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ABSTRACT: We employ a system of cubic colloids with rounded
corners to study the close-packed monolayers that form via
convective assembly. We show that by controlled solvent
evaporation large densely packed monolayers of colloidal cubes
are obtained. Using scanning electron microscopy and particle-
tracking algorithms, we investigate the local order in detail and show
that the obtained monolayers possess their predicted close-packed
optimal packings, the Λ0-lattice and the Λ1-lattice, as well as the
simple square-lattice and disordered packings. We further show that
shape details of the cube corners are important for the final packing
symmetry, where the frequency of the Λ1-lattice increases with
decreasing roundness of the corners, whereas the frequency of the
Λ0-lattice is unaffected. The formation of both optimal packings is found to be a consequence of the out-of-equilibrium
formation process, which leads to small shifts in rows of cubes, thereby transforming the Λ1-lattice into the Λ0-lattice.

■ INTRODUCTION

The self-assembly of colloids into ordered arrangements is of
interest for a wide range of applications, such as photonics,1,2

chemical sensing,3 biomimicry,4,5 and solar cells.6 Over the
past years, several self-assembly approaches have flourished
with specific features in terms of complexity of the
implementation, sensitivity to process parameters, and
characteristics of the final colloidal assembly; for extensive
reviews, see refs 7 and 8. Convective assembly (CA) is one of
the convenient preparation methods of colloidal films with a
controllable thickness on a substrate.1,7−10 The assembly of the
colloidal particles occurs at the contact line between the
colloidal sol and the substrate. Here, the colloids on the
substrate protrude through the liquid−air interface, which
induces strong immersion capillary attractions between the
colloids that dominate the densification process.11−13 Sub-
sequently, a convective flow is induced by the solvent
evaporation from the meniscus that brings additional colloids
to assembling structures.13,14

Particle shape is well known to influence the crystal
symmetry of close-packed structures formed by colloids.15,16

Thanks to breakthroughs in colloid synthesis, many types of
micron-sized colloids with well-defined anisotropic shapes and
interactions have recently become available.17−21 These
colloids can be almost as complex as their atomic and
molecular counterparts and provide the possibility to form a
rich variety of superstructures.20−23 It is of fundamental and

practical interest to study close-packed structures of these
nonspherical colloids, and the CA technique would be very
suitable for their controlled assembly. So far, CA has been
applied to several nonspherical shapes, including rods,
ellipsoids, and bowls,24−26 but many more shapes still need
to be explored.
Recently, an anisotropic colloidal system of monodisperse

hollow silica cubes was developed.27−31 These colloidal cubes
possess slightly rounded corners and can be described by a
superball shape, given by32
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where m is the shape parameter, which indicates the extent of
deformation from a sphere (m = 2) to a cube (m → ∞), and a
is half the edge length L. In a previous study, we have shown
that these hollow silica cubes can also be assembled into large
monolayer and multilayer crystalline structures via a CA
method in which the substrate is placed vertically, i.e., vertical
deposition (VD).28 Interestingly, molecular dynamics and
Monte Carlo simulations predict that the crystal order of the
cubes can be tuned by the shape parameter m.33,34 Especially in
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the range of m accessible with these hollow cubes, m ≈ 2.5−4,
the cube shape changes from a very rounded cube to a slightly
rounded cube, and a symmetry switch for both two-
dimensional (2D) and three-dimensional (3D) crystal
structures was found. Experimentally, the sensitivity of the
equilibrium self-assembly of the hollow cubes to m has been
confirmed.30,31 For depletion-induced assembly of the cubes in
quasi-2D, the formation of hexagonal, rhombic, and simple
cubic-lattices was revealed, which depended strongly on m and
the size ratio between the cube and the depletant.30 In
addition, the sedimentary 3D crystals formed by the cubes
were found to form plastic face-centered cubic crystals that
upon an increase in concentration transitioned into predicted
hollow-site rhombic crystals for m ≤ 3.4, whereas for m ≥ 3.4,
an unpredicted bridge-site rhombic crystal structure was
found.31

The main aim of this study is to address the effect of the
colloidal cube shape details on the structure of densely packed
monolayers assembled via CA, which is an out-of-equilibrium
process. We employ three colloidal cubes with different m-
values and use different CA methods to assemble the colloidal
cubes. We investigate the formed monolayer structures in
detail with scanning electron microscopy (SEM). We
developed image analysis routines to detect the local packing
arrangements and quantify the occurrence of different lattices
packings. We find that several different packings occur as a
consequence of the cubic shape and the out-of-equilibrium
formation process.

■ EXPERIMENTAL SECTION
Colloidal Cube Synthesis. For the synthesis of three different

types of hollow silica cubes, we first synthesized three different
template hematite particles with a cubic shape following the sol−gel
procedure.27,31,35 Briefly, to obtain hematite cubes with an edge
length L = 932 nm, 50.53 g of FeCl3·6H2O (Sigma-Aldrich, 99%) was
dissolved in 100.0 mL of water, followed by rapid mixing (20 s) with
20.18 g of NaOH dissolved in 100.0 mL of water under vigorous
magnetic stirring. Next, the suspension was aged at 100 °C for 8 d
during which the hematite cubes were formed. The hematite cubes
were cleaned by repeated centrifugation and redispersion in water.
Water from a Millipore system was always used.
The hollow silica cubes were prepared by coating the hematite

cubes with amorphous silica using an adaption of the Stöber
synthesis.27,36 First, the hematite cubes were functionalized with
polyvinylpyrrolidone (PVP). This was done by mixing 50.0 mL of 7
wt % hematite cubes in water with 10.0 g of PVP (Mw 40 000 g/mol,
Aldrich) in 100.0 mL of water and stirring overnight. Next, the
functionalized cubes were washed by repeated centrifugation and
redispersion in ethanol (96%, Interchem) to a final concentration of
4.7 wt %. Next, 75.0 mL of PVP-functionalized hematite cubes in
ethanol was mixed with 800 mL of ethanol, 15.0 mL of 1.0 wt %
tetramethylammonium hydroxide (Fluka) solution, and 122.0 mL of
water. To this mixture, 20.0 mL of TEOS (98%, Sigma-Aldrich)
mixed with 20.0 mL of ethanol (p.a., Aldrich) was added dropwise
over the course of ∼3 h under mechanical stirring and sonication.
Next, the silica-coated hematite cubes were cleaned by washing via
repeated centrifugation and redispersion in water. The hematite core
was removed by dispersing the cubes in ∼5 M HCl (Merck) over a
period of 24 h. The core is removed because hematite has a
permanent dipole moment and influences their self-assembly in 2D.37

This step is followed by repeated washing, and finally, the hollow
cubes were stored in ethanol to prevent silica etching, which may
occur in water.
All colloids were characterized with transmission electron

microscopy (TEM, Philips TECNAI 10 or 12). Figure 1a,b shows
typical TEM images of a template hematite cube and the hollow silica

cube obtained from this. The average edge length <L>, the
polydispersity σL, the average silica shell thickness <tSiO2

>, and the
shape parameter m of the cubes were determined by analyzing more
than 100 TEM images. The specific properties of all hematite and
hollow silica cubes are shown in Table 1. The hollow silica cubes in

this study were found to have the shape parameter m ranging from 2.9
to 3.6, allowing us to study the effect of a specific shape on the
convective assembled structures in an m range where switching crystal
symmetries are predicted.32−34

Sample Preparation. Prior to convective assembly experiments, a
5.0 vol % stock dispersion of hollow silica cubes in water was prepared
by repeated centrifugation. The cubes consist of thin hollow silica
shells whose volume is hard to estimate, which obstructs the
determination of the volume fraction from the weight concentration
of the stock suspensions. Therefore, the stock suspensions were
centrifuged at 680g in thin 100 × 4 × 0.2 mm3 capillaries. Assuming
that the sediment has a random packing density of 72−80 vol % based
on their shape,38 the volume fraction was estimated from the obtained
sediment volume. The desired volume fractions were achieved by
diluting the stock dispersions with the appropriate amount of water.
Cube dispersions in water with a volume fraction in the range of 0.1−
0.5 vol % were used as these were empirically found to result in large
monolayer deposits.

Microscope glass slides with dimensions of 24 × 50 mm2 (Menzel-
Glaz̈er #1.5) were cut to 12 × 50 mm2 using a diamond pen followed
by etching with 7.0 wt % KOH (Merck) in 7.0 wt % aqueous solution
in ethanol for at least 1 h but usually 16 h. Subsequently, the slides
were rinsed thoroughly with ethanol and water, followed by drying in
air before use.

Figure 1. TEM images of (a) hematite cubes II and (b−d) hollow
silica cubes with different m-values: (b) II_Si with m = 3.5, (c) I_Si
with m = 2.9, and (d) III_Si with m = 3.6; see Table 1 for details.
Scale bars are 1 μm.

Table 1. Characteristics of the Hematite and Hollow Silica
Cubes

<L> (nm) σL (nm) <tSiO2
> (nm) m

Hematite
I 558 6 3.7
II 932 6 a

III 1180 4 a

Hollow
I_Si 774 35 108 2.9
II_Si 1033 45 50 3.5
III_Si 1266 27 43 3.6

am not determined.
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Convective Assembly. Due to the size difference between the
cubes (see Table 1), two different convective assembly methods were
employed to induce the formation of dense cube packings. For the
smallest cubes, we employed the vertical deposition (VD) method, as
described in our earlier work28 and schematically shown in Figure 2a.

For the larger cubes, we used a horizontal deposition (HD) method.39

The HD method is used because the larger size leads to a higher
sedimentation velocity and reduces the cube concentration close to
the contact-line too fast for the use of the VD method. The main
difference is the orientation of the microscope slide onto which the
dense structure of cubes forms. A schematic illustration of the HD
method is shown in Figure 2b. Two microscope slides are placed in a
wedge shape, with one horizontal and the second slide placed with an
angle of 30° on top of the first. A droplet placed into the corner
formed by the two slides will cause the meniscus to have a concave
shape. In both methods, cubes will be pinned in the thin layer of the
solvent on the substrate, and due to the convective flow, more cubes
will be transported to this region, causing the formation of dense
packings, as schematically shown in Figure 2c.
For the VD experiments, a small wide-neck vial was filled with 2.5

mL of cube dispersion and a clean substrate was placed into the
colloidal sol at an angle of 30°. Next, the vial was placed in an oven at
50−70 °C for at least 24 h to allow the solvent to evaporate. For an
HD experiment, 100.0 μL of dispersion was placed in the corner of
the slides and the slides were covered with a 2L crystallization dish to
avoid irregular air flow. Slow solvent evaporation occurred over 8 h at
room temperature. During solvent evaporation, cube deposits form on
the substrate. By controlling the cube concentration, dominant
monolayer structures can be obtained. However, due to an increase in
concentration upon solvent evaporation, eventually multilayer
structures will also form, but these are out of the scope of the
current investigation.
The convectively assembled deposits were imaged with SEM using

a Phenom FEI microscope. High-resolution SEM images were
obtained using an FEI XL30S FEG. The samples were connected
with carbon tape to an SEM specimen stub and coated with a 6−8 nm
layer of platinum using a sputter coater.
Image Analysis. The particle center of mass and angle of the

longest diagonal, α, with respect to the x-axis of the images were
retrieved from the SEM images using analysis iTEM software. For
this, a threshold was determined and the image was binarized. A series
of erosion steps were performed until all particles could be identified
by eye. The centers were used for a Voronoi construction that was
subsequently overlaid on the first binarized image. In this way, the
cubes were clearly separated while maintaining their shape. Next,
using particle detection algorithms, the center of mass and orientation
of the longest diagonal of each cube were determined. Further analysis

of the nearest neighbor (NN) positions and lattice identification were
performed with specialized analysis routines written in IDL
(Interactive Data Language, Harris Geospatial Solution, Boulder,
Colorado).

■ RESULTS AND DISCUSSION
Monolayer Structure and Order. With the convective

assembly methods, extended monolayer films were obtained
for all three types of cubic colloids. The crystallinity of these
films manifested itself by the presence of strong Bragg
reflections of the visible light. The monolayers were
investigated in detail with SEM. Figure 3 shows typical SEM

images for all three differently shaped and sized colloidal cubes.
Here, very densely packed structures can be observed in which
the cubes have all oriented flat on the substrate. Some cracks
and additional spacing can be observed between the cubes,
which are typical for convective assembled structures and are
caused by drying effects and the exposure to the electron beam.
The densely packed structures and orientation of the cubes can
be explained by their shape and the convective assembly
process. During the evaporation of the solvent from the
dispersion, cubes close to the air−water−substrate contact line
become pinned between the meniscus of the thin solvent layer
and the substrate, which forces them into a flat orientation. In
addition, the distortion of the solvent−air interface induces
strong immersion capillary forces between the cubes,11

resulting in the formation of dense packings. The cubes in
turn pin the contact line, and due to the evaporation of the
solvent from the thin solvent film, a strong flow toward the
contact line is induced. This flow transports cubes to the
already formed close-packed structure causing the structure to
grow.

Figure 2. Schematic representations of (a) vertical deposition (VD)
method where a substrate is immersed vertically in a colloidal
dispersion. (b) Horizontal deposition (HD) method where a
substrate is placed horizontally and the second one is positioned at
an angle of 30°, and (c) convective particle assembly close to the air−
solvent−substrate contact line due to solvent evaporation and
immersion capillary forces.

Figure 3. Typical SEM images of the obtained monolayers of the
hollow silica cubes with different m-values. (a, b) m = 2.9, (c, d) m =
3.5, and (e, f) m = 3.6. Scale bars are (a, c, e) 10 μm and (b, c, f) 5
μm.
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In the densely packed monolayers, domains with different
positional and orientational orders can be observed. Closer
investigation of the structures revealed that several different
types of dense packings can be identified, ranging from optimal
to disordered packings. Figure 4a,b shows the Λ0-lattice and

the Λ1-lattice, which are the densest packings found with
molecular dynamic simulations for a superdisk, which is the 2D
equivalent of a superball.33 The formation of these two
superdisk packings is caused by the fact that in the monolayer
the cubes interact only via their sides and thus essentially only
via their 2D “superdisk” shape. In addition, a simple square-
lattice packing (Figure 4c) and rotationally disordered
packings (Figure 4d) were observed. The observation of
these latter two packings is surprising as these have a lower
packing density, whereas the immersion capillary forces
between the cubes are quite high. The formation of these
packings might therefore be caused by a too strong pinning of
the cubes between the meniscus and substrate during the
solvent evaporation.
Lattice Criteria. To investigate the local packings in more

detail, we need to correlate the positional and orientational
orders in the different lattices. Therefore, we first defined the
criteria to assign the Λ0, Λ1, and simple square-lattices based
on the cube body orientation, α, (Figure 5a) and the NN
positions with respect to α, expressed by the angle, θ (Figure
5b). The lattice vectors of the Λ0-lattice are given by33

= Le i1 (2)

= + −L Le i j( /2) ( /2)(2 1)m m
2

1/
(3)

On the other hand, the lattice vectors of the Λ1-lattice are
given by

= +− −L Le i j( /2)2 ( /2)2m m
1

(1 1/ ) (1 1/ )
(4)

= − + +− −L s L se i j( /2)(2 2 ) ( /2)(2 2 )m m
2

1/ 1/2 1/ 1/2

(5)

In both cases, i and j are the unit vectors along the x and y
directions along the particle symmetry directions, L is the
particle edge length, m is the deformation parameter, and s is
the smallest positive root of the following equation

| − | + | + | =− + − − + −s s2 2 2 2 1m m m m(1 1/ ) 1/2 (1 1/ ) 1/2 (6)

The lattice vectors for a square-lattice are given by

= Le i1 (7)

= Le j2 (8)

Figure 5c,d shows the schematic illustration of the Λ0 and Λ1-
lattice packings. In the Λ0-lattice, the cubes are located in rows
aligned with their faces and offset by 1/2L, whereas in the Λ1-
lattice, the rounded corners of the cubes are touching, leading
to a rhombic lattice symmetry. The packings are actually very
similar from a particles’ center point of view; both dark-blue
center cubes have six NNs. However, the NN positions are
clearly different with respect to the center cube body
orientation, α, with two NNs located at the cube face for the
Λ0-lattice, whereas for the Λ1-lattice, two NNs are located at
the cube corners. For the case of a cube with m = 3.5, this leads
to the following criteria. The Λ0-lattice possesses two NNs
located at distance 1.0L at an angle θ = ±45° (red particles,
Figure 5c) and four NNs at distance 1.1L with θ = ±18°
(orange particles, Figure 5c). The Λ1-lattice possesses two
NNs at 1.16L with θ = 0° (dark green particles, Figure 5d) and
four NNs at 1.01L with θ = ±35 or ±55° (light green particles,
Figure 5d). In addition, the Λ1-lattice possesses two neighbors
located slightly further away at 1.66L with θ = 90° (dark green
particles, Figure 5d). The simple square-lattice also possesses
four NNs at √2L with θ = 0 or 90° but in addition has four
NNs at L with θ = ± 45°.
The unique positions and orientations of a cube in the Λ0-

lattice, Λ1-lattice, and square-lattice were used for the lattice
identification using an analysis routine consisting of several
steps. First, the position, r, and angle of the longest diagonal
with the x-axis, α, of the cubes were extracted from the SEM
images. For further analysis, we take into account that a cube is
4-fold degenerate and determine the body orientation, ξ4,
according to

ξ = αei
4

4
(9)

Figure 6a shows for two differently ordered monolayers of the
cubes with m = 3.5 the identification of the detected positions
and orientations as indicated by the overlaid squares, which are
colored according to their local ξ4 in the complex plane.
In the second step, we identified the eight closest neighbors

(also referred to as NNs for convenience) of each particle
based on the relative distance to the particle center. We require
eight NNs for the assignment of the Λ1-lattice and the simple

Figure 4. SEM images of the different types of dense packings
observed for cubes with m = 3.5. (a) Λ0-lattice, (b) Λ1-lattice, (c)
simple square-lattice, and (d) disordered packings. Scale bars are 2
μm.

Figure 5. Schematic illustration showing how the orientations of the
cubes are determined from the SEM images. (a) Angle, α, the long
diagonal makes with the x-axis, (b) angle, θ, the nearest neighbors
make with respect to α. Schematic illustrations of (c) Λ0-lattice and
(d) Λ1-lattice.
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square-lattice, which cannot be obtained via the triangulation
algorithm. By selecting the eight NNs on the relative distance,
we also allow for fluctuations in the cube positions that occur
due to cube polydispersity and drying effects. In the third step,
the correlation between the NN body orientations is checked,
as in the densely packed crystal lattices, the surrounding cubes
should possess orientational order. For this, we take into
account the alignment of the NNs by determining the local
body orientational order parameter, <ξ4>, according to

∑ξ ξ⟨ ⟩ =
N
1

j

N

j4 4,
(10)

where N is the total number of NNs. If the NNs possess high
orientational order, |<ξ4>| ∼ 1, whereas the absence of
orientational order between the NNs leads to |<ξ4>| ∼ 0.
Figure 6b shows the local |<ξ4>| value for each cube in the
different structures, showing that in these two cases the local
order is high. We employed a minimum value of |<ξ4>| = 0.6 to
identify the particles with high degree of body orientational
order because this was empirically found to identify the
ordered particles well while taking into account the small
detection error in α.
Next, in the fourth step, we determined θ for the NNs. To

reduce the observed error in α detection, we employ the
average <ξ4> based on the assumption that in the lattices the
cubes have the same orientation (although we use the center ξ4
when the angle difference between <ξ4> and ξ4 was found to
be larger than 0°). Figure 6c shows the bond−body correlation
function g(r, ξ4), which visualizes the local density plot of the
neighbor positions with respect to the cube body orientation,
ξ4. Here, the difference in NN positions in both lattices can be
clearly seen. Finally, in the fifth step, the local lattice packing is
assigned based on the number of NNs with specific θ
according to selection criteria. We distinguish between the Λ1-
lattice and the square-lattice, which both have four NNs
located at 0 or 90°, by determining the bond length ratio, bL, of
the two shortest with the two longest bonds. For the simple
square-lattice, bL ≈ 1.0, whereas for the Λ1-lattice, bL ≈ 1.4,
and we use a cutoff value of bL = 1.2. The “perfect” lattices are

those that meet the full lattice criteria, whereas the “defect”
lattices are assigned to those particles for which one of the
perfect criteria is not fully met. In Table 2, the exact criteria for

the lattice assignment are given. We allow for small deviations
from the ideal lattice positions due to drying effects and
detection errors by allowing a deviation in θ of σ = 10%. In
case none of the criteria are met, the particle is labeled as not
assigned.

Lattice Identification. With the established analysis
routines, all monolayers were analyzed. Figure 7 shows three
typical SEM images of monolayers formed by the cubes with m
= 3.5 and the different analysis results. In these images, all
three lattices, as well as some defects, can be observed. Figure
7a shows a large monolayer region that clearly possesses a high
degree of orientational order (Figure 7d) and is overall
identified as the Λ1-lattice (Figure 7g). Besides highly ordered
monolayers, also monolayers with a gradual rotation of the
cube body orientation were observed, as shown in Figure 7b.
The change in body orientation does not destroy the local
alignment of cubes (Figure 7e). The orientational change,
however, is related to a continuous transformation of the Λ1-
lattice to the Λ0-lattice in the form of switching rows of cubes.
In addition, between the rows, also some square-lattice
packings can be observed (Figure 7h). Figure 7c shows a
monolayer in which many small particles and doublets
(particle grown together during the silica-coating process), as
well as stacking faults, can be observed, as indicated by the
arrows in Figure 7c. The orientational analysis (Figure 7e)
shows that a large degree of orientational disorder is present on
the right side of the image. In addition, the ordered regions on
the left side were found to have formed a hexagonal or square
symmetry (red dashed boxes). The lattice analysis (Figure 7f)
reveals that there are two large regions of both the Λ0-lattice
and Λ1-lattice and some regions with the square-lattice,
whereas the disordered region has not been assigned. The
low number of particles identified as having a square-lattice,
even though by eye, several regions could be identified (Figure
7f), seems to be a consequence of the low persistence of the
structure. A shift of two rows of cubes leads to a local square
arrangement, but for assignment, three rows have to align,
which does not occur often. Evidently, monolayers of cubes,
assembled via the convective assembly method, form ordered
and disordered packings. In the ordered packings, the
formation of the two densest packings, the Λ0-lattice and Λ1-
lattice, occurs with a higher tendency to form the Λ1-lattice,
and only on very few occasions, the less densely packed simple
square-lattice is formed.

Figure 6. (a) SEM images of two regions with different lattice
packings. The detected positions and orientation are represented by
the squares and colored according to their body orientation ξ4. (b)
Local orientational order parameter |<ξ4>| showing high orientational
order of the nearest neighbors (NNs). (c) Bond−body correlation
function g(r, <ξ4>) of the eight closest NN positions with respect to
the center cube orientation, showing a clear difference of NN
positions in the two lattices. (d) Assignment of lattice type based on
NN position criteria overlaid on the SEM image. Scale bars are 2 μm.

Table 2. Selection Criteria for the Assignment of Each
Lattice, Based on the Number of NNs with Specific θ

θ

±45° ±18° 0°/±90° bL

σ = 5° σ = 10° σ = 10°

Λ0 2 4
Λ0-defect 2 3 ≤2

1 4 ≤2
Λ1 4 ≥1.2
Λ1-defect ≤1 3
Sq ≥3 4 <1.2
Sq-defect ≥2 4 <1.2

≥3 3
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Influence of Shape. The effect of shape was further
analyzed by investigating the monolayers formed by the cubes
with m = 2.9 and 3.6. Figure 8 shows two typical images of the
lattice analysis for both cubes. For the cubes with m = 2.9, we
find that both the Λ0-lattice and Λ1-lattice coexist with
relatively short-range ordered regions (Figure 8a,b). Also, it is
clear that a large degree of orientational disorder is present as
many cubes were not analyzed (light gray cubes) due to low
local orientational order |<ξ4>| < 0.6, but also many of the local
ordered cubes (dark gray) have not been assigned a lattice.
One reason for this high disorder is that these rounded cubes
can rotate easily in their dense packings, as, for instance,
observed in the center of Figure 8a, where a 90° rotation of the
cubes occurs on a row, but the overall lattice is not disturbed.
For the less-rounded cubes with m = 3.6, the analysis shows
that large regions with the Λ1-lattice are present, which are
intersected with single particles, rows, and/or short-ranged
regions of the Λ0-lattice (Figure 8c,d). Also, most of the

particles have been assigned a lattice, indicating high local
orientational order.
We note that in this study the larger m also encompasses an

increase in L, as the cubes with m = 3.6 are almost twice the
size of the cubes with m = 2.9. A larger size will lead to slightly
stronger immersion capillary forces11 that might contribute to
the increase in orientational order and hence the formation of
the Λ1-lattice. However, many simulation studies22,32−34,40 as
well as studies on nanocubes41 show that the exact shape of the
cubes is the main factor that controls the packing of crystalline
structures. Especially, a previous study of our lab30 employing
similar sized hollow cubes assembling via depletion interaction
showed that a change in m from 3.0 to 3.9 also induces a
change from the Λ0 to the Λ1-lattice in 2D structures.
Therefore, we conclude that the higher orientational order and
more dominant Λ1-lattice formation are mainly caused by the
higher m-value of the cubes and not their size.

Figure 7. (a−c) SEM images of monolayers of cubes with m = 3.5. The particle coordinate and orientation are indicated by the overlaid squares
colored according to their body orientation, ξ4, in the complex plane. (d−f) Local orientational order parameter |<ξ4>| for each particle, showing
clear regions with high and low order. (g−i) Assignment of the local lattice for particles. The Λ0-lattice (red), Λ1-lattice (green), square-lattice
(blue), with local |<ξ4>| > 0.6 but not assigned (dark gray), and with local |<ξ4>| < 0.6 (light gray) are indicated. Scale bars are 10 μm.
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To quantify the overall difference in lattice packings, we
determined the overall orientational order and the frequency of
each lattice assignment in all monolayers of the different cubes.
Figure 9a shows for each cube the percentage of particles with
|<ξ4>| > 0.6 found in each of the analyzed monolayers. This
clearly shows that a larger m-value of the cubes causes the
formed structures to be more orientationally ordered. Figure

9b shows the histograms of the lattice assignment including the
percentage of cubes that could not be assigned a specific lattice
type. From the histogram, it is clear that for each cube the Λ1-
lattice is the most dominant packing and the dominance
increases with m. In addition, a common trend is observed for
the cubes as the Λ0-lattice occurs with the same frequency of
∼20%, as well as the square-lattice with ∼2−3%. This trend
indicates that the formation of both the Λ0-lattice and the
square-lattice is controlled by another parameter than m and
seems to be related to the convective assembly process, as
discussed later. Evidently, the Λ1-lattice increase occurs only at
the expense of the disordered particles. For the cubes with m =
3.6, we even find that 40% of all particles possess a local Λ1-
lattice packing. This effect is so strong that in the radial
distribution function, g(r/L), the dominance of the Λ1-lattice is
visible. Figure 9c shows the average g(r/L) obtained from the
monolayers of each cube. It is clear that for m = 2.9 the
orientational disorder and presence of both lattices lead to
distinct peaks at L but no clear lattice can be assigned, whereas
for m = 3.6, distinct peaks are visible in g(r/L), which can be
identified as the peaks of the Λ1-lattice. In addition, we also
investigated the average domain size for the particles assigned a
perfect lattice, as shown in Table 3. For each m, we found a
large distribution of domain sizes, with many small domains
(2−4 particles) and larger domains with widespread sizes (up
to 500 particles). Even though this causes a large standard

Figure 8. Lattice analysis result for cubes with (a, b) m = 2.9 and (c, d) m = 3.6. The Λ0-lattice (red), Λ1-lattice (green), square-lattice (blue), with
local |<ξ4>| > 0.6 but not assigned (dark gray), and with local |<ξ4>| < 0.6 (light gray) are indicated. Scale bars are (a, b) 5 μm and (c, d) 10 μm.

Figure 9. (a) Amount of orientationally ordered particles with |<ξ4>|
> 0.6 observed in the monolayers formed by the cubes with different
values for the shape parameter m. (b) Distribution of the assigned
lattice to the orientationally ordered particles for each cube. For the
lattices, the perfect (densely dashed) and defect (medium dashed)
assigned particles are cumulated. (c) Average radial distribution g(r/
L) for the monolayers of each m.

Table 3. Average Domain Size for the Different Lattices

cube Λ0 Λ1 Sq

m = 2.9 3.5 ± 2.1 6.3 ± 10.3 2a

m = 3.5 6.4 ± 9.2 9.1 ± 23.5 2.5 ± 0.7
m = 3.6 4.5 ± 4.9 17.1 ± 55.8 3.5 ± 1.8

aOnly one cluster observed.
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deviation in the overall average size, the same trend is
observed: with increasing m, the Λ1-lattice domains grow,
whereas the Λ0-lattice domains remain a limited size. Clearly,
cubic colloidal monolayers formed via CA show the formation
of the optimal packings for these rounded cubes, the Λ0-lattice
and Λ1-lattice, as well as less dense structures with a simple
square-lattice or rotationally disordered packings. Moreover,
the orientational order as well as the occurrence of the Λ1-
lattice can be controlled by the shape parameter.
Our finding that hollow cubes form the optimal Λ0-lattice

and Λ1-lattice packings is in agreement with previous
investigations on the densest packings of superdisks33 and
hollow cubes assembling via depletion interaction.30 However,
the observation that both the Λ0-lattice and Λ1-lattice packings
occur side by side in a monolayer is different from these
studies and also does not agree with experiments and
simulations of rounded squares,40,41 where at high ϕ and m,
only the formation of the Λ1-lattice was observed The fact that
we observe both optimal lattice packings seems to be related to
the different formation mechanisms. Whereas the other studies
investigated equilibrium assembly, we employed CA, which is
an out-of-equilibrium assembly process. It is well known that at
equilibrium the realization of the highest possible packing
density will occur. For instance, precious opals or synthetic
colloidal crystals consisting of spheres of two different sizes will
form AB13 structures,42−44 and also many anisotropic nano-
particles and colloids have been observed to form their most
densely packed structures.45,46 In contrast, CA involves strong
immersion capillary forces, which lead to attractive capillary
interaction energies of ∼106 kT for 1 μm particles,11 as well as
fast solvent flows and convective transport of the cubes that
distort the equilibrium packings. The packings can be further
influenced by the small polydispersity (7%) in size and shape
of the cubes, as well as pinning of the cubes to the substrate.
These factors do not allow the cubes to explore all of the
possible configurations during assembly, and the densely
packed structures will contain nonequilibrium packings and
defects.
Besides the small differences between the Λ0-lattice and the

Λ1-lattice, their packing densities are very similar, ϕΛ0 = 0.933
and ϕΛ1 = 0.940 for m = 3.5, and although the lattices are
rotationally different due to their cubic shape, the NNs are
aligned in rows along the cube faces. A small shift in the
position of a row combined with a minimum rotation of the
cubes already transforms the Λ1-lattice into the Λ0-lattice and
vice versa. Figure 10 shows a schematic representation of this
row-shifting process. The same process can also lead to the
formation of the simple square-lattice. However, due to the
finite roundness of the cube faces, the square-lattice has a
relative lower packing density of ϕS = 0.898. Hence, this lattice
will be less stable under the influence of the strong capillary

forces and explains the low frequency of the packing. Small
disturbances in the assembly process, such as the pinning of
cubes, can easily induce such row-shifts. These disturbances
are method dependent and explain why the amounts of the Λ0-
lattice and the square-lattice are the same for each cube,
irrespective of the cube m-value. Therefore, we conclude that
the observed lattices in the convectively assembled monolayers
of cubes are a result of the combination of the cube shape and
out-of-equilibrium assembly process.

Defect Structures. To further investigate the effects of the
out-of-equilibrium process, we studied the defects and other
types of disorders in the monolayers. One striking observation
is the almost complete absence of vacancies, which typically
occurs in monolayers of spheres obtained via convective
assembly or spin-coating.47 We did observe that particles were
displaced from the inside to the top of the monolayer due to
the physical manipulations necessary for the SEM preparation,
but these always came in pairs. This vacancy absence seems to
be related to the alignment of cube faces, which allows rows of
cubes to easily shift and fill up any vacancy that might have
formed. Something similar has been observed in simulations of
sharp-edged cubes, where vacancies delocalize.48 Furthermore,
clear grain boundaries between different ordered domains were
not often observed. Instead, we observed several different types
of orientational disorder. Figure 11a shows, for cubes with m =
2.9, how the very rounded cubic shape allows rotations of the
cubes. For the local particle centers, we determined the local 6-
fold bond-orientation order parameter Ψ6, which is defined as

Figure 10. Schematic illustration of the transition of the Λ1-lattice
into the Λ0-lattice or the square-lattice by a small shift of the top and
bottom rows of cubes along the direction of the big arrow.

Figure 11. Different types of observed rotational disorder. (a) Dense
packing of cubes with m = 2.9 in which the body orientation performs
an almost full rotation from top to bottom. (b) Local 6-fold bond
order parameter of the cubes in (a). (c, d) Orientationally disordered
regions formed by cubes with m = 3.5. (e, f) Dense packing of cubes
with m = 3.6 with the Λ1-lattice displaying a twin boundary (white
dashed line). Scale bars are 5 μm.
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where the sum runs over the total number N of NNs of particle
i and θ(rij) is defined as the angle between the vector
connecting particles i and j and an arbitrary reference axis.
Figure 11b shows that the orientational disorder does not
disturb the positional order in the dense packing as the local
|Ψ6| ∼ 1, indicating high 6-fold positional order. Of course, in
this structure, almost no particles are identified with the Λ0-
lattice or Λ1-lattice. This type of disorder might explain why
the cubes with m = 2.9 have much less orientational order.
Figure 11c,d shows, for cubes with m = 3.5, two typical
examples of locally disordered regions of cubes with |<ξ4>| <
0.6. Here, due to the alignment of cube faces, the body
orientation changes gradually and is maintained over a few
particle distances but is clearly misaligned with the larger
structure. Besides rotational disorder, we also observed
twinning of the Λ1-lattices, characterized by a change in the
local body orientation of the cubes. Figure 11e,f shows the
body orientational change and the assignment of the Λ1-lattice
on both sides of the twin boundary.

■ CONCLUSIONS

We have investigated monolayers formed by convective
assembly for three different hollow silica colloids that possess
a cubic shape with different degrees of corner roundness. We
find that with the CA method large densely packed monolayers
of cubes with a high degree of order can be obtained. With
SEM, the local orientational and positional orders in these
monolayers were investigated in detail. We find that both
predicted optimal packings, the Λ0-lattice and Λ1-lattice, as
well as simple square-lattice packings and rotationally
disordered packings, are formed. Using quantitative image
analysis, we find that the Λ0-lattice and the Λ1-lattice easily
transform into each other but that the Λ1-lattice is more
dominantly formed. In addition, an increase in m, i.e., a
decrease in corner roundness, is found to lead to increased
orientational order and an increase in the Λ1-lattice formation,
whereas the frequency of the Λ0-lattice is unaffected by m. The
formation of the different packings can be explained by the
exact cube shape combined with the out-of-equilibrium
convective assembly process. Strong immersion capillary
forces, solvent flow, and pinned particles combined with the
alignment of cube faces allow rows of particles to shift and
induce the transformation between the optimal Λ1-lattice and
Λ0-lattice. Moreover, these processes also seem responsible for
the formation of packings with lower densities, including the
simple square-lattice and orientationally disordered packings.
From our study, it is clear that even with the out-of-

equilibrium CA process large ordered monolayers of cubes can
be obtained whose orientational order as well as the
occurrence of the Λ1-lattice can be controlled by the shape
parameter m. Further control over the monolayers could be
obtained via one of the many optimization routes that have
been established for spherical particles, such as meniscus
pinning,47 as well as template-directed assembly.49 In future
investigations, it would be interesting to see whether these
methods can also be applied for controlling the order in the
monolayers formed by the cubes. Especially, monolayers of
cubes are of interest as functional materials, for example, as

membranes in which the active component can be captured
inside the hollow cube center.
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