equal to themaximummixing time of the individual δ k. Note that in
Markov chain theory, the term ‘mixing time’ usually refers to thismaximummixing time [29]. The stationary
densityπ can be computed numerically from the eigenvector corresponding to the eigenvalueλ=1 ofT, cf
equation (3).

We also test howwell the individual stationary densities describe thefinal acccumlation pattern of a realistic
plastic input scenario. For this, we advect the plastic inputs with the global transitionmatrix and compute basin
wide densities (according to the basins defined in section 2.3) after each year. In this case, different from
restricting the dynamics to the basinwidematrices, the number of particles in a basin can change over time. This
is because particles that are initially outside of any basin can end up in one of the basins, and also due to
connections between the different basins in the global transportmatrix.We can then compute the TVDof a
realistic initial plastic density in each basin advected by theMarkovmatrix according to equation (4).

Wefinally also compute amixing entropy for the transitionmatrix by setting t Ti k
t

ik,r =( ) ( ) , where t is now
an integer corresponding to the number of years, which circumvents the problemof particle-depleted regions
withmixing entropy Sk=0 by definition (see section 2.1).

2.3.Division of the ocean surface into basins
Aswewish to study the attraction to each of the individual garbage patches, we need to split up the ocean into
disjoint regions and restrict the dynamics to these regions. Ideally, wewould have tofind the basins of attraction
for each of the garbage patches.Mathematically, the basin of attraction is the region fromwhich any particle is
attracted to the attractor, i.e. each garbage patch has its own region of attraction (e.g. theNorthAtlantic patch
has its region of attractionmostly in theNorth Atlantic, etc.). In our case however, the basins of attractionwill
only be approximations, as the ‘garbage patches’ themselves are only approximately stationary [8, 30].We call
our basins of attraction simply basins and identify thembymaking use of the particle dynamics instead of
drawing arbitrary geographic boundaries.We find the basins through the following heuristic procedure.

For the entropymethod,wedivide theocean into bins of size 2°×2° and compute a transitionmatrixPij
containing the share of particles traveling frombin i to bin j in the 10-year period considered. Based on thismatrix,
wedefine the oceanbasins as disjoint setsBldefinedby a set of lattice points Il, l 1 ,..., 5= (for thefivebasins) such
that B 1l i, = if i IlÎ and B 0l i, = otherwise. These sets are chosen such that they satisfy P 0.5j I ijl

å Î for i IlÎ
and P 0.5j I ijl

å <Î for i IlÏ . Inwords, thismeans that startingwithin a certain basin, theprobability for a particle
to be in the samebasin after 10 years is at least 50%.Wefind the setsBlby initialising them in each basin around the
garbage patches (seefigure S1 available online at stacks.iop.org/ERC/1/115001/mmedia).We then compute the
probability pl i, for each grid cell i to endup inBl: p P Bl i j ij l j, ,= å and add the index i to Il if p 0.5l i,  , and remove
it if p 0.5l i, < .We iterate this procedure until nonewgridboxes are added toor removed fromBl. After defining
these regions,we restrict ourselves to those particles that still are in their respective basin of origin after each year of
simulation.

ForMarkov chainmixing, we compute the 10th power of the annual transitionmatrix, i.e. P Tij ij
10= ( ) , and

apply the same algorithmonP as for the entropy ofmixing to determine the different regions.We choose
10 years because this is a typical time of interest for plastic transport simulations, and because for this time the
NorthAtlantic andArctic regions are not fully connected yet forΔx=2° andΔt=60 days (see figure S2 for
the basins based on different powers ofT). The two algorithms converge for all basins after less than 20
iterations. Figure 3 shows thefinal definitions of the five regions for the twomethods. The twofigures are very
similar, apart from theArctic which ismore strongly connected to theNorthAtlantic for theMarkov chain
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method than for the entropymethod.Note that thewhite areas in the figure, such as theMediterranean and the
Arctic, do not belong to any region.

For reference, figure S3 shows thefinal concentration of particles that leave their basin of origin for the full
10-year Lagrangian simulation. Figure S4 shows the share of effectively deleted particles after projecting the
transitionmatrix for each grid cell. To assess the sensitivity of our results to the chosen parameters, we compute
the entropy and transitionmatrix also for other choices of parameter values, shown in table 1. The definition of
the basins corresponding to other parameter values for the transitionmatrix are shown infigure S5.

3. Results

3.1. Entropy ofmixing
Asmentioned,we restrict our considerations to particles that are in their respective basin of origin (shown in
figure 3(a)) after eachof the 10 years of simulation. For thePacific andAtlantic basins,more than 80%of the
particles remain in their respective basins during that time.Only 65%stay in the IndianOcean, reflecting the fact
that the IndianOcean itself is relatively leaky in the long term (see also [30] andfigure S2). This is also a
consequence of the definition of the IndianOcean region,which extends substantially into the SouthernOcean.
Wecompute the spatial entropy Sk givenby equation (1) anddivide it by themaximumentropy of each basin,
S Mlnk

max = . The result is shown infigure 4 for different times during the simulation.Note that thefigure shows
the independent entropies for each basin (according to the basin definition infigure 3(a)) in one joint globalfigure.
As can be seen, the entropy increases during the course of the simulation to values close to 1 in a longitudinal band
containing the subtropical accumulation zones. The spatial entropy is equal to itsmaximum in the largest parts of
all basins infigure 4(c), indicating amixing time in the order of six years. It shouldbenoted that the entropy is close
to itsmaximumvalue not only in the regions of highest accumulation, i.e. thepoints of highest concentration in
figure 1, but also inmore extensive regions spanning fromwest to east in eachbasin (as can also be seen infigure 2

Figure3.Definition of the separate regions for (a) entropy ofmixingmethodand (b)Markov chainmethodwith (Δx,Δt)=(2°, 60 days).

Table 1.Parameters used in the sensitivity analysis.

Method Case

Mixing entropy binwidth 4°× 4°, 5°× 5°, 6°×6°
Markov chain 2001a (Δx,Δt) (1°, 45 days), ò=1/4

(1°, 60 days), ò=1/4
(2°, 60 days), ò= 1/4
(2°, 60 days), ò=1/10
(3°, 60 days), ò=1/4
(3°, 90 days), ò=1/4
(4°, 90 days), ò=1/4
(4°, 120 days), ò=1/4

Markov chain 2005b (Δx,Δt) (2°, 60 days), ò=1/4

Note: Allfigures for the bold scenarios are in the paper.

Figures for the other scenarios are in the appendix.
a i.e. t0=Jan 1, 2001.
b i.e. t0=Jan 1, 2005.
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in the introduction for theNorthPacific). Note again that a zero entropy does notmean that there is nomixing
taking place at the specific location, but that there are simply noparticles at these positions after some time.A
change of thebinwidth from5° to 4° and 6° leads to similar conclusions (seefigures S6 andS7).

Figure 4.The spatial entropy Sk definedwith a binwidth 5°, scaled by themaximumentropy for each basin separately according to the
definitions in figure 3(a).

Figure 5.The stationary densities in each basin, corresponding to the eigenvectorwith eigenvalue 1 ofT, with (Δx,Δt)=(2°, 60 days).
The colour shows the particle density per 2°×2° bin, normalised to themaximumdensity in each respective basin.Note that some
bins have a stationary density of zero (e.g. close to the SouthernOcean in panels d and e) and are coloured in grey.
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3.2.Markov chainmixing
Figure 5 shows the stationary densities in the different basins, given by the eigenvector ofTwith eigenvalue 1.
The regions of largest density correspond to the high accumulation regions shown infigure 1. Through our
choice of basins (section 2.3), there is one unique stationary density in each of the five regions, and the individual
transitionmatrices do not have the problemof nonphysical stationary densities close to the coasts, as was the
case in [27]. The density in theNorth Pacific shown infigure 5 roughly corresponds to the high concentration of
plasticmeasurements in theNorth Pacific, as shown infigure 1 of [12]. The same quantity in theNorthAtlantic
seems to be slightly shifted to thewest. Comparison to the other basins are difficult due to the scarcity of the data.
It should be noted, however, that the densities infigure 5 are very similar to the simulation results of the
‘Maximenkomodel’ in [12], if the latter is considered in each basin separately (see their figure 3(a)). This is
expected, as the stationary density corresponds to the long term evolution of an arbitrary initial density,
including the uniformdistribution of the ‘Maximenkomodel’ in [12], without permanent particle release.We
note that the second largest eigenvaluemodulus is well separated from1 for all basins andmaximal for theNorth
and SouthAtlantic with 0.892l =∣ ∣ . VaryingΔt andΔx does not result in a strong obvious change of the
stationary densities (see figures S8–S14).

Figure 6 shows themixing time tk defined through equation (5) for each bin of the ocean surface. Themixing
time for the other transitionmatrices are shown infigures S15–22 in the appendix. For ò=1/4, around 70%of
the covered ocean surface hasmixing times of 10 years or less, and this does not change for other parameter
choices of (Δx,Δt) (see figure S23). Note that this excludes the part of the ocean that is not part of any basin, e.g.
the Artic infigure 3. The time scale of 10 years is comparable to or shorter than the typical time scale of
simulation inmany plastic transportmodels, which is typically in the order of a few decades [8–13]. Some
regions infigure 6, in particular parts of theNorth Pacific and South Pacific, have highermixing times ofmore
than 10 years. Remarkably, it is also visible infigure 6 thatmixing times do not become larger towards land. This
means that within the probabilistic description of ocean transport based on a transitionmatrix, particles with
initial positions close to land are equallymixed over the respective attractor as particles starting in the open
ocean. The low value ofmixing time in the largest parts of the global ocean indicates that the convergence

Figure 6.TheMarkovmixing time tk for each basin, with (Δx,Δt)=(2°, 60 days).
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towards the garbage patches happens on relatively fast time scales. Setting ò=1/10 in equation (5) changes the
mixing times of course, but stillmore than 70%of the covered ocean surface has amixing time of 15 years or less
(see figures S22–23).

Wewish to emphasise that themaximumMarkovmixing time is also themaximummixing time for any
arbitrary initial particle density in the basin, when the dynamics is restricted to that particular basin, as was
demonstrated in equation (6).

We now look at the advection of a realistic plastic input scenario, used in the ‘van Sebillemodel’ in [12],
shown infigure 7(a).Wefirst advect this input scenario (given on a 1° grid)with the basin wide projected
transitionmatrices of (Δx,Δt)=(1°, 60 days) and compute the TVD for each year and each basin to the
corresponding stationary densities. By doing so, we exclude all the particles that are not initially placed in one of
thefive regions (see figure S3b). The resulting TVDs are shown infigure 7(b).We see that the TVDdecreases
over time and tends towards zero for all basins. Figure 7(c) shows the TVDs of the full initial particle distribution
advected by the global transitionmatrix to the densities in each basin (cf section 2.2). Themixing times in
figure 7(c) are slightly larger than infigure 7(b). This is expected, as we also include initial positions of particles
that are not part of a basin. In addition, the individual basinwide stationary densities can together only

Figure 8.Entropy Sk computed from the transport given by theMarkovmatrix T, with (Δx,Δt)=(2°, 60 days).

Figure 7. (a)Plastic input scenario of the ‘van Sebillemodel’ in [12]; (b)TVDs for the different basins, with dynamics restricted to the
individual basins; (c)TVDs of the basinwide densities from the full dynamics, cf section 2.2.
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approximate a global stationary density because interconnections between the different basins exist in the global
transitionmatrix, and because some particles. The restriction to the basins forfigure 7(c) leads to a reduction of
the total number of particles to about 77%. The remaining 23%aremostly in the Artic andMediterranean after
25 years of advection, seefigure S24. Themixing time according tofigure 7(c) is still less than 15 years,much
smaller than themaximummixing time for thematrix with (Δx,Δt)=(1°, 60 days), which is 25 years (see table
1 in the supplementarymaterial). This also shows that our restriction to separately study themixing property of
the individual basins is justified.

To test the sensitivity of our results on the choices of spatial and temporal resolutionΔx andΔt, we determine
themeanmixing time for ò=1/4, t0=2001 for eachof theMarkovmatrices in each basin (table 1 in the
supplementarymaterial). In all basins except for theNorthAtlantic, there is a trend for themeanmixing time to
become smaller for largerΔx, roughly decreasing by one year or lesswhen increasingΔx by 1° in ourmodels. This
is intuitive, as larger spatial binning introduces stronger randomization and thus diffusion in the dynamics, such
that densities are expected tomixmore quickly [28]. Again in all basins but theNorthAtlantic, themeanmixing
time becomes largerwith largerΔt, with amaximumof 0.6 years increasewhen increasingΔtby 30days. This is
again intuitive, as the construction of an annualmatrixwith a largerΔt requires lessmatrixmultiplications,
causing less randomization across grid cells. TheNorthAtlantic plays a somewhat special role, showingno clear
dependence ofΔx orΔt. Hence, the averagemixing time does not change very strongly (order of 1–2 years)when
changing the parameters for theMarkovmatrices (see alsofigure S23 in the appendix).

Themixing entropy based on the transitionmatrix by setting t Ti k i k
t

, ,r =( ) (cf section 2.2) is shown in
figure 8.We see that themixing entropy is at itsmaximum inmost parts of the ocean after 10 years, also
containing regionswhichwere black infigure 4 because of the lack of particles. It is interesting to note that the
parts of the SouthernOcean that are included in this study keep a relatively low value for the entropy, as does the
southeastern part of theNorth Pacific. This indicates that these regions havemainly outflow into the rest of the
respective basin, but only little inflow.

4. Conclusion

The chaotic transport of passive particles by the surface ocean is highly sensitive to the choice of initial particle
positions and errors in particle advectionmodels. Tracers transported by the ocean currents are thereforemixed
in space, and their trajectories gradually loose the correlation to their initial particle positions. On the time scale
of several decades, particle clouds are attracted to the subtropical accumulation zone in each ocean basin and are
dispersed over the attraction region, almost independent of their initial position.

We used themethods ofmixing entropy andMarkov chainmixing computed froman annual transition
matrix representing the surface flow to analyse the typicalmixing time scales of tracers at the ocean surface. All
our results are limited to basin scale long termmodelling of a few years to decades, and neglect the possibility of a
particle to sink or beach, as is similar to previous studies [8, 9, 12, 13].We apply ourmethods to individual
subtropical basins in order to capture themain dynamics in this time range. Based on a fully time dependent
transportmodel, the entropymethod showed that particles fromdifferent origins are almost completelymixed
after approximately six years in the largest regions of the subtropical basins. TheMarkov chainmethod revealed
that, while some regions in particular in the northern South Pacific havemixing times ofmore than 20 years, the
mixing times are in the order of or below 10 years for 70%of the covered surface ocean area.

The effect ofmixing and history loss of passive tracers is relevant and needs to be considered for global
Lagrangian particle simulations at the ocean surface, in particular if initial particle positions are correlatedwith
final distributions. This applies in particular to plastic transportmodelling, where simulation times are typically
in the order of a few decades, i.e. precisely whenmixing is relevant. From an environmental perspective, our
findings imply that plastic is transported over the entire accumulation zonewithin a time scale of about
10-15 years, regardless of the sources. Consequently,mitigatingmarine plastic pollution needs common efforts
of all neighbouring countries. Yet, our ‘plastic particles’ are passive particles at the ocean surface, which is an
incompletemodel of real plastic particles. Tomodel realistic plastic particles and analyse their transport and fate
is still one of themajor challenges in the plastic community, and the globalmixing properties of real plastic
might be different from the findings presented here.

It should be noted that our results onmixing apply solely to basinwide long term transport processes, where
particle distributions converge to the respective attractors, i.e. we neglect transient behaviour. Onmore local
scales and shorter time scales, initial particle locationswillmatter, and realistic input scenarios can be very
relevant for transport pathways and final distributions.

Themixing property analysed in this study ismainly a consequence of incomplete knowledge of initial
particle positions and the ocean circulation.We parameterised these uncertainties in an abstractmanner by the
choices of labels for the entropymethod, and the spatial binning and time step for theMarkov chain
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approximation. These parameters are clearly choices, butwefind that the spatial distribution ofMarkov chain
mixing times is only weakly affected by changes in these parameters. Further research is needed to actually
quantify the amount of uncertainty that is present in the results of Lagrangian particlemodelling, which is a
combination of uncertainties from initial conditions and the ocean current data. Yet, regardless of the level of
uncertainty present in particle advectionmodels, the ocean surface transport will possess themixing property
due to the chaotic nature of the ocean flow. The presence ofmixing needs to be carefully taken into account in
the interpretation of results fromLagrangian particle trajectories.

Themixing time that arises from these uncertainties sets a time scale after which initial conditions only have
limited influence onfinal particle densities. Consequently, our results also have important implications for
backtracking of individual plastic particles: as any initial particle distribution in a basin is attracted to the
respective stationary density, the information of the precise initial distribution is lost over time.On the basin
scale it is therefore virtually impossible to infer an initial distribution from afinal distribution if the latter is close
to the stationary density.
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