COVARIANTS OF BINARY SEXTICS AND MODULAR FORMS OF DEGREE 2 WITH CHARACTER

FABIEN CLÉRY, CAREL FABER, AND GERARD VAN DER GEER

Abstract

We use covariants of binary sextics to describe the structure of modules of scalar-valued or vector-valued Siegel modular forms of degree 2 with character, over the ring of scalar-valued Siegel modular forms of even weight. For a modular form defined by a covariant we express the order of vanishing along the locus of products of elliptic curves in terms of the covariant.

1. Introduction

In [4] we describe a map from covariants of binary sextics to Siegel modular forms of degree 2 . If V denotes the standard 2-dimensional representation of $\mathrm{GL}(2, \mathbb{C})$ with basis x_{1}, x_{2} we consider the space $\operatorname{Sym}^{6}(V)$ of binary sextics. A general element $f \in \operatorname{Sym}^{6}(V)$ will be written as

$$
f=\sum_{i=0}^{6} a_{i}\binom{6}{i} x_{1}^{6-i} x_{2}^{i} .
$$

The group $\operatorname{GL}(2, \mathbb{C})$ acts on $\operatorname{Sym}^{6}(V)$. We denote by \mathcal{C} the ring of covariants of binary sextics. A bihomogeneous covariant has a bi-degree (a, b), meaning that it can be seen as a homogeneous expression of degree a in the coefficients a_{i} of f and as a form of degree b in x_{1}, x_{2}; such a covariant will be denoted by $C_{a, b}$. The map from covariants to Siegel modular forms defined in [4] is a map

$$
\nu: \mathcal{C} \rightarrow M_{\chi_{10}}
$$

where M is the ring of vector-valued modular forms of degree 2 on $\Gamma_{2}=\operatorname{Sp}(4, \mathbb{Z})$ and the subscript χ_{10} means that Igusa's cusp form χ_{10} of weight 10 is inverted. It sends the binary sextic f to the meromorphic vector-valued modular form $\chi_{6,8} / \chi_{10}$ of weight $(6,-2)$, where $\chi_{6,8}$ is the unique holomorphic modular form of weight $(6,8)$ (it is a cusp form). Using modular forms with character, we can also write this as $\chi_{6,3} / \chi_{5}$. This map provides us with a very effective method for constructing Siegel modular forms on Γ_{2} with or without character. We used it in [4, 5] to construct modular forms.

Since the image of a covariant under ν may be meromorphic on \mathcal{A}_{2}, with possible poles along the locus $\mathcal{A}_{1,1}$ of abelian surfaces that are products of elliptic curves, it is important to have a method to determine the order of vanishing of modular forms obtained from covariants along this locus. In this paper we give such a method. In our earlier papers [4] and [5] we relied on restriction of the corresponding modular forms to the diagonal in the Siegel upper half space instead.

[^0]To exhibit the effectiveness of our method, we use it here to construct generators for certain modules of vector-valued Siegel modular forms of degree 2 .

We denote by $M_{j, k}\left(\Gamma_{2}\right)$ (resp. $S_{j, k}\left(\Gamma_{2}\right)$) the vector space of Siegel modular forms (resp. of cusp forms) of weight (j, k) on Γ_{2}, that is, the weight corresponds to the irreducible representation $\operatorname{Sym}^{j}(\mathrm{St}) \otimes \operatorname{det}^{k}(\mathrm{St})$ with St the standard representation of GL(2). The group Γ_{2} admits a character ϵ of order 2 and χ_{5}, the square root of χ_{10}, is a modular form of weight 5 with this character. We refer to the last section for a way to calculate the character. We denote the space of modular forms (resp. of cusp forms) of weight (j, k) with character ϵ by $M_{j, k}\left(\Gamma_{2}, \epsilon\right)$ (resp. by $S_{j, k}\left(\Gamma_{2}, \epsilon\right)$).

Let $R=\oplus_{k \text { even }} M_{k}\left(\Gamma_{2}\right)$ be the ring of scalar-valued Siegel modular forms of degree 2 of even weight. Igusa showed that it is a polynomial ring generated by E_{4}, E_{6}, χ_{10} and χ_{12}.

We are interested in the structure of the R-modules

$$
\mathcal{M}_{j}^{\mathrm{ev}}\left(\Gamma_{2}, \epsilon\right)=\oplus_{k \text { even }} M_{j, k}\left(\Gamma_{2}, \epsilon\right) \quad \text { and } \quad \mathcal{M}_{j}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)=\oplus_{k \text { odd }} M_{j, k}\left(\Gamma_{2}, \epsilon\right)
$$

The structure of the analogous modules for modular forms without character

$$
\mathcal{M}_{j}^{\text {ev }}\left(\Gamma_{2}\right)=\oplus_{k \text { even }} M_{j, k}\left(\Gamma_{2}\right) \quad \text { and } \quad \mathcal{M}_{j}^{\text {odd }}\left(\Gamma_{2}\right)=\oplus_{k \text { odd }} M_{j, k}\left(\Gamma_{2}\right)
$$

is known for some values of j by work of Satoh, Ibukiyama, van Dorp, Kiyuna, and Takemori, see [17, 12, 8, [15, 19]. The next table summarizes the results.

j	2	4	6	8	10
even	Satoh [17]	Ibukiyama [12]	Ibukiyama [12]	Kiyuna [15]	Takemori [19]
odd	Ibukiyama [12]	Ibukiyama [12]	van Dorp [8]	Kiyuna [15]	Takemori [19]

The difficult part is the construction of the generators and the authors just mentioned used an array of methods to construct generators. For example, Satoh used generalized Rankin-Cohen brackets, Ibukiyama used theta series for even unimodular lattices and Rankin-Cohen brackets, van Dorp used differential operators, and so on. Here we produce the generators we need by a uniform method via the covariants of binary sextics. We treat the cases $j=0,2,4,6,8,10$ even and odd. In all these cases the module turns out to be a free R-module.
Acknowledgement. The authors thank the Max-Planck-Institut für Mathematik in Bonn for the hospitality enjoyed while this work was done.

2. The ring of covariants of binary sextics

We recall some facts about the ring \mathcal{C} of covariants of binary sextics. For a description of \mathcal{C} we refer to [4, 5] and the classical literature mentioned there. The book of Grace and Young [11, p. 156] gives 26 generators for this ring. All these generators can be obtained as (repeated) so-called transvectants of the binary sextic f. The k th transvectant of two forms $g \in \operatorname{Sym}^{m}(V), h \in \operatorname{Sym}^{n}(V)$ is defined as

$$
(g, h)_{k}=\frac{(m-k)!(n-k)!}{m!n!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \frac{\partial^{k} g}{\partial x_{1}^{k-j} \partial x_{2}^{j}} \frac{\partial^{k} h}{\partial x_{1}^{j} \partial x_{2}^{k-j}}
$$

and the index k is usually omitted if $k=1$. If g is a covariant of bi-degree (a, m) and h a covariant of bi-degree (b, n), then $(g, h)_{k}$ is a covariant of bi-degree $(a+b, m+n-2 k)$ (cf. [3]). The following table summarizes the construction of the 26 generators.

1	$C_{1,6}=f$			
2	$C_{2,0}=(f, f)_{6}$	$C_{2,4}=(f, f)_{4}$	$C_{2,8}=(f, f)_{2}$	
3	$C_{3,2}=\left(f, C_{2,4}\right)_{4}$	$C_{3,6}=\left(f, C_{2,4}\right)_{2}$	$C_{3,8}=\left(f, C_{2,4}\right)$	$C_{3,12}=\left(f, C_{2,8}\right)$
4	$C_{4,0}=\left(C_{2,4}, C_{2,4}\right)_{4}$	$C_{4,4}=\left(f, C_{3,2}\right)_{2}$	$C_{4,6}=\left(f, C_{3,2}\right)$	$C_{4,10}=\left(C_{2,8}, C_{2,4}\right)$
5	$C_{5,2}=\left(C_{2,4}, C_{3,2}\right)_{2}$	$C_{5,4}=\left(C_{2,4}, C_{3,2}\right)$	$C_{5,8}=\left(C_{2,8}, C_{3,2}\right)$	
6	$C_{6,0}=\left(C_{3,2}, C_{3,2}\right)_{2}$	$C_{6,6}^{(1)}=\left(C_{3,6}, C_{3,2}\right)$	$C_{6,6}^{(2)}=\left(C_{3,8}, C_{3,2}\right)_{2}$	
7	$C_{7,2}=\left(f, C_{3,2}^{2}\right)_{4}$	$C_{7,4}=\left(f, C_{3,2}^{2}\right)_{3}$		
8	$C_{8,2}=\left(C_{2,4}, C_{3,2}^{2}\right)_{3}$			
9	$C_{9,4}=\left(C_{3,8}, C_{3,2}^{2}\right)_{4}$			
10	$C_{10,0}=\left(f, C_{3,2}^{3}\right)_{6}$	$C_{10,2}=\left(f, C_{3,2}^{3}\right)_{5}$		
12	$C_{12,2}=\left(C_{3,8}, C_{3,2}^{3}\right)_{6}$			
15	$C_{15,0}=\left(C_{3,8}, C_{3,2}^{4}\right)_{8}$			

3. Covariants and modular forms

The group Γ_{2} acts on the Siegel upper half space \mathfrak{H}_{2} and the orbifold quotient $\Gamma_{2} \backslash \mathfrak{H}_{2}$ can be identified with the moduli space \mathcal{A}_{2} of principally polarized abelian surfaces. If \mathcal{M}_{2} denotes the moduli space of complex smooth projective curves of genus 2 we have the Torelli map $\mathcal{M}_{2} \hookrightarrow \mathcal{A}_{2}$. This is an embedding and the complement of the image is the locus $\mathcal{A}_{1,1}$ of products of elliptic curves. This is the image of the 'diagonal'

$$
\left\{\tau=\left(\begin{array}{cc}
\tau_{11} & \tau_{12} \\
\tau_{12} & \tau_{22}
\end{array}\right) \in \mathfrak{H}_{2}: \tau_{12}=0\right\}
$$

and also the zero locus of the cusp form χ_{10} that vanishes with order 2 there.
The moduli space \mathcal{M}_{2} has another description as a stack quotient of the action of $\mathrm{GL}(2, \mathbb{C})$ on the space of binary sextics. We take the opportunity to correct an erroneous representation of this stack quotient in [4].

Let V be a 2 -dimensional vector space, say generated by x_{1}, x_{2}, and consider $\operatorname{Sym}^{6}(V)$, the space of binary sextics. The group $\mathrm{GL}(V)$ acts from the right; an element $A=$ $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ sends $f\left(x_{1}, x_{2}\right)$ to $f\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right)$. We twist the action by $\operatorname{det}^{-2}(V)$ and consider then

$$
\mathcal{X}=\operatorname{Sym}^{6}(V) \otimes \operatorname{det}^{-2}(V) .
$$

We let $\mathcal{X}^{0} \subset \mathcal{X}$ be the open set of binary sextics with non-vanishing discriminant. An element f of \mathcal{X}^{0} defines a nonsingular curve of genus 2 via the equation $y^{2}=f(x)$. The action on the equation $y^{2}=f(x)$ is now induced by

$$
x \mapsto(a x+b) /(c x+d), \quad y \mapsto(a d-b c) y /(c x+d)^{3} .
$$

Then mid_{V} acts on the binary sextics as η^{2}, so that only $\pm \operatorname{id}_{V}$ acts trivially. The action of $-\mathrm{id}_{V}$ on (x, y) is $(x, y) \mapsto(x,-y)$ and induces the hyperelliptic involution. So the
stack quotient $\left[\mathcal{X}^{0} / \mathrm{GL}(V)\right]$ equals the stack \mathcal{M}_{2}. Let $\alpha: \mathcal{X}^{0} \rightarrow \mathcal{M}_{2}$ be the quotient map.

The equation $y^{2}=f(x)$ defines two differentials $x d x / y$ and $d x / y$ that form a basis of the space of regular differentials on the curve and the action of $\mathrm{GL}(V)$ is by the standard representation. Thus the pullback under α of the Hodge bundle \mathbb{E} from \mathcal{M}_{2} to \mathcal{X}^{0} is the equivariant bundle defined by the standard representation $V \times \mathcal{X}^{0}$. The equivariant bundle $\operatorname{Sym}^{6}(V) \otimes \operatorname{det}^{-2}(V)$ has the diagonal section $f \mapsto(f, f)$. This diagonal section, the universal binary sextic, thus defines a meromorphic section $\chi_{6,-2}$ of $\operatorname{Sym}^{6}(\mathbb{E}) \otimes \operatorname{det}(\mathbb{E})^{-2}$. Since the construction extends to the locus of binary sextics with zeroes of multiplicity at most 2 , the section extends regularly over $\delta_{0} \backslash \delta_{1}$. (Here, δ_{0} corresponds to $\overline{\mathcal{A}}_{2} \backslash \mathcal{A}_{2}$, the divisor at infinity, and δ_{1} to the closure of $\mathcal{A}_{1,1}$.) With this construction, the pole order along δ_{1} is not yet known, but after multiplication with a power of χ_{10} the section becomes regular.

In fact, it is not hard to see that $\chi_{6,-2}$ has a simple pole along δ_{1}. Using Taylor series expansions in the normal direction to $\mathfrak{H}_{1} \times \mathfrak{H}_{1}$ with coordinate $t=2 \pi i \tau_{12}$ as in [4, §5] and coordinates c_{i} on Sym j corresponding to the monomials $\binom{j}{i} x_{1}^{j-i} x_{2}^{i}$, we see that the coefficient of t^{m} in c_{i} in the expansion of a meromorphic section of $\operatorname{Sym}^{j}(\mathbb{E}) \otimes \operatorname{det}(\mathbb{E})^{\otimes k}$ that is holomorphic outside $\mathcal{A}_{1,1}$, is of the form $g \otimes h$, with g quasimodular of weight $j-i+k+m$ and h quasimodular of weight $i+k+m$. See the Appendix where we prove that we get quasi-modular forms. To get nonzero coefficients, the two weights and hence their sum $j+2 k+2 m$ must be nonnegative. For $\chi_{6,-2}$, we get $2+2 m \geq 0$, hence $m \geq-1$, proving the claim. Multiplying $\chi_{6,-2}$ with χ_{10}, we obtain the holomorphic modular form $\chi_{6,8}$, unique up to a scalar; alternatively, $\chi_{6,-2}$ can be written as $\chi_{6,3} / \chi_{5}$, see [6] for $\chi_{6,3}$.

We can interpret modular forms as sections of vector bundles made out of \mathbb{E} by Schur functors, like $\operatorname{Sym}^{j}(\mathbb{E}) \otimes \operatorname{det}(\mathbb{E})^{\otimes k}$. Since the pullback of the Hodge bundle is the equivariant bundle defined by V, the pullback of such a section can be interpreted as a covariant. Recall that the ring of covariants is the ring of invariants for the action of $\operatorname{SL}(V)$ on $V \oplus \operatorname{Sym}^{6}(V)$, see for example [18, p. 55]. Conversely, a (bihomogeneous) covariant corresponds to a meromorphic modular form, with poles at most along δ_{1}, hence to an element of $M_{\chi_{10}}$.

We thus get maps

$$
M \rightarrow \mathcal{C} \xrightarrow{\nu} M_{\chi_{10}}
$$

with \mathcal{C} the ring of covariants of binary sextics and $M=\oplus_{j, k} M_{j, k}\left(\Gamma_{2}\right)$ and $M_{\chi_{10}}$ its localization at the multiplicative system generated by χ_{10}. For another perspective on the map ν, see [4, §6].

4. The Order of Vanishing

In this section we will describe a way to calculate the order of vanishing along the locus $\mathcal{A}_{1,1}$ of a modular form defined by a covariant. A covariant C has a bi-degree (a, b) : if we consider C as a form in the variables a_{0}, \ldots, a_{6} and x_{1}, x_{2} then it is of degree a in the a_{i} and degree b in x_{1}, x_{2}. The map $\nu: \mathcal{C} \rightarrow M_{\chi_{10}}$ associates to C a meromorphic modular form of weight $(b, a-b / 2)$ on Γ_{2}. It has the property that $\chi_{5}^{a} \nu(C)$ is a holomorphic modular form on Γ_{2}, but with character if a is odd.

Recall that \mathcal{M}_{2} is represented as the stack quotient $\left[\mathcal{X}^{0} / \mathrm{GL}(V)\right]$. The relation with the compactification of \mathcal{M}_{2} is as follows.

In the (projectivized) space of binary sextics $\mathbb{P}(\mathcal{X})$ the discriminant defines a hypersurface Δ. This hypersurface has a codimension 1 singular locus, one component of which is the locus Δ^{\prime} of binary sextics with three coinciding roots. So we are in codimension 2 in $\mathbb{P}(\mathcal{X})$ and we take a general plane Π in $\mathbb{P}(\mathcal{X})$ intersecting Δ transversally at a general point of Δ^{\prime}.

In the plane Π the intersection with Δ gives rise to a curve with a cusp singularity corresponding to the intersection with Δ^{\prime}; we assume this latter point is the origin of Π. In local coordinates u, v in the plane the discriminant is given by $u^{2}=v^{3}$. One then blows up the plane at the origin three times. This is illustrated in the following picture (cf. the picture in [7, p. 80]).

Then one blows down the exceptional fibres E_{1} and E_{2}. The image of E_{3} corresponds in $\overline{\mathcal{M}}_{2}$ (resp. $\overline{\mathcal{A}}_{2}$) to the locus δ_{1} (resp. $\overline{\mathcal{A}}_{1,1}$) of unions (resp. products) of elliptic curves.

If C is a covariant then it defines a section of an equivariant vector bundle on \mathcal{X} and we can pull this back to the blow-up. It then makes sense to speak of the order of this section along the divisor E_{3}.

If we consider in the last setting a vertical line that intersects the image of E_{3} transversally at a general point, then this corresponds in the original plane with u, v coordinates to a curve $u^{2}=c v^{3}$. We can calculate the order of vanishing along E_{3} by calculating the order of the covariant on a general family corresponding to $u^{2}=c v^{3}$.

The plane Π corresponds to a family of binary sextics of the form

$$
g=\left(x^{3}+v x+u\right) h
$$

with h a general cubic polynomial in x. The substitution $u=c^{2} t^{3}, v=c t^{2}$ (with c general) gives a family corresponding to $u^{2}=c v^{3}$ and the order in t of the covariant after substitution gives the order along E_{3}.
Theorem 1. Let C be a covariant of binary sextics of degree a in the a_{i} and let $\chi_{C}=\nu(C)$ be the meromorphic modular form obtained by substituting $\chi_{6,-2}$. Then the order of χ_{C} along $\mathcal{A}_{1,1}$ is given by

$$
\operatorname{ord}_{\mathcal{A}_{1,1}}\left(\chi_{C}\right)=2 \operatorname{ord}_{E_{3}}(C)-a .
$$

Proof. Since χ_{C} is obtained by substituting the components of $\chi_{6,-2}$ in C (cf. [4, §6]) and since $\chi_{6,-2}$ has a simple pole along δ_{1}, the order of χ_{C} along δ_{1} (a.k.a. $\overline{\mathcal{A}}_{1,1}$) is at
least $-a$. It can only be larger when C vanishes along E_{3}, the exceptional divisor of the third blow-up of \mathcal{X}. To work this out precisely, note first that the degree (resp. the order) of a product equals the sum of the degrees (resp. the orders) of the factors. Hence, after replacing C by its square if necessary, we may assume that a is even, equal to $2 c$. Consider the invariant A of degree 2 :

$$
A=a_{0} a_{6}-6 a_{1} a_{5}+15 a_{2} a_{4}-10 a_{3}^{2}
$$

(proportional to $C_{2,0}$). Clearly, it doesn't vanish on E_{3}, and the associated scalar-valued meromorphic modular form χ_{A} of weight 2 has a pole of order 2 along δ_{1}. We can write C as $\left(C / A^{c}\right) \cdot A^{c}$ and χ_{C} as $\chi_{C / A^{c}} \cdot \chi_{A}^{c}$, where C / A^{c} is a meromorphic covariant and $\chi_{C / A^{c}}$ a meromorphic vector-valued modular form, regular along δ_{1} but with possible poles along the zero locus of χ_{A}. The components of C / A^{c} are meromorphic functions on $\mathbb{P}(\mathcal{X})$ that descend to the components of $\chi_{C / A^{c}}$. The (minimal) orders of vanishing along E_{3} respectively δ_{1} are clearly closely related, but since E_{3} in the picture above corresponds to the coarse moduli space $M_{1,1}$, not to the stack $\mathcal{M}_{1,1}$, the order of $\chi_{C / A^{c}}$ along δ_{1} equals twice the order of C / A^{c} along E_{3}.

5. Rings and Modules of Modular Forms

Let $R=\oplus_{k \text { even }} M_{k}\left(\Gamma_{2}\right)$ be the graded ring of scalar-valued Siegel modular forms of even weight on Γ_{2}. One knows that $R=\mathbb{C}\left[E_{4}, E_{6}, \chi_{10}, \chi_{12}\right]$ and so its Hilbert-Poincaré series equals $1 /\left(1-t^{4}\right)\left(1-t^{6}\right)\left(1-t^{10}\right)\left(1-t^{12}\right)$.

We denote by ϵ the unique nontrivial character of order 2 of Γ_{2} (see Section 12 for a description of this character). Let $\Gamma_{2}[2]$ be the principal congruence subgroup of level 2 of Γ_{2}. The group $\operatorname{Sp}(4, \mathbb{Z} / 2 \mathbb{Z})$ is isomorphic to \mathfrak{S}_{6}. We fix an explicit isomorphism by identifying the symplectic lattice over $\mathbb{Z} / 2 \mathbb{Z}$ with the subspace $\left\{\left(a_{1}, \ldots, a_{6}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{6}\right.$: $\left.\sum a_{i}=0\right\}$ modulo the diagonally embedded $\mathbb{Z} / 2 \mathbb{Z}$ with form $\sum_{i} a_{i} b_{i}$ as in [1, Section 2]; it is given explicitly on generators of \mathfrak{S}_{6} in [6, Section 3, (3.2)]. Thus \mathfrak{S}_{6} acts on the space of modular forms $M_{j, k}\left(\Gamma_{2}[2]\right)$ and the space $M_{j, k}\left(\Gamma_{2}, \epsilon\right)$ can be identified with the subspace of $M_{j, k}\left(\Gamma_{2}[2]\right)$ on which \mathfrak{S}_{6} acts via the alternating representation. Since -1_{4} belongs to $\Gamma_{2}[2]$, we have $M_{j, k}\left(\Gamma_{2}, \epsilon\right)=(0)$ for j odd. In the sequel, the integer j will always be even. The following result is in [13]; for the reader's convenience we give an alternative proof.

Lemma 2. We have $M_{j, k}\left(\Gamma_{2}, \epsilon\right)=S_{j, k}\left(\Gamma_{2}, \epsilon\right)$ for $(j, k) \neq(0,0)$.
Proof. In case $k=0$ and $j \neq 0$ it is well-known that $M_{j, 0}\left(\Gamma_{2}, \epsilon\right)=(0)$, see [9, Satz1]. The Siegel operator Φ_{2} maps $M_{j, k}\left(\Gamma_{2}[2]\right)$ to $S_{j+k}\left(\Gamma_{1}[2]\right)$ which is (0) if k is odd and j is even. Since $M_{j, k}\left(\Gamma_{2}, \epsilon\right) \subseteq M_{j, k}\left(\Gamma_{2}[2]\right)$ we find $M_{j, k}\left(\Gamma_{2}, \epsilon\right)=S_{j, k}\left(\Gamma_{2}, \epsilon\right)$ for k odd. For $k \geq 2$ even, the Eisenstein part $E_{j, k}\left(\Gamma_{2}[2]\right)$ of $M_{j, k}\left(\Gamma_{2}[2]\right)$, that is, the orthogonal complement of $S_{j, k}\left(\Gamma_{2}[2]\right)$, was described in [6, Section 13] as an \mathfrak{S}_{6}-representation. From the description there we see that the isotypical component $s\left[1^{6}\right]$ never occurs in $E_{j, k}\left(\Gamma_{2}[2]\right)$; the result follows since $S_{j, k}\left(\Gamma_{2}, \epsilon\right)=S_{j, k}\left(\Gamma_{2}[2]\right)^{s\left[1^{6}\right]}$. (Note that there is a misprint in the expression in [6, Prop. 13.1]: Sym^{k} should be read as $\mathrm{Sym}^{(j+k) / 2}$.)

The preceding lemma allows us to study cusp forms only. The dimensions of the spaces $S_{j, k}\left(\Gamma_{2}, \epsilon\right)$ are known by work of Tsushima (private communication) as completed by Bergström (see [2]) and independently by [13, Thm. 6.2 and the tables on p. 203 for $k \geq 5]$. The next table gives the Hilbert-Poincaré series of $\mathcal{M}_{j}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)$ and $\mathcal{M}_{j}^{\text {ev }}\left(\Gamma_{2}, \epsilon\right)$ as R-modules. We give only the numerators since in all cases we have

$$
\sum_{k \neq 20(\text { or } 1)} \operatorname{dim} S_{j, k}\left(\Gamma_{2}, \epsilon\right) t^{k}=\frac{N_{j}}{\left(1-t^{4}\right)\left(1-t^{6}\right)\left(1-t^{10}\right)\left(1-t^{12}\right)},
$$

with N_{j} a polynomial in t.

j	$k \bmod 2$	$N_{j}(t)$
0	1	t^{5}
	0	t^{30}
2	1	$t^{9}+t^{11}+t^{17}$
	0	$t^{16}+t^{22}+t^{24}$
4	1	$t^{9}+t^{11}+t^{13}+t^{15}+t^{17}$
	0	$t^{14}+t^{16}+t^{18}+t^{20}+t^{22}$
6	1	$t^{3}+t^{5}+t^{11}+t^{13}+t^{17}+t^{19}+t^{21}$
	0	$t^{8}+t^{10}+t^{12}+t^{16}+t^{18}+t^{24}+t^{26}$
8	1	$t^{5}+t^{7}+2 t^{9}+t^{11}+t^{13}+t^{15}+t^{17}+t^{23}$
	0	$t^{4}+t^{10}+t^{12}+t^{14}+t^{16}+2 t^{18}+t^{20}+t^{22}$
10	1	$t^{5}+t^{7}+2 t^{9}+2 t^{11}+2 t^{13}+2 t^{15}+t^{17}$
	0	$t^{8}+2 t^{10}+2 t^{12}+2 t^{14}+2 t^{16}+t^{18}+t^{20}$
12	1	$t^{2}+t^{4}+t^{6}+t^{8}+t^{10}+t^{12}+t^{14}+2 t^{16}+2 t^{18}+t^{20}+t^{22}+t^{23}+t^{24}-t^{28}$

For $j \in\{0,2,4,6,8,10\}$ and both for k odd and even the shape of the polynomials N_{j} is as follows:

$$
N_{j}(t)=a_{k_{j, 1}} t^{k_{j, 1}}+\ldots+a_{k_{j, n}} t^{k_{j, n}} \quad \text { with } \quad n, a_{k_{j, i}} \in \mathbb{Z}_{>0} \quad \text { and } \quad \sum_{i=1}^{n} a_{k_{j, i}}=j+1
$$

This suggests that the R-modules $\mathcal{M}_{j}^{\text {ev }}(\Gamma, \epsilon)$ and $\mathcal{M}_{j}^{\text {odd }}(\Gamma, \epsilon)$ are generated by $j+1$ cusp forms with $a_{j, k_{j, i}}$ generators of weight $\left(j, k_{j, i}\right)$. As the table shows this does not hold for $j=12$.

Therefore the strategy of the proof for the structure of the modules will be to show first that there is no cusp form of weight (j, k) for $k<k_{j, 1}$ for $j \in\{0,2,4,6,8,10\}$. In the cases at hand this follows from the above formula and the results in 5]. Then we will construct $j+1$ cusp forms and check that their wedge product is not identically 0 . In fact in all cases we find that the wedge product of the $j+1$ forms is a nonzero multiple of a product of powers of χ_{5} and χ_{30}. This proves that the submodule they generate has the same Hilbert-Poincaré series as the whole module, hence that we found the whole module. We will give the covariants that define the generators explicitly in a number of cases, but in view of their size we refer for the other cases to [2] where we will make these available.

6. THE SCALAR-VALUED CASES

In this section we deal with the modules of scalar-valued modular forms with character. In this case the weight (j, k) is of the form $(0, k)$ and we simply indicate it by k.

The diagonal element $\gamma_{1}=\operatorname{diag}(1,-1,1,-1) \in \Gamma_{2}$ defines an involution fixing the coordinates τ_{11} and τ_{22} and replacing τ_{12} by $-\tau_{12}$. Its fixed point set is the locus defined by $\tau_{12}=0$. This defines the Humbert surface $H_{1}=\mathcal{A}_{1,1}$ parametrizing products of elliptic curves in \mathcal{A}_{2}. There is another involution ι_{2} given by $\gamma_{2}=(a, b ; c, d)$ with $b=c=0$ and $a=d=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ which interchanges τ_{11} and τ_{22}, but fixes τ_{12}. The fixed point set of ι_{2} is the locus $\tau_{11}=\tau_{22}$ and defines the Humbert surface H_{4} in \mathcal{A}_{2}, see [10]. One checks that the action on modular forms is as follows

$$
\begin{equation*}
\gamma_{1}: f \mapsto(-1)^{k} f, \quad \gamma_{2}: f \mapsto(-1)^{k+1} f \quad \text { for } f \in M_{k}\left(\Gamma_{2}, \epsilon\right) \tag{1}
\end{equation*}
$$

Note $\epsilon\left(\gamma_{2}\right)=-1$. It follows that $f \in M_{k}\left(\Gamma_{2}, \epsilon\right)$ vanishes on H_{1} for k odd and on H_{4} for k even.

We have two modular forms χ_{5} and χ_{30} of weight 5 and 30 whose zero loci in \mathcal{A}_{2} equal H_{1} and H_{4}. We recall their construction.

The cusp form $\chi_{5} \in S_{5}\left(\Gamma_{2}, \epsilon\right)$ is defined in terms of theta functions. For $(\tau, z) \in \mathfrak{H} \times \mathbb{C}$ and $\left(\mu_{1}, \mu_{2}\right),\left(\nu_{1}, \nu_{2}\right)$ in \mathbb{Z}^{2} we have the standard theta series with characteristics

$$
\vartheta_{\left[{ }_{\nu}^{\mu}\right]}(\tau, z)=\sum_{n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} e^{i \pi(n+\mu / 2)\left(\tau(n+\mu / 2)^{t}+2(z+\nu / 2)\right)}
$$

By letting μ and ν be vectors consisting of zeroes and ones with $\mu^{t} \nu \equiv 0(\bmod 2)$ and setting $z=0$ we obtain ten so-called theta constants and their product defines a cusp form of weight 5 on Γ_{2} with character ϵ :

$$
\chi_{5}=-\frac{1}{64} \prod \vartheta_{\left[\begin{array}{l}
\mu \\
\nu
\end{array}\right]}
$$

Its Fourier expansion starts with

$$
\chi_{5}(\tau)=(u-1 / u) X Y+\ldots
$$

where $X=e^{\pi i \tau_{1}}, Y=e^{\pi i \tau_{2}}$ and $u=e^{\pi i \tau_{12}}$. We note that $\chi_{5}^{2}=\chi_{10}$ and the vanishing locus of χ_{10} in \mathcal{A}_{2} is $2 H_{1}$.

In order to construct χ_{30} we consider the invariant $C_{15,0}$, given in the table in Section 2. By the procedure of [4] it provides a meromorphic cusp form of weight 15 on Γ_{2}. One checks using Theorem 1 that the order of this form along $\mathcal{A}_{1,1}$ is -3 . So we obtain a holomorphic modular form by multiplying by χ_{5}^{3} and we set

$$
\chi_{30}=2^{-11} 3^{11} \cdot 5^{11} \cdot 11 \cdot 13 \nu\left(C_{15,0}\right) \chi_{5}^{3}
$$

it is a cusp form in $S_{30}\left(\Gamma_{2}, \epsilon\right)$ whose Fourier expansion starts with

$$
\chi_{30}(\tau)=(u+1 / u) X^{3} Y^{5}-(u+1 / u) X^{5} Y^{3}+\ldots
$$

The following result is due to Igusa, see [14, p. 402-404].
Theorem 3. We have $\mathcal{M}_{0}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)=R \chi_{5}$ and $\mathcal{M}_{0}^{\text {ev }}\left(\Gamma_{2}, \epsilon\right)=R \chi_{30}$.

Proof. Clearly $\mathcal{M}_{0}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)$ contains $R \chi_{5}$ and $\mathcal{M}_{0}^{\text {ev }}\left(\Gamma_{2}, \epsilon\right)$ contains $R \chi_{30}$. The generating function for the dimensions shows that χ_{5} (resp. χ_{30}) generates.
Remark 4. We know the cycle classes of the closures of H_{1} and H_{4} in the compactified moduli space $\tilde{\mathcal{A}}_{2}$. In the divisor class group with rational coefficients of $\tilde{\mathcal{A}}_{2}$ we have

$$
5 \lambda_{1}=\left[\bar{H}_{1}\right]+[D], \quad 30 \lambda_{1}=\left[\bar{H}_{4}\right]+[D]
$$

with D the divisor at infinity of $\tilde{\mathcal{A}}_{2}$, and λ_{1} the first Chern class of the determinant of the Hodge bundle, see [10, Thm. 2.6]. From this it follows that the vanishing locus of χ_{30} in \mathcal{A}_{2} is H_{4}. Then (1) implies that for k odd (resp. k even) any $f \in M_{k}\left(\Gamma_{2}, \epsilon\right)$ is divisible by χ_{5} (resp. by χ_{30}). This implies the theorem as well.

For later identifications (for example in the proof of Theorem (11) we need the restriction of $\chi_{6,3}$ to the Humbert surface H_{4}. This surface can be given by $\tau_{11}=\tau_{22}$, or equivalently by $\tau_{12}=1 / 2$. Let χ denote the Dirichlet character modulo 4 defined by the Kronecker symbol $\left(\frac{-4}{.}\right)$. The space $S_{3}^{\text {new }}\left(\Gamma_{0}(16), \chi\right)$ is generated by $\eta^{6}(2 \tau)$. The space $S_{5}^{\text {new }}\left(\Gamma_{0}(16), \chi\right)$ has dimension 2 and a basis of eigenforms $g^{\prime}, g^{\prime \prime}$ with Fourier expansions

$$
q-8 \sqrt{-3} q^{3}+18 q^{5}-16 \sqrt{-3} q^{7}-111 q^{9}+\ldots
$$

and similarly $S_{7}^{\text {new }}\left(\Gamma_{0}(16), \chi\right)$ has dimension 2 and a basis of eigenforms $f^{\prime}, f^{\prime \prime}$ with Fourier expansions

$$
q-16 \sqrt{-3} q^{3}-150 q^{5}-352 \sqrt{-3} q^{7}-39 q^{9}+\ldots
$$

Lemma 5. The restriction of $\chi_{6,3}$ to H_{4} is given by

$$
\chi_{6,3}\left(\begin{array}{cc}
\tau_{1} & 1 / 2 \\
1 / 2 & \tau_{2}
\end{array}\right)=2 i\left[\begin{array}{c}
16 \eta^{18}\left(2 \tau_{1}\right) \otimes \eta^{6}\left(2 \tau_{2}\right) \\
F_{1}\left(\tau_{1}\right) \otimes F_{2}\left(\tau_{2}\right) \\
F_{2}\left(\tau_{1}\right) \otimes F_{1}\left(\tau_{2}\right) \\
0 \\
16 \eta^{6}\left(2 \tau_{1}\right) \otimes \eta^{18}\left(2 \tau_{2}\right)
\end{array}\right]
$$

where

$$
F_{1}=\frac{3+\sqrt{-3}}{6} f^{\prime}+\frac{3-\sqrt{-3}}{6} f^{\prime \prime} \quad \text { and } \quad F_{2}=\frac{3+\sqrt{-3}}{6} g^{\prime}+\frac{3-\sqrt{-3}}{6} g^{\prime \prime}
$$

7. The case $j=2$

We start with the case k odd.
Theorem 6. The R-module $\mathcal{M}_{2}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)$ is free with three generators of weight $(2,9)$, $(2,11)$ and $(2,17)$.
Proof. We recall that the numerator N_{2} of the Hilbert-Poincaré series is $t^{9}+t^{11}+t^{17}$. We construct the three generators by considering the covariants

$$
\begin{aligned}
& \xi_{1}=4 C_{2,0} C_{3,2}-15 C_{5,2} \\
& \xi_{2}=32 C_{2,0}^{2} C_{3,2}+135 C_{2,0} C_{5,2}-300 C_{3,2} C_{4,0}-15750 C_{7,2}, \\
& \xi_{3}=C_{3,2}
\end{aligned}
$$

These three covariants define meromorphic modular forms vanishing with order $-1,-1$, -3 along $\mathcal{A}_{1,1}$ (by Theorem (1), so we obtain holomorphic modular forms

$$
F_{2,9}=-\frac{3375}{4} \nu\left(\xi_{1}\right) \chi_{5}, \quad F_{2,11}=-\frac{10125}{8} \nu\left(\xi_{2}\right) \chi_{5}, \quad F_{2,17}=\frac{1125}{2} \nu\left(\xi_{3}\right) \chi_{5}^{3}
$$

of weights $(2,9),(2,11)$ and $(2,17)$ and their Fourier expansions start as

$$
F_{2,9}=\left(\begin{array}{c}
u-1 / u \\
u+1 / u \\
u-1 / u
\end{array}\right) X Y+\ldots \quad F_{2,11}=\left(\begin{array}{c}
u-1 / u \\
u+1 / u \\
u-1 / u
\end{array}\right) X Y+\ldots
$$

and

$$
F_{2,17}=\left(\begin{array}{c}
u^{3}+9 u-9 u^{-1}-u^{-3} \\
u^{3}+71 u+71 u^{-1}+u^{-3} \\
u^{3}+9 u-9 u^{-1}-u^{-3}
\end{array}\right) X^{3} Y^{3}+\ldots
$$

To prove the theorem we have to show that these three generators satisfy

$$
F_{2,9} \wedge F_{2,11} \wedge F_{2,17} \neq 0
$$

Note that $\operatorname{det}\left(\operatorname{Sym}^{j}(\mathbb{E})\right)=\operatorname{det}(\mathbb{E})^{j(j+1) / 2}$, so this is a form in $S_{40}\left(\Gamma_{2}, \epsilon\right)$. The Fourier expansion of $F_{2,9} \wedge F_{2,11} \wedge F_{2,17}$ starts with

$$
86400\left(\left(-u^{3}+u+u^{-1}-u^{-3}\right) Y^{7} X^{5}+\left(u^{3}-u-u^{-1}+u^{-3}\right) Y^{5} X^{7}+\ldots\right)
$$

and this shows the result.
Remark 7. The space $S_{40}\left(\Gamma_{2}, \epsilon\right)$ is 2-dimensional, generated by $\chi_{5}^{2} \chi_{30}$ and $E_{4} E_{6} \chi_{30}$. We check that $F_{2,9} \wedge F_{2,11} \wedge F_{2,17}=-86400 \chi_{5}^{2} \chi_{30}$.

The case k even is similar.
Theorem 8. The R-module $\mathcal{M}_{2}^{\text {ev }}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(2,16),(2,22)$ and (2, 24).
Proof. We use the covariants

$$
\begin{aligned}
& \xi_{1}=1211 C_{2,0}^{2} C_{8,2}-8910 C_{2,0} C_{10,2}-5250 C_{4,0} C_{8,2}+277200 C_{12,2} \\
& \xi_{2}=C_{8,2}, \quad \xi_{3}=7 C_{2,0} C_{8,2}-110 C_{10,2}
\end{aligned}
$$

and set

$$
\begin{gathered}
F_{2,16}=\frac{34171875}{2048} \nu\left(\xi_{1}\right) \chi_{5}=\left(\begin{array}{c}
0 \\
2(u-1 / u) \\
u+1 / u
\end{array}\right) X Y^{3}+\left(\begin{array}{c}
-(u+1 / u) \\
-2(u-1 / u) \\
0
\end{array}\right) X^{3} Y+\ldots \\
F_{2,22}=\frac{26578125}{8} \nu\left(\xi_{2}\right) \chi_{5}^{3}=\left(\begin{array}{c}
u+1 / u \\
0 \\
-(u+1 / u)
\end{array}\right) X^{3} Y^{3}+\ldots \\
F_{2,24}=-\frac{102515625}{16} \nu\left(\xi_{3}\right) \chi_{5}^{3}=\left(\begin{array}{c}
u+1 / u \\
0 \\
-(u+1 / u)
\end{array}\right) X^{3} Y^{3}+\ldots
\end{gathered}
$$

By the criterion these are holomorphic modular forms of weight $(2,16),(2,22)$ and $(2,24)$. The Fourier expansion of $F_{2,16} \wedge F_{2,22} \wedge F_{2,24}$ starts with

$$
F_{2,16} \wedge F_{2,22} \wedge F_{2,24}=-2880\left(u^{3}+u-u^{-1}-u^{-3}\right) X^{7} Y^{11}+\ldots
$$

and in fact equals $-2880 \chi_{5} \chi_{30}^{2}$. This finishes the proof in view of the Hilbert-Poincaré series.

8. The case $j=4$.

Theorem 9. The R-module $\mathcal{M}_{4}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(4,9),(4,11)$, $(4,13),(4,15)$ and $(4,17)$.

Proof. We use the covariants

$$
\begin{aligned}
\xi_{1}= & 49 C_{2,0}^{2} C_{2,4}+45 C_{2,0} C_{4,4}-375 C_{2,4} C_{4,0}-225 C_{3,2}^{2}, \\
\xi_{2}= & 772 C_{2,0}^{3} C_{2,4}-1260 C_{2,0}^{2} C_{4,4}-4875 C_{2,0} C_{2,4} C_{4,0}-900 C_{2,0} C_{3,2}^{2}, \\
& \quad-5625 C_{2,4} C_{6,0}+13500 C_{3,2} C_{5,2}+6750 C_{4,0} C_{4,4} \\
\xi_{3}= & 64 C_{2,0}^{4} C_{2,4}-1200 C_{2,0}^{2} C_{2,4} C_{4,0}-3600 C_{2,0}^{2} C_{3,2}^{2}+27000 C_{2,0} C_{3,2} C_{5,2} \\
& \quad+5625 C_{2,4} C_{4,0}^{2}-50625 C_{5,2}^{2}, \\
\xi_{4}= & C_{2,4}, \quad \xi_{5}=3 C_{2,0} C_{2,4}-5 C_{4,4} .
\end{aligned}
$$

The Fourier expansions of

$$
F_{4,9}=-\frac{675}{4} \nu\left(\xi_{1}\right) \chi_{5}, \quad F_{4,11}=\frac{2025}{8} \nu\left(\xi_{2}\right) \chi_{5} \quad \text { and } \quad F_{4,13}=-\frac{30375}{8} \nu\left(\xi_{3}\right) \chi_{5}
$$

all three start as

$$
\left(\begin{array}{c}
u-1 / u \\
2(u+1 / u) \\
3(u-1 / u) \\
2(u+1 / u) \\
u-1 / u
\end{array}\right) X Y+\ldots
$$

The other two modular forms we need are

$$
\begin{gathered}
F_{4,15}=\frac{75}{2} \nu\left(\xi_{4}\right) \chi_{5}^{3}=\left(\begin{array}{c}
u^{3}-3 u+3 / u-1 / u^{3} \\
2\left(u^{3}-u-1 / 4+1 / u^{3}\right) \\
3\left(u^{3}+5 u-5 / u-1 / u^{3}\right) \\
2\left(u^{3}-u-1 / 4+1 / u^{3}\right) \\
u^{3}-3 u+3 / u-1 / u^{3}
\end{array}\right) X^{3} Y^{3}+\ldots \\
F_{4,17}=-\frac{675}{2} \nu\left(\xi_{5}\right) \chi_{5}^{3}=\left(\begin{array}{c}
u^{3}+9 u-9 / u-1 / u^{3} \\
2\left(u^{3}-u-1 / u+1 u^{3}\right) \\
3\left(u^{3}-3 u+3 / u-1 / / 3^{3}\right) \\
\left.2 u^{3}-u-1 / u+1 / u^{3}\right) \\
u^{3}+9 u-9 / u-1 / u^{3}
\end{array}\right) X^{3} Y^{3}+\ldots
\end{gathered}
$$

The Fourier expansion of $F_{4,9} \wedge F_{4,11} \wedge F_{4,13} \wedge F_{4,15} \wedge F_{4,17}$ starts with

$$
-2866544640\left(u^{5}-u^{3}-2 u+2 / u+1 / u^{3}-1 / u^{5}\right) X^{9} Y^{13}+\ldots
$$

and by a calculation we get

$$
F_{4,9} \wedge F_{4,11} \wedge F_{4,13} \wedge F_{4,15} \wedge F_{4,17}=-2866544640 \chi_{5}^{3} \chi_{30}^{2}
$$

Theorem 10. The R-module $\mathcal{M}_{4}^{\mathrm{ev}}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(4,14),(4,16)$, $(4,18),(4,20)$ and $(4,22)$.
Proof. For weight $(4,14)$ we consider the covariant ξ_{1} given as

$$
189 C_{2,0}^{3} C_{5,4}+12390 C_{2,0}^{2} C_{7,4}-750 C_{2,0} C_{4,0} C_{5,4}-63000\left(C_{2,0} C_{9,4}+C_{3,2} C_{8,2}+C_{4,0} C_{7,4}\right)
$$

and set $F_{4,14}=-(151875 / 1024) \nu\left(\xi_{1}\right) \chi_{5}$. This is holomorphic and its Fourier expansion starts with

$$
F_{4,14}(\tau)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
2(u-1 / u) \\
(u+1 / u)
\end{array}\right) X Y^{3}-\left(\begin{array}{c}
(u+1 / u) \\
2(u-1 / u) \\
0 \\
0 \\
0
\end{array}\right) X^{3} Y+\ldots
$$

For weight $(4,16)$ we consider the covariant ξ_{2} given as

$$
\begin{aligned}
& 11176 C_{2,0}^{4} C_{5,4}-82320 C_{2,0}^{3} C_{7,4}+9576000 C_{2,0}^{2} C_{9,4}-15750 C_{2,0} C_{3,2} C_{8,2} \\
& -220500 C_{2,0} C_{4,0} C_{7,4}-176625 C_{2,0} C_{5,4} C_{6,0}-414000 C_{4,0}^{2} C_{5,4}+43213500 C_{3,2} C_{10,2} \\
& -47250000 C_{4,0} C_{9,4}+20506500 C_{5,2} C_{8,2}-9308250 C_{6,0} C_{7,4}
\end{aligned}
$$

and set $F_{4,16}=(151875 / 4096) \nu\left(\xi_{2}\right) \chi_{5}$; it is holomorphic and its Fourier expansion starts with

$$
F_{4,16}(\tau)=\left(\begin{array}{c}
0 \\
2(u+1 / u) \\
3(u+1 / u) \\
(u-1 / u) \\
0
\end{array}\right) X Y^{3}+\ldots
$$

We get a form $F_{4,18}$ of weight $(4,18)$ by putting $F_{4,18}=(16875 / 8) \nu\left(C_{5,4}\right) \chi_{5}^{3}$; it is holomorphic and its Fourier expansion starts with

$$
F_{4,18}(\tau)=\left(\begin{array}{c}
3(u+1 / u) \\
2(u-1 / u) \\
-2(u-1 / u) \\
-3(u+1 / u)
\end{array}\right) X^{3} Y^{3}+\ldots
$$

For weight $(4,20)$ we consider the covariant $\xi_{4}=C_{2,0} C_{5,4}+70 C_{7,4}$ and put $F_{4,20}=$ $(151875 / 32) \nu\left(\xi_{4}\right) \chi_{5}^{3}$ with Fourier expansion

$$
F_{4,20}(\tau)=\left(\begin{array}{c}
0 \\
(u-1 / u) \\
0(u-1 / u) \\
0
\end{array}\right) X^{3} Y^{3}+\ldots
$$

Finally, the covariant $\xi_{5}=C_{2,0}^{2} C_{5,4}-10 C_{2,0} C_{7,4}+1000 C_{9,4}$ yields the form $F_{4,22}=$ (3189375/32) $\nu\left(\xi_{5}\right) \chi_{5}^{3}$ with Fourier expansion

$$
F_{4,22}(\tau)=\left(\begin{array}{c}
(u+1 / u) \\
2(u-1 / u) \\
-2(u-1 / u) \\
-(u+1 / u)
\end{array}\right) X^{3} Y^{3}+\ldots
$$

The Fourier expansion of $F_{4,14} \wedge F_{4,16} \wedge F_{4,18} \wedge F_{4,20} \wedge F_{4,22}$ starts with

$$
-20736\left(u^{5}+u^{3}-2 u-2 / u+1 / u^{3}+1 / u^{5}\right) X^{11} Y^{17}+\ldots
$$

and in fact we checked that it equals $-20736 \chi_{5}^{2} \chi_{30}^{3}$.

9. The case $j=6$

Theorem 11. The R-module $\mathcal{M}_{6}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(6,3),(6,5)$, $(6,11),(6,13),(6,17),(6,19)$ and $(6,21)$.

Proof. We use the covariants

$$
\begin{aligned}
\xi_{1}= & C_{1,6}, \quad \xi_{2}=8 C_{1,6} C_{2,0}-75 C_{3,6}, \\
\xi_{3}= & 125 C_{1,6} C_{2,0}^{2} C_{4,0}+249 C_{1,6} C_{2,0} C_{6,0}-840 C_{1,6} C_{4,0}^{2}-189 C_{2,0} C_{2,4} C_{5,2} \\
& -1008 C_{2,0} C_{3,2} C_{4,4}-72 C_{2,0} C_{3,6} C_{4,0}+630 C_{3,2}^{3}+132300 C_{2,4} C_{7,2} \\
& +2430 C_{3,6} C_{6,0}-1890 C_{4,4} C_{5,2}, \\
\xi_{4}= & 768 C_{1,6} C_{2,0}^{5}+768 C_{2,0}^{4} C_{3,6}-487520 C_{1,6} C_{2,0}^{2} C_{6,0}-36075 C_{2,0}^{2} C_{2,4} C_{5,2} \\
& +33600 C_{2,0}^{2} C_{3,2} C_{4,4}-52500 C_{2,0} C_{3,2}^{3}-11061300 C_{1,6} C_{4,0} C_{6,0} \\
& -314861750 C_{2,0} C_{2,4} C_{7,2}-112500 C_{2,0} C_{3,6} C_{6,0}+8956675 C_{2,0} C_{4,4} C_{5,2} \\
& +17767100 C_{2,4} C_{3,2} C_{6,0}+230625 C_{2,4} C_{4,0} C_{5,2}-39779100 C_{3,2}^{2} C_{5,2} \\
& +17834600 C_{3,2} C_{4,0} C_{4,4}+9482503800 C_{1,6} C_{10,0}-932772750 C_{4,4} C_{7,2}, \\
\xi_{5}= & 8 C_{1,6} C_{2,0}^{2}-125 C_{2,4} C_{3,2}, \\
\xi_{6}= & 128 C_{1,6} C_{2,0}^{3}+6600 C_{2,0}^{2} C_{3,6}+6750 C_{2,4} C_{5,2}-9000 C_{3,2} C_{4,4}-52875 C_{0 v_{3,6} C_{4,0},} \\
\xi_{7}= & -837 C_{1,6} C_{2,0}^{2} C_{4,0}+415 C_{1,6} C_{2,0} C_{6,0}+9450 C_{2,0} C_{2,4} C_{5,2}+6075 C_{2,0} C_{3,6} C_{4,0} \\
& +3150 C_{3,2}^{3}-1543500 C_{2,4} C_{7,2}-17475 C_{3,6} C_{6,0}+14175 C_{4,4} C_{5,2} .
\end{aligned}
$$

We consider the following cusp forms:

$$
F_{6,3}=\nu\left(\xi_{1}\right) \chi_{5}, \quad F_{6,5}=-15 \nu\left(\xi_{2}\right) \chi_{5}, \quad F_{6,11}=\frac{253125}{8} \nu\left(\xi_{3}\right) \chi_{5}, \quad F_{6,13}=\frac{2278125}{16} \nu\left(\xi_{4}\right) \chi_{5},
$$

and

$$
F_{6,17}=-\frac{675}{4} \nu\left(\xi_{5}\right) \chi_{5}^{3}, \quad F_{6,19}=-\frac{675}{2} \nu\left(\xi_{6}\right) \chi_{5}^{3}, \quad F_{6,21}=-\frac{151875}{4} \nu\left(\xi_{7}\right) \chi_{5}^{3}
$$

Then

$$
W_{110}=F_{6,3} \wedge F_{6,5} \wedge F_{6,11} \wedge F_{6,13} \wedge F_{6,17} \wedge F_{6,19} \wedge F_{6,21}
$$

is a cusp form in $S_{0,110}\left(\Gamma_{2}, \epsilon\right)$ and its Fourier expansion starts with

$$
2^{30} \cdot 3^{5} \cdot 5^{8} \cdot 7^{3}\left(u^{7}-u^{5}-3 u^{3}+3 u+3 / u-3 / u^{3}-1 / u^{5}+1 / u^{7}\right) X^{13} Y^{17}+\ldots
$$

The order of vanishing of W_{110} along H_{1} is 4 while along H_{4} it is 3 , so W_{110} is a multiple of $\chi_{5}^{4} \chi_{30}^{3}$ and a calculation at the level of covariants yields $W_{110}=2^{30} \cdot 3^{5} \cdot 5^{8} \cdot 7^{3} \chi_{5}^{4} \chi_{30}^{3}$.

Theorem 12. The R-module $\mathcal{M}_{6}^{\mathrm{ev}}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(6,8),(6,10)$, $(6,12),(6,16),(6,18),(6,24)$ and $(6,26)$.

Proof. We use the covariants

$$
\begin{aligned}
\xi_{1} & =16 C_{2,0} C_{4,6}+75 C_{6,6}^{(1)}-60 C_{6,6}^{(2)}, \quad \xi_{4}=C_{4,6}, \quad \xi_{5}=4 C_{2,0} C_{4,6}-15 C_{6,6}^{(1)}, \\
\xi_{2} & =-128 C_{2,0}^{2} C_{4,6}+75 C_{2,0} C_{6,6}^{(1)}-540 C_{2,0} C_{6,6}^{(2)}-1500 C_{3,2} C_{5,4}+1800 C_{4,0} C_{4,6}, \\
\xi_{3} & =64 C_{2,0}^{3} C_{4,6}-3975 C_{2,0}^{2} C_{6,6}^{(1)}+1740 C_{2,0}^{2} C_{6,6}^{(2)}-189000 C_{2,4} C_{8,2}+63000 C_{3,2} C_{7,4} \\
& +40500 C_{4,0} C_{6,6}^{(1)}-18000 C_{4,0} C_{6,6}^{(2)}+4500 C_{5,2} C_{5,4}, \\
\xi_{6} & =-17472 C_{2,0} C_{2,4} C_{8,2}+31360 C_{2,0} C_{3,2} C_{7,4}-513 C_{2,0} C_{4,0} C_{6,6}^{(1)}+180 C_{2,0} C_{4,0} C_{6,6}^{(2)} \\
& -64 C_{2,0} C_{4,6} C_{6,0}+342 C_{2,0} C_{5,2} C_{5,4}+39600 C_{2,4} C_{10,2}-126000 C_{3,2} C_{9,4} \\
& -16800 C_{4,4} C_{8,2}-60900 C_{5,2} C_{7,4}+600 C_{6,0} C_{6,6}^{(1)}, \\
\xi_{7} & =1024 C_{2,0}^{5} C_{4,6}-257152000 C_{2,0}^{2} C_{3,2} C_{7,4}+5375048250 C_{2,0} C_{2,4} C_{10,2} \\
& -1808283750 C_{2,0} C_{3,2} C_{9,4}+785335250 C_{2,0} C_{4,4} C_{8,2}+1144763375 C_{2,0} C_{5,2} C_{7,4} \\
& +673186500 C_{2,4} C_{4,0} C_{8,2}+656687500 C_{3,2}^{2} C_{8,2}-938905625 C_{3,2} C_{4,0} C_{7,4} \\
& +3150000 C_{4,0}^{2} C_{6,6}^{(2)}+17435250 C_{4,0} C_{5,2} C_{5,4}-378064302000 C_{2,4} C_{12,2} \\
& -532125000 C_{4,4} C_{10,2}-415800000 C_{4,6} C_{10,0}+37292797500 C_{5,2} C_{9,4} \\
& -250254270000 C_{7,2} C_{7,4} .
\end{aligned}
$$

We consider the following cusp forms:

$$
\begin{gathered}
F_{6,8}=\frac{10125}{8} \nu\left(\xi_{1}\right) \chi_{5}, \quad F_{6,10}=-\frac{30375}{16} \nu\left(\xi_{2}\right) \chi_{5}, \quad F_{6,12}=\frac{455625}{64} \nu\left(\xi_{3}\right) \chi_{5}, \\
F_{6,16}=-3375 \nu\left(\xi_{4}\right) \chi_{5}^{3}, \quad F_{6,18}=-50625 \nu\left(\xi_{5}\right) \chi_{5}^{3} \quad F_{6,24}=-\frac{170859375}{32} \nu\left(\xi_{6}\right) \chi_{5}^{3}, \\
F_{6,26}=-\frac{20503125}{16} \nu\left(\xi_{7}\right) \chi_{5}^{3} .
\end{gathered}
$$

Then

$$
W_{135}=F_{6,8} \wedge F_{6,10} \wedge F_{6,12} \wedge F_{6,16} \wedge F_{6,18} \wedge F_{6,24} \wedge F_{6,26}
$$

is a cusp form in $S_{135}\left(\Gamma_{2}, \epsilon\right)$ and its Fourier expansion starts with

$$
-2^{32} \cdot 3^{8} \cdot 5^{8} \cdot 7^{2} \cdot 13 \cdot 23\left(u^{7}+u^{5}-3 u^{3}-3 u+3 / u+3 / u^{3}-1 / u^{5}-1 / u^{7}\right) X^{15} Y^{23}+\ldots
$$

A calculation shows that the order of vanishing of W_{135} along H_{1} is 3 , while along H_{4} it is 4 , so W_{135} is a multiple of $\chi_{5}^{3} \chi_{30}^{4}$ and a calculation at the level of covariants tells us

$$
W_{135}=-2^{32} \cdot 3^{8} \cdot 5^{8} \cdot 7^{2} \cdot 13 \cdot 23 \chi_{5}^{3} \chi_{30}^{4} .
$$

10. The case $j=8$

Theorem 13. The R-module $\mathcal{M}_{8}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(8,5),(8,7)$, $(8,9),(8,9),(8,11),(8,13),(8,15),(8,17)$ and $(8,23)$.

Proof. We use the covariants

$$
\begin{aligned}
& \xi_{1}=160 C_{1,6} C_{3,2}-208 C_{2,0} C_{2,8}+250 C_{2,4}^{2} \text {, } \\
& \xi_{2}=60 C_{1,6} C_{2,0} C_{3,2}+16 C_{2,0}^{2} C_{2,8}-225 C_{1,6} C_{5,2}-150 C_{2,8} C_{4,0} \text {, } \\
& \xi_{3}^{(1)}=4032 C_{2,0}^{3} C_{2,8}+55800 C_{1,6} C_{2,0} C_{5,2}-25000 C_{1,6} C_{3,2} C_{4,0}-46125 C_{2,0} C_{2,4} C_{4,4}, \\
& -159500 C_{2,0} C_{3,2} C_{3,6}+17377500 C_{1,6} C_{7,2}+90750 C_{2,8} C_{6,0}+675000 C_{3,6} C_{5,2}-384375 C_{4,4}^{2} \\
& \xi_{3}^{(2)}=112 C_{1,6} C_{2,0}^{2} C_{3,2}-60 C_{1,6} C_{2,0} C_{5,2}-150 C_{1,6} C_{3,2} C_{4,0}-135 C_{2,0} C_{2,4} C_{4,4}-1440 C_{2,0} C_{3,2} C_{3,6} \\
& +31500 C_{1,6} C_{7,2}+450 C_{2,8} C_{6,0}+5625 C_{3,6} C_{5,2}-1125 C_{4,4}^{2} \text {, } \\
& \xi_{4}=1792 C_{2,0}^{4} C_{2,8}+28750 C_{1,6} C_{2,0}^{2} C_{5,2}-3685500 C_{1,6} C_{2,0} C_{7,2}-139200 C_{1,6} C_{3,2} C_{6,0} \\
& -229650 C_{1,6} C_{4,0} C_{5,2}-93600 C_{2,0} C_{2,8} C_{6,0}-183150 C_{2,0} C_{3,6} C_{5,2}+166725 C_{2,4}^{2} C_{6,0} \\
& -40500 C_{2,4} C_{3,2} C_{5,2}-16875 C_{2,4} C_{4,0} C_{4,4}-72450 C_{2,8} C_{4,0}^{2}+317700 C_{3,2}^{2} C_{4,4} \\
& +256500 C_{3,2} C_{3,6} C_{4,0}+38650500 C_{3,6} C_{7,2}+246600 C_{5,4}^{2} \text {, } \\
& \xi_{5}=807424 C_{2,0}^{5} C_{2,8}-6707400000 C_{1,6} C_{2,0}^{2} C_{7,2}-1888920000 C_{1,6} C_{2,0} C_{3,2} C_{6,0} \\
& -785694375 C_{1,6} C_{2,0} C_{4,0} C_{5,2}-278572500 C_{1,6} C_{3,2} C_{4,0}^{2}-120600000 C_{2,0}^{2} C_{4,4}^{2} \\
& -42918750 C_{2,0} C_{2,8} C_{4,0}^{2}+5193090000 C_{2,0} C_{3,2}^{2} C_{4,4}-271446918750 C_{1,6} C_{4,0} C_{7,2} \\
& -5117321250 C_{1,6} C_{5,2} C_{6,0}+338190300000 C_{2,0} C_{3,6} C_{7,2}+1145700000 C_{2,0} C_{5,4}^{2} \\
& +62962200000 C_{2,4} C_{3,2} C_{7,2}-450720000 C_{2,4} C_{4,4} C_{6,0}-1831612500 C_{2,4} C_{5,2}^{2} \\
& +4053206250 C_{2,8} C_{4,0} C_{6,0}-12202200000 C_{3,2} C_{3,6} C_{6,0}+20030895000 C_{3,2} C_{4,4} C_{5,2} \\
& +6489787500 C_{3,6} C_{4,0} C_{5,2}-8640074520000 C_{2,8} C_{10,0}-245226240000 C_{4,6} C_{8,2} \\
& +170775360000 C_{5,4} C_{7,4} \text {, } \\
& \xi_{6}=8 C_{2,0} C_{2,8}-25 C_{2,4}^{2}, \quad \xi_{7}=48 C_{2,0}^{2} C_{2,8}-475 C_{1,6} C_{5,2}+625 C_{3,2} C_{3,6}, \\
& \xi_{8}=2588867072 C_{2,0}^{5} C_{2,8}-2215180800000 C_{1,6} C_{2,0}^{2} C_{7,2}+13431825000 C_{1,6} C_{2,0} C_{4,0} C_{5,2} \\
& -97632787500 C_{2,0} C_{2,8} C_{4,0}^{2}-125273250000 C_{2,0} C_{3,2}^{2} C_{4,4}+1345443750000 C_{1,6} C_{4,0} C_{7,2} \\
& +7597800000000 C_{2,0} C_{3,6} C_{7,2}+95399876250000 C_{2,4} C_{3,2} C_{7,2}-968719500000 C_{2,4} C_{4,4} C_{6,0} \\
& -248030859375 C_{2,4} C_{5,2}^{2}-178311712500 C_{2,8} C_{4,0} C_{6,0}+1077259500000 C_{3,2} C_{4,4} C_{5,2} \\
& -143877610800000 C_{2,8} C_{10,0}-5470416000000 C_{4,6} C_{8,2}-25300674000000 C_{5,4} C_{7,4} .
\end{aligned}
$$

We consider the following cusp forms:

$$
\begin{gathered}
F_{8,5}=\frac{135}{8} \nu\left(\xi_{1}\right) \chi_{5}, \quad F_{8,7}=-\frac{405}{4} \nu\left(\xi_{2}\right) \chi_{5}, \\
F_{8,9}^{(1)}=\frac{675}{16} \nu\left(\xi_{3}^{(1)}\right) \chi_{5}, \quad F_{8,9}^{(2)}=\frac{10125}{4} \nu\left(\xi_{3}^{(2)}\right) \chi_{5}, \\
F_{8,11}=\frac{18225}{16} \nu\left(\xi_{4}\right) \chi_{5} \quad F_{8,13}=\frac{54675}{16} \nu\left(\xi_{5}\right) \chi_{5}, \quad F_{8,15}=-\frac{675}{4} \nu\left(\xi_{6}\right) \chi_{5}^{3}, \\
F_{8,17}=\frac{2025}{2} \nu\left(\xi_{7}\right) \chi_{5}^{3}, \quad F_{8,23}=-\frac{382725}{32} \nu\left(\xi_{8}\right) \chi_{5}^{3} .
\end{gathered}
$$

The Fourier expansion of

$$
W_{145}=F_{8,5} \wedge F_{8,7} \wedge F_{8,9}^{(1)} \wedge F_{8,9}^{(2)} \wedge F_{8,11} \wedge F_{8,13} \wedge F_{8,15} \wedge F_{8,17} \wedge F_{8,23}
$$

starts with

$$
c\left(u^{9}-u^{7}-4 u^{5}+4 u^{3}+6 u-6 / u-4 / u^{3}+4 / u^{5}+1 / u^{7}-1 / u^{9}\right) X^{17} Y^{25}+\ldots
$$

with $c=-2^{17} \cdot 3^{10} \cdot 5^{3} \cdot 7 \cdot 59 \cdot 67 \cdot 103 \cdot 429$. The order of vanishing of W_{145} along H_{1} is 5 , while along H_{4} it is 4 , so W_{145} is a multiple of $\chi_{5}^{5} \chi_{30}^{4}$ and a computation at the level of covariants gives

$$
W_{145}=-2^{17} \cdot 3^{10} \cdot 5^{3} \cdot 7 \cdot 59 \cdot 67 \cdot 103 \cdot 429 \chi_{5}^{5} \chi_{30}^{4} .
$$

Theorem 14. The R-module $\mathcal{M}_{8}^{\mathrm{ev}}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(8,4),(8,10)$, $(8,12),(8,14),(8,16),(8,18),(8,18),(8,20)$ and $(8,22)$.
Proof. We use the following covariants

$$
\begin{aligned}
& \xi_{1}=C_{3,8}, \quad \xi_{5}=C_{5,8}, \\
& \xi_{2}=8 C_{2,0}^{3} C_{3,8}-360 C_{2,0}^{2} C_{5,8}-600 C_{2,0} C_{3,2} C_{4,6}+28000 C_{1,6} C_{8,2}-1875 C_{3,2} C_{6,6}^{(1)}+1500 C_{3,2} C_{6,6}^{(2)}+3000 C_{4,0} C_{5,8}, \\
& \xi_{3}=64 C_{2,0}^{3} C_{5,8}+960 C_{2,0}^{2} C_{3,2} C_{4,6}-26880 C_{1,6} C_{2,0} C_{8,2}-32760 C_{2,0} C_{2,4} C_{7,4}-600 C_{2,0} C_{4,0} C_{5,8}+405 C_{3,8} C_{4,0}^{2} \\
& -974160 C_{1,6} C_{10,2}+705600 C_{2,4} C_{9,4}+267120 C_{3,6} C_{8,2}-471240 C_{4,4} C_{7,4}+3263400 C_{4,6} C_{7,2}-44280 C_{5,2} C_{6,6}^{(1)} \\
& +41760 C_{5,8} C_{6,0} \text {, } \\
& \xi_{4}=-450785280 C_{1,6} C_{2,0} C_{10,2}-209672400 C_{1,6} C_{4,0} C_{8,2}-107933000 C_{2,0} C_{2,4} C_{9,4}+322793520 C_{2,0} C_{3,6} C_{8,2} \\
& -93936640 C_{2,0} C_{4,4} C_{7,4}+708825600 C_{2,0} C_{4,6} C_{7,2}+27870759840 C_{1,6} C_{12,2}-6460961760 C_{3,6} C_{10,2} \\
& -10179070440 C_{3,8} C_{10,0}-6501163200 C_{4,4} C_{9,4}+2887120425 C_{7,2} C_{6,6}^{(1)}+4910108700 C_{7,2} C_{6,6}^{(2)} \\
& -19333170 C_{2,0} C_{5,2} C_{6,6}^{(1)}+6700200 C_{2,0} C_{5,2} C_{6,6}^{(2)}+8466560 C_{2,0} C_{5,8} C_{6,0}+104073340 C_{2,4} C_{3,2} C_{8,2} \\
& +42245700 C_{2,4} C_{4,0} C_{7,4}+26659470 C_{2,4} C_{5,4} C_{6,0}-21600 C_{4,0}^{2} C_{5,8}+1024 C_{2,0}^{3} C_{3,2} C_{4,6}+1024 C_{2,0}^{5} C_{3,8}, \\
& \xi_{6}^{(1)}=8 C_{2,0} C_{5,8}+25 C_{2,4} C_{5,4}+30 C_{3,2} C_{4,6}, \quad \xi_{6}^{(2)}=C_{2,0}^{2} C_{3,8}-5 C_{2,0} C_{5,8}-25 C_{3,2} C_{4,6}, \\
& \xi_{7}=128 C_{2,0}^{3} C_{3,8}+158200 C_{1,6} C_{8,2}+214200 C_{2,4} C_{7,4}-88275 C_{3,2} C_{6,6}^{(1)}+33900 C_{3,2} C_{6,6}^{(2)}+39900 C_{4,0} C_{5,8}, \\
& \xi_{8}=768 C_{2,0}^{4} C_{3,8}+2800000 C_{1,6} C_{2,0} C_{8,2}-2782500 C_{2,0} C_{2,4} C_{7,4}-11979000 C_{1,6} C_{10,2}+66990000 C_{2,4} C_{9,4} \\
& -27636000 C_{3,6} C_{8,2}+30838500 C_{4,4} C_{7,4}-117232500 C_{4,6} C_{7,2}+880875 C_{5,2} C_{6,6}^{(1)}-1039500 C_{5,2} C_{6,6}^{(2)} \\
& -1342500 C_{5,8} C_{6,0} \text {. }
\end{aligned}
$$

We consider the following cusp forms:

$$
\begin{gathered}
F_{8,4}=-225 \nu\left(\xi_{1}\right) \chi_{5}, \quad F_{8,10}=-\frac{6075}{512} \nu\left(\xi_{2}\right) \chi_{5}, \quad F_{8,12}=-\frac{6834375}{4} \nu\left(\xi_{3}\right) \chi_{5}, \\
F_{8,14}=\frac{102515625}{256} \nu\left(\xi_{4}\right) \chi_{5}, \quad F_{8,16}=50625 \nu\left(\xi_{5}\right) \chi_{5}^{3} \quad F_{8,18}^{(1)}=\frac{151875}{4} \nu\left(\xi_{6}^{(1)}\right) \chi_{5}^{3} \\
F_{8,18}^{(2)}=-\frac{6075}{16} \nu\left(\xi_{6}^{(2)}\right) \chi_{5}^{3}, \quad F_{8,20}=\frac{151875}{32} \nu\left(\xi_{7}\right) \chi_{5}^{3}, \quad F_{8,22}=-\frac{1366875}{16} \nu\left(\xi_{8}\right) \chi_{5}^{3} .
\end{gathered}
$$

Then

$$
W_{170}=F_{8,4} \wedge F_{8,10} \wedge F_{8,12} \wedge F_{8,14} \wedge F_{8,16} \wedge F_{8,18}^{(1)} \wedge F_{8,18}^{(2)} \wedge F_{8,20} \wedge F_{8,22}
$$

is a cusp form in $S_{170}\left(\Gamma_{2}, \epsilon\right)$ and its Fourier expansion starts with
$2^{36} \cdot 3^{13} \cdot 5^{8} \cdot 7^{3} \cdot 19\left(u^{9}+u^{7}-4 u^{5}-4 u^{3}+6 u+6 / u-4 / u^{3}-4 / u^{5}+1 / u^{7}+1 / u^{9}\right) X^{19} Y^{29}+\ldots$
One can check that the order of vanishing of W_{170} along H_{1} is 4 while along H_{4} it is 5 , so W_{170} is a multiple of $\chi_{5}^{4} \chi_{30}^{5}$. A calculation with the covariants shows

$$
W_{170}=2^{36} \cdot 3^{13} \cdot 5^{8} \cdot 7^{3} \cdot 19 \chi_{5}^{4} \chi_{30}^{5} .
$$

11. The case $j=10$

Theorem 15. The R-module $\mathcal{M}_{10}^{\text {odd }}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(10,5),(10,7)$, $(10,9),(10,9),(10,11),(10,11),(10,13),(10,13),(8,15),(10,15)$ and $(10,17)$.

Theorem 16. The R-module $\mathcal{M}_{10}^{\mathrm{ev}}\left(\Gamma_{2}, \epsilon\right)$ is free with generators of weight $(10,8),(10,10)$, $(10,10),(10,12),(10,12),(10,14),(10,14),(10,16),(10,16),(10,18)$ and $(10,20)$.
The proofs in both cases are similar to the cases above. The covariants used are quite big and we refer for these to [2].

12. The character ϵ of Γ_{2}

Maaß showed in 16 that the abelianization of Γ_{2} is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. So Γ_{2} has one non-trivial character ϵ and it is of order 2 . It can be described as the composition

$$
\operatorname{Sp}(4, \mathbb{Z}) \xrightarrow{\bmod 2} \operatorname{Sp}(4, \mathbb{Z} / 2 \mathbb{Z}) \xrightarrow{\cong} \mathfrak{S}_{6} \xrightarrow{\text { sign }}\{ \pm 1\}
$$

The following rules may help in easily determining the value $\epsilon(\gamma)$. If

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then one has

$$
\epsilon\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\epsilon\left(\left(\begin{array}{ll}
c & d \\
a & b
\end{array}\right)\right)=\epsilon\left(\left(\begin{array}{ll}
b & a \\
d & c
\end{array}\right)\right)=\epsilon\left(\left(\begin{array}{ll}
d & c \\
b & a
\end{array}\right)\right)
$$

as one sees by applying $J=\left(0,1_{g} ;-1_{g}, 0\right)$ on the left and/or on the right.
If γ satisfies

$$
\operatorname{det}(a) \equiv \operatorname{det}(b) \equiv \operatorname{det}(c) \equiv \operatorname{det}(d) \equiv 0(\bmod 2)
$$

then we have $\epsilon(\gamma)=-\epsilon\left(\gamma_{0}\right)$ with γ_{0} obtained from γ by replacing the first row by minus the third row and the third row by the first row. For this matrix γ_{0} at least one of $\operatorname{det}\left(a_{0}\right), \operatorname{det}\left(b_{0}\right), \operatorname{det}\left(c_{0}\right), \operatorname{det}\left(d_{0}\right)$ is not zero modulo 2 .

Using this we arrive at the case where γ has the property that $\operatorname{det}(c) \not \equiv 0(\bmod 2)$.
Proposition 17. For $\gamma=(a, b ; c, d) \in \Gamma_{2}$ with $\operatorname{det}(c) \not \equiv 0(\bmod 2)$ we have $\epsilon(\gamma)=(-1)^{\rho}$ with ρ given by
$a_{1} c_{1}+a_{2} c_{1}+a_{2} c_{2}+a_{3} c_{3}+a_{4} c_{3}+a_{4} c_{4}+c_{1} c_{2}+c_{2} c_{3}+c_{3} c_{4}+c_{1} d_{4}+c_{2} d_{3}+c_{2} d_{4}+c_{3} d_{2}+c_{4} d_{1}+c_{4} d_{2}$ where the 2×2 matrices are written as $\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$.

The proof is omitted.

13. Appendix on quasi-modularity

We prove here that the Taylor expansion of a Siegel modular form of degree 2 along the diagonal \mathfrak{H}_{1}^{2} yields quasi-modular forms. A reference for quasi-modular forms is [20, Section 5]. We write $Q M_{k}\left(\Gamma_{1}\right)$ for the space of quasi-modular forms of weight k on Γ_{1}. We will write an element τ of \mathfrak{H}_{2} as $\left(\tau_{1}, z ; z, \tau_{2}\right)$ and develop a modular form $F \in M_{j, k}\left(\Gamma_{2}\right)$ as a Taylor series in z, the normal coordinate of the diagonal.

Proposition 18. Let $F \in M_{j, k}\left(\Gamma_{2}\right)$ and write $F=\left(F_{0}, F_{1}, \ldots, F_{j}\right)^{t}$. Then the restriction $\left.F_{l}\right|_{\mathfrak{H}_{1} \times \mathfrak{H}_{1}}$ lies in $M_{j+k-l}\left(\Gamma_{1}\right) \otimes M_{k+l}\left(\Gamma_{1}\right)$ and for $n \geqslant 1$, we have

$$
\left.\frac{\partial^{n} F_{l}}{\partial z^{n}}\right|_{\mathfrak{H}_{1} \times \mathfrak{H}_{1}} \in Q M_{j+k-l+n}\left(\Gamma_{1}\right) \otimes Q M_{k+l+n}\left(\Gamma_{1}\right)
$$

Proof. The boundedness requirements for quasi-modular forms are easily verified. Using the element of Γ_{2} that maps $\left(\tau_{1}, z ; z, \tau_{2}\right)$ to $\left(\tau_{2}, z ; z, \tau_{1}\right)$ and which swaps the coordinates of F from bottom to top up to a sign $(-1)^{k}$, one sees that it suffices to prove

$$
\frac{\partial^{n} F_{l}}{\partial z^{n}}\left(\left(\begin{array}{cc}
\gamma \tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right)=\left(c \tau_{1}+d\right)^{k+j-l+n} \sum_{s=0}^{n} f_{s}\left(\left(\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right)\left(\frac{c}{c \tau_{1}+d}\right)^{s}
$$

for all $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma_{1}$ where the f_{s} are holomorphic and depend on n, see [20, page 58]. We embed Γ_{1} into Γ_{2} via

$$
\gamma \mapsto \tilde{\gamma}=\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & 1 & 0 & 0 \\
c & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { with action } \quad \tau \mapsto\left(\begin{array}{cc}
\gamma \tau_{1} & z /\left(c \tau_{1}+d\right) \\
z /\left(c \tau_{1}+d\right) & \tau_{2}-c z^{2} /\left(c \tau_{1}+d\right)
\end{array}\right)
$$

The modularity of F gives $F(\tilde{\gamma} \tau)=\left(c \tau_{1}+d\right)^{k} \operatorname{Sym}^{j}\left(\left(\begin{array}{cc}c \tau_{1}+d c z \\ 0 & 1\end{array}\right)\right) F(\tau)$ and a direct computation gives for $l=0, \ldots, j$

$$
\begin{equation*}
F_{l}(\tilde{\gamma} \tau)=\left(c \tau_{1}+d\right)^{k+j-l} \sum_{m=0}^{j-l}\left(c \tau_{1}+d\right)^{-m}\binom{l+m}{l} c^{m} z^{m} F_{l+m}(\tau) . \tag{2}
\end{equation*}
$$

Setting $z=0$ proves that $F_{l}(\tilde{\gamma} \tau)=\left(c \tau_{1}+d\right)^{k+j-l} F_{l}(\tau)$, hence the first statement and the (quasi-)modularity for $n=0$. We prove the rest by induction on n. We assume that the proposition is true for $a<n$ i.e.

$$
\frac{\partial^{a} F_{l}}{\partial z^{a}}\left(\left(\begin{array}{cc}
\gamma \tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right)=\left(c \tau_{1}+d\right)^{k+j-l+a} \sum_{s=0}^{a} f_{s}\left(\left(\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right)\left(\frac{c}{c \tau_{1}+d}\right)^{s} .
$$

We differentiate n times both sides of the equation (2) with respect to z and evaluate at $z=0$, and get

$$
\begin{aligned}
& \frac{\partial^{n} F_{l}}{\partial z^{n}}\left(\left(\begin{array}{cc}
\gamma \tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right) \frac{1}{\left(c \tau_{1}+d\right)^{n}}+\sum_{\substack{2 i+r=n \\
r \neq n}} \frac{\partial^{i}}{\partial \tau_{2}^{i}}\left(\frac{\partial^{r} F_{l}}{\partial z^{r}}\left(\left(\begin{array}{cc}
\gamma \tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right)\right) \frac{(-1)^{i} n!}{r!i!} \frac{c^{i}}{\left(c \tau_{1}+d\right)^{i+r}} \\
& =\left(c \tau_{1}+d\right)^{k+j-l}\left(\sum_{m=0}^{j-l}\left(\frac{c}{c \tau_{1}+d}\right)^{m}\binom{l+m}{l} \frac{n!}{(n-m)!} \frac{\partial^{n-m} F_{l+m}}{\partial z^{n-m}}\left(\left(\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right)\right) .
\end{aligned}
$$

By using the induction hypothesis, we arrive at

$$
\begin{aligned}
& \left(c \tau_{1}+d\right)^{-(k+j-l+n)} \frac{\partial^{n} F_{l}}{\partial z^{n}}\left(\left(\begin{array}{cc}
\gamma \tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right)= \\
& \sum_{m=0}^{j-l}\left(\frac{c}{c \tau_{1}+d}\right)^{m}\binom{l+m}{l} \frac{n!}{(n-m)!} \frac{\partial^{n-m} F_{l+m}}{\partial z^{n-m}}\left(\left(\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right) \\
& \quad+\sum_{\substack{2 i+r=n \\
\neq n \\
0 \leqslant s \leqslant r}} \frac{\partial^{i} f_{s}}{\partial \tau_{2}^{i}}\left(\left(\begin{array}{cc}
\tau_{1} & 0 \\
0 & \tau_{2}
\end{array}\right)\right) \frac{(-1)^{i+1} n!}{r!i!} \frac{c^{i+r+s}}{\left(c \tau_{1}+d\right)^{i+r+s}}
\end{aligned}
$$

and this shows the proposition.
Using this proposition we can deduce that $\chi_{6,-2}$ has a Taylor expansion along \mathfrak{H}_{1}^{2} with quasi-modular coefficients. Indeed, suppose that a is a non-negative integer such that $\chi_{10}^{a} \chi_{6,-2}$ is holomorphic. We then apply the proposition to χ_{10}^{a} and $\chi_{10}^{a} \chi_{6,-2}$ and get Taylor expansions $\sum_{\mu \geq 2 a} a_{\mu} t^{\mu}$ and $\sum_{\nu \geq \nu_{0}} c_{\nu} t^{\nu}$ with quasi-modular a_{μ} and c_{ν}. Writing the Taylor expansion of $\chi_{6,-2}$ as $\sum_{\lambda} b_{\lambda} t^{\lambda}$ with $c_{\nu}=\sum_{\mu+\lambda=\nu} a_{\mu} b_{\lambda}$ we see by induction that the b_{λ} are tensor products of quasi-modular forms.

References

[1] J. Bergström, C. Faber, and G. van der Geer: Siegel modular forms of genus 2 and level 2: conjectures and cohomological computations. IMRN, Art. ID rnn 100 (2008).
[2] J. Bergström, C. Faber, G. van der Geer: Siegel modular forms of degree two and three. 2018, URL http://smf.compositio.nl
[3] J. Chipalkatti: On the saturation sequence of the rational normal curve. J. Pure Appl. Algebra 214 (2010), no. 9, 1598-1611.
[4] F. Cléry, C. Faber, G. van der Geer: Covariants of binary sextics and vector-valued Siegel modular forms of genus two. Math. Annalen 369 (2017), 1649-1669.
[5] F. Cléry, G. van der Geer: On vector-valued Siegel modular forms of degree 2 and weight ($j, 2$), (with an Appendix by G. Chenevier). arXiv:1709.01748, to appear in Documenta Math..
[6] F. Cléry, G. van der Geer, S. Grushevsky: Siegel modular forms of genus 2 and level 2. Int. J. Math. (26) (2015), nr. 5.
[7] R. Donagi, R. Smith: The structure of the Prym map. Acta Math. 146 (1981), 25-102.
[8] C. H. van Dorp: Generators for a module of vector-valued Siegel modular forms of degree 2, arXiv:1301.2910.
[9] E. Freitag: Ein Verschwindungssatz für automorphe Formen zur Siegelschen Modulgruppe. Math. Zeitschrift 165 (1979), 11-18.
[10] G. van der Geer: Hilbert Modular Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 16. Springer Verlag, Berlin 1988.
[11] J. H. Grace, A. Young: The algebra of invariants. 1903, Cambridge: Cambridge University Press.
[12] T. Ibukiyama: Vector valued Siegel modular forms of symmetric tensor weight of small degrees. Comment. Math. Univ. St. Pauli 61 (2012), 51-75.
[13] T. Ibukiyama, S. Wakatsuki: Siegel modular forms of small weight and the Witt operator. Contemporary Mathematics 493 (2009), 189-209.
[14] J.-I. Igusa: On Siegel modular forms of genus two (II), Amer. J. Math. 86 (1964), 392-412.
[15] T. Kiyuna: Vector-valued Siegel modular forms of weight $\operatorname{det}^{k} \otimes \operatorname{Sym}(8)$, Int. J. Math. 26 (2015), no. 1.
[16] H. Maaß: Die Multiplikatorsysteme zur Siegelschen Modulgruppe. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1964), 125-135.
[17] T. Satoh: On certain vector valued Siegel modular forms of degree two. Math. Ann. 274 (1986), 335-352.
[18] T. Springer: Invariant theory. Lecture Notes in Mathematics, Vol. 585. Springer-Verlag, Berlin-New York, 1977.
[19] S. Takemori: Structure theorems for vector valued Siegel modular forms of degree 2 and weight $\operatorname{det}^{k} \otimes \operatorname{Sym}(8)$, Int. J. Math. 27 (2016), no. 12.
[20] D. Zagier: Elliptic modular forms and their applications. In: The 1-2-3 of modular forms., 1-103. Universitext, Springer, Berlin, 2008.

Department of Mathematical Sciences, Loughborough University, UK
E-mail address: cleryfabien@gmail.com
Mathematisch Instituut, Universiteit Utrecht, Postbus 80010, 3508 TA Utrecht, The Netherlands

E-mail address: C.F.Faber@uu.nl
Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands

E-mail address: G.B.M.vanderGeer@uva.nl

[^0]: The research of the first author was supported by the EPSRC grant EP/N031369/1.

