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Abstract

Plant roots interact with an enormous diversity of commensal, mutualistic, and path-

ogenic microbes, which poses a big challenge to roots to distinguish beneficial

microbes from harmful ones. Plants can effectively ward off pathogens following

immune recognition of conserved microbe‐associated molecular patterns (MAMPs).

However, such immune elicitors are essentially not different from those of neutral

and beneficial microbes that are abundantly present in the root microbiome. Recent

studies indicate that the plant immune system plays an active role in influencing rhi-

zosphere microbiome composition. Moreover, it has become increasingly clear that

root‐invading beneficial microbes, including rhizobia and arbuscular mycorrhiza,

evade or suppress host immunity to establish a mutualistic relationship with their

host. Evidence is accumulating that many free‐living rhizosphere microbiota members

can suppress root immune responses, highlighting root immune suppression as an

important function of the root microbiome. Thus, the gate keeping functions of the

plant immune system are not restricted to warding off root‐invading pathogens but

also extend to rhizosphere microbiota, likely to promote colonization by beneficial

microbes and prevent growth‐defense tradeoffs triggered by the MAMP‐rich rhizo-

sphere environment.
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1 | THE BELOWGROUND PLANT
MICROBIOME

Soils are among the most dense and diverse microbial habitats found

on our planet (Fierer & Jackson, 2006). Growing in soil, plant roots

intimately interact with this plethora of microorganisms. The complex

interactions between the roots and their associated microbiomes are

important determinants of plant health (Berendsen, Pieterse, &

Bakker, 2012; Mauchline & Malone, 2017; Raaijmakers & Mazzola,

2016; Schlaeppi & Bulgarelli, 2015). Soil‐borne pathogens reduce

plant growth, whereas plants can also form associations with microbes
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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that promote plant growth. Such plant‐beneficial microbes can assist

the plant with the uptake of nutrients or by enhancing stress tolerance

(Pieterse, De Jonge, & Berendsen, 2016; Van der Heijden, Bardgett, &

Van Straalen, 2008). Moreover, beneficial microbes can protect plants

against pathogens, through antagonism and competition or by stimu-

lating the plant's immune system (Berendsen et al., 2012; Bulgarelli,

Schlaeppi, Spaepen, Ver Loren van Themaat, & Schulze‐Lefert, 2013;

Pieterse et al., 2014). Well‐studied examples of beneficial microbes

include rhizobial bacteria living in symbiosis with legumes and mycor-

rhizal fungi associated with most terrestrial plants, but there are many

other free‐living plant growth‐promoting rhizobacteria (PGPR) and
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fungi (PGPF) described that benefit a wide range of plant species

(Berendsen et al., 2012; Pieterse et al., 2014). Like pathogens, benefi-

cial microbes are confronted with the plant immune system, and they

are becoming more and more evident that beneficial microbes similarly

need to evade or suppress root immune responses in order to estab-

lish a mutualistic relationship with their host (Zamioudis & Pieterse,

2012). This is particularly apparent for endophytes that live inside

the plant and are therefore directly exposed to the host immune sys-

tem (Liu, Carvalhais, Crawford et al., 2017). However, evidence is

accumulating that also non‐invasive, free‐living root microbiota mem-

bers interfere with the host immune system. Here, we review current

knowledge on the interplay between beneficial microbes and the plant

immune system and how this results in mutual growth or health ben-

efits for the interaction partners.
2 | IMMUNE SIGNALLING IN ROOTS

Plants have evolved a sophisticated immune system to detect and

respond to potential invaders (Cook, Mesarich, & Thomma, 2015;

Jones & Dangl, 2006). In plants, cell surface‐localized pattern recogni-

tion receptors (PRRs) can detect surrounding microbes by recognizing

microbe‐associated molecular patterns (MAMPs), which are generally

conserved molecules shared by a wide range of microbes (Boller &

Felix, 2009). In the past two decades, numerous MAMPs, such as fla-

gellin, elongation factor Tu (EF‐Tu), cold‐shock protein (CSP), lipopoly-

saccharide (LPS), chitin, elicitin, and Nep1‐like protein, have been

characterized in various plant pathosystems together with their cog-

nate PRRs (Boutrot & Zipfel, 2017). Despite recognizing specific

MAMPs, diverse PRRs have been shown to activate convergent cellu-

lar immune signalling pathways. Upon MAMP recognition, PRRs

recruit regulatory receptor kinases to form PRR complexes that acti-

vate a multilayered immune signalling cascade through receptor‐like

cytoplasmic kinases (Macho & Zipfel, 2014). The activated immune

signalling events, known as MAMP‐triggered immunity (MTI), function

in the elimination of potential pathogenic infections (Couto & Zipfel,

2016; Macho & Zipfel, 2014). Ion (H+ and Ca2+) fluxes and transient

bursts of reactive oxygen species (ROS) are two typical cellular

responses happening within minutes after immune signalling activa-

tion (Boller & Felix, 2009; Yu, Feng, He, & Shan, 2017). Immune signal-

ling is transduced through activation of Ca2+‐dependent protein

kinase (CDPK) and mitogen‐activated protein kinase (MAPK) cascades,

which trigger downstream transcriptional regulation of defence‐

related genes, inter alia leading to callose deposition, antimicrobial

compounds accumulation, and defence hormone regulation (Boller &

Felix, 2009; Couto & Zipfel, 2016; Yu et al., 2017). Plant hormones

act as central modulators of many components in the immune signal-

ling network. Two major defence hormones, salicylic acid (SA) and

jasmonic acid (JA), form a complex regulatory network to fine‐tune

plant immune homeostasis. Other hormones such as auxin, ethylene,

abscisic acid, cytokinins, brassinosteroids, and gibberellin also interact

with the SA‐ and JA‐regulated defence pathway, together
orchestrating the immune signalling network (Pieterse, Van der Does,

Zamioudis, Leon‐Reyes, & Van Wees, 2012).

Our knowledge of plant immune signalling mainly comes from

studies on interactions between microbes and aboveground plant

parts. However, plant roots are also capable of mounting strong

immune responses upon PRR‐mediated MAMP recognition, including

callose deposition, camalexin biosynthesis, and defence‐related gene

activation (Beck et al., 2014; Millet et al., 2010; Stringlis, Proietti,

et al., 2018; Wyrsch, Dominguez‐Ferreras, Geldner, & Boller, 2015).

Intriguingly, beneficial microbes possess immunogenic MAMPs that

are very similar to those of pathogens (Jacobs et al., 2011; Lopez‐

Gomez, Sandal, Stougaard, & Boller, 2012; Millet et al., 2010; Pel &

Pieterse, 2013; Stringlis, Proietti, et al., 2018). During their initial con-

tact with roots, beneficial microbes are recognized by plant PRRs, acti-

vating immune signalling. Root immune activation by beneficial

microbes was observed in many root–microbe associations. For exam-

ple, Bradyrhizobium japonicum strongly induces defence‐related gene

expression at the early stage of infection in soybean root hair cells

(Libault et al., 2010). Also, the arbuscular mycorrhizal fungus Glomus

versiforme induces a substantial set of defence‐ and stress‐related

genes during the initial contact with Medicago truncatula (Liu et al.,

2003). Similarly, the cellular components of two PGPRs, Pseudomonas

simiae WCS417 (hereafter, WCS417) and Pseudomonas capeferrum

WCS358 (hereafter, WCS358), trigger immune responses in

Arabidopsis roots and tobacco cells, including ROS production,

MAMP‐responsive gene expression, and callose deposition (Millet

et al., 2010; Stringlis, Proietti, et al., 2018; Van Loon, Bakker, Van

der Heijdt, Wendehenne, & Pugin, 2008). Moreover, Piriformospora

indica has significantly reduced colonization of the roots of an

MAMP‐hyper‐responsive Arabidopsis mutant pub22/23/24, indicating

that this PGPF can be recognized by plant PRRs (Jacobs et al.,

2011). Together, these studies show that root immune responses are

indeed also induced by beneficial microbes. However, this induction

appears to be mostly restricted to the early stages of these beneficial

associations, suggesting an active interference of root immunity by

beneficial microbes.
3 | MICROBIAL EVASION AND
SUPPRESSION OF PRR SIGNALLING IN
ROOTS

To promote infection, successful plant pathogens utilize virulence fac-

tors that interfere with immune signalling events (Couto & Zipfel,

2016). Such virulence factors have been well documented for many

plant pathosystems (Couto & Zipfel, 2016; Lo Presti et al., 2015;

Macho & Zipfel, 2015; Xin & He, 2013). Because MAMPs are con-

served molecules shared by many members throughout the microbial

kingdoms, it is likely that all plant‐colonizing microbes, pathogens

and mutualists alike, have evolved strategies to deal with host immune

activation under the selection pressure posed by plant PRRs during

the coevolution process. So far, several mechanisms by which benefi-

cial microbes avoid activation of the plant immune system have been
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described (Figure 1). In the following sections, we will present exam-

ples of beneficial microbes that either evade PRR‐mediated immune

recognition or interfere with the subsequent immune signalling

process.
3.1 | Evasion of apoplastic recognition

3.1.1 | Evolution of divergent MAMPs

Flagellin monomers are the building blocks of bacterial flagella, an

essential organelle responsible for bacterial motility (Pel & Pieterse,

2013; Rossez, Wolfson, Holmes, Gally, & Holden, 2015). The

Arabidopsis PRR FLS2 can recognize flagellin by binding the immuno-

genic flg22 epitope, a highly conserved sequence of 22 amino acids

at the N‐terminus of the protein (Felix, Duran, Volko, & Boller, 1999;

Gomez‐Gomez & Boller, 2000; Sun et al., 2013). This happens only

when plant glycosidases have degraded the glycosylations that shield

the peptide and thus make flg22 available for recognition (Buscaill

et al., 2019). Driven by coevolution, variation of flagellin sequences

enables certain pathogenic bacteria to evade immune recognition

(Rossez et al., 2015). Interestingly, flagellin sequences of the
FIGURE 1 Schematic overview of beneficial microbes that evade or supp
microbes can evade PRR recognition by either evolving divergent MAMPs
can interfere with different host immune signalling components by secret
microbes can suppress root immunity
atmospheric nitrogen‐fixing symbiont Sinorhizobium meliloti exhibit

an exceptional divergence in this region, resulting in a complete abol-

ishment of immune activation in Arabidopsis (Felix et al., 1999). Also in

Lotus japonicus, purified flagellin from the symbiont Mesorhizobium loti

failed to activate immune responses (Figure 1a), whereas the com-

monly used flg22 epitope of Pseudomonas aeruginosa induced typical

immune responses, such as ethylene production, MAPK activation,

and defence‐related gene expression, indicating that the FLS2 recep-

tor homolog in L. japonicus is fully functional (Lopez‐Gomez et al.,

2012). Similar observations were made in the beneficial association

formed by an endophytic PGPR Burkholderia phytofirmans and grape-

vine (Figure 1a). The grapevine FLS2 receptor differentially recognizes

flg22 epitopes derived from beneficial B. phytofirmans, initiating signif-

icantly reduced immune responses compared with the immune

responses induced by the flg22 epitopes derived from the pathogenic

bacteria P. aeruginosa and Xanthomonas campestris (Trda et al., 2014).

It is known that Arabidopsis can recognize the bacterial MAMPs flagel-

lin and EF‐Tu through the cognate PRRs FLS2 and EFR, whereas this

plant species is unresponsive to CSP for which it misses the cognate

PRR CORE (Gomez‐Gomez & Boller, 2000; Wang et al., 2016; Zipfel

et al., 2006). This possibly explains why metagenomes of healthy
ress root immune responses as described in the main text. (a) Beneficial
or masking the presence of excessive MAMPs. (b) Beneficial microbes
ing effectors. (c) Symbiosis‐related molecules produced by symbiotic

http://wileyonlinelibrary.com
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Arabidopsis root microbiota possess a fourfold to tenfold higher per-

centage of genes encoding the nonimmunogenic epitope of CSP than

of genes encoding the immunogenic epitopes of flagellin and EF‐Tu

(Hacquard, Spaepen, Garrido‐Oter, & Schulze‐Lefert, 2017). These

results together suggest that plants can actively select the members

of their microbiome through the function of PRRs, whereas many

soil‐borne microbes have evolved to evade PRR‐mediated immune

recognition in order to form an association with their host plants.

3.1.2 | Hiding excessive MAMPs

Both pathogenic and beneficial microbes have been found to conceal

the presence of certain immunogenic MAMPs. AprA is an extracellular

alkaline protease that is secreted by the pathogenic bacteria P.

aeruginosa and Pseudomonas syringae. AprA degrades flagellin mono-

mers, thereby preventing immune recognition of flagellin both in

mammals and plants (Bardoel et al., 2011; Pel et al., 2014; Figure 1

a). AprA homologs are present in a wide range of bacterial species,

among which many are plant‐beneficial, including nitrogen‐fixing

rhizobia and plant growth‐promoting pseudomonads (Pel et al.,

2014). Chitin is a major component of fungal cell walls, which triggers

immune responses upon recognition by its cognate PRRs in various

hosts (Cao et al., 2014; Shimizu et al., 2010). However, the fungal

pathogen Cladosporium fulvum secretes two lectin‐type chitin‐binding

effectors, Avr4 and Ecp6, that strengthen fungal cell walls against

hydrolysis by plant‐derived chitinases and prevent immune recogni-

tion of chitin by the plant PRR CERK1 (De Jonge et al., 2010; Van

den Burg, Harrison, Joosten, Vervoort, & De Wit, 2006; Figure 1a).

Ecp6‐like proteins were also found in many other fungal species,

including the biological control agent Chaetomium globosum (Bolton

et al., 2008). Although the role of AprA and Ecp6 homologs in preven-

tion of immune recognition of beneficial microbes still requires confir-

mation, similar mechanisms were revealed in the PGPF P. indica during

colonization of both barley and Arabidopsis roots (Figure 1). β‐glucan, a

fungal cell wall component, can trigger immune responses upon recog-

nition by an uncharacterized PRR complex (Wawra et al., 2016). P.

indica produces a small secreted protein (SSP) called fungal‐specific

β‐glucan‐binding lectin (FGB1), which potentially increases fungal cell

wall integrity and interferes with host immune recognition through

its high affinity with β‐glucan (Wawra et al., 2016; Figure 1a). This sug-

gests that, like pathogens, beneficial microbes also evolved ways to

obscure their most excessively present MAMPs to prevent recognition

by their host plants and avoid activation of the plant immune system.

3.2 | Suppression of cytoplasmic immune signalling

Pathogens can deliver effector proteins into plant cells using, for

example, bacterial type III secretion system (T3SS) or the infection

structures of fungi and oomycetes. These effector proteins can target

various components of plant immune signalling initiated upon MAMP

recognition (Couto & Zipfel, 2016; Dodds & Rathjen, 2010; Win et al.,

2012). Like plant pathogens, beneficial microbes also utilize a diverse

range of effector proteins to suppress plant immune activation. The
T3SS is found in the genomes of many plant beneficial rhizobacteria

including rhizobia and pseudomonads (Berendsen et al., 2015; Deakin

& Broughton, 2009; Loper et al., 2012; Stringlis, Zamioudis,

Berendsen, Bakker, & Pieterse, 2019; Figure 1b). Likewise, genomes

of many beneficial fungi, such as Laccaria bicolor and P. indica, possess

a substantial set of genes encoding effector‐type small secreted pro-

teins (SSPs) that are highly expressed during root colonization (Martin

et al., 2008; Zuccaro et al., 2011; Figure 1b). Moreover, metagenomes

of the root microbiomes of cucumber, wheat, citrus, and barley display

a significant enrichment of T3SS genes at a community level that are

possibly involved in suppression of root immune responses (Bulgarelli

et al., 2015; Ofek‐Lalzar et al., 2014; Zhang et al., 2017). This suggests

that also non‐pathogenic members of the root microbiome actively

interfere with plant immune signalling through the delivery of

immune‐suppressive effector molecules, but the research field on this

topic is still in its infancy.

3.2.1 | Eliminating ROS burst

Rhizobial T3SS effectors are designated nodulation outer proteins

(Nops) and mostly function in the regulation of nodulation or determi-

nation of host specificity (Miwa & Okazaki, 2017). Nonetheless, sev-

eral Nop effectors have a direct role in suppressing PRR‐mediated

immune signalling (Figure 1b). ROS are generated within minutes upon

PRR‐mediated MAMP recognition and function as important signalling

molecules in plant immunity (Kimura, Waszczak, Hunter, & Wrzaczek,

2017; Torres, Jones, & Dangl, 2006). NopM, an effector secreted by

Sinorhizobium sp. strain NGR234, is an E3 ubiquitin ligase that is

essential for normal nodulation in Lablab purpureus (Xin et al., 2012).

Interestingly, in Nicotiana benthamiana, NopM was found to suppress

flg22‐induced ROS bursts (Xin et al., 2012; Figure 1b). Also, the

genome of the biological control strain Pseudomonas brassicacearum

Q8r1‐96 contains orthologs of pathogen effector genes, and these

are expressed in the rhizosphere (Almario et al., 2017; Mavrodi et al.,

2011). Infiltration of each of these effectors suppressed flg22‐induced

ROS production in Nicotiana tabacum (Figure 1b), although deletion of

the effector genes did not affect bacterial rhizosphere competence

(Mavrodi et al., 2011).

Another example is the P. indica effector PIIN_08944, which pro-

motes fungal colonization of the roots of Arabidopsis and barley

(Akum, Steinbrenner, Biedenkopf, Imani, & Kogel, 2015). Overexpres-

sion of PIIN_08944 significantly reduced the flg22/chitin‐induced ROS

burst in barley (Figure 1b), however, not in Arabidopsis (Akum et al.,

2015). These examples suggest that effectors delivered by beneficial

microbes can efficiently perturb plant immunity by eliminating the

transient ROS burst.

3.2.2 | Targeting MAPK cascades

MAPK cascades control numerous downstream immune signalling

events and are targets of many pathogen effectors (Meng & Zhang,

2013). Unsurprisingly, MAPK cascades seem to be targeted by benefi-

cial microbes as well (Figure 1b). For example, in‐planta expression of
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the effectorNopL from the Sinorhizobium sp. strainNGR234 suppresses

the expression of pathogenesis‐related defence proteins in N. tabacum

and L. japonicus. Moreover, NopL prevents cell death induced by over-

expression of the MAPK‐encoding gene SIPK (Bartsev et al., 2004; Ge

et al., 2016; Zhang, Chen, Lu, Xie, & Staehelin, 2011). By mimicking an

MAPK phosphorylation substrate, NopL is multiply phosphorylated by

SIPK in the nucleus (Figure 1b). Likely, this inhibits the phosphorylation

of other natural MAPK substrates that regulate the expression of

defence‐related genes, which ultimately results in an interruption of

immune signalling (Ge et al., 2016; Zhang et al., 2011).

Another example of MAPK cascade suppression has been

described in soybean, in which GmMPK4 regulates the expression of

genes encoding WRKY, MYB, and bHLH transcription factors and pre-

vents defence‐related gene expression (Liu et al., 2011). GmMPK4 is

significantly induced at the early stage of infection, when soybean is

inoculated with Sinorhizobium fredii HH103 (Figure 1b) but not when

the T3SS of this rhizobial strain was inactivated (Jimenez‐Guerrero

et al., 2015). By interfering with host MAPK cascades, beneficial

microbes can thus block immune signal transduction and activation

of downstream immune responses.

3.2.3 | Modulation of hormonal signalling

Because plants use hormones to fine‐tune immune homeostasis dur-

ing plant–microbe interactions (Pieterse et al., 2012), many pathogens

evolved effectors that hijack hormonal signalling pathways (Kazan &

Lyons, 2014). Similarly, beneficial microbes have been found to target

hormonal signalling pathways to suppress root immune responses and

promote their association with the host plant (Figure 1b). For example,

the arbuscular mycorrhizal fungus Rhizophagus irregularis secrets the

effector SP7, which directly interacts with the JA/ethylene inducible‐

ERF19 transcription factor and prevents the expression of EFR19‐

activated defence‐related genes in M. truncatula roots (Kloppholz,

Kuhn, & Requena, 2011, Figure 1b). In the nonhost Arabidopsis, R.

irregularis activates rather than suppresses host immunity (Fernández

et al., 2019), suggesting that this immune evasion mechanisms fails

in nonhost plants. The ectomycorrhizal fungus L. bicolor secrets the

MiSSP7 effector to promote the establishment of a mutualistic associ-

ation with Populus (Plett et al., 2014). MiSSP7 prevents JA‐induced

degradation of JAZ6, a protein functioning as a negative regulator of

JA‐induced genes, thus suppressing JA‐mediated transcriptional acti-

vation of immune responses such as cell wall modifications (Plett

et al., 2014; Figure 1b). The PGPF P. indica suppresses flg22‐induced

root immune responses in Arabidopsis (Jacobs et al., 2011). However,

the immunosuppressive phenotype is compromised in JA‐signalling

deficient mutants jar1‐1 and jin1‐1 (Jacobs et al., 2011). Moreover,

the PIIN_08944 effector of P. indica has been shown to suppress the

expression of flg22‐induced SA marker gene CBP60g in Arabidopsis

(Figure 1b), which encodes a transcription factor that is required for

the production of SA by regulating the key biosynthetic enzyme

isochorismate synthase 1 (Akum et al., 2015; Wang et al., 2011; Zhang

et al., 2010). Similarly, the PGPR Bacillus subtilis FB17 can suppress

early flg22‐induced root immune responses in Arabidopsis by releasing
an unidentified low‐molecular weight component, and this immune

suppression phenotype also requires functional JA signalling compo-

nents JAR1, JIN1, and MYC2 (Lakshmanan et al., 2012).

Collectively, these findings provide evidence that beneficial

microbes suppress root immune responses through various immune

suppressors such as effector proteins, targeting multiple signalling

components that are initiated upon MAMP recognition.
3.3 | Interplay between immunity and symbiosis
signalling

In addition to MAMPs, symbiotic microbes also produce different

types of symbiosis‐related molecules, which can be recognized by host

symbiotic receptors and initiate symbiosis signalling (Zipfel & Oldroyd,

2017). Many of these symbiotic molecules are very similar to MAMPs.

For example, rhizobial Nod factors and fungal Myc factors can be per-

ceived by cognate receptors in host plants and initiate rhizobial or

arbuscular mycorrhizal symbiotic process (Zipfel & Oldroyd, 2017).

Both Nod factors and Myc factors are lipochitin oligosaccharides that

are structurally similar to the well‐studied MAMPs chitin and peptido-

glycans (Liang et al., 2014). However, it was shown that legume roots

can separately recognize the fungal MAMP chitin (immunogenic sig-

nal) and Nod factors (symbiotic signal) through two sets of distinct

LysM PRRs (Bozsoki et al., 2017). Interestingly, many symbiotic mole-

cules derived from beneficial microbes seem to suppress MAMP‐

triggered root immune responses (Figure 1c). Nod factors of B.

japonicum can strongly suppress immune responses induced by vari-

ous MAMPs in both soybean and Arabidopsis, likely as a result of sig-

nificantly reduced protein levels of cognate PRRs on the cell

membrane (Liang et al., 2013; Figure 1c). Surprisingly, Nod factors

can still suppress immune responses in soybean mutants lacking Nod

factor receptors but not in an Arabidopsis mutant lacking the LysM

receptor LYK3 (Liang et al., 2013).

Similarly, rhizobial LPS is required for the establishment of success-

ful symbiosis in legume plants (Gibson, Kobayashi, & Walker, 2008).

However, LPS of S. meliloti was found to suppress not only early

immune responses such as ROS burst but also late defence‐related

transcriptional reprogramming in M. truncatula (Figure 1c), despite

inducing a strong ROS burst in the nonhost N. tabacum (Scheidle,

Groß, & Niehaus, 2005; Tellstrom et al., 2007). A recent study has

shown that EPR3‐mediated recognition of compatible

exopolysaccharides (EPS) in L. japonicus is crucial in controlling suc-

cessful entry by M. loti (Kawaharada et al., 2015). In addition to its role

in symbiosis, EPS derived from S. meliloti can block flg22‐induced cal-

cium influx through chelation with calcium ions (Figure 1c), thus sup-

pressing downstream immune responses (Aslam et al., 2008).

Moreover, Medicago truncatula mutants impaired in the production

of the receptor‐like kinase LYK9 were less colonized by arbuscular

mycorrhiza Rhizophagus irregularis, whereas they were more heavily

infected by the oomycete pathogen Aphanomyces euteiches and

showed more disease symptoms (Gibelin‐Viala et al., 2019). Together,

the abovementioned findings suggest a role of symbiotic molecules in
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suppressing immune responses, but more studies are required to

understand the complicated immunity‐symbiosis interplay.
4 | MODULATION OF PLANT IMMUNITY BY
NON‐ INVASIVE BENEFICIAL MICROBES

Most of the abovementioned examples describe immune modulation

strategies utilized by beneficial microbes that are invading host roots.

Rhizobial cells differentiate intercellularly in legume nodules and also

hyphae of mycorrhizal fungi penetrate host roots to form their symbi-

otic structures (Desbrosses & Stougaard, 2011; Garcia, Delaux, Cope,

& Ane, 2015; Schmitz & Harrison, 2014). In nature, plants also form

diverse beneficial associations with microbes that colonize the rhizo-

sphere and promote plant growth or help the plant cope with adverse

(a)biotic conditions (Bakker, Pieterse, de Jonge, & Berendsen, 2018;

Berendsen et al., 2012). The rhizosphere is generally defined as the

thin layer of soil at the root‐soil interface that is strongly influenced

by root exudates (Bakker, Berendsen, Doornbos, Wintermans, &

Pieterse, 2013), and thus, it can be debated to what extent the plant

immune system can respond to mutualists living in this root exterior.

It was shown that the root PRR gene FLS2 displays a tissue‐ and cell

type‐specific higher expression level at bacterial infection sites and

at the inner cellular layers of Arabidopsis roots (Beck et al., 2014).

Moreover, immune responses of the root pericycle were found to be

stronger upon MAMP perception than those of other tissues (Wyrsch

et al., 2015). These studies suggest that plants desensitize their root

immune system at the outer cell layers of the root to prevent
FIGURE 2 Schematic overview of root immune evasion and suppression m
text. Beneficial microbes living in rhizosphere can evade or suppress root im
[Colour figure can be viewed at wileyonlinelibrary.com]
over‐responsiveness to the microbe‐rich soil environment. A non‐

invasive lifestyle of certain beneficial microbes may thus prevent

strong activation of plant immune responses. However, beneficial rhi-

zosphere inhabitants, such as PGPR WCS417 and B. subtilis FB17, can

actively suppress root immune responses (Lakshmanan et al., 2012;

Millet et al., 2010; Stringlis, Proietti, et al., 2018; Figure 2). In

Arabidopsis roots, both heat‐killed WCS417 cells and the WCS417

flg22 peptide can activate immune responses to the same extent as

flg22 from the pathogen P. aeruginosa (Millet et al., 2010; Stringlis,

Proietti, et al., 2018). Interestingly, an expression of more than 50%

of the root immune‐responsive genes triggered by flg22 was

repressed by live WCS417 cells (Stringlis, Proietti, et al., 2018). Recent

evidence suggests that beneficial Pseudomonas spp. suppress flg22‐

induced root immunity by producing organic acids that lower the envi-

ronmental pH (Yu et al., 2019). B. subtilis FB17 also suppresses flg22‐

induced immune responses in Arabidopsis roots but does this in a JA‐

dependent manner (Lakshmanan et al., 2012; Figure 2). Moreover,

Liu et al. (2018) identified 231 genes of the plant‐beneficial bacterium

Pseudomonas brassicacearum WCS365 by high‐throughput transposon

sequencing that confer increased bacterial fitness in the rhizosphere

of wild‐type plants compared with the rhizospheres of immunocom-

promised plants. Clean deletion mutants that were generated for

two of these genes, morA and spuC, also induced MTI in Arabidopsis

roots. Both genes seemed to prevent intensive biofilm formation on

roots, thereby preventing strong recognition and evading defence

activation (Liu et al., 2018; Figure 2). These findings indicate that the

root immune system actively influences microbes in the rhizosphere

(Figure 2). In this light, Lebeis et al. (2015) found that Arabidopsis
ediated by non‐invasive beneficial microbes as described in the main
munity, suggesting that this is a useful trait for rhizosphere inhabitants

http://wileyonlinelibrary.com
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mutants, in which SA‐dependent defence signalling was disrupted,

have distinct root microbiomes, suggesting that the immune system

gates access and determines which microbes can colonize the roots.

However, they found that SA‐dependent signalling primarily modu-

lates the composition of the endophytic root microbiome, whereas

the rhizosphere microbiome was less affected (Lebeis et al., 2015).

Also, an assessment of wheat microbiomes after exogenous JA appli-

cation demonstrated that JA signalling affects microbiome assembly

in a compartment‐specific manner and that the endophytic root

microbiome is mostly affected (Liu, Carvalhais, Schenk, & Dennis,

2017). In Arabidopsis on the other hand, JA signalling did affect the

composition of Arabidopsis rhizosphere microbiomes, which could be

associated to differences in root exudate profiles of JA signalling

mutants compared with wild‐type plants (Carvalhais et al., 2015).

Moreover, aboveground activation of the immune system by both

microbial pathogens and insects has been demonstrated to result in

alterations in rhizosphere microbiomes of several plant species

(Berendsen et al., 2018; Dudenhöffer, Scheu, Jousset, & Cahill, 2016;

Kong, Kim, Song, Lee, & Ryu, 2016; Yuan et al., 2018). Again, the

microbiome alteration could be related to differential root exudation

in response to activation of the immune system (Yuan et al., 2018).

Recent studies identified coumarins (Stringlis et al., 2018; Voges, Bai,

Schulze‐Lefert, & Sattely, 2019), benzoxazinoids (Hu et al., 2018),

triterpenes (Huang et al., 2019), and camalexin (Koprivova et al.,

2019) as chemical players that can shape the rhizosphere microbiome.

Together, these findings suggest that although the gate keeping func-

tions of the plant immune system might differ for different root com-

partments, the influence of the immune system does extend into the

rhizosphere.
5 | CONCLUDING REMARKS AND
PROSPECTS

The plant immune system prevents most microbes from entering the

root or reaching levels that are harmful to the plant. Irrespective of

whether the association is harmful, neutral, or beneficial to the plant,

microbes can evade and interfere with the plant immune system. To

this end, members of the root microbiome possesses an immense rep-

ertoire of biosynthetic pathways that can produce bioactive com-

pounds that interfere with host immunity (Stringlis, Zhang, et al.,

2018). Plants will erect chemical and physical barriers that block the

proliferation of those microbes inside the root that do not actively

suppress this response. The root exterior is more open, and plants

can only chemically steer rhizosphere microbiome composition. It is

therefore likely that the influence of the plant in the rhizosphere

declines gradually with increasing distance to the root as the concen-

tration of root exudates decreases. Although it has been demonstrated

that also some non‐invasive rhizosphere inhabitants possess the abil-

ity to suppress root immune responses, it is unknown whether this

trait contributes to rhizosphere competence of microbes. Regardless,

the rhizosphere is densely occupied by microbes and is likely a very

MAMP‐rich environment. MAMP‐triggered activation of immunity
leads to growth‐defence tradeoffs that hamper plant development

(Huot, Yao, Montgomery, & He, 2014). It will therefore be intriguing

to find out how plants prevent overstimulation of the plant immune

system by MAMPs that are massively present around their roots.
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