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Lq-valued Burkholder–Rosenthal inequalities and sharp
estimates for stochastic integrals

Sjoerd Dirksen and Ivan Yaroslavtsev

Abstract

We prove sharp maximal inequalities for Lq-valued stochastic integrals with respect to any
Hilbert space-valued local martingale. Our proof relies on new Burkholder–Rosenthal type
inequalities for martingales taking values in an Lq-space.
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1. Introduction

This work is motivated by the semigroup approach to stochastic partial differential equations.
In this approach, one first reformulates an SPDE as a stochastic ordinary differential equation
in a suitable infinite-dimensional state space X and then establishes existence, uniqueness and
regularity properties of a mild solution via a fixed point argument. An important ingredient for
this argument is a maximal inequality for the X-valued stochastic convolution associated with
the semigroup generated by the operator in the stochastic evolution equation. The semigroup
approach for equations driven by Gaussian noise in Hilbert spaces is well established and
can be found in [7]. This theory has more recently been developed in two directions. First,
the theory for equations driven by Gaussian noise has been extended to the context of UMD
Banach spaces, see, for example, [38, 39]. In particular, the latter results cover Lq-spaces and
Sobolev spaces and, as a consequence, allow to achieve better regularity results than the Hilbert
space theory. Second, there has been increased interest in equations driven by discontinuous
noise, for example, Poisson- and Lévy-type noise [3, 11, 13, 30–32, 42]. The latter results
are mostly restricted to the Hilbert space setting. The development of this theory in a non-
Hilbertian setting is hindered by the fact that maximal inequalities for vector-valued stochastic
convolutions with respect to discontinuous noise are not yet well understood. In general, only
some non-sharp maximal estimates based on geometric assumptions on the Banach space are
available [9, 54]. In fact, even the theory for ‘vanilla’ stochastic integrals (corresponding to the
trivial semigroup) is incomplete. Sharp maximal inequalities for Lq-valued stochastic integrals
with respect to Poisson random measures were obtained only recently [8].

The main purpose of the present paper is to contribute to the foundation of the semigroup
approach by proving sharp estimates for Lq-valued stochastic integrals with respect to general
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Hilbert-space valued local martingales. In our main result, Theorem 5.32, we identify a suitable
norm |||·|||M,p,q so that, for any elementary predictable processes Φ with values in the bounded
operators from H into Lq(S),

cp,q|||Φ|||M,p,q �
(

E sup
0�s�t

∥∥∥∥∫ s

0

Φ dM

∥∥∥∥p

Lq(S)

) 1
p

� Cp,q|||Φ|||M,p,q, (1.1)

with universal constants cp,q, Cp,q depending only on p and q. Let us emphasize two important
points. First, the norm |||·|||M,p,q can be computed in terms of predictable quantities, which is
important for applications. Second, we call the estimates in (1.1) ‘sharp’ as these inequalities
are two-sided and therefore identify the largest possible class of Lp-stochastically integrable
processes. We do not require the constants cp,q and Cp,q to be sharp or even to depend optimally
on p and q. For applications to stochastic evolution equations, the precise constants in fact do
not play a role. In forthcoming work together with Marinelli, we show that the upper bound
(1.1) can be transferred to a large class of stochastic convolutions and apply these new estimates
to obtain improved well-posedness and regularity results for the associated stochastic evolution
equations in Lq-spaces.

Let us roughly sketch our approach to (1.1). As a starting point, we use a classical result
due to Meyer [37] and Yoeurp [53] to decompose the integrator as a sum of three local
martingales M = M c + Mq + Ma, where M c is continuous, Mq is purely discontinuous and
quasi-left continuous and Ma is purely discontinuous with accessible jumps. Sharp bounds for
stochastic integrals with respect to continuous local martingales were already obtained in a
more general setting [48].

To estimate the integral with respect to Ma, we prove, more generally, sharp bounds
for an arbitrary purely discontinuous Lq-valued local martingale with accessible jumps in
Theorem 5.14. To establish this result, we first show that such a process can be represented
as an essentially discrete object, namely a sum of jumps occurring at predictable times. Using
an approximation argument, the problem can then be further reduced to proving Burkholder–
Rosenthal type inequalities for Lq-valued discrete-time martingales. In general, if 1 � p < ∞
and X is a Banach space, we understand under Burkholder–Rosenthal inequalities estimates
for X-valued martingale difference sequences (di) of the form

cp,X |||(di)|||p,X �
(

E

∥∥∥∥∥∑
i

di

∥∥∥∥∥
p

X

) 1
p

� Cp,X |||(di)|||p,X , (1.2)

where |||·|||p,X is a suitable norm on (di) which can be computed explicitly in terms of the
predictable moments of the individual differences di. In the scalar-valued case, these type of
inequalities were proven by Burkholder [4], following work of Rosenthal [47] in the independent
case: for 2 � p < ∞(

E

∣∣∣∣∣
n∑

i=1

di

∣∣∣∣∣
p) 1

p

�p max

⎧⎪⎨⎪⎩
(

n∑
i=1

E|di|p
) 1

p

,

⎛⎝E

(
n∑

i=1

Ei−1|di|2
) p

2
⎞⎠

1
p

⎫⎪⎬⎪⎭. (1.3)

Here we write A �α B if there is a constant cα > 0 depending only on α such that A � cαB
and write A �α B if both A �α B and B �α A hold. To state our Lq-valued extension, we fix
a filtration F = (Fi)i�1, denote by (Ei)i�1 the associated sequence of conditional expectations
and set E0 := E. Let (S,Σ, ρ) be any measure space. Let us introduce the following norms on
the linear space of all finite sequences (fi) of random variables in L∞(Ω;L∞(S)). First, for
1 � p, q < ∞, we set

‖(fi)‖Sp
q

=

⎛⎜⎝E

∥∥∥∥∥∥
(∑

i

Ei−1|fi|2
) 1

2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

. (1.4)
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From the work of Junge on conditional sequence spaces [21], one can deduce that this expression
is a norm. We let Sp

q denote the completion with respect to this norm. Furthermore, we define

‖(fi)‖Dp
q,q

=

⎛⎝E

(∑
i

Ei−1‖fi‖qLq(S)

) p
q

⎞⎠
1
p

,

‖(fi)‖Dp
p,q

=

(∑
i

E‖fi‖pLq(S)

) 1
p

.

(1.5)

Clearly these expressions define two norms and we let Dp
p,q and Dp

q,q denote the completions
in these norms. Although these spaces depend on the filtration F, we will suppress this from
the notation. We let Ŝp

q , D̂p
q,q and D̂p

p,q denote the closed subspaces spanned by all martingale
difference sequences in the above spaces.

Theorem 1.1. Let 1 < p, q < ∞ and let S be any measure space. If (di) is an Lq(S)-valued
martingale difference sequence, then⎛⎝E

∥∥∥∥∥∑
i

di

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

�p,q ‖(di)‖ŝp,q , (1.6)

where ŝp,q is given by

Ŝp
q ∩ D̂p

q,q ∩ D̂p
p,q if 2 � q � p < ∞;

Ŝp
q ∩ (D̂p

q,q + D̂p
p,q) if 2 � p � q < ∞;

(Ŝp
q ∩ D̂p

q,q) + D̂p
p,q if 1 < p < 2 � q < ∞;

(Ŝp
q + D̂p

q,q) ∩ D̂p
p,q if 1 < q < 2 � p < ∞;

Ŝp
q + (D̂p

q,q ∩ D̂p
p,q) if 1 < q � p � 2;

Ŝp
q + D̂p

q,q + D̂p
p,q if 1 < p � q � 2.

Consequently, if F = σ(∪i�1Fi), then the map f �→ (Eif − Ei−1f)i�1 induces an isomorphism
between Lp

0(Ω;Lq(S)), the subspace of mean-zero random variables in Lp(Ω;Lq(S)), and ŝp,q.

Let us say a few words about the proof of Theorem 1.1. We derive the upper bound in (1.6)
from the known special case that the di are independent [8] by applying powerful decoupling
techniques due to Kwapień and Woyczyński [25]. In the scalar-valued case, this route was
already traveled by Hitczenko [15] to deduce the optimal order of the constant in the classical
Burkholder–Rosenthal inequalities (1.3) from the one already known for martingales with
independent increments. The lower bound in (1.6) is derived by using a duality argument.
For this purpose, we show that for 1 < p, q < ∞ the spaces sp,q satisfy the duality relation

(sp,q)∗ = sp′,q′ ,
1
p

+
1
p′

= 1,
1
q

+
1
q′

= 1.

Since it follows from the work of Junge [21] that (Sp
q )∗ = Sp′

q′ (see also Appendix A for a short

proof valid for Borel probability spaces) and clearly (Dp
p,q)

∗ = Dp′

p′,q′ , the only non-trivial step

in proving this duality is to show that (Dp
q,q)

∗ = Dp′

q′,q′ . In Section 4, we prove a more general
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result: we show that if X is a reflexive separable Banach space, then for the space H
sq
p (X) of

all adapted X-valued sequences (fi) such that

‖(fi)‖Hsq
p (X) =

⎛⎝E

(∑
i

Ei−1‖fi‖qX

) p
q

⎞⎠
1
p

< ∞,

the identity (Hsq
p (X))∗ = H

sq′
p′ (X∗) holds isomorphically with constants depending only on p

and q. Somewhat surprisingly, this result only seems to be known in the literature if X = R

and either 1 < p � q < ∞ or 2 � q � p < ∞ (see [49]).
Our proof can be modified to extend the result in Theorem 1.1 to martingales taking values

in non-commutative Lq-spaces. Since this extension is of interest to a different audience, we
choose to defer its development to future work.

Let us now discuss our approach to the integral of Φ with respect to Mq, the purely
discontinuous quasi-left continuous part of M . We first show in Lemma 5.18 that this integral
can be represented as an integral with respect to μ̄Mq

, the compensated version of the random
measure μMq

that counts the jumps of Mq. In Theorem 5.28, we then prove the following sharp
estimates for integrals with respect to μ̄ = μ− ν, where μ is any integer-valued random measure
that has a compensator ν that is non-atomic in time. This result covers μMq

as a special case.
To formulate our result, let (J,J ) be a measurable space and P̃ be the predictable σ-algebra
on R+ × Ω × J . For 1 < p, q < ∞, we define the spaces Ŝp

q , D̂p
q,q and D̂p

p,q as the Banach spaces
of all P̃-measurable functions F : R+ × Ω × J → Lq(S) for which the corresponding norms

‖F‖Ŝp
q

:=

⎛⎜⎝E

∥∥∥∥∥∥
(∫

R+×J

|F |2 dν

) 1
2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

,

‖F‖D̂p
q,q

:=

⎛⎝E

(∫
R+×J

‖F‖qLq(S) dν

) p
q

⎞⎠
1
p

,

‖F‖D̂p
p,q

:=

(
E

∫
R+×J

‖F‖pLq(S) dν

) 1
p

are finite.

Theorem 1.2. Fix 1 < p, q < ∞. Let μ be an optional P̃-σ-finite random measure on
R+ × J and suppose that its compensator ν is non-atomic in time. Then for any P̃-measurable
F : R+ × Ω × J → Lq(S),⎛⎝E sup

0�s�t

∥∥∥∥∥
∫

[0,s]×J

F (u, x)μ̄(du, dx)

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

�p,q ‖F1[0,t]‖Ip,q
,

where Ip,q is given by

Ŝp
q ∩ D̂p

q,q ∩ D̂p
p,q if 2 � q � p < ∞,

Ŝp
q ∩ (D̂p

q,q + D̂p
p,q) if 2 � p � q < ∞,

(Ŝp
q ∩ D̂p

q,q) + D̂p
p,q if 1 < p < 2 � q < ∞,

(Ŝp
q + D̂p

q,q) ∩ D̂p
p,q if 1 < q < 2 � p < ∞,
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Ŝp
q + (D̂p

q,q ∩ D̂p
p,q) if 1 < q � p � 2,

Ŝp
q + D̂p

q,q + D̂p
p,q if 1 < p � q � 2.

In the scalar-valued case, this result is due to Novikov [40]. In the special case that μ is a
Poisson random measure, Theorem 5.28 was obtained in [8]. A very different proof of the upper
bounds in Theorem 5.28, based on tools from stochastic analysis, was discovered independently
of our work in [29].

The proof of the upper bounds in Theorem 1.2 relies on the Burkholder–Rosenthal
inequalities in Theorem 1.1, a Banach space-valued extension of Novikov’s inequality in the
special case that ν(R+ × J) � 1 almost surely (see Proposition 5.22), and a time-change
argument. For the lower bounds, the non-trivial work is to show that

(Ŝp
q )∗ = Ŝp′

q′ , (D̂p
q,q)

∗ = D̂p′

q′,q′

hold isomorphically with constants depending only on p and q. These duality statements are
derived in Appendix B.

Our paper is structured as follows. In Section 3, we prove Theorem 1.1. This proof relies on
the duality for the spaces Hsq

p (X), which we prove in Section 4. In Section 5, we prove the sharp
bounds (1.1) in several steps. In Section 5.2, we extend the classical martingale decomposition
of Meyer [37] and Yoeurp [53] to the setting of Hilbert-space valued martingales. As has been
explained before, this reduces the problem of obtaining (1.1) to proving sharp bounds for
integrals with respect to local martingales with accessible jumps, purely discontinuous quasi-
left continuous local martingales, and continuous local martingales. We address these problems
in Sections 5.3, 5.4, and 5.5, respectively. These three parts can be read independently of each
other. Finally, Section 5.6 combines the sharp estimates obtained in these three sections to
deduce the main result of this work, Theorem 5.32.

We discuss the necessary preliminaries for our development at relevant locations. In
particular, Section 2 discusses some general preliminaries that are used throughout. Section 5.1
discusses terminology regarding stochastic processes, martingales and stopping times. Sec-
tion 5.4.1 concerns random measures and integration with respect to random measures. Finally,
Section 5.5 contains some preliminaries on γ-radonifying operators.

2. Preliminaries

Throughout, (Ω,F ,P) denotes a complete probability space. If X and Y are Banach spaces,
then L(X,Y ) denotes the Banach space of bounded linear operators from X into Y . Any
X-valued random variable f : Ω → X in this paper will be assumed to be strongly
P-measurable. Recall that by the Pettis measurability theorem [17, Theorem 1.1.20], this is
equivalent to assuming that f is a.s. separably valued and that 〈f, x∗〉 is measurable for any
x∗ ∈ X∗. In proofs involving countably many random variables, we will therefore typically
assume without of loss of generality that the range space X is separable. Similarly, in proofs
involving an a.s. right-continuous process (ft)t�0, one can typically reduce to the separable
case by considering the closed subspace spanned by the images of ft, t ∈ Q. We will use these
standard reductions throughout without mentioning them explicitly.

In particular, in the case of X = Lq(S), we may always assume that Lq(S) is separable.
Indeed, let X = Lq(S) be non-separable. Let X0 ⊂ X be a separable subspace (constructed,
for example, by the aforementioned argument). Let us show that X0 ⊂ Lq(S0) for some
separable Lq(S0). Fix a dense sequence (xn)n�1 ⊂ X0. Since every xn has σ-finite support,
S0 := ∪nsupp (xn) is σ-finite and hence Lq(S0) is separable. Moreover, xn ∈ Lq(S0) for all
n � 1 and so X0 = (xn)n�1 ⊂ Lq(S0), proving the claim.



1638 SJOERD DIRKSEN AND IVAN YAROSLAVTSEV

In the following, we will frequently use duality arguments for sums and intersections of
Banach spaces. Let us recall some basic facts in this direction. If (X,Y ) is a compatible couple
of Banach spaces, that is, X,Y are continuously embedded in a Hausdorff topological vector
space, then their intersection X ∩ Y and sum X + Y are Banach spaces under the norms

‖z‖X∩Y = max{‖z‖X , ‖z‖Y }
and

‖z‖X+Y = inf{‖x‖X + ‖y‖Y : z = x + y, x ∈ X, y ∈ Y }.
If X ∩ Y is dense in both X and Y , then

(X ∩ Y )∗ = X∗ + Y ∗, (X + Y )∗ = X∗ ∩ Y ∗ (2.1)

hold isometrically. The duality brackets under these identifications are given by

〈x∗, x〉 = 〈x∗|X∩Y , x〉 (x∗ ∈ X∗ + Y ∗)

and

〈x∗, x〉 = 〈x∗, y〉 + 〈x∗, z〉 (x∗ ∈ X∗ ∩ Y ∗, x = y + z ∈ X + Y ), (2.2)

respectively, see, for example, [24, Theorem I.3.1].
The following observation facilitates a duality argument that we will use repeatedly below.

We leave the straightforward proof to the reader.

Lemma 2.1. Let X and Y be Banach spaces, X be reflexive, U be a dense linear subspace
of X and let V be a dense linear subspace of X∗. Consider j0 ∈ L(U, Y ) and k0 ∈ L(V, Y ∗) so
that ran j0 is dense in Y and 〈x∗, x〉 = 〈k0(x∗), j0(x)〉 for each x ∈ U, x∗ ∈ V . Then

(i) there exists j ∈ L(X,Y ), k ∈ L(X∗, Y ∗) such that j|U = j0 and k|V = k0,
(ii) ran j = Y , ran k = Y ∗, in particular k and j are invertible, and
(iii) for each x ∈ X and x∗ ∈ X∗

1
‖k‖‖x‖ � ‖j(x)‖ � ‖j‖‖x‖,

1
‖j‖‖x

∗‖ � ‖k(x∗)‖ � ‖k‖‖x∗‖.
(2.3)

3. Lq-valued Burkholder–Rosenthal inequalities

In this section, we prove Theorem 1.1. Our starting point is the following Lq-valued version of
the classical Rosenthal inequalities [47]. For all 1 � p, q < ∞ let Sq and Dp,q be the spaces of
all sequences of Lq(S)-valued random variables such the respective norms

‖(fi)‖Sq
=

∥∥∥∥∥∥
(∑

i

E|fi|2
) 1

2

∥∥∥∥∥∥
Lq(S)

,

‖(fi)‖Dp,q
=

(∑
i

E‖fi‖pLq(S)

) 1
p

(3.1)

are finite. Note that the following result corresponds to a special case of Theorem 1.1, in which
the martingale differences di are independent.
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Theorem 3.1 [8]. Let 1 < p, q < ∞ and let (S,Σ, σ) be a measure space. If (ξi)i�1 is a
sequence of independent, mean-zero random variables taking values in Lq(S), then⎛⎝E

∥∥∥∥∥
∞∑
i=1

ξi

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

�p,q‖(ξi)‖sp,q , (3.2)

where sp,q is given by

Sq ∩Dq,q ∩Dp,q if 2 � q � p < ∞;

Sq ∩ (Dq,q + Dp,q) if 2 � p � q < ∞;

(Sq ∩Dq,q) + Dp,q if 1 < p < 2 � q < ∞;

(Sq + Dq,q) ∩Dp,q if 1 < q < 2 � p < ∞;

Sq + (Dq,q ∩Dp,q) if 1 < q � p � 2;

Sq + Dq,q + Dp,q if 1 < p � q � 2.

Moreover, the estimate �p,q in (3.2) remains valid if p = 1, q = 1 or both.

To derive the upper bound in Theorem 1.1, we use the following decoupling techniques
from [25]. Let (Ω,F ,P) be a complete probability space, let (Fi)i�0 be a filtration and let X
be a Banach space. Two (Fi)i�1-adapted sequences (di)i�1 and (ei)i�1 of X-valued random
variables are called tangent if for every i � 1 and A ∈ B(X)

P(di ∈ A|Fi−1) = P(ei ∈ A|Fi−1). (3.3)

An (Fi)i�1-adapted sequence (ei)i�1 of X-valued random variables is said to satisfy condition
(CI) if, first, there exists a sub-σ-algebra

G ⊂ F∞ = σ(∪i�0Fi)

such that for every i � 1 and A ∈ B(X),

P(ei ∈ A|Fi−1) = P(ei ∈ A|G) (3.4)

and, second, (ei)i�1 consists of G-independent random variables, that is, for all n � 1 and
A1, . . . , An ∈ B(X),

E(1e1∈A1 · · · · · 1en∈An
|G) = E(1e1∈A1 |G) · · · · · E(1en∈An

|G).

It is shown in [25] that for every (Fi)i�1-adapted sequence (di)i�1 there exists an (Fi)i�1-
adapted sequence (ei)i�1 on a possibly enlarged probability space which is tangent to (di)i�1

and satisfies condition (CI). This sequence is called a decoupled tangent sequence for (di)i�1

and is unique in law.
To derive the upper bound in Theorem 1.1 for a given martingale difference sequence (di)i�1,

we apply Theorem 3.1 conditionally to its decoupled tangent sequence (ei)i�1. For this approach
to work, we will need to relate various norms on (di)i�1 and (ei)i�1. One of these estimates
can be formulated as a Banach space property. Following [5], we say that a Banach space X
satisfies the p-decoupling property if for some 0 < p < ∞ there is a constant Cp,X such that
for any complete probability space (Ω,F ,P), any filtration (Fi)i�0, and any (Fi)i�1-adapted
sequence (di)i�1 in Lp(Ω, X),
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(
E

∥∥∥∥∥
n∑

i=1

di

∥∥∥∥∥
p

X

) 1
p

� Cp,X

(
E

∥∥∥∥∥
n∑

i=1

ei

∥∥∥∥∥
p

X

) 1
p

, (3.5)

for all n � 1, where (ei)i�1 is the decoupled tangent sequence of (di)i�1. It is shown in
[5, Theorem 4.1] that this property is independent of p, so we may simply say that X satisfies
the decoupling property if it satisfies the p-decoupling property for some (then all) 0 < p < ∞.
Known examples of spaces satisfying the decoupling property are the Lq(S)-spaces for any
1 � q < ∞ and UMD Banach spaces. If X is a UMD Banach space, then one can also recouple,
meaning that for all 1 < p < ∞ there is a constant cp,X such that for any martingale difference
sequence (di)i�1 and any associated decoupled tangent sequence (ei)i�1,

(
E

∥∥∥∥∥
n∑

i=1

ei

∥∥∥∥∥
p

X

) 1
p

� cp,X

(
E

∥∥∥∥∥
n∑

i=1

di

∥∥∥∥∥
p

X

) 1
p

. (3.6)

Conversely, if both (3.5) and (3.6) hold for some (then all) 1 < p < ∞, then X must be a UMD
space. This equivalence is independently due to McConnell [35] and Hitczenko [14].

To further relate a sequence with its decoupled tangent sequence, we use the following
technical observation, which is a special case of [5, Lemma 2.7].

Lemma 3.2. Let X be a Banach space and for every i � 1 let hi : X → X be a Borel
measurable function. Let (di)i�1 be an (Fi)i�1-adapted sequence and (ei)i�1 a decoupled
tangent sequence. Then (hi(ei))i�1 is a decoupled tangent sequence for (hi(di))i�1.

We are now ready to prove the announced result.

Proof of Theorem 1.1. Step 1: upper bounds. We will only give a proof in the case
1 � q � 2 � p < ∞. The other cases are proved analogously. Let us write EG = E(·|G) for
brevity. By density we may assume that the di take values in Lq(S) ∩ L∞(S). Fix an arbitrary
decomposition di = di,1 + di,2, where di,1, di,2 are Lq(S) ∩ L∞(S)-valued martingale difference
sequences. Let ei = (ei,1, ei,2) be the decoupled tangent sequence for the martingale difference
sequence (di,1, di,2) which takes values in the space (Lq(S) ∩ L∞(S)) × (Lq(S) ∩ L∞(S)).
Lemma 3.2 implies that di,α is the decoupled tangent sequence for ei,α, α = 1, 2, and ei,1 + ei,2
is the decoupled tangent sequence for di. By the decoupling property for Lq(S),

⎛⎝E

∥∥∥∥∥∑
i

di

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

�p,q

⎛⎝E

∥∥∥∥∥∑
i

ei,1 + ei,2

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

.

Since the summands ei,1 + ei,2 are G-conditionally independent and G-mean zero, we can apply
Theorem 3.1 conditionally to find, a.s.,

⎛⎝EG

∥∥∥∥∥∑
i

ei,1 + ei,2

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

�p,q max

⎧⎪⎨⎪⎩
∥∥∥∥∥∥
(∑

i

EG |ei,1|2
) 1

2

∥∥∥∥∥∥
Lq(S)

+

(∑
i

EG‖ei,2‖qLq(S)

) 1
q

,

(∑
i

EG‖ei,1 + ei,2‖pLq(S)

) 1
p

⎫⎬⎭.
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Now, we take Lp-norms on both sides and apply the triangle inequality to obtain⎛⎝E

∥∥∥∥∥∑
i

di

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

�p,q max

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝E

∥∥∥∥∥∥
(∑

i

EG |ei,1|2
) 1

2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

+

⎛⎝E

(∑
i

EG‖ei,2‖qLq(S)

) p
q

⎞⎠
1
p

,

(∑
i

E‖ei,1 + ei,2‖pLq(S)

) 1
p

⎫⎪⎬⎪⎭.

By the properties (3.4) and (3.3) of a decoupled tangent sequence,

EG |ei,1|2 = Ei−1|ei,1|2 = Ei−1|di,1|2,
and therefore (∑

i

EG |ei,1|2
) 1

2

=

(∑
i

Ei−1|di,1|2
) 1

2

.

Similarly,

EG‖ei,2‖qLq(S) = Ei−1‖di,2‖qLq(S).

We conclude that⎛⎝E

∥∥∥∥∥∑
i

di

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

�p,q max

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝E

∥∥∥∥∥∥
(∑

i

Ei−1|di,1|2
) 1

2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

+

⎛⎝E

(∑
i

Ei−1‖di,2‖qLq(S)

) p
q

⎞⎠
1
p

,

(∑
i

E‖di‖pLq(S)

) 1
p

⎫⎪⎬⎪⎭.

Taking the infimum over all decompositions as above yields the inequality ‘�p,q’ in (1.6).

Step 2: lower bounds. We deduce the lower bounds by duality. It follows from Junge’s work on
conditional sequence spaces [21] that (Sp

q )∗ = Sp′

q′ holds isomorphically with constants depend-

ing only on p and q. Since moreover (Dp
p,q)

∗ = Dp′

p′,q′ and (Dp
q,q)

∗ = Dp′

q′,q′ (see Theorem 4.1),
it follows from (2.1) that s∗p,q = sp′,q′ with duality bracket

〈(fi), (gi)〉 =
∑
i

E〈fi, gi〉 ((fi) ∈ sp,q, (gi) ∈ sp′,q′).

Let x̂∗ ∈ (ŝp,q)∗. Define the map P : sp,q → ŝp,q by

P ((fi)) = (Δifi),

where Δi := Ei − Ei−1. By the triangle inequality and Jensen’s inequality, one readily sees
that P is a bounded projection. As a consequence, we can define x∗ ∈ s∗p,q by x∗ = x̂∗ ◦ P . Let
(gi) ∈ sp′,q′ be such that

x∗((fi)) =
∑
i

E〈fi, gi〉 ((fi) ∈ sp,q).

Then, for any (fi) ∈ ŝp,q,

x̂∗((fi)) =
∑
i

E〈fi, gi〉 =
∑
i

E〈fi,Δigi〉 = 〈(fi), P (gi)〉.
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This shows that (ŝp,q)∗ = ŝp′,q′ isomorphically. Let U and V be the dense linear subspaces
spanned by all finite martingale difference sequences in ŝp,q and ŝp′,q′ , respectively. Define

Y = span

{∑
i

di : (di) ∈ U

}
⊂ Lp(Ω;Lq(S)).

By Step 1, we can define two maps j0 ∈ L(U, Y ), k0 ∈ L(V, Y ∗) by

j0((di)) =
∑
i

di, k0((d̃i)) =
∑
i

d̃i.

By the martingale difference property,

〈j0((di)), k0((d̃i))〉 = E

〈∑
i

di,
∑
i

d̃i

〉
=

∑
i

E〈di, d̃i〉 = 〈(di), (d̃i)〉. (3.7)

The lower bounds now follow immediately from Lemma 2.1.
For the final assertion of the theorem, suppose F = σ(∪i�0Fi). Let f ∈ Lp

0(Ω;Lq(S)) and
define fn = Enf . Then limn→∞ fn = f (see, for example, [17, Theorem 3.3.2]). Conversely, let
(fn)n�1 be a martingale with supn�1 ‖fn‖Lp(Ω;Lq(S)) < ∞. By reflexivity of Lq(S), we have
that

Lp(Ω;Lq(S)) = (Lp′
(Ω;Lq′(S)))∗,

and hence its unit ball is weak∗-compact. Let f be the weak∗-limit of (fn). It is easy to
check that fn = Enf . In conclusion, any martingale difference sequence (di)i�1 of a bounded
martingale in Lp(Ω;Lq(S)) corresponds uniquely to an f ∈ Lp(Ω;Lq(S)) such that

f − Ef =
∑
i

di, di = Eif − Ei−1f.

The two-sided inequality (1.6) now implies that the map

f �→ (Eif − Ei−1f)i�1

is a linear isomorphism between Lp
0(Ω;Lq(S)) and ŝp,q, with constants depending only on p

and q.

Later in the proof of Theorem 5.6 we will need the following version of Theorem 1.1.

Proposition 3.3. Let 1 < p, q < ∞. Define Ŝp,odd
q , D̂p,odd

q,q and D̂p,odd
p,q as the closed

subspaces of Ŝp
q , D̂p

q,q and D̂p
p,q, respectively, spanned by all Lq-valued martingale difference

sequences (di)i�1 such that d2i = 0 for each i � 1. Then, any Lq-valued martingale difference
sequence (di)i�1 such that d2i = 0 for each i � 1 satisfies⎛⎝E

∥∥∥∥∥∑
i

di

∥∥∥∥∥
p

Lq(S)

⎞⎠
1
p

�p,q‖(di)‖ŝodd
p,q

,

where ŝodd
p,q is given by

Ŝp,odd
q ∩ D̂p,odd

q,q ∩ D̂p,odd
p,q if 2 � q � p < ∞;

Ŝp,odd
q ∩ (D̂p,odd

q,q + D̂p,odd
p,q ) if 2 � p � q < ∞;

(Ŝp,odd
q ∩ D̂p,odd

q,q ) + D̂p,odd
p,q if 1 < p < 2 � q < ∞;

(Ŝp,odd
q + D̂p,odd

q,q ) ∩ D̂p,odd
p,q if 1 < q < 2 � p < ∞;
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Ŝp,odd
q + (D̂p,odd

q,q ∩ D̂p,odd
p,q ) if 1 < q � p � 2;

Ŝp,odd
q + D̂p,odd

q,q + D̂p,odd
p,q if 1 < p � q � 2.

To prove Proposition 3.3, it suffices by Theorem 1.1 to show that ‖(di)‖ŝodd
p,q

= ‖(di)‖ŝp,q for
any (di)i�1 ∈ ŝodd

p,q . The latter follows from the following lemma.

Lemma 3.4. Let 1 < p, q < ∞, X be any finite + and ∩ combination of the spaces Ŝp
q ,

D̂p
q,q and D̂p

p,q. Let Xodd be the same + and ∩ combination of the spaces Ŝp,odd
q , D̂p,odd

q,q and

D̂p,odd
p,q . Then ‖(di)‖Xodd = ‖(di)‖X for any (di)i�1 ∈ Xodd. Moreover, there exists a projection

PX ∈ L(X) that maps (di)i�1 ∈ X to (di1i is odd)i�1 with ‖PX‖ � 1.

Proof. The proof will be by induction with the induction parameter P (X) being the minimal
total number of + and ∩ involved in the definition of X.

Induction basis. Let X be equal to Ŝp
q , D̂p

q,q or D̂p
p,q. Then the assertion of the lemma follows

directly from the definition of Ŝp
q , D̂p

q,q and D̂p
p,q.

Induction step. If X is not equal to neither Ŝp
q , D̂p

q,q nor D̂p
p,q, then P (X) > 0. Hence, there

exist X1 and X2, which are both + and ∩ combinations of the spaces Ŝp
q , D̂p

q,q and D̂p
p,q, such

that either X = X1 + X2 or X = X1 ∩X2, and P (X1), P (X2) < P (X). Let Xodd
1 and Xodd

2 be
the odd versions of X1 and X2. By the induction hypothesis, we know that for any j = 1, 2,
‖PXj

‖ � 1 and

‖(di)‖Xodd
j

= ‖(di)‖Xj
, for all (di)i�1 ∈ Xodd

j .

We assume that X = X1 + X2, the case X = X1 ∩X2 can be proven analogously. Fix
(di)i�1 ∈ Xodd. Then

‖(di)‖Xodd = ‖(di)‖Xodd
1 +Xodd

2
� ‖(di)‖X1+X2 = ‖(di)‖X ,

since Xodd
1 and Xodd

2 are isometrically embedded into X1 and X2, respectively. To show the
converse inequality, fix ε > 0. Then there exist (e1

i )i�1 ∈ X1 and (e2
i )i�1 ∈ X2 such that e1

i +
e2
i = di for any i � 1 and

‖(e1
i )‖X1 + ‖(e2

i )‖X2 � ‖(di)‖X + ε.

Then PX1(e
1
i ) + PX2(e

2
i ) = (di) (since d2i = 0 for all i � 1), and since ‖PX1‖, ‖PX2‖ � 1

‖(di)‖Xodd � ‖PX1(e
1
i )‖Xodd

1
+ ‖PX2(e

2
i )‖Xodd

2

� ‖(e1
i )‖X1 + ‖(e2

i )‖X2 � ‖(di)‖X + ε.

Since ε > 0 was arbitrary, ‖(di)‖Xodd � ‖(di)‖X .
Now, let us show that ‖PX‖ � 1. Fix (di)i�1 ∈ X and ε > 0. Then there exist (e1

i )i�1 ∈ X1

and (e2
i )i�1 ∈ X2 such that e1

i + e2
i = di for any i � 1 and

‖(e1
i )‖X1 + ‖(e2

i )‖X2 � ‖(di)‖X + ε.

Therefore

‖PX(di)‖Xodd � ‖PX1(e
1
i )‖Xodd

1
+ ‖PX2(e

2
i )‖Xodd

2

� ‖(e1
i )‖X1 + ‖(e2

i )‖X2 � ‖(di)‖X + ε

and the claim follows by taking ε → 0. �
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Remark 3.5. Let us compare our result to the literature. As was mentioned in the
introduction, the scalar-valued version of Theorem 1.1 is due to Burkholder [4], following work
of Rosenthal [47]. A version for non-commutative martingales, as well as a version of (1.3) for
1 < p � 2, was obtained by Junge and Xu [22]. Various upper bounds for the moments of a
martingale with values in a uniformly 2-smooth (or equivalently, cf. [45], martingale type 2)
Banach space were obtained by Pinelis [43], with constants of optimal order. For instance, if
2 � p < ∞, then (see [43, Theorem 4.1])

(
E

∥∥∥∥∥∑
i

di

∥∥∥∥∥
p

X

) 1
p

� p(E sup
i

‖di‖pX)
1
p +

√
pτ2(X)

⎛⎝E

(∑
i

Ei−1‖di‖2
X

) p
2
⎞⎠

1
p

, (3.8)

where τ2(X) is the 2-smoothness constant of X. As was already remarked in [43], due to the
presence of the second term on the right-hand side, this type of inequality cannot hold in a
Banach space which is not 2-uniformly smooth (or equivalently, has martingale type 2). On
the other hand, one can show that the reverse inequality holds (with different constants) if and
only if X is 2-uniformly convex (or equivalently, has martingale cotype 2). Thus, a two-sided
inequality involving the norm on the right-hand side of (3.8) can only hold in a space with
both martingale type and cotype equal to 2. Such a space is necessarily isomorphic to a Hilbert
space by a well-known result of Kwapień (see, for example, [1, Theorem 7.4.1]).

Remark 3.6. It is beyond the scope of this article to determine the optimal dependence of
the implicit constants on p and q in (1.6). To give an impression of the constants produced by
our proof, let us consider the upper bound in the case of real-valued martingales (corresponding
to q = 2) for p � 2. By performing bookkeeping on the constants in the proof in [8] and using
that the decoupling inequality (3.5) holds with a constant independent of p if X = R [16], one
finds the inequality

(
E

∣∣∣∣∣∑
i

di

∣∣∣∣∣
p) 1

p

� α(p)

⎛⎝E

(∑
i

Ei−1|di|2
) p

2
⎞⎠

1
p

+ β(p)

(∑
i

E‖di‖p
) 1

p

(3.9)

with α(p) � √
p and β(p) � p. This inequality is optimal in the sense that it is known that the

order of α(p) cannot be reduced and, moreover, the order of β(p) cannot be reduced without
increasing the order of α(p) (see [44, Proposition 2]). On the other hand, it is known that if
one considers a single constant in front of both factors on the right-hand side of (3.9), that is,

(
E

∣∣∣∣∣∑
i

di

∣∣∣∣∣
p) 1

p

� γ(p)

⎡⎢⎣
⎛⎝E

(∑
i

Ei−1|di|2
) p

2
⎞⎠

1
p

+

(∑
i

E‖di‖p
) 1

p

⎤⎥⎦,
then the order γ(p) = O(p/ log(p)) is optimal [15] (see also [41]). It is clear that the latter
result cannot be recovered from our proof. We leave the study of the best constants in (1.6)
for all values of p and q as an interesting open problem.

4. The dual of H
sq
p (X)

In the proof of Theorem 1.1, we used the fact that (Dp
q,q)

∗ = Dp′

q′,q′ holds isomorphically (with
constants depending only on p and q) for all 1 < p, q < ∞. In this section, we will prove a more
general statement.
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Let (Ω,F ,P) be a probability space with a filtration F = (Fk)k�0 and with F0 being
generated by all the negligible sets, X be a Banach space and let 1 < p, q < ∞. For an adapted
sequence f = (fk)k�1 of X-valued random variables, we define

snq (f) :=

(
n∑

k=1

Ek−1‖fk‖q
)1/q

, sq(f) :=

( ∞∑
k=1

Ek−1‖fk‖q
)1/q

,

where Ek = E(·|Fk), E0 = E. We let Hsq
p (X) be the space of all adapted sequences f = (fk)k�1

satisfying

‖f‖Hsq
p (X) := (Esq(f)p)1/p < ∞.

Similarly, we define H
snq
p (X). We will prove the following result, which was only known before

if X = R and either 1 < p � q < ∞ or 2 � q � p < ∞ (see [49, Theorem 15] and the remark
following it).

Theorem 4.1. Let X be a reflexive separable Banach space, 1 < p, q < ∞. Then(
H

sq
p (X)

)∗ = H
sq′
p′ (X∗) isomorphically. The isomorphism is given by

g �→ Fg, Fg(f) = E

( ∞∑
k=1

〈fk, gk〉
) (

f ∈ Hsq
p (X), g ∈ H

sq′
p′ (X∗)

)
, (4.1)

and

min
{
q

p
,
q′

p′

}
‖g‖

H
s
q′

p′ (X∗)
� ‖Fg‖(H

sq
p (X))∗ � ‖g‖

H
s
q′

p′ (X∗)
. (4.2)

In particular, H
sq
p (X) is a reflexive Banach space.

To prove this result, we will first extend an argument of Csörgő [6] to show that
(
H

snq
p (X)

)∗

and H
sn
q′

p′ (X∗) are isomorphic if 1 < p, q < ∞, with isomorphism constants depending on p, q

and n. In particular, this shows that H
snq
p (X) is reflexive. In a second step, we exploit this

reflexivity to show that the isomorphism constants do not depend on n. The proof of this
result, Theorem 4.5, relies on an argument of Weisz [49]. After this step, it is straightforward
to deduce Theorem 4.1.

We start by introducing an operator that serves as a replacement for the sign-function in a
vector-valued context.

Lemma 4.2. Let X be a Banach space with a separable dual. Fix ε > 0. Then there exists
a discrete-valued Borel-measurable function Pε : X∗ → X such that ‖Pε(x∗)‖ = 1 and

(1 − ε)‖x∗‖ � 〈Pε(x∗), x∗〉 � ‖x∗‖ (4.3)

for each x∗ ∈ X∗.

Proof. Let (x∗
n)n�1 be a dense subset of the unit sphere U of X∗. For each n � 1, define

Un = U
⋂
B(x∗

n,
ε
2 ), where B(y∗, r) denotes the ball in X∗ with radius r and center y∗. Define

V1 = U1 and

Vn = Un \
(

n−1⋃
k=1

Vk

)
, n � 2.
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For each n � 1, one can find an xn ∈ X such that ‖xn‖ = 1 and 〈xn, x
∗
n〉 � 1 − ε

2 . Now, define

Pε(x∗) :=
∞∑

n=1

1Vn

(
x∗

‖x∗‖

)
xn, x∗ ∈ X∗.

This function is Borel since the Vn are Borel sets. As the Vn form a disjoint cover of the
unit sphere, for every x∗ ∈ X∗ there exists a unique n = n(x∗) so that x∗/‖x∗‖ ∈ Vn. Hence,
‖Pε(x∗)‖ = 1 and

〈Pε(x∗), x∗〉 = ‖x∗‖
〈
xn,

x∗

‖x∗‖

〉
� ‖x∗‖〈xn, x

∗
n〉 −

ε

2
‖x∗‖ � (1 − ε)‖x∗‖,

so (4.3) follows. �

Let us now show that
(
H

snq
p (X)

)∗
= H

sn
q′

p′ (X∗) for any fixed n � 1.

Theorem 4.3. Let X be a reflexive separable Banach space, 1 < p, q < ∞, n � 1. Then(
H

snq
p (X)

)∗
= H

sn
q′

p′ (X∗) isomorphically (with constants depending on p, q and n). The

isomorphism is given by

g �→ Fg, Fg(f) = E

(
n∑

k=1

〈fk, gk〉
) (

f ∈ H
snq
p (X), g ∈ H

sn
q′

p′ (X∗)
)
. (4.4)

In particular, H
snq
p (X) is a reflexive Banach space.

Proof. The main argument is inspired by the proof of [6, Theorem 1]. By the conditional
Hölder inequality and the usual version of Hölder’s inequality,

|Fg(f)| � E

(
n∑

k=1

Ek−1(‖fk‖‖gk‖)
)

� E

(
n∑

k=1

(Ek−1‖fk‖q)1/q(Ek−1‖gk‖q
′
)
1/q′

)
� ‖f‖

H
snq
p (X)

‖g‖
H

sn
q′

p′ (X∗)
.

(4.5)

Hence, the functional Fg is bounded and ‖Fg‖ � ‖g‖
H

sn
q′

p′ (X∗)
.

To prove that ‖Fg‖ �p,q,n ‖g‖
H

sn
q′

p′ (X∗)
, we need to construct an appropriate f ∈ H

snq
p (X)

with

‖f‖
H

snq
p (X)

�p,q,n1, 〈Fg, f〉 �p,q,n ‖g‖
H

sn
q′

p′ (X∗)
.

Fix 0 < ε < 1. We define f by setting

fk := Pε(gk)
‖gk‖q

′−1

‖g‖p′−1

H
sn
q′

p′ (X∗)

(Ek−1‖gk‖q
′
)

p′−q′
q′ , 0 � k � n
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where Pε is as in Lemma 4.2. Using pp′ = p + p′ and qq′ = q + q′, we find

‖f‖p
H

snq
p (X)

= E

(
n∑

k=1

Ek−1‖fk‖q
)p/q

=
1

‖g‖p(p′−1)

H
sn
q′

p′ (X∗)

E

(
n∑

k=1

(Ek−1‖gk‖q
′
)

(p′−1)q
q′

) p
q

� n,p,q
1

‖g‖p′

H
sn
q′

p′ (X∗)

E

(
n∑

k=1

(Ek−1‖gk‖q
′
)

) p′
q′

= 1,

so f ∈ H
snq
p (X). Moreover,

〈Fg, f〉 � (1 − ε)
1

‖g‖p′−1

H
sn
q′

p′ (X∗)

E

n∑
k=1

‖gk‖q
′
(Ek−1‖gk‖q

′
)

p′−q′
q′

= (1 − ε)
1

‖g‖p′−1

H
sn
q′

p′ (X∗)

E

n∑
k=1

(Ek−1‖gk‖q
′
)

p′
q′

�p,q,n (1 − ε)
1

‖g‖p′−1

H
sn
q′

p′ (X∗)

E

(
n∑

k=1

Ek−1‖gk‖q
′

) p′
q′

= ‖g‖
H

sn
q′

p′ (X∗)
,

as desired, since ε was arbitrary and can be chosen, say, 1
2 .

Now, we will show that every F ∈
(
H

snq
p (X)

)∗
is equal to Fg for a suitable g ∈ H

sn
q′

p′ (X∗). For
this purpose, we consider the disjoint direct sum of (Ω,Fk,P), k = 1, . . . , n. Formally, we set
Ωk = Ω × {k}, F̃k = Fk × {k} and define a probability measure Pk on F̃k by Pk(A× {k}) =
P(A). Now, the disjoint direct sum (Ωn,Fn,Pn) is defined by

Ωn =
n⋃

k=1

Ωk, Fn = {A ⊂ Ωn : A ∩ Ωk ∈ F̃k, for all 1 � k � n}

and

Pn(A) =
n∑

k=1

Pk(A ∩ Ωk), A ∈ Fn.

Let Pk : (Ω,Fk) → (Ωn,Fn), Pk(ω) = (ω, k), be the measurable bijection between (Ω,Fk) and
its disjoint copy. We can now define an X∗-valued set function μ by

〈μ(A), x〉 := F
(
(x · 1P−1

k (A∩Ωk))
n
k=1

)
, A ∈ Fn, x ∈ X.

We will show that μ is σ-additive, absolutely continuous with respect to Pn and of finite
variation. Let us first show that μ is of finite variation. Let (Am)Mm=1 ⊂ Fn be disjoint such
that ∪mAm = Ωn. Then

M∑
m=1

‖μ(Am)‖ =
M∑

m=1

sup
xm∈X:‖xm‖=1

F
(
(xm · 1P−1

k (Am∩Ωk))
n
k=1

)

= sup
(xm)Mm=1⊂X:‖xm‖=1

M∑
m=1

F
(
(xm · 1P−1

k (Am∩Ωk))
n
k=1

)
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= sup
(xm)Mm=1⊂X:‖xm‖=1

F

((
M∑

m=1

xm · 1P−1
k (Am∩Ωk)

)n

k=1

)

� ‖F‖ sup
(xm)Mm=1⊂X:‖xm‖=1

∥∥∥∥∥
(

M∑
m=1

xm · 1P−1
k (Am∩Ωk)

)n

k=1

∥∥∥∥∥
H

snq
p (X)

= ‖F‖ sup
(xm)Mm=1⊂X:‖xm‖=1

⎛⎝E

(
n∑

k=1

Ek−1

∥∥∥∥∥
M∑

m=1

xm1P−1
k (Am∩Ωk)

∥∥∥∥∥
q) p

q
⎞⎠

1
p

� ‖F‖

⎡⎣E

(
n∑

k=1

Ek−1

(
M∑

m=1

1P−1
k (Am∩Ωk)

)q) p
q
⎤⎦

1
p

= ‖F‖

⎛⎝E

(
n∑

k=1

Ek−11Ω

) p
q

⎞⎠
1
p

= ‖F‖(n + 1)
1
q .

Now, let us prove the σ-additivity. Obviously μ is additive. Let the family of sets (Am)m�0 ⊂ Fn

be such that Am ↘ ∅. Then

‖μ(Am)‖ = sup
x∈X:‖x‖=1

|F ((x · 1P−1
k (Am∩Ωk))

n
k=1)|

� ‖F‖ sup
x∈X:‖x‖=1

‖(x · 1P−1
k (Am∩Ωk))

n
k=1‖Hsnq

p (X)

= ‖F‖

⎛⎝E

(
n∑

k=1

Ek−11P−1
k (Am∩Ωk)

) p
q

⎞⎠
1
p

→ 0 as m → ∞,

by the monotone convergence theorem. This computation also shows that μ is absolutely
continuous with respect to Pn.

Since X is reflexive, X∗ has the Radon–Nikodym property (see, for example, [17, Theo-
rem 1.3.21]). Thus, there exists a g ∈ L1(Ωn;X∗) so that

μ(A) =
∫
A

g dPn =
n∑

k=1

∫
A∩Ωk

g dPk.

If we now define gk := g ◦ Pk, then gk is Fk-measurable and

μ(A) =
n∑

k=1

∫
P−1

k (A∩Ωk)

gk dP.

It now follows for f = (fk)nk=1 ∈ H
snq
p (X) with fk bounded for all k = 1, . . . , n that

F (f) = Fg(f) = E

n∑
k=1

〈fk, gk〉. (4.6)

Now, fix general f ∈ H
snq
p (X). Fix 0 < ε < 1 and let

h := (hk)nk=1 = (‖fk‖Pε(gk))
n
k=1.
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Define hm := (hm
k )nk=1 = (hk1‖hk‖�m)nk=1 for each m � 1. Then formula (4.6) holds for hm.

But F (hm) → F (h) as m goes to infinity, so by the monotone convergence theorem, F (h) =
E
∑n

k=1〈hk, gk〉. This shows that

E

n∑
k=1

|〈fk, gk〉| � E

n∑
k=1

‖fk‖‖gk‖ � (1 − ε)−1E

n∑
k=1

〈hk, gk〉 < ∞. (4.7)

Now, consider fm := (fm
k )nk=1 = (fk1‖fk‖�m)nk=1. Since (4.6) holds for fm and F (fm) → F (f),

we can use (4.7) and the dominated convergence theorem to conclude that f satisfies (4.6).

It remains to prove that g ∈ H
sn
q′

p′ (X∗). For each m � 1, we consider the approximation
gm := (gk1‖gk‖�m)nk=1. Then

‖gm‖
H

sn
q′

p′ (X∗)
�p,q,n ‖Fgm‖ � ‖F‖.

Therefore, by the monotone convergence theorem, ‖g‖
H

sn
q′

p′ (X∗)
�p,q,n ‖F‖. �

One can easily show the following simple lemma.

Lemma 4.4. Let X and Y be reflexive Banach spaces such that X∗ is isomorphic to Y and

a‖x∗‖Y � ‖x∗‖X∗ � b‖x∗‖Y , x∗ ∈ X∗.

Then Y ∗ is isomorphic to X∗∗ = X and

a‖x‖X � ‖x‖Y ∗ � b‖x‖X , x ∈ X.

Let us now show that the isomorphism constants in Theorem 4.3 do not depend on n.

Theorem 4.5. Let X be a reflexive separable Banach space, 1 < p, q < ∞, n � 1. Then

min
{
q

p
,
q′

p′

}
‖g‖

H
sn
q′

p′ (X∗)
� ‖Fg‖(

H
snq
p (X)

)∗ � ‖g‖
H

sn
q′

p′ (X∗)
. (4.8)

Proof. We already proved in Theorem 4.3 that H
snq
p (X) is reflexive, so by Lemma 4.4 it is

enough to show (4.8) for p � q. It was already noted in (4.5) that ‖Fg‖ � ‖g‖
H

sn
q′

p′ (X∗)
. It is

sufficient to show (4.8) for a bounded g. The following construction is in essence the same as
in [49, Theorem 15]. Set

(vk)nk=1 =

⎛⎜⎜⎝ (skq′(g))
p′−q′

‖g‖p′−1

H
sn
q′

p′ (X∗)

⎞⎟⎟⎠
n

k=1

.

Fix 0 < ε < 1. Let us define h ∈ H
snq
p (X) by setting

hk = vk‖gk‖q
′−1Pε(gk),

where Pε : X∗ → X is as given in Lemma 4.2. Then

(snq (h))q �
n∑

k=1

(skq′(g))
qp′−qq′

‖g‖qp′−q

H
sn
q′

p′ (X∗)

Ek−1‖gk‖q
′ �

(snq′(g))
qp′−(q−1)q′

‖g‖qp′−q

H
sn
q′

p′ (X∗)

.
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and therefore

E(snq (h))p �
E(snq′(g))

(qp′−(q−1)q′) p
q

‖g‖pp′−p

H
sn
q′

p′ (X∗)

= 1.

As a consequence,

‖Fg‖ � |〈Fg, h〉|

� (1 − ε)
1

‖g‖p′−1

H
sn
q′

p′ (X∗)

E

n∑
k=1

(skq′(g))
p′−q′Ek−1‖gk‖q

′

= (1 − ε)
1

‖g‖p′−1

H
sn
q′

p′ (X∗)

E

n∑
k=1

(skq′(g))
p′−q′((skq′(g))

q′ − (sk−1
q′ (g))q

′
).

(4.9)

By the mean value theorem,

xα − 1 � α(x− 1)xα−1, x, α � 1. (4.10)

Applying this for x =
(sk

q′ (g))
q′

(sk−1
q′ (g))q′

� 1 and α = p′

q′ � 1, we find

q′

p′
((skq′(g))

p′ − (sk−1
q′ (g))p

′
) � ((skq′(g))

q′ − (sk−1
q′ (g))q

′
)(skq′(g))

p′−q′ .

Combining this with (4.9) and letting ε → 0,

‖Fg‖ � q′

p′‖g‖p′−1

H
sn
q′

p′ (X∗)

E(snq′(g))
p′

=
q′

p′
‖g‖

H
sn
q′

p′ (X∗)
.

�

We can now deduce the main result of this section.

Proof of Theorem 4.1. Let F ∈ (Hsq
p (X))∗. For every n � 1, there exists an

Fn ∈
(
H

snq
p (X)

)∗
such that 〈F, f〉 = 〈Fn, (fk)nk=1〉 for each f ∈ H

sq
p (X) satisfying fm = 0 for

all m > n. Thanks to Theorem 4.3, for each n � 1 there exists a gn = (gnk )nk=1 ∈ H
sn
q′

p′ (X) such
that Fn = Fgn . Obviously, gmk = gnk for each m,n � k, so there exists a unique g = (gk)∞k=1

such that gn = (gk)nk=1. Moreover, Theorem 4.5 implies

min
{
q

p
,
q′

p′

}
‖gn‖

H
sn
q′

p′ (X)
� ‖Fn‖(

H
snq
p (X)

)∗ � ‖F‖(H
sq
p (X))∗ ,

so g ∈ H
sq′
p′ (X) and

min
{
q

p
,
q′

p′

}
‖g‖

H
s
q′

p′ (X)
� ‖F‖(H

sq
p (X))∗ .

Now, obviously F = Fg, as these two functionals coincide on the dense subspace of all finitely
non-zero sequences in H

sq
p (X), and (4.1) and (4.2) hold. �

5. Sharp bounds for Lq-valued stochastic integrals

We now turn to proving sharp bounds for stochastic integrals. Recall that our aim is to
find sharp estimates for Lp-norms of Lq-valued stochastic integrals with respect to general
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martingales in terms of predictable processes. We start by setting notations and recalling some
basic facts on local martingales.

5.1. Preliminaries

Throughout, H always denotes a Hilbert space. We write R+ := [0,+∞]. We let (Ω,F ,P) be a
complete probability space and let F = (Ft)t�0 be a filtration that satisfies the usual conditions.
We write P to denote the predictable σ-algebra on R+ × Ω, that is, the σ-algebra generated by
all càg (that is, continuous from the left-hand side) adapted processes. We use O to denote the
optional σ-algebra R+ × Ω, the σ-algebra generated by all càdlàg adapted processes. Let (J,J )
be a measurable space. We write P̃ = P ⊗ J and Õ := O ⊗ J for the induced σ-algebras on
Ω̃ = R+ × Ω × J .

Let M : R+ × Ω → H be a local martingale. Then M has a càdlàg version [46, Theorem
I.9], and hence for each stopping time τ one can a.s. define the jump of M at time τ by
ΔMτ := Mτ − limε→0 M(τ−ε)∨0.

Let N : R+ × Ω → H be another local martingale. The covariation [M,N ] : R+ × Ω → R

and the quadratic variation[M ] : R+ × Ω → R+ are defined by

[M,N ]t = P − lim
k∑

i=1

〈Mti −Mti−1 , Nti −Nti−1〉, t � 0,

[M ]t = [M,M ]t, t � 0,

where 0 = t0 � t1 � · · · � tk = t is a partition and the limit in probability is taken as the mesh
of the partition goes to 0. It is well known that the covariation of any two local martingales
exists and that 〈M,N〉 − [M,N ] is a local martingale. Note that for any orthogonal basis
(hn)n�1 of H, for any t � 0 a.s.

[M ]t =
∑
n�1

[〈M,hn〉]t. (5.1)

We will frequently use the Burkholder–Davis–Gundy inequality: if M is any local martingale
with M0 = 0, 1 � p < ∞, and τ is any stopping time, then(

E sup
0�t�τ

‖Mt‖p
)1/p

�p (E[M ]p/2τ )1/p.

We refer to [34] for a self-contained proof.
An non-decreasing càdlàg process A : R+ × Ω → R is called pure jump if for each t � 0 a.s.

At = A0 +
∑

0�s�t

ΔAs.

An H-valued local martingale M is called purely discontinuous if [M ] is a pure jump process
a.s. An equivalent definition of a purely discontinuous local martingale will be given in
Proposition 5.5. The reader can find more on purely discontinuous local martingales in
[20, Chapter I.4; 23, Chapter 26].

Let τ be a stopping time. We call

[τ ] = {(ω, t) ∈ Ω × R+ : t = τ(ω)}

the graph of τ (although it is strictly speaking, the restriction of the graph of τ to Ω × R+).
A stopping time τ is called predictable if there exists a non-decreasing sequence (τn)n�1 of
stopping times such that τn < τ on {τ > 0} for each n � 1 and τn ↗ τ a.s. as n → ∞ (see
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[20, Definition I.2.7] and [23, Chapter 25]). For a predictable stopping time τ , we define Fτ−
by

Fτ− := σ(Fτn)n�1.

Note that Fτ− does not depend on the choice of the announcing sequence (τn)n�1 (see, for
example, [23, Lemma 25.2(iii)]).

Let X be a Banach space. An X-valued local martingale is called quasi-left continuous if
ΔMτ = 0 a.s. on the set {τ < ∞} for each predictable stopping time τ (see [20, Chapter I.2]
for more information). An X-valued local martingale is said to have accessible jumps if there
exists a sequence of predictable stopping times (τn)n�1 with disjoint graphs such that a.s.

{t ∈ R+ : ΔMt �= 0} ⊂ ∪n�1{τn}
(see [23, p. 499] and [23, Corollary 26.16]).

Note that a local martingale M : R+ × Ω → X has accessible jumps if and only if 〈M,x∗〉
has accessible jumps for each x∗ ∈ X∗. To see this, we may assume that X is separable. Let
(xm)m�1 ⊂ X be dense in X and let (x∗

m)m�1 ⊂ X∗ be a sequence satisfying ‖x∗
m‖ = 1 and

〈x∗
m, xm〉 = ‖xm‖ (the existence of (x∗

m)n�1 is guaranteed by the Hahn–Banach theorem). One
readily checks that (x∗

m)m�1 is a norming sequence for X and in particular, x = 0 if and only
if 〈x, x∗

m〉 = 0 for all m � 1. Thus, for any X-valued local martingale M one finds

{t ∈ R+ : ΔMt �= 0} = ∪m�1{t ∈ R+ : Δ〈Mt, x
∗
m〉 �= 0}. (5.2)

Since each 〈M,x∗
m〉 has accessible jumps, there exists a sequence of predictable stopping times

(τn)n�1 such that a.s.

{t ∈ R+ : ΔMt �= 0} ⊂ ∪n�1{τn}. (5.3)

We can then define a sequence of predictable stopping times (τ ′n)n�1 with disjoint graphs that
contains all the jump times of M by setting τ ′1 = τ1 and

τ ′n :=

⎧⎨⎩τn if τn �= τ ′1, . . . , τ
′
n−1,

max{τ ′1, . . . , τ ′n−1} + 1 otherwise.

Similarly, a local martingale M : R+ × Ω → X is quasi-left continuous if and only if 〈M,x∗〉 is
quasi-left continuous for each x∗ ∈ X∗. This follows immediately from (5.2).

5.2. Decomposition of the stochastic integral

The process Φ : R+ × Ω → L(H,X) is called elementary predictable if it is of the form

Φ(t, ω) =
N∑

n=1

M∑
m=1

1(tn−1,tn]×Amn
(t, ω)

K∑
k=1

hk ⊗ xkmn,

where 0 � t0 < . . . < tn < ∞, A1n, . . . , AMn ∈ Ftn−1 for each n = 1, . . . , N and h1, . . . , hK ∈ H
are orthogonal. For each elementary predictable Φ and for any H-valued local martingale M ,
we define the stochastic integral with respect to M as an element of L0(Ω;L∞(R+;X)) by∫ t

0

Φ(s) dM(s) =
N∑

n=1

M∑
m=1

1Amn

K∑
k=1

〈M(tn ∧ t) −M(tn−1 ∧ t), hk〉xkmn. (5.4)

We will often write Φ ·M for the process
∫ ·
0
Φ(s) dM(s).

To prove sharp bounds for the stochastic integral, we will decompose it by decomposing
the integrator M into three parts. We will need the following statement, which follows from
[23, Proposition 25.17].
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Lemma 5.1. Let A : R+ × Ω → R+ be a non-decreasing adapted càdlàg process, A0 = 0
a.s. Then there exist unique non-decreasing adapted càdlàg Ac, Aq, Aa : R+ × Ω → R+ such
that Ac

0 = Aq
0 = Aa

0 = 0, Ac is continuous a.s., Aq and Aa are pure jump a.s., Aq is quasi-left
continuous, Aa has accessible jumps and A = Ac + Aq + Aa.

The following lemma gives the desired decomposition of the integrator M . It is a gener-
alization of both [23, Theorem 26.14] and [23, Corollary 26.16] to the Hilbert space-valued
case.

Lemma 5.2 (Decomposition of local martingales, Meyer, Yoeurp). Let M : R+ × Ω → H
be a local martingale. Then there exists a unique decomposition M = M c + Mq + Ma, where
M c : R+ × Ω → H is a continuous local martingale, Mq,Ma : R+ × Ω → H are purely discon-
tinuous local martingales, Mq is quasi-left continuous, Ma has accessible jumps, M c

0 = Mq
0 = 0

and then [M c] = [M ]c, [Mq] = [M ]q and [Ma] = [M ]a, where [M ]c, [M ]q and [M ]a are defined
as in Lemma 5.1.

Since the decomposition in Lemma 5.2 is due to [37] and Yoeurp [53] in the real-valued
case, it would be natural to call it the Meyer–Yoeurp decomposition. Unfortunately, this term
is already used in the literature for the decomposition of a martingale into its continuous part
and purely discontinuous part (see, for example, [23]). To avoid confusion, we will therefore
refer to the decomposition in Lemma 5.2 as the canonical decomposition of M .

It was shown in the recent paper [50] that the existence of the canonical decomposition of
a general X-valued local martingale is equivalent to X being UMD. Since the proof of this
fact is very technical and complicated, we will present an alternative, elementary proof of the
Hilbert space case here. For the proof, we will need the following statements. The proof of the
first statement is essentially the same as the one given in [23, Lemma 26.5] in the real-valued
case and therefore omitted.

Lemma 5.3 (Truncation). Let H be a Hilbert space, M : R+ × Ω → H be a local martingale.
Then there exist local martingales M ′, M ′′ : R+ × Ω → H such that M = M ′ + M ′′, M ′ has
locally integrable variation and ‖ΔM ′′

t ‖ � 1 a.s. for each t � 0.

The second statement immediately follows from [23, Theorem 26.6(viii)].

Lemma 5.4. Let M : R+ × Ω → R be a local martingale of locally finite variation. Then M
is purely discontinuous.

Proof of Lemma 5.2. The proof consists of two steps. In the first one, we show that we can
assume that ‖ΔMt‖ � 1 a.s. for each t � 0. In the second step, we will show the statement in
this particular case.

Step 1. First decompose M as in Lemma 5.3. Note that M ′ is purely discontinuous. Indeed,
for each h ∈ H the martingale 〈M ′, h〉 is locally of finite variation. Therefore, due to Lemma 5.4,
[〈M ′, h〉] is a pure jump process, and by (5.1) for any orthogonal basis (hn)n�1 of H and for
any t � 0

[M ′]t =
∑
n�1

[〈M ′, hn〉]t =
∑
n�1

∑
0�s�t

Δ[〈M ′, hn〉]s =
∑

0�s�t

∑
n�1

Δ[〈M ′, hn〉]s

=
∑

0�s�t

Δ[M ′]s.

Hence, [M ′] is pure jump, and M ′ is purely discontinuous.
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The existence of a decomposition of M ′ into a purely discontinuous quasi-left continuous part
and a purely discontinuous part with accessible jumps follows analogously to [23, Corollary
26.16]. The uniqueness holds due to the uniqueness of the decomposition in the real-valued case.

Step 2. By Step 1, we can assume that ‖ΔMt‖ � 1 a.s. for each t � 0. By a localization
argument, we may assume that M is an L2-martingale. Without loss of generality assume also
that M0 = 0 and that H is separable. Let (hn)n�1 be an orthonormal basis of H. For each
n � 1, define a martingale Mn : R+ × Ω → R by Mn := 〈M,hn〉. Then by (5.1), for each t � 0
a.s.

[M ]t =
∞∑

n=1

[Mn]t. (5.5)

For each n � 1 by [23, Theorem 26.14] and [23, Corollary 26.16], we can define martingales
M c,n,Mq,n,Ma,n : R+ × Ω → R such that

M c,n
0 = Mq,n

0 = Ma,n
0 = 0,

M c,n is a continuous martingale, Mq,n and Ma,n are purely discontinuous, Mq,n is quasi-left
continuous, Ma,n has accessible jumps and

[Mn]c = [M c,n], [Mn]q = [Mq,n], [Mn]a = [Ma,n].

[M c,n]t � [Mn]t a.s. for all t � 0, so by the Burkholder–Davis–Gundy inequality and (5.5) the
series M c

t :=
∑∞

n=1 M
c,n
t hn converges in L2(Ω;H) for each t � 0. Moreover, since a conditional

expectation is a bounded operator on L2(Ω;H), E(M c
t |Fs) = M c

s for each t � s � 0, so M c is
a martingale. Obviously, M c

0 = 0 and M c is continuous since 〈M c, hn〉 = M c,n is continuous
for each n � 1. [M ]c = [M c] since by (5.1).

[M ]c =
∞∑

n=1

[Mn]c =
∞∑

n=1

[M c,n] = [M c].

With the same argument we can construct Mq and Ma. The uniqueness follows from the
uniqueness of the decomposition

〈M,hn〉 = M c,n + Mq,n + Ma,n, n � 1. �

Thanks to Lemma 5.2, one can give an equivalent definition of a purely discontinuous local
martingale, which is broadly used in the literature (for example, in [20]).

Proposition 5.5. A local martingale M : R+ × Ω → H is purely discontinuous if and only
if 〈M,N〉 is a local martingale for any continuous bounded H-valued martingale N such that
N0 = 0.

Proof. One direction follows from [23, Corollary 26.15]. Indeed, by a stopping time argument
assume without loss of generality that E‖Mt‖ < ∞ for all t � 0. Assume also that N is bounded
by 1. Let (hn)n�1 be an orthonormal basis of H and define Mn := 〈M,hn〉, Nn := 〈N,hn〉 for
all n � 1. Let

Ln :=
n∑

i=1

MnNn =
n∑

i=1

〈M,hn〉〈N,hn〉, n � 1.

First note that Ln is a local martingale by [23, Corollary 26.15], the fact that [Mn, Nn] = 0
and the fact that local martingales form a linear space. Moreover, a.s.

|Ln
t | � ‖Mt‖‖Nt‖ � ‖Mt‖, t � 0,
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so E|Ln
t | � E‖Mt‖ < ∞ for each t � 0, and thus Ln is a martingale for each n � 0. Note that

for any t � 0 a.s., Ln
t → 〈Mt, Nt〉. Therefore, by the dominated convergence theorem and the

fact that 〈Mt, Nt〉 ∈ L1(Ω) for all t � 0, one finds that 〈Mt, Nt〉 is the limit of (Ln
t )n�1 in

L1(Ω). Since the conditional expectation is a contraction on L1(Ω) and Ln is a martingale for
any n � 1, it follows that for all 0 � s � t

E(〈Mt, Nt〉|Fs) = E( lim
n→∞

Ln
t |Fs) = lim

n→∞
E(Ln

t |Fs) = lim
n→∞

Ls
t = 〈Ms, Ns〉,

so 〈M,N〉 is a martingale.
Let us now prove the reverse implication. Without loss of generality assume that M is

a martingale. By Lemma 5.2, there exists a continuous martingale N : R+ × Ω → H such
that N0 = 0 and M −N is purely discontinuous. Let (τn)n�1 be a non-decreasing sequence of
stopping times such that τn ↗ ∞ as n → ∞ and Nτn is a bounded continuous martingale for
each n � 1. For any n � 1, 〈M,Nτn〉 is a martingale by assumption and by the first part of the
proof 〈M −N,Nτn〉 is a martingale as well. Hence, ‖Nτn‖2 = (〈M,Nτn〉 − 〈M −N,Nτn〉)τn
is a non-negative martingale that starts at zero and therefore a zero martingale. By letting
n → ∞, find N = 0 a.s., so M is purely discontinuous. �

As we will see below (Lemma 5.33), if M = M c + Mq + Ma is the canonical decomposition
of M , then the canonical decomposition of Φ ·M is given by

Φ ·M = Φ ·M c + Φ ·Mq + Φ ·Ma. (5.6)

The following four subsections are dedicated to sharp estimates of the respective parts on the
right-hand side. In Section 5.6, we combine our work to estimate Φ ·M .

5.3. Purely discontinuous martingales with accessible jumps

In this section, we prove Burkholder–Rosenthal type inequalities for purely discontinuous
martingales with accessible jumps. As an immediate consequence, we find sharp bounds for
the accessible jump part in (5.6).

Let us first formulate the main result of this section and outline the steps of the proof. Let
1 < p, q < ∞ and let M : R+ × Ω → Lq(S) be a purely discontinuous martingale with accessible
jumps. Let T = (τn)n�1 be a sequence of predictable stopping times with disjoint graphs that
exhausts the jumps of M . We define three expressions

‖M‖S̃p
q

=

⎛⎜⎝E

∥∥∥∥∥∥∥
⎛⎝∑

n�1

EFτn− |ΔMτn |2
⎞⎠

1
2

∥∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

,

‖M‖D̃p
q,q

=

⎛⎜⎝E

⎛⎝∑
n�1

EFτn−‖ΔMτn‖
q
Lq(S)

⎞⎠
p
q

⎞⎟⎠
1
p

,

‖M‖D̃p
p,q

=

⎛⎝E
∑
t�1

‖ΔMt‖pLq(S)

⎞⎠
1
p

.

(5.7)

It is not difficult to show that these expressions do not depend on the choice of the exhausting
family T . We let S̃p

q , D̃p
q,q and D̃p

p,q denote the sets of all purely discontinuous martingales with
accessible jumps for which the respective expressions in (5.7) are finite. We will prove below
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that the expressions in (5.7) are norms. Consequently, we can define a normed space Ap,q

by

S̃p
q ∩ D̃p

q,q ∩ D̃p
p,q if 2 � q � p < ∞,

S̃p
q ∩ (D̃p

q,q + D̃p
p,q) if 2 � p � q < ∞,

(S̃p
q ∩ D̃p

q,q) + D̃p
p,q if 1 < p < 2 � q < ∞,

(S̃p
q + D̃p

q,q) ∩ D̃p
p,q if 1 < q < 2 � p < ∞,

S̃p
q + (D̃p

q,q ∩ D̃p
p,q) if 1 < q � p � 2,

S̃p
q + D̃p

q,q + D̃p
p,q if 1 < p � q � 2.

(5.8)

In addition, consider the space Macc
p,q of all purely discontinuous martingale with accessible

jumps for which the norm

‖M‖Macc
p,q

:= ‖M∞‖Lp(Ω;Lq(S))

is finite. Our main result, Theorem 5.14, will show that Ap,q and Macc
p,q are isomorphic Banach

spaces and in particular,

‖M‖Macc
p,q

�p,q ‖M‖Ap,q
(5.9)

for any Lq-valued purely discontinuous martingale M with accessible jumps.
The proof consists of the following steps. As a first step, we prove the statement for

a restricted class of purely discontinuous martingales, whose jumps are exhausted by a
fixed, finite sequence of stopping times (Theorem 5.6). In this case, the statement can be
extracted by applying the discrete Burkholder–Rosenthal inequalities (specifically, the version
in Proposition 3.3) by identifying M with a suitable discrete martingale difference sequence.
In a second step, we derive the general statement by an approximation argument. For this
purpose, we construct, for a given martingale M with accessible jumps, a sequence (Mn)n�1

which approximates M in Macc
p,q and is such that each Mn is a martingale whose jumps are

exhausted by finitely many stopping times (Lemma 5.10). We then use this construction
to shown that Macc

p,q is a Banach space (Proposition 5.11). In addition, we use it to show
that Ap,q is a well-defined normed space and that M can be approximated in Ap,q by a
sequence of the form (Mn)n�1 (see Lemma 5.12). Finally, we combine all these ingredients
to show that (5.9) holds for any purely discontinuous martingale with accessible jumps;
the fact that Ap,q is a Banach space then follows from the fact that Macc

p,q is a Banach
space.

Let us now execute these steps in detail, starting with a version of the main theorem of this
subsection (Theorem 5.14 below) for martingales with finitely many jumps. For a fixed family
T = (τn)n�1 of predictable stopping times with disjoint graphs, we let S̃p,T

q , D̃p,T
q,q and D̃p,T

p,q

be the subsets of S̃p
q , D̃p

q,q and D̃p
p,q consisting of martingales M with

{t ∈ R+ : ΔMt �= 0} ⊂ {τ1, τ2, . . .} a.s.

Theorem 5.6. Let 1 < p, q < ∞, N � 1, T = (τn)Nn=1 be a finite family of predictable

stopping times with disjoint graphs. Then S̃p,T
q , D̃p,T

q,q and D̃p,T
p,q are Banach spaces under the

norms in (5.7). As a consequence, AT
p,q given by
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S̃p,T
q ∩ D̃p,T

q,q ∩ D̃p,T
p,q if 2 � q � p < ∞,

S̃p,T
q ∩ (D̃p,T

q,q + D̃p,T
p,q ) if 2 � p � q < ∞,

(S̃p,T
q ∩ D̃p,T

q,q ) + D̃p,T
p,q if 1 < p < 2 � q < ∞,

(S̃p,T
q + D̃p,T

q,q ) ∩ D̃p,T
p,q if 1 < q < 2 � p < ∞,

S̃p,T
q + (D̃p,T

q,q ∩ D̃p,T
p,q ) if 1 < q � p � 2,

S̃p,T
q + D̃p,T

q,q + D̃p,T
p,q if 1 < p � q � 2,

(5.10)

is a well-defined Banach space. Moreover, (AT
p,q)

∗ = AT
p′,q′ with isomorphism given by

g �→ Fg, Fg(f) = E
∑
t∈T

〈Δgt,Δft〉
(∗)
= E〈g∞, f∞〉,

‖Fg‖(AT
p,q)

∗ �p,q ‖g‖AT
p′,q′

.

(5.11)

Finally, for any purely discontinuous Lp-martingale M : R+ × Ω → Lq(S) with accessible jumps
such that {t ∈ R+ : ΔMt �= 0} ⊂ {τ1, . . . , τN} a.s.,(

E sup
t�0

‖Mt‖pLq(S)

) 1
p

�p,q ‖M‖AT
p,q

. (5.12)

The idea of the proof is to discretize purely discontinuous martingales with jumps in T in
a suitable way, so that S̃p,T

q , D̃p,T
q,q and D̃p,T

p,q can be identified with discrete martingale spaces
Sp
q , Dp

q,q and Dp
p,q for an appropriate filtration. For this purpose, we need two observations.

Lemma 5.7. Let F : R+ × Ω → R+ be a locally integrable càdlàg adapted process, τ
be a predictable stopping time. Let G,H : R+ × Ω → R+ be such that Gt = Fτ1[0,t](τ),
Ht = 1[0,t](τ)EFτ−Fτ for each t � 0. Then G−H is a local martingale.

Proof. Without loss of generality suppose that F is integrable. First of all note that H is
a predictable process, thanks to [23, Lemma 25.3(ii)], and G is adapted due to the fact that
Gt = Fτ∧t1[0,t](τ). Fix t > s � 0. By [23, Lemma 25.2(i)], Fs ∩ {s < τ} ⊂ Fτ− and Fs ∩ {t <
τ} ⊂ Ft ∩ {t < τ} ⊂ Fτ−. Hence,

Fs ∩ {s < τ � t} ⊂ Fτ−

and so

E(Gt −Ht|Fs) = E(Fτ1{τ�t} − 1{τ�t}EFτ−Fτ |Fs)

= E(Fτ1{τ�s} − 1{τ�s}EFτ−Fτ |Fs) + E(Fτ1{s<τ�t} − 1{s<τ�t}EFτ−Fτ |Fs)

= Gs −Hs + E(E(Fτ − EFτ−Fτ |Fτ−)1{s<τ�t}|Fs ∩ {s < τ � t})

= Gs −Hs. �

Corollary 5.8. Let X be a Banach space, τ be a predictable stopping time, ξ ∈ L1(Ω;X)
be Fτ -measurable such that EFτ−

ξ = 0. Let M : R+ × Ω → X be such that Mt = ξ1[0,t](τ).
Then M is a martingale.
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Proof. The case X = R follows from Lemma 5.7 and the fact that ξ1τ�t is Ft-measurable
for each t � 0 by the definition of Fτ . For the general case, we note that 〈M,x∗〉 is a martingale
for each x∗ ∈ X and since M is integrable it follows that M is a martingale. �

Proof of Theorem 5.6. Since T = (τn)Nn=1 is a finite family and the stopping times τi have
disjoint graphs, we can order them: formally, we can find predictable stopping times τ ′1, . . . , τ

′
N

such that

{τ1(ω), . . . , τN (ω)} = {τ ′1(ω), . . . , τ ′N (ω)}
and τ ′1(ω) < . . . < τ ′N (ω) for a.e. ω ∈ Ω. Indeed, we can set

τ ′1 := min{τ1, . . . , τN}
and

τ ′i+1 := min({τ1, . . . , τN} \ {τ ′1, . . . , τ ′i}), 1 � i � N − 1.

Fix the sequence of σ-algebras G = (Gk)2N−1
k=0 = (Fτ ′

1−,Fτ ′
1
, . . . ,Fτ ′

N−,Fτ ′
N

). Using [23, Lemma
25.2] and the fact that (τ ′n)Nn=1 is a.s. a strictly increasing sequence, one can show that G is
a filtration.

Consider Banach spaces Ŝp,odd
q , D̂p,odd

q,q and D̂p,odd
p,q with respect to the filtration G that

were defined in Proposition 3.3. For any purely discontinuous Lq-valued martingale M with
accessible jumps in T , we can construct a G-martingale difference sequence (dk)2N−1

n=0 by setting
d2n = 0, d2n−1 = ΔMτ ′

n
for n = 1, . . . , N . Indeed, by [23, Lemma 26.18] (see also [20, Lemma

2.27]) for each n = 1, . . . , N

E(d2n−1|G2n) = E(ΔMτ ′
n
|Fτ ′

n−) = 0.

By Lemma 5.7,

‖M‖S̃p,T
q

= ‖(dn)‖Sp,odd
q

, ‖M‖D̃p,T
q,q

= ‖(dn)‖Dp,odd
q,q

, ‖M‖D̃p,T
p,q

= ‖(dn)‖Dp,odd
p,q

.

Moreover, by Corollary 5.8 any element (dk)2N−1
k=0 of Ŝp,odd

q , Dp,odd
q,q , or Dp,odd

p,q (so in particular,
d2n = 0 for each n = 0, . . . , N) can be converted back to an element M of S̃p,T

q , D̃p,T
q,q or D̃p,T

p,q ,
respectively, by defining

Mt =
N∑

n=1

d2n−11[0,t](τ ′n), t � 0.

Using this identification, we find that S̃p,T
q , D̃p,T

q,q and D̃p,T
p,q are Banach spaces. As a

consequence, AT
p,q is a well-defined Banach space that is isometrically isomorphic to ŝodd

p,q . The
duality statement now follows from the duality for sodd

p,q and (∗) in (5.11) follows from (3.7).
Now let us show (5.12). By Doob’s maximal inequality,(

E sup
t�0

‖Mt‖pLq(S)

) 1
p

�p

(
E‖M∞‖pLq(S)

) 1
p

.

Again define a G-martingale difference sequence (dn)2N−1
n=0 by setting d2n = 0, d2n−1 = ΔMτ ′

n
,

where n = 1, . . . , N . Then by Proposition 3.3

‖M∞‖Lp(Ω;X) =

∥∥∥∥∥
2N−1∑
n=0

dk

∥∥∥∥∥
Lp(Ω;X)

�p,q ‖(dn)2N−1
n=0 ‖ŝodd

p,q
= ‖M‖AT

p,q
. �

We now proceed to the second part of the proof of Theorem 5.14. We will first show that
we can represent a purely discontinuous martingales with accessible jumps as a sum of jumps
occurring at predictable times. We need the following simple observation.
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Lemma 5.9. Let X be a Banach space, 1 < p < ∞, M : R+ × Ω → X be an Lp-martingale,
τ be a predictable stopping time. Then (ΔMτ1[0,t](τ))t�0 is an Lp-martingale as well.

Proof. By the definition of a predictable stopping time, there exists an increasing sequence
of stopping times (τn)n�1 such that τn < τ a.s. for each n � 1 on {τ > 0} and τn ↗ τ a.s.
as n → ∞. Then Mτ , Mτ1 , . . . ,Mτn , . . . are Lp-martingales. Moreover, ΔMτ1[0,t](τ) is Lp-
integrable for each t � 0 by Doob’s maximal inequality and the fact that a.s. ‖ΔMτ1[0,t](τ)‖ �
2 sup0�s�t ‖Ms‖. In addition, Mτ

t −Mτn
t → ΔMτ1[0,t](τ) in Lp(Ω;X) by the dominated

convergence theorem and the fact that ‖Mτ
t −Mτn

t ‖ � 2 sup0�s�t ‖Ms‖ a.s. The continuity
of the conditional expectation [17, Corollary 2.6.30] now implies that for any 0 � s � t

E(ΔMτ1[0,t]|Fs) = E

(
lim
n→∞

(Mτ
t −Mτn

t )|Fs

)
= lim

n→∞
E(Mτ

t −Mτn
t |Fs)

= lim
n→∞

(Mτ
s −Mτn

s ) = ΔMτ1[0,s],

in Lp(Ω;X). Consequently, (ΔMτ1[0,t](τ))t�0 is an Lp-martingale. �

We can now prove the assertion.

Lemma 5.10. Let 1 < p, q < ∞, M : R+ × Ω → Lq(S) be a purely discontinuous Lp-
martingale with accessible jumps. Let T = (τn)∞n=0 be any sequence of predictable stopping
times with disjoint graphs that exhausts the jumps of M . Then for each n � 1

Mn
t =

n∑
k=1

ΔMτk1[0,t](τk), t � 0, (5.13)

defines an Lp-martingale. Moreover, for any t � 0,

‖Mt −Mn
t ‖Lp(Ω;Lq(S)) → 0, n → ∞.

If supt�0 E‖Mt‖p < ∞, then ‖M∞ −Mn
∞‖Lp(Ω;Lq(S)) → 0 for n → ∞.

Proof. Step 1. Let us first suppose that M takes values in a finite-dimensional subspace
of Lq(S). Let |||·||| be an equivalent Euclidean norm on this subspace. Then, by Lemma 5.9,
(5.13) defines an Lp-martingale. Since M is purely discontinuous, the Burkholder–Davis–Gundy
inequality implies

E|||(M −Mn)t|||p �p E[M −Mn]
p
2
t = E

( ∞∑
k=n+1

|||ΔMτk |||
21[0,t](τk)

) p
2

. (5.14)

Since the sum on the right-hand side is a.s. bounded by [M ]t and monotonically vanishes as
n → ∞, the first convergence result follows. If

sup
t�0

E‖Mt‖p < ∞,

then

E|||(Mn)t|||p �p E[Mn]
p
2
t = E

(
n∑

k=1

|||ΔMτk |||
21[0,t](τk)

) p
2

� E[M ]t
p/2

.
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Thus, Mn
∞ = limt→∞ Mn

t exists in Lp(Ω;Lq(S)). The second convergence result now follows
from the computation (5.14) for t = ∞.

Step 2. Let (xm)m�1 be a Schauder basis of Lq(S). Then every x ∈ Lq(S) has a unique
decomposition x =

∑
m�1 amxm, and according to [1, Proposition 1.1.9], there exists K > 0

such that for each N � 1 ∥∥∥∥∥
N∑

m=1

amxm

∥∥∥∥∥ � K‖x‖. (5.15)

Let PN ∈ L(Lq(S)) be such that PNxm = xm for m � N , and PNxm = 0 for m > N . By Step
1, PNMn defines an Lp-martingale for each N � 1 and since PNMn

t → Mn
t in Lp(Ω;Lq(S))

for each t � 0, Mn is an Lp-martingale.
To prove convergence we use a result from [51]. Consider a purely discontinuous

Lp-martingale M̃ with accessible jumps. For each n � 1, both martingales M̃ and M̃n are
purely discontinuous and M̃n is weakly differentially subordinated to M̃ , that is, for any
x∗ ∈ Lq′(S) the process

[〈M̃, x∗〉] − [〈M̃n, x∗〉]

is a.s. non-decreasing and |〈M̃n
0 , x

∗〉| � |〈M̃0, x
∗〉| a.s. By [51],

E‖M̃n
t ‖p �p,q E‖M̃t‖p, t � 0. (5.16)

By (5.16) applied for the martingale M̃ = (I − PN )M , we obtain

E‖PNMn
t −Mn

t ‖p �p,q E‖PNMt −Mt‖p

for each N,n � 1. Therefore,

(E‖Mt −Mn
t ‖p)

1
p � (E‖Mt − PNMt‖p)

1
p + (E‖PNMt − PNMn

t ‖p)
1
p + (E‖PNMn

t −Mn
t ‖p)

1
p

�p,q (E‖Mt − PNMt‖p)
1
p + (E‖PNMt − PNMn

t ‖p)
1
p . (5.17)

For a fixed ε > 0, we can now first pick N so that the first term on the right-hand side of (5.17)
is less than ε

2 , and subsequently use Step 1 to find an n = n(N, ε) so that the second term on
the right-hand side of (5.17) will be less than ε

2 . Hence, for each ε > 0, there exists nε such

that (E‖Mt −Mnε
t ‖p)

1
p �p,q ε, so E‖Mn

t −Mt‖p → 0 as n → ∞.
Finally, if supt>0 E‖Mt‖p < ∞, then supt>0 E‖Mn

t ‖p < ∞ by (5.16). Hence,
Mn

∞ = limt→∞ Mn
t exists in Lp(Ω;Lq(S)) and (5.16) shows that

E‖PNMn
∞ −Mn

∞‖p �p,q E‖PNM∞ −M∞‖p

for each N,n � 1. Repeating (5.17) for t = ∞ now yields the second convergence result. �

Recall that for any 1 < p, q < ∞, Macc
p,q is defined to be the linear space of all Lq(S)-

valued purely discontinuous Lp-martingales with accessible jumps, endowed with the norm
‖M‖Macc

p,q
:= ‖M∞‖Lp(Ω;Lq(S)). Using Lemma 5.10, we can deduce the following proposition.

Proposition 5.11. For any 1 < p, q < ∞ the space Macc
p,q is a Banach space.

Proof. Let (Mn)n�1 be a Cauchy sequence in Macc
p,q . Since Lp(Ω;Lq(S)) is a Banach

space, there exists a limit ξ in Lp(Ω;Lq(S)) of the sequence (Mn
∞)n�1. Define an

Lp-martingale M by Mt = E(ξ|Ft), t � 0. To prove that M ∈ Macc
p,q , it is enough to show that

for each x∗ ∈ Lq′(S) the martingale 〈M,x∗〉 is purely discontinuous with accessible jumps. Fix
x∗ ∈ Lq′(S). Define N := 〈M,x∗〉 and Nn := 〈Mn, x∗〉 for each n � 1. Then Nn

∞ → N∞ in
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Lp(Ω). Let N = N c + Nq + Na be the canonical decomposition in Lemma 5.2. Since Nn is a
purely discontinuous martingale with accessible jumps, it follows from the uniqueness statement
in Lemma 5.2 that the canonical decomposition of N −Nn is given by N c + Nq + (Na −Nn).
By [23, Corollaries 26.15, 26.16],

[N c, Nq] = [N c, Na −Nn] = [Nq, Na −Nn] = 0 a.s.

It therefore follows from the Burkholder–Davis–Gundy inequality that

E|N∞ −Nn
∞|p �p E[N −Nn]

p
2∞

= E([N ]c∞ + [N ]q∞ + [N −Nn]a∞)
p
2 � E([N ]c∞ + [N ]q∞)

p
2 .

By taking n → ∞, we find E ([N ]c∞ + [N ]q∞)
p
2 = 0 and so [N ]c∞ = [N ]q∞ = 0 a.s. We conclude

that N is purely discontinuous with accessible jumps. Since this holds for any x∗ ∈ Lq′(S),
M ∈ Macc

p,q . �

As a second consequence of Lemma 5.10, we deduce that Ap,q is well defined.

Lemma 5.12. Let 1 < p, q < ∞. Let M be in S̃p
q , D̃p

q,q or D̃p
p,q and let T = (τn)n�1 be any

sequence of predictable stopping times with disjoint graphs that exhausts the jumps of M .
Consider the process Mn defined in (5.13). Then Mn → M in S̃p

q , D̃p
q,q or D̃p

p,q, respectively.

As a consequence, S̃p
q , D̃p

q,q, and D̃p
p,q are normed linear spaces and Ap,q, given in (5.8), is

a well-defined normed linear space. If M ∈ Ap,q, then there exists a sequence of predictable
stopping times T with disjoint graphs that exhausts the jumps of M so that Mn → M in Ap,q.

Proof. We prove the two first statements only for S̃p
q . By the dominated convergence

theorem, we obtain Mn → M in S̃p
q and ‖Mn‖S̃p

q
↗ ‖M‖S̃p

q
as well. Suppose now that

M,N ∈ S̃p
q . By [20, Lemma I.2.23], there exists a sequence T = {τn}n�1 of predictable stopping

times with disjoint graphs that exhausts the jumps of both M and N . Now clearly,

(M + N)n = Mn + Nn,

and so

‖M + N‖S̃p
q

= lim
n→∞

‖Mn + Nn‖S̃p
q

� lim
n→∞

(
‖Mn‖S̃p,T

q
+ ‖Nn‖S̃p,T

q

)
= ‖M‖S̃p

q
+ ‖N‖S̃p

q
.

Let us prove the final statement if p � q � 2, the other cases are similar. Let M ∈ Ap,q and
let M1 ∈ S̃p

q , M2 ∈ D̃p
q,q, M3 ∈ D̃p

p,q be such that M = M1 + M2 + M3. Let T = {τn}n�1 be a
sequence of predictable stopping times with disjoint graphs that exhausts the jumps of M1,
M2 and M3. Then Mn = Mn

1 + Mn
2 + Mn

3 and by the above,

‖M −Mn‖Ap,q
� ‖M1 −Mn

1 ‖S̃p,T
q

+ ‖M2 −Mn
2 ‖D̃p

q,q
+ ‖M3 −Mn

3 ‖D̃p
p,q

→ 0

as n → ∞. �

Intuitively, one would expect the two norms ‖M‖AT
p,q

and ‖M‖Ap,q
to coincide if M happens

to have jumps that are exhausted by a finite family T . The following lemma confirms this
intuition.

Lemma 5.13. Let 1 < p, q < ∞, N � 1, T = (τn)Nn=0 be a finite family of predictable
stopping times with disjoint graphs. Then AT

p,q ↪→ Ap,q isometrically.
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Proof. We will consider only the case p � q � 2, the other cases can be shown analogously.
Let M ∈ AT

p,q. Then automatically M ∈ Ap,q and ‖M‖AT
p,q

� ‖M‖Ap,q
. Let us show the reverse

inequality. Fix ε > 0, and let M1 ∈ S̃p
q , M2 ∈ D̃p

q,q and M3 ∈ D̃p
p,q be martingales such that

M = M1 + M2 + M3 and

‖M‖Ap,q
� ‖M1‖S̃p

q
+ ‖M2‖D̃p

q,q
+ ‖M3‖D̃p

p,q
− ε.

By Lemma 5.9, we can define martingales M̃1, M̃2 and M̃3 by

M̃ i
t =

∑
s∈T ∩[0,t]

ΔM i
s, t � 0, i = 1, 2, 3. (5.18)

Note that |ΔM̃ i
t (ω)(s)| � |ΔM i

t (ω)(s)| for each t � 0, ω ∈ Ω, s ∈ S and i = 1, 2, 3. Therefore,
M̃1 ∈ S̃p

q , M̃2 ∈ D̃p
q,q and M̃3 ∈ D̃p

p,q and ‖M̃1‖S̃p
q
� ‖M1‖S̃p

q
, ‖M̃2‖D̃p

q,q
� ‖M2‖D̃p

q,q
and

‖M̃3‖D̃p
p,q

� ‖M3‖D̃p
p,q

. Moreover, M = M̃1 + M̃2 + M̃3. Indeed, since all the martingales here
are purely discontinuous with accessible jumps, by (5.18) we find for each t � 0 a.s.

Mt =
∑

s∈T ∩[0,t]

ΔMs =
∑

s∈T ∩[0,t]

(
ΔM1

s + ΔM2
s + ΔM3

s

)
= M̃1

t + M̃2
t + M̃3

t .

Therefore,

‖M‖AT
p,q

� ‖M̃1‖S̃p
q

+ ‖M̃2‖D̃p
q,q

+ ‖M̃3‖D̃p
p,q

� ‖M1‖S̃p
q

+ ‖M2‖D̃p
q,q

+ ‖M3‖D̃p
p,q

� ‖M‖Ap,q
+ ε.

Since ε was arbitrary, we conclude that ‖M‖AT
p,q

� ‖M‖Ap,q
, and consequently ‖M‖AT

p,q
=

‖M‖Ap,q
. �

We are now ready to deduce the main theorem of this subsection.

Theorem 5.14. Let 1 < p, q < ∞, M : R+ × Ω → Lq(S) be a purely discontinuous martin-
gale with accessible jumps. Then,(

E sup
t�0

‖Mt‖pLq(S)

) 1
p

�p,q ‖M‖Ap,q
, (5.19)

where Ap,q is as in (5.8). In particular, Ap,q is a Banach space of Lp-martingales.

Proof. By Doob’s maximal inequality E supt�0 ‖Mt‖p �p ‖M‖pMacc
p,q

, so we need to show that
‖M‖Macc

p,q
�p,q ‖M‖Ap,q

. Suppose first that M ∈ Ap,q. By Lemma 5.12, there exists a sequence
of predictable stopping times T with disjoint graphs that exhausts the jumps of M so that
Mn defined by (5.13) converges to M in Ap,q. In particular, (Mn)n�1 is Cauchy in Ap,q. By
Lemma 5.13 and Theorem 5.6, it follows that it is also Cauchy in Macc

p,q . By Proposition 5.11,
(Mn)n�1 converges and clearly the limit is M .

Suppose now that M ∈ Macc
p,q . It suffices to show that M ∈ Ap,q. Indeed, Lemma 5.12 then

shows that there is a sequence of predictable stopping times with disjoint graphs that exhausts
the jumps of M so that Mn → M in Ap,q. By Lemma 5.10, we also have Mn → M in Macc

p,q
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and so the lower bound in (5.19) follows from Lemma 5.13 and Theorem 5.6. We will show that
M ∈ Ap,q in the two cases 2 � q � p and p � q � 2, the other cases can be treated analogously.

Case 2 � q � p. We will show that ‖M‖S̃p
q
�p,q ‖M‖Macc

p,q
. The analogous statements for D̃p

q,q

and D̃p
p,q can be shown in the same way. By Theorem 5.6, ‖Mn‖S̃p

q
�p,q ‖Mn‖Macc

p,q
. Also, by

(5.16), we have that ‖Mn‖Macc
p,q

�p,q ‖M‖Macc
p,q

for all n � 1. Therefore, ‖Mn‖S̃p
q
�p,q ‖M‖Macc

p,q

uniformly in n, so by monotone convergence

‖M‖p
S̃p
q

= E

∥∥∥∥∥∥∥
⎛⎝∑

m�1

EFτm− |ΔMτm |2
⎞⎠

1
2

∥∥∥∥∥∥∥
p

Lq(S)

= lim
n→∞

E

∥∥∥∥∥∥
(

n∑
m=0

EFτm− |ΔMτm |2
) 1

2

∥∥∥∥∥∥
p

Lq(S)

= lim
n→∞

‖Mn‖p
S̃p
q
�p,q ‖M‖pMacc

p,q
. (5.20)

Case p � q � 2. Observe that ‖Mn‖Ap,q
�p,q ‖Mn‖Macc

p,q
for each n � 1 by Theorem 5.6 and

since (Mn)n�1 is a Cauchy sequence in Macc
p,q due to Lemma 5.10, it follows that (Mn)n�1 is

a Cauchy sequence in Ap,q. Thus, there exists a subsequence (Mnk)k�0 such that

‖Mnk+1 −Mnk‖Ap,q
<

1
2k+1

, k � 0.

Let Nk = Mnk −Mnk−1 , k � 1, N0 = Mn0 . Set n−1 = −1. By Theorem 5.6, for each k � 0
there exist Nk,1, Nk,2 and Nk,3 such that Nk,1 ∈ S̃p

q , Nk,2 ∈ D̃p
q,q, N

k,3 ∈ D̃p
p,q, N

k = Nk,1 +
Nk,2 + Nk,3,

{t : ΔNk,i
t �= 0, i = 1, 2, 3} ⊂ {τnk−1+1, . . . , τnk

}, a.s.,

and

‖Nk,1‖S̃p
q

+ ‖Nk,2‖D̃p
q,q

+ ‖Nk,3‖D̃p
p,q

<
1
2k

, k � 1,

‖N0,1‖S̃p
q

+ ‖N0,2‖D̃p
q,q

+ ‖N0,3‖D̃p
p,q

� 2‖Mn0‖Ap,q
.

(5.21)

Let

Mm,i :=
m∑

k=0

Nk,i, m � 1, i = 1, 2, 3.

Then by (5.21), (Mm,1)m�1, (Mm,2)m�1 and (Mm,3)m�1 are Cauchy sequences in S̃p
q , D̃p

q,q and
D̃p

p,q, respectively. By construction, each of Mm,i, m � 1, i = 1, 2, 3, has finitely many jumps
occurring in {τ0, . . . , τnm

}, so by Theorem 5.6 the sequences (Mm,1)m�1, (Mm,2)m�1 and
(Mm,3)m�1 are Cauchy in Macc

p,q as well. Due to Proposition 5.11, there exist M̃1, M̃2 and M̃3

such that Mm,i → M̃ i in Macc
p,q as m → ∞ for each i = 1, 2, 3. Since Mm,1 + Mm,2 + Mm,3 →

M in Macc
p,q as m → ∞ by Lemma 5.10, it follows that M = M̃1 + M̃2 + M̃3.

Let us now show that the jumps of M̃1, M̃2 and M̃3 are exhausted by family T = (τn)n�1.
Indeed, assume that for some i = 1, 2, 3 there exists a predictable stopping time τ such that
P{ΔM̃ i

τ �= 0, τ /∈ {τ1, τ2, . . .}} > 0. Then by separability of X = Lq(S) there exists an x∗ ∈ X∗

such that

P{〈ΔM̃ i
τ , x

∗〉 �= 0, τ /∈ {τ1, τ2, . . .}} > 0 (5.22)
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and so, by the Burkholder–Davis–Gundy inequality,

E|〈(Mm,i − M̃ i)∞, x∗〉|p �p E[〈Mm,i − M̃ i, x∗〉]
p
2∞

= E

⎛⎝∑
u�0

|〈Δ(Mm,i − M̃ i)u, x∗〉|2
⎞⎠

p
2

� E|〈ΔM̃ i
τ , x

∗〉|p1τ /∈{τ1,τ2,...},

(5.23)

where the final inequality holds as P{ΔMm,i
τ �= 0, τ /∈ {τ1, τ2, . . .}} = 0. But the last expression

in (5.23) does not vanish as m → ∞ because of (5.22), which contradicts with the fact that
Mm,i → M̃ i in Macc

p,q .
By the calculation in (5.20), ‖M̃1‖S̃p

q
= limm→∞ ‖Mm,1‖S̃p

q
and the right-hand side is

bounded as Mm,1 is Cauchy in S̃p
q . By the same reasoning M̃2 ∈ D̃p

q,q and M̃3 ∈ D̃p
p,q, so

M ∈ Ap,q. This completes the proof. �

Theorem 5.14 and Lemma 5.33 immediately yield the following sharp estimates for stochastic
integrals.

Corollary 5.15. Let 1 < p, q < ∞, M : R+ × Ω → H be a purely discontinuous
Lp-martingale with accessible jumps, X = Lq(S), Φ : R+ × Ω → L(H,X) be elementary
predictable. Then for all t � 0 one has that(

E sup
0�s�t

‖(Φ ·M)s‖pLq(S)

) 1
p

�p,q ‖(Φ1[0,t]) ·M‖Ap,q
,

where Ap,q is as given in (5.8).

5.4. Quasi-left continuous purely discontinuous martingales

We now turn to estimates for the stochastic integral Φ ·M in the case that M is a purely
discontinuous quasi-left continuous local martingale. We will first show in Lemma 5.18 that
one can (essentially) represent Φ ·M as a stochastic integral ΦH 
 μ̄M , where μ̄M is the
compensated version of the jump measure μM of M . Afterwards, in Theorem 5.28, we prove
sharp bounds for stochastic integrals of the form f 
 μ̄, where μ is any integer-valued random
measure with a compensator that is non-atomic in time. By combining these two observations,
we immediately find sharp bounds for Φ ·M , see Theorem 5.30.

5.4.1. Facts on random measures. Let us start by recalling some necessary definitions
and facts concerning random measures. Let (J,J ) be a measurable space. Then a family μ =
{μ(ω; dt, dx), ω ∈ Ω} of non-negative measures on (R+ × J ;B(R+) ⊗ J ) is called a random
measure. A random measure μ is called integer-valued if it takes values in N ∪ {∞}, that is,
for each A ∈ B(R+) ⊗F ⊗ J one has that μ(A) ∈ N ∪ {∞} a.s., and if μ({t} × J) ∈ {0, 1} a.s.
for all t � 0. We say that μ is non-atomic in time if μ({t} × J) = 0 a.s. for all t � 0.

Recall that P and O denote the predictable and optional σ-algebra on R+ × Ω and P̃ = P ⊗
J and Õ := O ⊗ J are the induced σ-algebras on Ω̃ = R+ × Ω × J . A process F : R+ × Ω → R

is called optional if it is O-measurable. A random measure μ is called optional (respectively,
predictable) if for any Õ-measurable (respectively, P̃-measurable) non-negative F : R+ × Ω ×
J → R+ the stochastic integral

(F 
 μ)t(ω) :=
∫
R+×J

1[0,t](s)F (s, ω, x)μ(ω; ds, dx), t � 0, ω ∈ Ω,
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as a function from R+ × Ω to R+ is optional (respectively, predictable). Let X be a
Banach space.

We can extend stochastic integration to X-valued processes in the following way. Let F :
R+ × Ω × J → X, μ be a random measure. The integral

(F 
 μ)t :=
∫
R+×J

F (s, ·, x)1[0,t](s)μ(·; ds, dx), t � 0,

is well defined and optional (respectively, predictable) if μ is optional (respectively, predictable),
F is Õ-strongly-measurable (respectively, P̃-strongly-measurable) and (‖F‖ 
 μ)∞ is a.s.
bounded. We refer the reader to [20, 29, 33, 40] for further details.

A random measure μ is called P̃-σ-finite if there exists an increasing sequence of sets
(An)n�1 ⊂ P̃ such that

∫
R+×J

1An
(s, ω, x)μ(ω; ds, dx) is finite a.s. and ∪nAn = R+ × Ω × J .

According to [20, Theorem II.1.8], every P̃-σ-finite optional random measure μ has a compen-

sator: a unique P̃-σ-finite predictable random measure ν such that E(W 
 μ)∞ = E(W 
 ν)∞
for each P̃-measurable real-valued non-negative W . We refer the reader to [20, Chapter II.1]
for more details on random measures. For any optional P̃-σ-finite measure μ, we define the
associated compensated random measure by μ̄ = μ− ν.

For each P̃-strongly-measurable F : R+ × Ω × J → X such that E(‖F‖ 
 μ)∞ < ∞ (or,
equivalently, E(‖F‖ 
 ν)∞ < ∞, see the definition of a compensator above), we can define
a process F 
 μ̄ by F 
 μ− F 
 ν. The reader should be warned that in the literature F 
 μ̄ is
often used to denote the integral of F over the whole R+ (that is, (F 
 μ̄)∞ in our notation).

For further reference, we state the following lemma, which is a straightforward consequence
of the definition of a compensator.

Lemma 5.16. Let A ∈ P̃, μ1 be a P̃-σ-finite random measure with a compensator ν1. Then
μ2 = μ11A is a P̃-σ-finite random measure and ν2 = ν11A is a compensator for μ2.

5.4.2. Representation of the stochastic integral. To any purely discontinuous local martin-
gale M with values in a Hilbert space H we can associate an integer-valued random measure
μM on B(R+) ⊗ B(H) by setting

μM (ω;B ×A) :=
∑
u∈B

1A\{0}(ΔMu(ω)), ω ∈ Ω,

for each B ∈ B(R+), A ∈ B(H). That is, μM (ω;B ×A) counts the number of jumps within the
time set B with size in A on the trajectory belonging to the sample point ω.

Recall that a process M : R+ × Ω → H is called quasi-left continuous if ΔMτ = 0 a.s. on the
set {τ < ∞} for each predictable stopping time τ . If M : R+ × Ω → H is a quasi-left continuous
local martingale, then μM is P̃-σ-finite and there exists a compensator νM (see, for example,
[20, Proposition II.1.16] and [23, Theorem 25.22]). If M is, in addition, purely discontinuous,
then the following characterization holds thanks to [20, Corollary II.1.19].

Lemma 5.17. Let H be a separable Hilbert space and M : R+ × Ω → H be a purely
discontinuous local martingale. Let μM and νM be the associated integer-valued random
measure and its compensator. Then M is quasi-left continuous if and only if νM is non-atomic
in time.

Let us now show that Φ ·M can (essentially) be represented as a stochastic integral with
respect to μ̄M .

Lemma 5.18. Let X be a Banach space, H be a Hilbert space, 1 < p < ∞, M : R+ × Ω → H
be a purely discontinuous quasi-left continuous local martingale and Φ : R+ × Ω → L(H,X)
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be elementary predictable. Define ΦH : R+ × Ω ×H → X by

ΦH(t, ω, h) := Φ(t, ω)h, t � 0, ω ∈ Ω, h ∈ H.

Then there exists an increasing sequence (An)n�1 ∈ P̃ such that ∪nAn = R+ × Ω × J , ΦH1An

is integrable with respect to μ̄M for each n � 1, and

(i) if Φ ·M ∈ Lp(Ω;X) then (ΦH1An
) 
 μ̄M → Φ ·M in Lp(Ω;X);

(ii) if Φ ·M �∈ Lp(Ω;X) then ‖(ΦH1An
) 
 μ̄M‖Lp(Ω;X) → ∞ for n → ∞.

Proof. For each k, l � 1, we define a stopping time τk,l by

τk,l = inf{t ∈ R+ : #{s ∈ [0, t] : ‖ΔMs‖ ∈ [1/k, k]} = l}.
Since M has càdlàg trajectories, τk,l is a.s. well defined and takes its values in [0,∞]. Moreover,
τk,l → ∞ for each k � 1 a.s. as l → ∞.

Set Bk = {h ∈ H : ‖h‖ ∈ [1/k, k]}. For each k, l � 1, define

Ak,l := [0, τk,l] ×Bk ⊂ P̃.

Then ΦH1Ak,l
is integrable with respect to μM . Indeed, a.s.(

(ΦH1Ak,l
) 
 μM

)
∞ � sup ‖Φ‖k

(
1Ak,l


 μM
)
∞ � sup ‖Φ‖kl.

Since τk,l → ∞ for each k � 1 a.s. as l → ∞, we can find a subsequence (τkn,ln)n�1 such
that kn � n for each n � 1 and infm�n τkm,lm → ∞ a.s. as n → ∞. Let τn = infm�n τkm,lm

and define (An)n�1 ⊂ P̃ by

An = 1[0,τn]×Bn
.

Then ∪nAn = R+ × Ω × J and ΦH1An
is integrable with respect to μ̄M for all n � 1.

Now, prove that (ΦH1An
) 
 μ̄M → Φ ·M in Lp(Ω;X). Since Φ is simple, it takes its values

in a finite-dimensional subspace of X, so we can endow X with a Euclidean norm |||·|||.
First suppose that (Φ ·M)∞ /∈ Lp(Ω;X). By the Burkholder–Davis–Gundy inequality, this

is equivalent to the fact that [Φ ·M ]
1
2∞ /∈ Lp(Ω;X). Note that

E|||(ΦH1An
) 
 μ̄M )∞|||p �p E

[
(ΦH1An

) 
 μ̄M
] p

2

∞

= E

⎛⎝ ∑
t∈[0,τn]

|||Δ(Φ ·M)t|||21‖ΔMt‖∈[1/n,n]

⎞⎠
p
2

,

and the last expression monotonically goes to infinity since τn → ∞ a.s. and

E

⎛⎝∑
t�0

‖Δ(Φ ·M)t‖2

⎞⎠
p
2

= E[Φ ·M ]
p
2∞ = ∞.

So if (Φ ·M)∞ /∈ Lp(Ω;X), then
∥∥((ΦH1An

) 
 μ̄M
)
∞
∥∥
Lp(Ω;X)

→ ∞ as n → ∞.
Now, assume that (Φ ·M)∞ ∈ Lp(Ω;X). Then

E|||(Φ ·M)∞ − ((ΦH1An
) 
 μ̄M )∞|||p �p E[Φ ·M − (ΦH1An

) 
 μ̄M ]
p
2∞

= E

⎛⎝ ∑
t∈[0,τn]

|||Δ(Φ ·M)t|||21‖ΔMt‖/∈[1/n,n] +
∑

t∈(τn,∞)

|||Δ(Φ ·M)t|||2
⎞⎠

p
2

→ 0, n → ∞

by the dominated convergence theorem. �
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By Lemmas 5.17 and 5.18, it now suffices to obtain sharp bounds for the stochastic integral
(F 
 μ̄)∞, where μ is any optional integer-valued random measure whose compensator ν is
non-atomic in time.

5.4.3. Integrals with respect to random measures. Throughout this subsection, μ denotes
an optional integer-valued random measure whose compensator ν is non-atomic in time,
that is, ν({t} × J) = 0 a.s. for all t � 0. To derive the sharp bounds for stochastic integrals
with respect to μ in Theorem 5.28, we will need to collect several observations, stated in
Lemma 5.19, Proposition 5.22, Lemma 5.24 and Proposition 5.27. Together with Lemma 2.1
and Corollary B.8, they form the main ingredients for the proof. At the start of the proof of
Theorem 5.28, we will discuss how these ingredients are combined.

Let us start by deriving the first observation.

Lemma 5.19. Let X be a Banach space, 1 < p < ∞, μ be a random measure, ν be the
corresponding compensator, F : R+ × Ω × J → X and G : R+ × Ω × J → X∗ be simple P̃-

measurable functions. Then for each A ∈ P̃ such that E(1A 
 μ)∞ < ∞ the stochastic integrals
(F1A) 
 μ̄ and (G1A) 
 μ̄ are well defined and

E〈(F1A) 
 μ̄, (G1A) 
 μ̄〉 = E(〈F,G〉1A) 
 ν. (5.24)

Observe that it suffices to prove this statement if X is finite dimensional and Euclidean. By
Lemma 5.16, we can also redefine F := F1A, G := G1A. Hence, Lemma 5.19 is immediate from
the following statement, which easily follows from [20, Theorem II.1.33] (or from [12, p.98]
and [40, (6)] as well).

Lemma 5.20. Let H be a Hilbert space, f : R+ × Ω × J → H be strongly-P̃-measurable.
Then

E‖f 
 μ̄‖2 = E‖f‖2 
 ν. (5.25)

Equivalently, for each strongly-P̃-measurable f, g : R+ × Ω × J → H such that E‖f‖2 
 ν < ∞
and E‖g‖2 
 ν < ∞

E〈f 
 μ̄, g 
 μ̄〉 = E〈f, g〉 
 ν. (5.26)

Proof. The case H = R can be deduced from [20, II.1.34] as ν is assumed to be non-atomic
in time. Note that by the Pettis measurability theorem [17, Theorem 1.1.20] we may assume
that H is separable, thus by applying the real-valued case coordinate-wise, we obtain the
general case. �

The second observation is an extension of the following classical result of Novikov
[40, Theorem 1].

Lemma 5.21 (Novikov). Let f : R+ × Ω × J → R be P̃-measurable. Then

E|f 
 μ̄|p �p E|f |p 
 ν if 1 � p � 2,

E|f 
 μ̄|p �p (E|f |2 
 ν)
p
2 + E|f |p 
 ν if p � 2.
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The following proposition extends Novikov’s inequalities in the case that ν(R+ × J) � 1 a.s.
If X = Lq(S), then this result can be seen as a special case of Theorem 5.28. In the proof, we
will use the measure P ⊗ ν on B(R+) ⊗F ⊗ J that is defined by setting

P ⊗ ν

(
n⋃

i=1

Ai ×Bi

)
:=

n∑
i=1

E(1Ai
ν(Bi)), (5.27)

for disjoint Ai ∈ F and disjoint Bi ∈ B(R+) ⊗ J , and extending P ⊗ ν to B(R+) ⊗F ⊗ J via
the Carathéodory extension theorem.

Proposition 5.22. Suppose ν(R+ × J) � 1 a.s. Let X be a Banach space and F : R+ ×
Ω × J → X be simple P̃-measurable. Then for all 1 < p < ∞

E‖F 
 μ̄‖p �p E‖F‖p 
 ν. (5.28)

In particular,

(E‖(F 
 μ̄)∞‖p|F0) �p (E(‖F‖p 
 ν)∞|F0). (5.29)

Proof. We start by proving (5.28). We first prove �p, and later deduce �p by a
duality argument.

Step 1: upper bounds. The case X = R follows from Lemma 5.21 and the fact that ‖ ·
‖L2(R+×Ω×J,P⊗ν) � ‖ · ‖Lp(R+×Ω×J,P⊗ν) for each p � 2 since P ⊗ ν(R+ × Ω × J) � 1. Now, let
X be a general Banach space. Then

E‖F 
 μ̄‖p
(i)

�p E‖F 
 μ‖p + E‖F 
 ν‖p
(ii)

� E|‖F‖ 
 μ|p + E|‖F‖ 
 ν|p

(iii)

� p E|‖F‖ 
 μ̄|p + E|‖F‖ 
 ν|p
(iv)

� p E‖F‖p 
 ν,

where (i) and (iii) follow from the fact that μ̄ = μ− ν and the triangle inequality, (ii) follows
from [17, Proposition 1.2.2] and (iv) follows from the real-valued case and the fact that a.s.

‖ · ‖L1(R+×J;ν) � ‖ · ‖Lp(R+×J;ν).

Step 2: lower bounds. We can assume that X is finite dimensional since F is simple. Let
Y = Lp(R+ × Ω × J,P ⊗ ν;X). Recall that by [17, Proposition 1.3.3] Y ∗ = Lp′

(R+ × Ω ×
J,P ⊗ ν;X∗) and (Lp(Ω;X))∗ = Lp′

(Ω;X∗). Therefore, due to the upper bounds from Step
1 and Lemma 5.19

(E‖F‖p 
 ν)
1
p = sup

G∈Y ∗:‖G‖�1

E〈F,G〉 
 ν = sup
G∈Y ∗:‖G‖�1

E〈F 
 μ̄,G 
 μ̄〉

�p sup
ξ∈Lp′ (Ω;X∗):‖ξ‖�1

E〈F 
 μ̄, ξ〉 = (E‖F 
 μ̄‖p) 1
p .

To derive (5.29), fix any A ∈ F0. Then by Lemma 5.16 and (5.28)

E(‖(F 
 μ̄)∞‖p · 1A) = E‖((F · 1A) 
 μ̄)∞‖p �p E(‖F · 1A‖p 
 ν)∞ = E((‖F‖p 
 ν)∞ · 1A).

Since A is arbitrary, our proof is complete. �

Remark 5.23. The condition ν(R+ × J) � 1 a.s. is necessary in general. Indeed, let N
be a Poisson process with intensity parameter λ and let μ be the random measure on
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R+ × {0} defined by μ([0, t] × {0}) = Nt. Then the corresponding compensator ν satisfies
ν([0, t] × {0}) = λt. In particular,

E|1[0,1] 
 μ̄|4 = E|N − λ|4 =
∞∑
k=0

(k − λ)4λke−λ

k!
= λ(3λ + 1),

which is not comparable with E|1[0,1]|4 
 ν = λ if λ is large.
The condition ν(R+ × J) � 1 a.s. is, however, not needed for the upper bounds if 1 � p � 2

and X is a Hilbert space. Indeed, for p = 1

E‖F 
 μ̄‖ � E‖F 
 μ‖ + E‖F 
 ν‖ � E‖F‖ 
 μ + E‖F‖ 
 ν = 2E‖F‖ 
 ν,
and for case p = 2 follows immediately from Lemma 5.20:

E‖F 
 μ̄‖2 = E‖F‖2

 ν.

Therefore, by the vector-valued Riesz–Thorin theorem [17, Theorem 2.2.1] for each 1 � p � 2

(E‖F 
 μ̄‖p)
1
p � 2(E‖F‖p 
 ν)

1
p .

The third observation needed in the proof of Theorem 5.28 reads as follows.

Lemma 5.24. Let F : R+ × Ω → R+ be a non-decreasing continuous predictable function
such that F (t) − F (s) � C(t− s) for all 0 � s � t a.s. and for some fixed constant C � 0 and
F (0) = 0 a.s. Then for each fixed T � 0

F (T ) = lim
m→∞

[2mT ]−1∑
n=0

E

[
F

(
n + 1
2m

)
− F

( n

2m
)∣∣∣F n

2m

]
,

where the last limit holds a.s. and in Lp(Ω) for all 1 < p < ∞.

For the proof we will need two lemmas. To state the first one, we fix the following notation.
For each m � 1, let Pm be the σ-field on R+ × Ω generated by all P-measurable f : R+ × Ω →
R such that f |( n

2m ,n+1
2m ]×Ω is B

(
( n
2m , n+1

2m ]
)
⊗F n

2m
-measurable for each n � 0.

Lemma 5.25. Let f : R+ × Ω → R be bounded and P-measurable. Then for each m � 1 a.s.
on R+ × Ω

E(f |Pm)(s) = E
(
f(s)

∣∣F n
2m

)
, s ∈

(
n

2m
,
n + 1
2m

]
, n � 0. (5.30)

Moreover, E(f |Pm) → f a.s. on R+ × Ω as m → ∞.

Proof. Let us first show (5.30). Fix m � 1. Fix a simple Pm-measurable process g : R+ ×
Ω → R. Then for each n � 0 and s ∈ ( n

2m , n+1
2m ] a random variable g(s) is F n

2m
-measurable.

Define f̃ : R+ × Ω → R by

f̃(s) =
∑
n�0

E
(
f(s)

∣∣F n
2m

)
1s∈( n

2m ,n+1
2m ], s � 0.

Then for each n � 0 and s ∈ ( n
2m , n+1

2m ]

E

[
(f(s) − f̃(s))g(s)

]
= E

[
E

(
(f(s) − f̃(s))g(s)

∣∣F n
2m

)]
= E

[
E

(
(f(s) − f̃(s))

∣∣F n
2m

)
g(s)

]
= 0.



1670 SJOERD DIRKSEN AND IVAN YAROSLAVTSEV

Therefore,

E

∫
R+

(
f(s) − f̃(s)

)
g(s) ds =

∫
R+

E

[(
f(s) − f̃(s)

)
g(s)

]
ds = 0,

and hence (5.30) holds. Now, note that (Pm)m�1 forms a filtration on R+ × Ω, and obviously
σ{∪mPm} = P. Therefore, the second part of the theorem follows from the martingale
convergence theorem (see, for example, [23, Theorem 7.23]). �

The second lemma is the following statement.

Lemma 5.26. Let F : R+ × Ω → R+ be a non-decreasing continuous predictable function
such that F (t) − F (s) � C(t− s) for all 0 � s � t a.s. and for some fixed constant C � 0 and

F (0) = 0 a.s. Then there exists a predictable f : R+ × Ω → [0, C] such that F (T ) =
∫ T

0
f(s) ds

for each fixed T � 0.

Proof. F is a.s. differentiable in t because F is Lipschitz, so there exists f : R+ × Ω → [0, C]
such that for every ω ∈ Ω and t � 0

f(t, ω) = lim sup
ε→0

F (t, ω) − F ((t− ε) ∨ 0, ω)
ε

∧ C,

where we consider lim sup instead of lim in order to make f well defined on the whole
R+ × Ω, even though this lim sup coincides with lim a.s. on R+ × Ω, and the constant C
is a natural upper bound for f due to the Lipschitz assumption on F . Since F is predictable,
t �→ F (t) − F ((t− ε) ∨ 0) is a predictable process as well for each ε � 0, so the obtained f is
predictable. �

We are now ready to prove Lemma 5.24.

Proof of Lemma 5.24. Let f : R+ × Ω → [0, C] be as defined in Lemma 5.26. Then by
Lemma 5.25, E(f |Pm) exists and converges to f a.s. on R+ × Ω. Moreover, f is bounded by
C, so E(f |Pm) is bounded by C as well. Therefore, for each m � 1 we find using (5.30)

[2mT ]−1∑
n=0

E

[
F

(
n + 1
2m

)
− F

( n

2m
)∣∣∣F n

2m

]
=

[2mT ]−1∑
n=0

E

[∫
( n
2m ,n+1

2m ]

f(s) ds

∣∣∣∣∣F n
2m

]

(∗)
=

[2mT ]−1∑
n=0

∫
( n
2m ,n+1

2m ]

E
(
f(s)

∣∣F n
2m

)
ds

=
∫
(0, [2mT ]

2m ]
E(f |Pm)(s) ds,

where (∗) makes sense since f |( n
2m ,n+1

2m ]×Ω is B(( n
2m , n+1

2m ]) ⊗Fn+1
2m

-measurable (because f is
predictable and hence adapted) and bounded by C and therefore because of the fact that for
a.e. (s, ω) ∈ ( n

2m , n+1
2m ] × Ω,

E
(
f(s)

∣∣F n
2m

)
(ω) = E

(
f |( n

2m ,n+1
2m ]×Ω

∣∣∣B((
n

2m
,
n + 1
2m

])
⊗F n

2m

)
(s, ω),

we have that E
(
f(s)|F n

2m

)
(ω) is jointly measurable in (s, ω) ∈ ( n

2m , n+1
2m ] × Ω, so the integral∫

( n
2m ,n+1

2m ]
E
(
f(s)|F n

2m

)
ds is a.s. well defined and (∗) holds by the Fubini theorem. Thus, since
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[2mT ]
2m → T as m → ∞,

lim
m→∞

[2mT ]−1∑
n=0

E

[
F

(
n + 1
2m

)
− F

( n

2m
)∣∣∣F n

2m

]
= lim

m→∞

∫
(0, [2mT ]

2m ]
E(f |Pm)(s) ds

=
∫

(0,T ]

f(s) ds = F (T ),

where the limit holds a.s., and since F (T ) � CT and all the functions above are bounded by CT
as well, by the dominated convergence theorem the limit holds in Lp(Ω) for each 1 < p < ∞. �

Finally, we will use a time-change argument in the proof of Theorem 5.28. We recall
some necessary definitions and results. A non-decreasing, right-continuous family of stopping
times τ = (τs)s�0 is called a random time-change. If F is right-continuous, then according to
[23, Lemma 7.3] the same holds true for the induced filtration G = (Gs)s�0 = (Fτs)s�0.

For a random time-change τ = (τs)s�0 and for a random measure μ, we define μ ◦ τ in the
following way:

μ ◦ τ((s, t] ×B) = μ((τs, τt] ×A), t � s � 0, A ∈ J ,

μ is said to be τ -continuous if μ((τs−, τs] × J) = 0 a.s. for each s � 0, where we let τs− :=
limε→0 τs−ε, τ0− := τ0. Later we will need the following proposition.

Proposition 5.27. Let A : R+ × Ω → R+ be a strictly increasing continuous predictable
process such that A0 = 0 and At → ∞ as t → ∞ a.s. Then

τs = {t : At = s}, s � 0.

defines a random time-change τ = (τs)s�0. It satisfies

(A ◦ τ)(t) = (τ ◦A)(t) = t

a.s. for each t � 0. Let G = (Gs)s�0 = (Fτs)s�0 be the induced filtration. Then (At)t�0 is a
random time-change with respect to G. Moreover, for any random measure μ the following
hold.

(i) If μ is F-optional, then μ ◦ τ is G-optional.
(ii) If μ is F-predictable, then μ ◦ τ is G-predictable.
(iii) If μ is an F-optional random measure with a compensator ν, then ν ◦ τ is a compensator

of μ ◦ τ , and for each P̃-measurable simple F : R+ × Ω × J → R such that E(F 
 μ)∞ < ∞ we
have that E ((F ◦ τ) 
 (μ ◦ τ))∞ < ∞ and a.s.

(F 
 μ)∞ = ((F ◦ τ) 
 (μ ◦ τ))∞,

(F 
 ν)∞ = ((F ◦ τ) 
 (ν ◦ τ))∞,
(5.31)

(F 
 μ̄)τs = ((F ◦ τ) 
 (μ ◦ τ))s, s � 0. (5.32)

Proof. First of all note that since A is strictly increasing and continuous a.s., s �→ τs is
an a.s. continuous function, so any random measure μ is τ -continuous. Therefore, (i) and (ii)
follow from [19, Theorem 10.27(c,d)]. Let us prove (iii). The fact that ν ◦ τ is a compensator
of μ ◦ τ holds due to [19, Theorem 10.27(e)], while the rest follows from [19, Theorem 10.28],
and in particular (5.31) follows from the definition of μ ◦ τ and ν ◦ τ . �

For more information on time-changes for random measures, we refer to [19, Chapter X].
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Let (S,Σ, ρ) be a measure space. For 1 < p, q < ∞, we define Ŝp
q , D̂p

q,q and D̂p
p,q as the

Banach spaces of all functions F : R+ × Ω × J → Lq(S) that are P̃-measurable and for which
the corresponding norms are finite:

‖F‖Ŝp
q

:=

⎛⎜⎝E

∥∥∥∥∥∥
(∫

R+×J

|F |2 dν

) 1
2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

,

‖F‖D̂p
q,q

:=

⎛⎝E

(∫
R+×J

‖F‖qLq(S) dν

) p
q

⎞⎠
1
p

,

‖F‖D̂p
p,q

:=

(
E

∫
R+×J

‖F‖pLq(S) dν

) 1
p

.

(5.33)

We show in Appendix B that

(Ŝp
q )∗ = Ŝp′

q′ , (D̂p
q,q)

∗ = D̂p′

q′,q′ , (D̂p
p,q)

∗ = D̂p′

p′,q′

hold isomorphically with constants depending only on p and q.

Theorem 5.28. Fix 1 < p, q < ∞. Let μ be an optional P̃-σ-finite random measure on
R+ × J and suppose that its compensator ν is non-atomic in time. Then for any simple

P̃-measurable F : R+ × Ω × J → Lq(S) and for any A ∈ P̃ with E1A 
 μ < ∞(
E sup

0�s�t
‖((F1A) 
 μ̄)s‖pLq(S)

) 1
p

�p,q ‖F1A1[0,t]‖Ip,q
, (5.34)

where Ip,q is given by

Ŝp
q ∩ D̂p

q,q ∩ D̂p
p,q if 2 � q � p < ∞,

Ŝp
q ∩ (D̂p

q,q + D̂p
p,q) if 2 � p � q < ∞,

(Ŝp
q ∩ D̂p

q,q) + D̂p
p,q if 1 < p < 2 � q < ∞,

(Ŝp
q + D̂p

q,q) ∩ D̂p
p,q if 1 < q < 2 � p < ∞,

Ŝp
q + (D̂p

q,q ∩ D̂p
p,q) if 1 < q � p � 2,

Ŝp
q + D̂p

q,q + D̂p
p,q if 1 < p � q � 2.

(5.35)

Proof. By Lemma 5.16, we can assume without loss of generality that F := F1A, μ := μ1A

and that there exists a T � 0 such that F (t) = 0 for each t � T . Since F is simple, it is
uniformly bounded on R+ × Ω × J and, due to the fact that E1A 
 μ = Eμ(R+ × Ω) < ∞, we
find E‖F 
 μ‖ < ∞. Consequently, F 
 μ̄ exists and it is a local martingale. Therefore, Doob’s
maximal inequality implies

(E‖(F 
 μ̄)t‖p)
1
p �p

(
E sup

0�s�t
‖(F
μ̄)s‖pLq(S)

) 1
p

and so it is enough to show that

(E‖(F 
 μ̄)t‖p)
1
p �p,q ‖F1[0,t]‖Ip,q

. (5.36)
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The proof consists of two steps. In the first step, we assume that ν is absolutely continuous
with respect to Lebesgue measure. In this case, we can derive the upper bounds in (5.36) from
the Burkholder–Rosenthal inequalities, Proposition 5.22 and Lemma 5.24. The lower bounds
then follow by a duality argument based on Lemmas 2.1 and 5.19 combined with the duality
for the spaces Ip,q derived in the Appendix (see Corollary B.8). In the second step, we deduce
the general result via a time-change argument based on Proposition 5.27.

Step 1: ν((s, t] × J) � (t− s) for each t � s � 0 a.s. We will consider the cases 2 � q � p < ∞
and 1 < p � q � 2, the proofs in the other cases are similar.

Case 2 � q � p < ∞: Fix m � 1. Let Fn := F1( n
2m ,n+1

2m ] for each n � 0. Then

(dn)n�0 := ((Fn 
 μ̄)∞)n�0

is an Lq(S)-valued martingale difference sequence with respect to a filtration
(
Fn+1

2m

)
n�0

.

Theorem 1.1 implies

E‖(F 
 μ̄)∞‖pLq(S) = E

∥∥∥∥∥∥
∑
n�0

(Fn 
 μ̄)∞

∥∥∥∥∥∥
p

Lq(S)

= E

∥∥∥∥∥∥
∑
n�0

dn

∥∥∥∥∥∥
p

Lq(S)

�p,q ‖(dn)‖psp,q

�p (‖(dn)‖Sp
q

+ ‖(dn)‖Dp
q,q

+ ‖(dn)‖Dp
p,q

)p.

To bound ‖(dn)‖Sp
q
, observe that

‖(dn)‖Sp
q

=

⎛⎜⎝E

∥∥∥∥∥∥
(∑

n

EF n
2m

|dn|2
) 1

2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

=

⎛⎜⎝E

∥∥∥∥∥∥
(∑

n

EF n
2m

|(Fn 
 μ̄)∞|2
) 1

2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

(∗)
� p

⎛⎜⎝E

∥∥∥∥∥∥
(∑

n

EF n
2m

(|Fn|2 
 ν)∞

) 1
2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

(5.37)

=

⎛⎜⎝E

∥∥∥∥∥∥
(∑

n

EF n
2m

(
(|F |2 
 ν)n+1

2m
− (|F |2 
 ν) n

2m

)) 1
2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

,

where (∗) holds by Proposition 5.22 and the fact that

ν

((
n

2m
,
n + 1
2m

]
× J

)
� n + 1

2m
− n

2m
=

1
2m

� 1.

Note that for a.e. ω ∈ Ω, all s ∈ S, and each t � u � 0

(|F |2 
 ν)t(s, ω) − (|F |2 
 ν)u(s, ω) � sup |F (s)|2(ν((u, t] × J)(ω))

� sup |F (s)|2(t− u),

so by Lemma 5.24 and the fact that ν is a.s. non-atomic in time∑
n

EF n
2m

(
(|F |2 
 ν)n+1

2m
− (|F |2 
 ν) n

2m

)
→ (|F |2 
 ν)T = (|F |2 
 ν)∞
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a.s. as m → ∞. Therefore, thanks to (5.37),

‖(dn)‖Sp
q

�

⎛⎜⎝E

∥∥∥∥∥∥
(∑

n

EF n
2m

(
(|F |2 
 ν)n+1

2m
− (|F |2 
 ν) n

2m

)) 1
2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

m→∞−→
(

E

∥∥∥((|F |2 
 ν)∞
) 1

2

∥∥∥p

Lq(S)

) 1
p

= ‖F‖Sp
q
.

(5.38)

Now, let us estimate ‖(dn)‖Dp
q,q

. Analogously to (5.37)

‖(dn)‖Dp
q,q

=

⎛⎝E

(∑
n

EF n
2m

‖dn‖qLq(S)

) p
q

⎞⎠
1
p

=

⎛⎝E

(∑
n

EF n
2m

‖(Fn 
 μ̄)∞‖qLq(S)

) p
q

⎞⎠
1
p

�

⎛⎝E

(∑
n

EF n
2m

(‖Fn‖qLq(S) 
 ν)∞

) p
q

⎞⎠
1
p

(5.39)

=

⎛⎝E

(∑
n

EF n
2m

(
(‖F‖qLq(S) 
 ν)n+1

2m
− (‖F‖qLq(S) 
 ν) n

2m

)) p
q

⎞⎠
1
p

,

and similarly to (5.38) the last expression converges to ‖F‖Dp
q,q

. The same can be shown for
Dp

p,q.

Case 1 < p � q � 2: Let Ielem(P̃) denote the linear space of all simple P̃-measurable Lq(S)-
valued functions. This linear space is dense in Ŝp

q , D̂p
p,q and D̂p

q,q. Let F ∈ Ielem(P̃). Fix a
decomposition F = F1 + F2 + F3 with Fα ∈ Ielem(P̃).

Fix m � 1 and set Fn,α = Fα1( n
2m ,n+1

2m ], dn,α = Fn,α 
 μ̄, α = 1, 2, 3, so that

(F 
 μ̄)T = (F 
 μ̄)∞ =
∑
n

dn,1 + dn,2 + dn,3.

Then by Theorem 1.1, (5.37), (5.38) and (5.39) we conclude that(
E‖(F 
 μ̄)∞‖pLq(S)

) 1
p �p,q ‖F1‖Sp

q
+ ‖F2‖Dp

p,q
+ ‖F3‖Dp

q,q
.

Since Ielem(P̃) is dense in Ŝp
q , D̂p

p,q and D̂p
q,q, we conclude by taking the infimum over F1, F2, F3

as above that (
E‖(F 
 μ̄)∞‖pLq(S)

) 1
p �p,q ‖F‖Ip,q

.

The duality argument: Fix t < ∞, 1 < p, q < ∞. Using the upper bounds in (5.36), we can
obtain the stochastic integral (F 
 μ̄)t as an Lp-limit of the integrals of the corresponding simple
approximations of F in Ip,q. Let Y be the closure of the linear subspace ∪F∈Ip,q

(F 
 μ̄)∞ in
Lp(Ω;Lq(S)) and let X = Ip,q. By Corollary B.8, X∗ = Ip′,q′ . Let U (respectively, V ) be the
dense subspace of X (respectively, X∗) consisting of all P̃-measurable simple Lq(S)-valued
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(respectively, Lq′(S)-valued) functions. Define j0 : U → Y by F �→ (F 
 μ̄)∞. Define k0 : V →
Y ∗ in the following way: For every F ∗ ∈ V , we define k0F

∗ to be such that

〈k0F
∗, y〉 := E〈(F ∗ 
 μ̄)∞, y〉, y ∈ Y.

In this case, k0F
∗ is indeed in Y ∗ since (F ∗ 
 μ̄)∞ ∈ Lp′

(Ω;Lq′(S)). By the upper bounds in
(5.36), j0 and k0 are bounded. Moreover, by the definition of Y , ran j0 is dense in Y . Finally,
by Lemma 5.19 〈F ∗, F 〉 = 〈k0F

∗, j0F 〉 for all F ∈ U and F ∗ ∈ V . Now, the lower bounds in
(5.34) follow from Lemma 2.1.

Step 2: general case. Recall that, due to our assumptions in the beginning of the proof,
Eμ(R+ × Ω) = Eν(R+ × Ω) < ∞. Since ν is non-atomic in time, we can define a continuous
strictly increasing predictable process A : R+ × Ω → R+ by

At = ν([0, t] × J) + t, t � 0.

Let τ = (τs)s�0 be the time-change defined in Proposition 5.27. Then according to Propo-
sition 5.27, the random measure μτ := μ ◦ τ is G-optional, where G := (Gs)s�0 = (Fτs)s�0.
Moreover, ντ := ν ◦ τ is G-predictable and a compensator of μτ . Let G := F ◦ τ . Note that for
each t � s � 0 a.s.

ντ ((s, t] × J) = ν((τs, τt] × J) = ν((0, τt] × J) − ν((0, τs] × J)

� ν((0, τt] × J) − ν((0, τs] × J) + (τt − τs)

= (ν((0, τt] × J) + τt) − (ν((0, τs] × J) + τs) = t− s.

(5.40)

Let Iτ
p,q be defined as Ip,q but for the random measure ντ . Due to (5.40), Step 1 yields E‖(G 


μ̄τ )∞‖pLq(S) �p,q ‖G‖pIτ
p,q

. By (5.32),

E‖(G 
 μ̄τ )∞‖pLq(S) = E‖(F 
 μ̄)∞‖pLq(S).

Moreover, for given Fi and Gi = Fi ◦ τ , i = 1, 2, 3, it follows from (5.31) that

E

∥∥∥∥∥∥
(∫

R+×J

|G1|2 dντ

) 1
2

∥∥∥∥∥∥
p

Lq(S)

= E

∥∥∥∥∥∥
(∫

R+×J

|F1|2 dν

) 1
2

∥∥∥∥∥∥
p

Lq(S)

= ‖F1‖pSq
p
,

E

(∫
R+×J

‖G2‖qLq(S) dντ

) p
q

= E

(∫
R+×J

‖F2‖qLq(S) dν

) p
q

= ‖F2‖pDp
q,q

,

E

∫
R+×J

‖G3‖pLq(S) dντ = E

∫
R+×J

‖F3‖pLq(S) dν = ‖F3‖pDp
p,q

.

Consequently, ‖G‖Iτ
p,q

= ‖F‖Ip,q
. We conclude that

E‖(F 
 μ̄)∞‖pLq(S) �p,q ‖F‖pIp,q
. �

Remark 5.29. Let us compare our result to the literature. The upper bounds in
Theorem 5.28 were discovered in the scalar-valued case by Novikov in [40, Theorem 1]. By
exploiting an orthonormal basis, one can easily extend this result to the Hilbert-space valued
integrands, see [33, Section 3.3] for details. The paper [33] contains several other proofs of
the Hilbert-space valued version of Novikov’s inequality. In the context of Poisson random
measures, Theorem 5.28 was obtained in [8]. Some one-sided extensions of the latter result in
the context of general Banach spaces were obtained in [9]. However, these bounds, which are
based on the martingale type and cotype of the space, are only matching in the Hilbert-space
case and not optimal in general (in particular for Lq-spaces). A very different proof of the
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upper bounds in Theorem 5.28, which exploits tools from stochastic analysis, was discovered
independently of our work by Marinelli in [29].

As a corollary, we obtain the following sharp bounds for stochastic integrals.

Theorem 5.30. Fix 1 < p, q < ∞. Let H be a Hilbert space, (S,Σ, ρ) be a measure space
and let M : R+ × Ω → H be a purely discontinuous quasi-left continuous local martingale. Let
Φ : R+ × Ω → L(H,Lq(S)) be elementary predictable. Then(

E sup
0�s�t

‖(Φ ·M)s‖pLq(S)

) 1
p

�p,q ‖ΦH1[0,t]‖Ip,q
, (5.41)

where ΦH : R+ × Ω ×H → Lq(S) is defined by

ΦH(t, ω, h) := Φ(t, ω)h, t � 0, ω ∈ Ω, h ∈ H,

and Ip,q is given as in (5.35) for ν = νM .

Proof. The result follows from Doob’s maximal inequality, Lemma 5.18, Theorem 5.28, and
the fact that ‖ΦH1An

‖Ip,q
↗ ‖ΦH‖Ip,q

as n → ∞ by the monotone convergence theorem. �

5.5. Integration with respect to continuous martingales

Finally, let us recall the known sharp bounds for Lq-valued stochastic integrals with respect
to continuous local martingales. These bounds are a special case of the main result in [48]. To
formulate these, we will need γ-radonifying operators. Let (γ′

n)n�1 be a sequence of independent
standard Gaussian random variables on a probability space (Ω′,F ′,P′) (we reserve the notation
(Ω,F ,P) for the probability space on which our processes live) and let H be a separable Hilbert
space. A bounded operator R ∈ L(H,X) is said to be γ-radonifying if for some (and then for
each) orthonormal basis (hn)n�1 of H the Gaussian series

∑
n�1 γ

′
nRhn converges in L2(Ω′;X).

We then define

‖R‖γ(H,X) :=

⎛⎜⎝E′

∥∥∥∥∥∥
∑
n�1

γ′
nRhn

∥∥∥∥∥∥
2

X

⎞⎟⎠
1
2

.

This number does not depend on the sequence (γ′
n)n�1 and the basis (hn)n�1, and defines a

norm on the space γ(H,X) of all γ-radonifying operators from H into X. Endowed with this
norm, γ(H,X) is a Banach space, which is separable if X is separable. Moreover, if X = Lq(S),
1 < q < ∞, for some separable measure space (S,Σ, ρ), then thanks to the Trace Duality that
is presented, for example, in [18], we have that

(γ(H,X))∗ � γ(H∗, X∗). (5.42)

We refer to [18] and the references therein for further details on γ-radonifying operators.
For F : R+ → R+ non-decreasing, we define a measure ρF on B(R+) by

ρF ((s, t]) = F (t) − F (s), 0 � s < t < ∞.

If X is a Banach space and 1 � p � ∞, then we write Lp(R+, F ;X) for the Banach space
Lp(R+, ρF ;X).

Let M : R+ × Ω → H be a continuous local martingale. Then, thanks to [36, Chapter 14.3],
one can define a continuous predictable process [M ] : R+ × Ω → R and a strongly progressively
measurable qM : R+ × Ω → L(H) (that is, a process qM such that qMh is progressively
measurable for any h ∈ H) such that [M ] is a quadratic variation of M and

∫ ·
0
〈qM (s)h, h〉d[M ]s
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is a quadratic variation of [〈M,h〉] for each h ∈ H. The following theorem immediately follows
from [48, Theorem 4.1] and formula [48, (3.9)].

Theorem 5.31. Let H be a Hilbert space, 1 < p, q < ∞. Let M : R+ × Ω → H be a
continuous local martingale, Φ : R+ × Ω → L(H,Lq(S)) be elementary predictable. Then

E

(
sup

0�s�t
‖(Φ ·M)s‖p

)
�p,q E‖Φq

1
2
M1[0,t]‖pγ(L2(R+,[M ];H),Lq(S)).

5.6. Integration with respect to general local martingales

We can now combine the sharp estimates obtained for the three special types of stochastic
integrals to obtain sharp estimates for Φ ·M , where M is an arbitrary local martingale.

Theorem 5.32. Let H be a Hilbert space, 1 < p, q < ∞. Let M : R+ × Ω → H be a local
martingale, M c,Mq,Md : R+ × Ω → H be local martingales such that M c

0 = Mq
0 = 0, M c

is continuous, Mq is purely discontinuous quasi-left continuous, Ma is purely discontinuous
with accessible jumps, M = M c + Mq + Ma. Let Φ : R+ × Ω → L(H,Lq(S)) be elementary
predictable. Then,(

E sup
0�s�t

‖(Φ ·M)s‖pLq(S)

) 1
p

�p,q

(
E‖Φq

1
2
Mc1[0,t]‖pγ(L2(R+,[Mc];H),Lq(S))

) 1
p

+ ‖ΦH1[0,t]‖Ip,q
+ ‖(Φ1[0,t]) ·Ma‖Ap,q

,

(5.43)

where ΦH : R+ × Ω ×H → Lq(S) is defined by

ΦH(t, ω, h) := Φ(t, ω)h, t � 0, ω ∈ Ω, h ∈ H,

Ip,q is given as in (5.35) for ν = νM
q

, and Ap,q is as defined in (5.8).

Observe that the upper bound in (5.43) is immediate from the triangle inequality and our
estimates for the stochastic integrals (Φ ·M c)t, (Φ ·Mq)t, and (Φ ·Ma)t. The lower bound,
however, requires some care, since it is a priori not even clear if the latter three integrals are in
Lp(Ω;Lq(S)) if (Φ ·M)t ∈ Lp(Ω;Lq(S)). We will derive this using the following two lemmas.

Lemma 5.33. Let H be a Hilbert space, X be a finite-dimensional space, M : R+ × Ω → H
be a local martingale, Φ : R+ × Ω → L(H,X) be elementary predictable and F : R+ × Ω ×
H → X be elementary P̃-measurable. Then

(i) if M is continuous, then Φ ·M is continuous,
(ii) if M is purely discontinuous quasi-left continuous, then F 
 μ̄M is purely discontinuous

quasi-left continuous,
(iii) if M is purely discontinuous with accessible jumps, then Φ ·M is purely discontinuous

with accessible jumps.

Proof. (i) holds since if M is continuous, then the formula (5.4) defines an a.s.
continuous process.

To prove pure discontinuity in (ii), one has to endow X with a Euclidean norm and note that
if M is purely discontinuous quasi-left continuous, then by [20, Proposition II.1.28] [F 
 μ̄M ]t =∑

0�s�t ‖F (ΔM)‖2 a.s. for all t � 0 since F 
 νM is absolutely continuous, so it does not effect
on the quadratic variation. Therefore, [F 
 μ̄M ] is purely discontinuous, and so F 
 μ̄M is purely
discontinuous by [23, Theorem 26.14]. Quasi-left continuity then follows as Δ(F 
 μ̄M )τ =
F (ΔMτ ) = 0 a.s. for any predictable stopping time τ .
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Pure discontinuity of Φ ·M in (iii) follows from the same argument as in (ii), and the rest
can be proven using the fact that a.s.

{t ∈ R+ : Δ(Φ ·M)t �= 0} ⊂ {t ∈ R+ : ΔMt �= 0}. �

Lemma 5.34. Let X be a finite-dimensional Banach space, 1 < p < ∞, M : R+ × Ω → X
be a local martingale. Then there exist local martingales M c,Mq,Ma : R+ × Ω → X such
that M c

0 = Mq
0 = 0, M c is continuous, Mq is purely discontinuous quasi-left continuous, Ma is

purely discontinuous with accessible jumps, M = M c + Ma + Mq and then for each t � 0

E‖Mt‖p �p,X E‖M c
t ‖p + E‖Mq

t ‖p + E‖Ma
t ‖p. (5.44)

In other words, M is an Lp-martingale if and only if each of M c, Mq and Ma is an Lp-
martingale.

Proof. Since X is finite dimensional, we can endow it with a Euclidean norm |||·|||. Then
the existence of the decomposition M = M c + Ma + Mq follows from Lemma 5.2, and for each
t � 0 due to the Burkholder–Davis–Gundy inequality and Lemma 5.2

E‖Mt‖p �p,X E|||Mt|||p �p E[M ]
p
2
t = E([M c]t + [Mq]t + [Ma]t)

p
2

�p E[M c]
p
2
t + E[Mq]

p
2
t + E[Ma]

p
2
t

�p E|||M c
t |||p + E|||Mq

t |||p + E|||Ma
t |||p

�p,X E‖M c
t ‖p + E‖Mq

t ‖p + E‖Ma
t ‖p. �

Returning to the setting of Theorem 5.32, recall that Φ takes values in a finite-dimensional
subspace of Lq(S) (since Φ is elementary). Lemmas 5.33 and 5.34 show together with
Lemma 5.18 that (Φ ·M)t ∈ Lp(Ω;Lq(S)) if and only if (Φ ·M c)t, (Φ ·Mq)t, and (Φ ·Ma)t
are in Lp(Ω;Lq(S)) and

E‖(Φ ·M)t‖pLq �p,q,Φ E‖(Φ ·M c)t‖pLq + E‖(Φ ·Mq)t‖pLq + E‖(Φ ·Ma)t‖pLq . (5.45)

Unfortunately, this still does not yield the lower bounds in Theorem 5.32. Indeed, since the
implicit constants in (5.44) depend on the dimension of X, the constants in (5.45) depend on
Φ. As it turns out, this is a proof artefact: one can show that the statement of Lemma 5.34
remains valid for a general UMD Banach space [52]. Rather than relying on the latter result,
we prefer to complete the proof of Theorem 5.32 in an elementary manner. We will directly
prove the lower bounds in (5.43) by combining (5.45) with a duality argument. The key for
this duality argument is the following technical observation.

Lemma 5.35. Let H be a Hilbert space, X be a Banach space, M c,Mq : R+ × Ω → H
be continuous and purely discontinuous quasi-left continuous martingales, Ma,1 : R+ × Ω →
X, Ma,2 : R+ × Ω → X∗ be purely discontinuous martingales with accessible jumps, Φ1 :
R+ × Ω → L(H,X), Φ2 : R+ × Ω → L(H,X∗) be elementary predictable, F1 : R+ × Ω ×H →
X, F2 : R+ × Ω ×H → X∗ be elementary P̃-measurable. Assume (Φ1 ·M c)∞, (F1 
 μ̄

Mq

)∞,
Ma,1

∞ ∈ Lp(Ω;X) and (Φ2 ·M c)∞, (F2 
 μ̄
Mq

)∞, Ma,2
∞ ∈ Lp′

(Ω;X∗) for some 1 < p < ∞. Then,
for all t � 0,

E〈(Φ1 ·M c + F1 
 μ̄
Mq

+ Ma,1)t, (Φ2 ·M c + F2 
 μ̄
Mq

+ Ma,2)t〉

= E〈(Φ1 ·M c)t, (Φ2 ·M c)t〉 + E〈(F1 
 μ̄
Mq

)t, (F2 
 μ̄
Mq

)t〉 + E〈Ma,1
t ,Ma,2

t 〉. (5.46)
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To prove Lemma 5.35, we use the following statement.

Lemma 5.36. Let X be a Banach space, X0 ⊂ X be a finite-dimensional subspace, 1 < p <
∞, Mq : R+ × Ω → X0 be a purely discontinuous quasi-left continuous Lp-martingale, Mq

0 = 0,

Ma : R+ × Ω → X∗ be a purely discontinuous Lp′
-martingale with accessible jumps. Then

E〈Mq
t ,M

a
t 〉 = 0 for each t � 0.

Proof. Let d be the dimension of X0, x1, . . . , xd be a basis of X0. Then there exist
purely discontinuous quasi-left continuous Lp-martingales Mq,1, . . . , Mq,d : R+ × Ω → R such
that Mq = Mq,1x1 + · · · + Mq,dxd. Thus, for any i = 1, . . . , d and any purely discontinuous
Lp′

-martingale N : R+ × Ω → R with accessible jumps, [Mq,i, N ] = 0 a.s. by [23, Corollary
26.16]. Hence, [20, Proposition I.4.50(a)] implies that Mq,iN is a local martingale, and due to
integrability it is a martingale. Note also that all Mq,i start at zero, therefore

E〈Mq
t ,M

a
t 〉 =

d∑
i=1

EMq,i
t 〈xi,M

a
t 〉 =

d∑
i=1

EMq,i
0 〈xi,M

a
0 〉 = 0. �

Proof of Lemma 5.35. Since all the integrands Φ1, Φ2, F1, F2 are elementary, one can
suppose that X and X∗ are finite dimensional, so we can endow these spaces with Euclidean
norms. Since by Lemma 5.33, Φ1 ·M c and Φ2 ·M c are continuous, F1 
 μ̄

Mq

, F1 
 μ̄
Mq

, Ma,1

and Ma,2 are purely discontinuous, [20, Definition I.4.11] implies that for each t � 0

E〈(Φ1 ·M c)t, (F2 
 μ̄
Mq

)t〉 = E[Φ1 ·M c, F2 
 μ̄
Mq

]t = 0,

E〈(Φ2 ·M c)t, (F1 
 μ̄
Mq

)t〉 = E[Φ2 ·M c, F1 
 μ̄
Mq

]t = 0,

E〈(Φ1 ·M c)t,M
a,2
t 〉 = E[Φ1 ·M c,Ma,2]t = 0,

E〈(Φ2 ·M c)t,M
a,1
t 〉 = E[Φ2 ·M c,Ma,1]t = 0.

Moreover, thanks to Lemma 5.33 and Lemma 5.36,

E〈Ma,1
t , (F2 
 μ̄

Mq

)t〉 = E〈Ma,2
t , (F1 
 μ̄

Mq

)t〉 = 0,

so (5.46) easily follows. �

We can now combine Theorems 5.31, 5.28 and 5.14 with a duality argument to derive the
following.

Proposition 5.37. Let H be a Hilbert space, 1 < p, q < ∞. Let M c, Mq : R+ ×
Ω → H be continuous and purely discontinuous quasi-left continuous local martingales,
Ma : R+ × Ω → Lq(S) be a purely discontinuous Lp-martingale with accessible jumps,
Φ : R+ × Ω → L(H,Lq(S)) be elementary predictable, F : R+ × Ω ×H → Lq(S) be elemen-

tary P̃-measurable. If Φ ·M c and F 
 μ̄Mq

are Lp-martingales, then(
E

∥∥∥(Φ ·M c + F 
 μ̄Mq

+ Ma
)
∞

∥∥∥p

Lq(S)

) 1
p

�p,q

(
E‖Φq

1
2
Mc‖pγ(L2(R+,[Mc];H),Lq(S))

) 1
p

+ ‖F‖Ip,q
+ ‖Ma‖Ap,q

,

(5.47)

where Ip,q is given as in (5.35) for ν = νM
q
, Ap,q is given as in (5.8).

Proof. The estimate �p,q follows from the triangle inequality and Theorems 5.31, 5.28
and 5.14. Let us now prove �p,q via duality. Without loss of generality, due to the proof of
Theorem 5.14 and due to Lemma 5.13, we can assume that there exists N � 1 and a sequence
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of predictable stopping times T = (τn)Nn=0 such that M has a.s. at most N jumps and a.s.
{t ∈ R+ : ΔMt �= 0} ⊂ {τ0, . . . , τN}. Define the Banach space

X := Lp(Ω; γ(L2(R+, [M c];H), Lq(S))) × Ip,q ×AT
p,q

and let Y be the closure of the linear space

∪(Φ,F,Ma)∈X(Φ ·M c + F 
 μ̄Md
+ Ma)∞

in Lp(Ω;Lq(S)). Then by [17, Proposition 1.3.3], the Trace duality (5.42), Corollary B.8 and
the duality statement in Theorem 5.6

X∗ = Lp′
(Ω; γ(L2(R+, [M c];H), Lq′(S))) × Ip′,q′ ×AT

p′,q′ .

By the upper bounds in (5.47), the maps j : X → Y and k : X∗ → Y ∗ defined via (Φ, F,Ma) �→
(Φ ·M c + F 
 μ̄Md

+ Ma)∞ are both continuous linear mappings. Let x = (Φ1, F1,M
a
1 ) ∈ X,

x∗ = (Φ2, F2,M
a
2 ) ∈ X∗ be such that Φ1 and Φ2 are elementary predictable, and F1 and F2

are elementary P̃-measurable. Then 〈x̃∗, x̃〉 = 〈k(x̃∗), j(x̃)〉 by Lemma 5.35 and (5.11) and so
Lemma 2.1 yields �p,q in (5.47). �

We can now complete the proof of our main result.

Proof of Theorem 5.32. First of all note that Φ ·M is an Lq(S)-valued local martingale, so
by Doob’s maximal inequality

E sup
0�s�t

‖(Φ ·M)s‖pLq(S) �p E‖(Φ ·M)t‖pLq(S). (5.48)

By (5.45), (Φ ·M)t is in Lp(Ω;Lq(S)) if and only if (Φ ·M c)t, (Φ ·Mq)t and (Φ ·Ma)t are all
in Lp(Ω;Lq(S)). Consequently, (5.43) holds by (5.48), Lemma 5.18 and Proposition 5.37. �

Remark 5.38. Let M = (Mn)n�0 be a discrete Lq-valued martingale. Then due to the
Strong Doob maximal inequality (also known as the Fefferman–Stein inequality), presented,
for example, in [17, Theorem 3.2.7] and [2, Theorem 2.6],

(
E

(∫
S

sup
n�0

|Mn(s)|q ds
) p

q

) 1
p

�p,q (E sup
n�0

‖Mn‖pLq(S))
1
p .

As a consequence, for any continuous time martingale M : R+ × Ω → Lq(S)

(
E

∥∥∥∥sup
t�0

|Mt|
∥∥∥∥p

Lq(S)

) 1
p

�p,q (E sup
t�0

‖Mt‖pLq(S))
1
p .

Indeed, this follows by the existence of a pointwise càdlàg version of M and by approximating
M by a discrete-time martingale. Thus, all the sharp bounds for stochastic integrals proved in
this section, in particular Theorems 5.14, 5.28, 5.30, 5.31, and, finally, Theorem 5.32, remain
valid if we move the supremum over time inside the Lq-norm.
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Appendix A. Dual of Sp
q

Recall that for a given σ-algebra F , a given filtration F = (Fi)i�1, and any finitely non-zero
sequence (fi)i�1 in L∞(Ω;L∞(S)), we defined

‖(fi)‖Sp
q

:=

⎛⎜⎝E

∥∥∥∥∥∥∥
⎛⎝∑

i�1

Ei−1|fi|2
⎞⎠

1
2

∥∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

, (A.1)

where we assume that E0 = E, and use Sp
q in order to denote the completion with respect to

this norm. The following statement follows from a straightforward modification of the work of
Junge on conditional sequence spaces in a non-commutative setting (see [21, Section 2]).

Theorem A.1. Let 1 < p, q < ∞. Then (Sp
q )∗ = Sp′

q′ isomorphically with constants depend-
ing only on p and q. The corresponding duality bracket is given by

〈(fi), (gi)〉 = E
∑
i�1

∫
S

figi dρ, (fi) ∈ Sp
q , (gi) ∈ Sp′

q′ . (A.2)

The argument in [21] uses non-commutative analysis. To keep our work accessible to readers
that are unfamiliar with these methods, we give a short proof of Theorem A.1 in an important
special case based on disintegration. To use this technique, we will assume that (Ω,F ,P) is a
Borel probability space, that is, Ω is Borel isomorphic to a Borel subset of [0,1]. In particular, Ω
may be any complete, separable metric space equipped with its Borel σ-algebra [23, Theorem
A1.2].

The idea of the proof is to represent the conditional expectations in (A.1) as integrals with
respect to random measures. To see that this is possible, consider any sub-σ-algebra G ⊂ F
containing all sets of measure zero. Let (Ω′,F ′,P′) be a copy of (Ω,F ,P). We define a probability
measure μG on Ω × Ω′ by setting

μG

(⋃
i

Ai ×Bi

)
=

∑
i

E[1Ai
E(1Bi

|G)],

for any disjoint A1, . . . , An, . . . ∈ F and any disjoint B1, . . . , Bn, . . . ∈ F ′ and extending μG
via Carathéodory’s extension theorem. For further reference, we will call μG the conditional
expectation measure induced by G. Since Ω is Borel, the disintegration measure μG(·|·) : F ′ ×
Ω → [0, 1] of μG exists a.s. on Ω (see, for example, [10, Chapter 10] or [23, Chapter 6]). It is
straightforward to verify that for any f ∈ L1(Ω)

E(f |G)(ω) =
∫

Ω′
f(ω′) dμG(ω′|ω) for a.e. ω ∈ Ω. (A.3)

Indeed, (A.3) can be shown directly for step functions, and then for general integrable functions,
thanks to the estimates

E|E(f |G)|,E
∣∣∣∣∫

Ω′
f(ω′) dμG(ω′|·)

∣∣∣∣ � E|f |.

Proof of Theorem A.1. Let Sp
q [N ] be the closed subspace of Sp

q spanned by all sequences
(fi)i�1 satisfying fi = 0 for all i > N . By a similar reduction as in the proof of Theorem 4.1,
it suffices to show that (Sp

q [N ])∗ = Sp′

q′ [N ] isomorphically with constants depending only on p
and q and with duality bracket given by (A.2). Let μ0, . . . , μN−1 be the conditional expectation
measures on Ω × Ω′ corresponding to F0, . . . ,FN−1. By (A.3) we find, for any sequence (fi)i�1
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in L∞(Ω;L∞(S)) satisfying fi = 0 for all i > N ,

‖(fi)‖Sp
q

=

⎛⎜⎝E

∥∥∥∥∥∥
(∑

i

Ei−1|fi|2
) 1

2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

=

⎛⎜⎝E

∥∥∥∥∥∥
(

N∑
i=1

∫
Ω′

f2
i (ω′) dμi−1(ω′|·)

) 1
2
∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

= ‖(fi)‖Lp(Ω;Lq(S;L2([N ]×Ω′,μ))),

where L2([N ] × Ω′, μ) denotes the L2-space on {1, . . . , N} × Ω′ with respect to the random
measure μ defined by μ({i} ×A)(ω) := μi−1(A|ω). Since Sp

q [N ] and Lp(Ω;Lq(S;L2([N ] ×
Ω′, μ))) share the same dense set (that is, the set of all sequences in L∞(Ω;L∞(S)) of length
N), we conclude that they are isometrically isomorphic. Therefore, using that

(Lp(Ω;Lq(S;L2([N ] × Ω′, μ))))∗ = Lp′
(Ω;Lq′(S;L2([N ] × Ω′, μ)))

(see Theorem B.5 for a more general statement), we find that (Sp
q [N ])∗ is isomorphic to Sp′

q′ [N ]
with duality bracket given by (A.2). �

Remark A.2. In our proof, we did not use the fact that F is a filtration, so it remains valid
for a general family of sub-σ-algebras containing all sets of measure zero. Also, our argument
clearly yields the more general duality (Sp

q,r)
∗ = Sp′

q′,r′ , 1 < r < ∞, for the spaces induced by
the norms

‖(fi)‖Sp
q,r

:=

⎛⎜⎝E

∥∥∥∥∥∥
(∑

i

Ei−1|fi|r
) 1

r

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

.

Let us emphasize that our proof is only valid if (Ω,F ,P) is Borel.

Appendix B. Duals of Sp
q , Dp

q,q, Dp
p,q, Ŝp

q , D̂p
q,q, and D̂p

p,q

In this section, we will find the duals of Sp
q , Dp

q,q, Dp
p,q, Ŝp

q , D̂p
q,q and D̂p

p,q for all 1 < p, q < ∞.
As a consequence, we show the duality for the space Ip,q that was used to prove the lower
bounds in Theorem 5.28.

B.1. Dp
q,q and Dp

p,q spaces

Let X be a Banach space and consider any σ-finite random measure ν on R+ × J . In sequel we
will assume that

∫
R+×J

1A dν is an R+-valued random variable for each B(R+) ⊗ J -measurable

A ⊂ R+ × J . Note that this condition always holds for any optional P̃-σ-finite random measure
ν.

We define Dp
q (X) to be the space of all B(R+) ⊗F ⊗ J -strongly measurable functions

f : R+ × Ω × J → X such that

‖f‖Dp
q (X) :=

⎛⎝E

(∫
R+×J

‖f‖qX dν

) p
q

⎞⎠
1
p

< ∞.



Lq-VALUED BURKHOLDER–ROSENTHAL INEQUALITIES 1683

The following result is well known if ν is a deterministic measure (see, for example, [17] for
a proof). The argument for random measures is very similar and therefore omitted.

Theorem B.1. Let 1 < p, q < ∞, X be reflexive. Then

(Dp
q (X))∗ = Dp′

q′ (X
∗).

Moreover,

‖φ‖Dp′
q′ (X

∗)
= ‖φ‖(Dp

q (X))∗ , φ ∈ Dp′

q′ (X
∗). (B.1)

We now turn to proving a similar duality statement for D̂p
q (X), the space of all P̃-measurable

functions in Dp
q (X). In the proof we will use the following ‘reverse’ version of the dual Doob

inequality [9, Lemma 2.10].

Lemma B.2 (Reverse dual Doob inequality). Fix 0 < p � 1. Let F = (Fn)n�0 be a filtration
and let (En)n�0 be the associated sequence of conditional expectations. If (fn)n�0 is a sequence
of non-negative random variables in L1(P), then⎛⎝E

∣∣∣∣∣∣
∑
n�0

fn

∣∣∣∣∣∣
p⎞⎠

1
p

� p−1

⎛⎝E

∣∣∣∣∣∣
∑
n�0

Enfn

∣∣∣∣∣∣
p⎞⎠

1
p

.

Now, let us show that
(
D̂p

q (X)
)∗

and D̂p′

q′ (X
∗) are isomorphic.

Theorem B.3. Let X be a reflexive space and let ν be a predictable, P̃-σ-finite random
measure on B(R+) ⊗ J that is non-atomic in time. Then, for 1 < p, q < ∞,

(Lp

P̃(P;Lq(ν;X)))∗ = Lp′

P̃ (P;Lq′(ν;X∗))

with isomorphism given by

g �→ Fg, Fg(h) = E

∫
R+×J

〈g, h〉dν
(
g ∈ Lp′

P̃ (P;Lq′(ν)), h ∈ Lp

P̃(P;Lq(ν))
)
.

Moreover,

min

{(
p

q

)1/q
q′

p′
,

(
p′

q′

)1/q′
q

p

}
‖g‖

Lp′
P̃

(P;Lq′ (ν;X∗))
� ‖Fg‖ � ‖g‖

Lp′
P̃

(P;Lq′ (ν;X∗))
. (B.2)

Proof. Step 1: reduction. It suffices to prove the result for p � q. Indeed, once this is
known we can deduce the case q � p as follows. Observe that Lp′

P̃ (P;Lq′(ν;X∗)) is a closed

subspace of Dp′

q′ (X
∗) = Lp′

(P;Lq′(ν;X∗)). By Theorem B.1, Dp′

q′ (X
∗) is reflexive and therefore

Lp′

P̃ (P;Lq′(ν;X∗)) is reflexive as well. Therefore, as p′ � q′,

(Lp

P̃(P;Lq(ν;X)))∗ = Lp′

P̃ (P;Lq′(ν;X∗))∗∗ = Lp′

P̃ (P;Lq′(ν;X∗)).

Hence, if F ∈ (Lp

P̃(P;Lq(ν;X)))∗, then there exists an f ∈ Lp′

P̃ (P;Lq′(ν;X∗)) so that for any
g ∈ Lp

P̃(P;Lq(ν;X))

F (g) = Fg(f) = E

∫
R+×J

〈f, g〉dν.
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Moreover, the bounds (B.2) follow from Lemma 4.4. Thus, for the remainder of the proof, we
can assume that p � q.

Step 2: norm estimates. Let us now show that (B.2) holds. Since the upper bound is
immediate from Hölder’s inequality, we only need to show that for any g ∈ Lp′

P̃ (P;Lq′(ν;X∗)),

‖Fg‖ �
(
p

q

)1/q
q′

p′
‖g‖Lp′ (P;Lq′ (ν;X∗)). (B.3)

It suffices to show this on a dense subset of Lp′

P̃ (P;Lq′(ν;X∗)). Indeed, suppose that gn → g in

Lp′

P̃ (P;Lq′(ν;X∗)) and that (B.3) holds for gn, for all n � 1. Then,(
p

q

)1/q
q′

p′
‖gn‖Lp′ (P;Lq′ (ν;X∗)) � ‖Fgn‖ � ‖Fg‖ + ‖g − gn‖Lp′ (P;Lq′ (ν;X∗)),

and by taking limits on both sides we see that g also satisfies (B.3).
Let us first assume that

ν((s, t] × J) � (t− s) a.s., for all 0 � s � t. (B.4)

By the previous discussion, we may assume that ‖g‖Lp′ (P;Lq′ (ν;X∗)) = 1 and that g is of the
form

g =
Nm∗∑
n=0

L∑
	=0

1(n/2m∗ ,(n+1)/2m∗ ]1B�
gn	,

where Nm∗ < ∞, gn	 is simple and Fn/2m∗ -measurable for all n and �, and the B	 are disjoint
sets in J of finite P ⊗ ν-measure. For m � m∗, define

g(m) =
Nm∑
n=0

L∑
	=0

1(n/2m,(n+1)/2m]1B�
g
(m)
n	

so that g(m) = g. Then clearly, g(m)
n	 is Fn/2m-measurable for all n and �. Let us now fix an

m � m∗. We define, for any 0 � k � Nm,

s̄kq′(g) :=

(
k∑

n=0

L∑
	=0

‖g(m)
n	 ‖q′En/2mν((n/2m, (n + 1)/2m] ×B	)

)1/q′

and set

α = (Es̄Nm

q′ (g(m))p
′
)1/p

′
.

Let Pε be as in Lemma 4.2. We define a P̃-measurable function h by

h =
Nm∑
n=0

L∑
	=0

1(n/2m,(n+1)/2m]1B�
hn	,

where, for 0 � n � Nm and 0 � � � L, hn	 is the Fn/2m-measurable function defined by

hn	 =
1

αp′−1
(s̄nq′(g

(m)))p
′−q′‖g(m)

n	 ‖q′−1Pεg
(m)
n	 .

Since p/q � 1, Lemma B.2 implies

‖h‖Lp(P;Lq(ν)) =

⎛⎝E

(
Nm∑
n=0

L∑
	=0

‖hn	‖qν((n/2m, (n + 1)/2m] ×B	)

)p/q
⎞⎠1/p
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�
(
q

p

)1/q
⎛⎝E

(
Nm∑
n=0

L∑
	=0

‖hn	‖qEn/2mν((n/2m, (n + 1)/2m] ×B	)

)p/q
⎞⎠1/p

=
(
q

p

)1/q

(Es̄Nm
q (h)p)1/p.

Now, observe that

s̄Nm
q (h)q =

Nm∑
n=0

L∑
	=0

‖hn	‖qEn/2mν((n/2m, (n + 1)/2m] ×B	)

� 1
α(p′−1)q

Nm∑
n=0

L∑
	=0

‖g(m)
n	 ‖(q′−1)q s̄nq′(g

(m))(p
′−q′)qEn/2mν((n/2m, (n + 1)/2m] ×B	)

� 1
α(p′−1)q

s̄Nm

q′ (g(m))(p
′−q′)q

Nm∑
n=0

L∑
	=0

‖g(m)
n	 ‖q′En/2mν((n/2m, (n + 1)/2m] ×B	)

=
1

α(p′−1)q
s̄Nm

q′ (g(m))p
′q−q′q+q′ .

It follows that

‖h‖pLp(P;Lq(ν)) �
(
q

p

)p/q 1
α(p′−1)p

s̄Nm

q′ (g(m))(p
′q−q′q+q′)p/q

=
(
q

p

)p/q 1
αp′ Es̄Nm

q′ (g(m))p
′
=

(
q

p

)p/q

.

Moreover, by Lemma 4.2,

Fg(h) = E

Nm∑
n=0

L∑
	=0

〈g(m)
n	 , hn	〉ν((n/2m, (n + 1)/2m] ×B	)

= E

Nm∑
n=0

L∑
	=0

〈g(m)
n	 , hn	〉En/2mν((n/2m, (n + 1)/2m] ×B	)

� (1 − ε)
αp′−1

E

Nm∑
n=0

L∑
	=0

‖g(m)
n	 ‖q′ s̄nq′(g(m))p

′−q′En/2mν((n/2m, (n + 1)/2m] ×B	)

=
(1 − ε)
αp′−1

E

Nm∑
n=0

s̄nq′(g
(m))p

′−q′(s̄nq′(g
(m))q

′ − s̄n−1
q′ (g(m))q

′
).

Now, apply (4.10) for α = p′/q′ � 1 and x = s̄nq′(g
(m))q

′
/s̄n−1

q′ (g(m))q
′ � 1 to obtain

Fg(h) � (1 − ε)
1

αp′−1
E

Nm∑
n=0

q′

p′

(
s̄nq′(g

(m))p
′ − s̄n−1

q′ (g(m))p
′
)

= (1 − ε)
q′

p′
1

αp′−1
Es̄Nm

q′ (g(m))p
′
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= (1 − ε)
q′

p′

(
Es̄Nm

q′ (g(m))p
′
)1/p′

= (1 − ε)
q′

p′

⎛⎝E

(
Nm∑
n=0

L∑
	=0

‖g(m)
n	 ‖q′En/2mν((n/2m, (n + 1)/2m] ×B	)

)p′/q′
⎞⎠1/p′

= (1 − ε)
q′

p′

⎛⎝E

(
Nm∑
n=0

En/2m

(
(‖g‖q′ 
 ν)(n+1)/2m − (‖g‖q′ 
 ν)n/2m

))p′/q′
⎞⎠1/p′

.

In conclusion, for any m � m∗, we find

‖Fg‖ �
(
p

q

)1/q
q′

p′

⎛⎝E

(
Nm∑
n=0

En/2m((‖g‖q′ 
 ν)(n+1)/2m − (‖g‖q′ 
 ν)n/2m)

)p′/q′
⎞⎠1/p′

.

Taking m → ∞, we find using Lemma 5.24 and the fact that ν is non-atomic in time that

‖Fg‖ �
(
p

q

)1/q
q′

p′
‖g‖

Lp′
P̃

(P;Lq′ (ν;X∗))
.

Let us now remove the additional restriction (B.4) on ν. In this case, we define a strictly
increasing, predictable, continuous process

At := ν([0, t] × J) + t, t � 0

and a random time change τ = (τs)s�0 by

τs = {t : At = s}.
By Proposition 5.27, A ◦ τ(t) = t a.s. for any t � 0, and hence by continuity of A and τ , a.s.
A ◦ τ(t) = t for all t � 0. As was noted in (5.40), we have ντ ((s, t] × J) � t− s a.s. for all s � t.
By Proposition 5.27, we can now write

‖Fg‖ = sup
‖h‖L

p

P̃
(P;Lq(ν;X))�1

E

∫
R+×J

〈g, h〉dν

� sup
‖h̃◦A‖L

p

P̃
(P;Lq(ν;X))�1

E

∫
R+×J

〈g, h̃ ◦A〉dν

= sup
‖h̃‖L

p

P̃
(P;Lq(ντ ;X))�1

E

∫
R+×J

〈g ◦ τ, h̃〉dντ .

Applying the previous part of the proof for ν = ντ , we find

‖Fg‖ �
(
p

q

)1/q
q′

p′
‖g ◦ τ‖

Lp′
P̃

(P;Lq′ (ντ ;X∗))
= ‖g‖

Lp′
P̃

(P;Lq′ (ν;X∗))
.

This completes our proof of (B.2).

Step 3: representation of linear functionals. It now remains to show that every
F ∈ (Lp

P̃(P;Lq(ν;X)))∗ is of the form Fg for a suitable P̃-measurable function g. We will

first assume that Eν(R+ × J) < ∞. On P̃ we can define an X∗-valued measure θ by setting

〈θ(A), x〉 := F (1A · x) (A ∈ P̃, x ∈ X).
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Then θ is σ-additive, absolutely continuous with respect to the measure P ⊗ ν defined in (5.27).
Moreover, for any disjoint partition A1, . . . , An ∈ P̃ of R+ × Ω × J ,

n∑
i=1

‖θ(Ai)‖ = sup
(xi)ni=1⊂BX

n∑
i=1

F (1Ai
xi)

= sup
(xi)ni=1⊂BX

F

(
n∑

i=1

1Ai
xi

)

� ‖F‖(Dp
q (X))∗ sup

(xi)ni=1⊂BX

⎛⎝E

(∫
R+×J

∥∥∥∥∥
n∑

i=1

1Ai
xi

∥∥∥∥∥
q

X

dν

)p/q
⎞⎠1/p

= ‖F‖(Dp
q (X))∗ sup

(xi)ni=1⊂BX

⎛⎝E

(∫
R+×J

n∑
i=1

1Ai
‖xi‖qX dν

)p/q
⎞⎠1/p

� ‖F‖(Dp
q (X))∗(Eν(R+ × J)p/q)1/p,

so θ is of finite variation. By the Radon–Nikodym property of X∗, there exists a P̃-measurable
X∗-valued function g such that

F (h) = Fg(h) = E

∫
R+×J

〈g, h〉dν

for each h ∈ Lp

P̃(P;Lq(ν;X)).
Now, let Eν(R+ × J) = ∞. Since P ⊗ ν is σ-finite, there exists a sequence (An)n�1 ⊂

B(R+) ⊗F ⊗ J such that An ↗ R+ × Ω × J as n → ∞ and P ⊗ ν(An) < ∞ for each n � 1.
By the previous part of the proof, for each n � 1, there exists fn ∈ Dp′

q′ (X
∗) with support in

An such that

F (g · 1An
) = Ffn(g · 1An

) = E

∫
R+×J

〈fn, g〉1An
dν

and (
p

q

)1/q
q′

p′
‖fn‖Dp′

q′ (X
∗)

� ‖Ffn‖(Dp
q (X))∗ � ‖F‖(Dp

q (X))∗ .

Obviously, fn+11An
= fn for each n � 1, hence there exists f : Ω × R+ × J → X∗ such that

f1An
= fn for each n � 1. But then Fatou’s lemma implies(

p

q

)1/q
q′

p′
‖f‖Dp′

q′ (X
∗)

�
(
p

q

)1/q
q′

p′
lim inf
n→∞

‖fn‖Dp′
q′ (X

∗)
� ‖F‖(Dp

q (X))∗ ,

so f ∈ Dp′

q′ (X
∗). On the other hand, by Hölder’s inequality

‖F‖(Dp
q (X))∗ � ‖f‖Dp′

q′ (X
∗)
.

Since the bounded linear functionals F and Ff agree on a dense subset of Dp
q (X), it follows

that F = Ff and (B.1) holds. �

Remark B.4. The reader may wonder whether the duality

(Lp

P̃(P;Lq(ν;X)))∗ = Lp′

P̃ (P;Lq′(ν;X∗))
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remains valid if ν is any random measure and P̃ is replaced by an arbitrary sub-σ-algebra of
B(R+) ⊗F ⊗ J . It turns out that, surprisingly, such a general result does not hold true. Indeed,
it was pointed out by Pisier (in a personal communication) that there exist two probability
spaces (Ω1,F1,P1), (Ω2,F2,P2) and a sub-σ-algebra G of F1 ⊗F2 so that the duality

(Lp
G(P1;Lq(P2)))∗ = Lp′

G (P1;Lq′(P2))

does not even hold isomorphically. This counterexample, in particular, shows that the duality
results claimed in [27] are not valid without imposing additional assumptions. We refer the
reader to [26, 28] for details.

B.2. Sp
q and Ŝp

q spaces

Let ν be any σ-finite random measure on B(R+) ⊗ J . Recall that Sp
q is the space of all B(R+) ⊗

F ⊗ J -strongly measurable functions f : R+ ⊗ Ω ⊗ J → Lq(S) satisfying

‖f‖Sp
q

=

⎛⎜⎝E

∥∥∥∥∥∥
(∫

R+×J

|f |2 dν

) 1
2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

< ∞. (B.5)

The proof of the following result is analogous to the proof of Theorem B.1. We leave the details
to the reader.

Theorem B.5. Let 1 < p, q < ∞. Then (Sp
q )∗ = Sp′

q′ and

‖f‖Sp′
q′

�p,q ‖f‖(Sp
q )∗ , f ∈ Sp′

q′ .

Let us now prove the desired duality for Ŝp
q , the subspace of all P̃-strongly measurable

functions in Sp
q .

Theorem B.6. Let 1 < p, q < ∞. Suppose that ν is a predictable, P̃-σ-finite random

measure on B(R+) ⊗ J that is non-atomic in time. Then (Ŝp
q )∗ = Ŝp′

q′ and

‖f‖Ŝp′
q′

�p,q ‖f‖(Ŝp
q )∗ , f ∈ Ŝp′

q′ . (B.6)

For the proof of Theorem B.6, we will use the following assertion. Given a filtration
F = (Fn)n�0 and 1 < p, q < ∞, we define Qp

q to be the Banach space of all adapted
Lq(S)-valued sequences (fn)n�0 satisfying

‖(fn)n�0‖Qp
q

:=

⎛⎜⎝E

∥∥∥∥∥∥
( ∞∑

n=0

|fn|2
) 1

2

∥∥∥∥∥∥
p

Lq(S)

⎞⎟⎠
1
p

< ∞. (B.7)

Proposition B.7. Let 1 < p, q < ∞. Then (Qp
q)

∗ = Qp′

q′ isomorphically, with the duality
bracket given by

〈(fn)n�0, (gn)n�0〉 := E

∞∑
n=0

〈fn, gn〉 ((gn)n�0 ∈ Qp′

q′ , (fn)n�0 ∈ Qp
q).
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Moreover,

‖(gn)n�0‖Qp′
q′

�p,q ‖(gn)n�0‖(Qp
q)∗ .

Proof. Consider the filtration G = (Gn)n�0 = (Fn+1)n�0. Let Sp
q be the conditional sequence

space defined in (1.4) for the filtration G. First note that Qp
q is a closed subspace and

‖(fn)n�0‖Qp
q

= ‖(fn)n�0‖Sp
q
, for all (fn)n�0 ∈ Qp

q .

Let F be in (Qp
q)

∗. Then by the Hahn–Banach theorem and the duality (Sp
q )∗ = Sp′

q′ (see

Theorem A.1), there exists g̃ = (g̃n)n�0 ∈ Sp′

q′ such that ‖g̃‖
Sp′
q′

�p,q ‖F‖(Qp
q)∗ and

F (f) = Fg̃(f) := E

∞∑
n=1

〈fn, g̃n〉, f = (fn)n�0 ∈ Qp
q .

Now, let (gn)n�0 be the F-adapted Lq(S)-valued sequence defined by gn = Eng̃n for n � 0
(recall that En(·) := E(·|Fn)). Then Fg = Fg̃ on Qp

q . Moreover, the conditional Jensen inequal-

ity yields ‖(gn)n�0‖p
′

Qp′
q′

� ‖(g̃n)n�0‖p
′

Sp′
q′

. Finally, ‖F‖(Qp
q)∗ � ‖(gn)n�0‖Qq′

p′
follows immediately

from Hölder’s inequality. �

Proof of Theorem B.6. The proof contains two parts. In the first part, consisting of several
steps, we will show that ‖f‖Ŝp′

q′
�p,q ‖f‖(Ŝp

q )∗ . In the second part, we show that (Ŝp
q )∗ = Ŝp′

q′ .

Step 1: J is finite, ν is a Lebesgue measure. Let J = {j1, . . . , jK}, ν(ω) be the product
of Lebesgue measure and the counting measure on R+ × J for all ω ∈ Ω (that is, ν((s, t] ×
jk) = t− s for each k = 1, . . . ,K and t � s � 0). Fixf ∈ Ŝp′

q′ . Without loss of generality we can
assume that f is simple and that there exist N,M � 1 and a sequence of random variables
(fk,m)k=K,m=M

k=1,m=0 such that fk,m is Fm
N

-measurable and f(t, jk) = fk,m for each k = 1, . . . ,K,
m = 0, . . . ,M , and t ∈ (mN , m+1

N ]. Let

G = (Gk,m)k=K,m=M
k=1,m=0 := (Fm

N
)k=K,m=M
k=1,m=0 .

Then G forms a filtration with respect to the reverse lexicographic order on the pairs (k,m),
1 � k � K and 0 � m � M , that is, Gk1,m1 ⊆ Gk2,m2 if m1 < m2 or if m1 = m2 and k1 � k2.
Let Qp′

q′ be as defined in (B.7) for G. Then

‖f‖Ŝp′
q′

=
1√
N

∥∥∥(fk,m)k=K,m=M
k=1,m=0

∥∥∥
Qp′

q′
. (B.8)

By Proposition B.7, there exists a G-adapted (gk,m)k=K,m=M
k=1,m=0 ∈ Qp

q such that∥∥∥(gk,m)k=K,m=M
k=1,m=0

∥∥∥
Qp

q

= 1

and 〈
(fk,m)k=K,m=M

k=1,m=0 , (gk,m)k=K,m=M
k=1,m=0

〉
�p,q

∥∥∥(fk,m)k=K,m=M
k=1,m=0

∥∥∥
Qp′

q′
.

Let g : R+ × Ω × J → Lq(S) be defined by setting g(t, jk) =
√
Ngk,m for each k = 1, . . . ,K,

m = 1, . . . ,M , and t ∈ (mN , m+1
N ]. Then g ∈ Ŝp

q , and analogously to (B.8)

‖g‖Ŝp
q

=
∥∥∥(gk,m)k=K,m=M

k=1,m=0

∥∥∥
Qp

q

= 1.
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Moreover,

〈f, g〉 = E

∫
R+×J

〈f(t, j), g(t, j)〉dtdj =
1√
N

E

k=K,m=M∑
k=1,m=0

〈fk,m, gk,m〉

�p,q
1√
N

∥∥∥(fk,m)k=K,m=M
k=1,m=0

∥∥∥
Qp′

q′
= ‖f‖Ŝp′

q′
,

which finishes the proof.

Step 2: J is finite, ν((s, t] × J) � t− s a.s. for each t � s � 0. Let ν0 be the product of
Lebesgue measure and the counting measure on R+ × J (see Step 1). Then clearly P ⊗ ν
is absolutely continuous with respect to P ⊗ ν0 and by the Radon–Nikodym theorem there
exists a P̃-measurable density φ : R+ × Ω × J → R+ such that d(P ⊗ ν) = φ d(P ⊗ ν0). Fix
f ∈ Ŝp′

q′ . Let Ŝp′,ν0
q′ be as defined in (B.5) for the random measure ν0. Then f0 := f ·

√
φ ∈

Ŝp′,ν0
q′ , and ‖f‖Ŝp′

q′
= ‖f0‖Ŝp′,ν0

q′
. By Step 1, there exists a g0 ∈ Ŝp,ν0

q such that ‖g0‖Ŝp,ν0
q

= 1

and 〈f0, g0〉 �p,q ‖f0‖Ŝp′,ν0
q′

. Let g = g01φ �=0
1√
φ
. Then

〈f, g〉 = E

∫
R+×J

〈f, g〉dν = E

∫
R+×J

〈f, g〉φ dν0 = E

∫
R+×J

〈f
√

φ, g
√

φ〉dν0

= E

∫
R+×J

〈f0, g0〉dν0 = 〈f0, g0〉 �p,q ‖f0‖Ŝp′,ν0
q′

= ‖f‖Ŝp′
q′

and

‖g‖Ŝp
q

=

⎛⎝E

∥∥∥∥∥∥
(∫

R+×J

|g|2 dν

) 1
2

∥∥∥∥∥∥
p⎞⎠

1
p

=

⎛⎝E

∥∥∥∥∥∥
(∫

R+×J

|g0|21φ �=0
1
φ

dν

) 1
2

∥∥∥∥∥∥
p⎞⎠

1
p

=

⎛⎝E

∥∥∥∥∥∥
(∫

R+×J

|g0|21φ �=0 dν0

) 1
2

∥∥∥∥∥∥
p⎞⎠

1
p

�

⎛⎝E

∥∥∥∥∥∥
(∫

R+×J

|g0|2 dν0

) 1
2

∥∥∥∥∥∥
p⎞⎠

1
p

= ‖g0‖Ŝp,ν0
q

= 1.

Therefore, ‖f‖Ŝp′
q′

�p,q ‖f‖(Ŝp
q )∗ .

Step 3: J is finite, ν is general. Without loss of generality we can assume that Eν(R+ × J) <
∞. Then by a time-change argument as was used in the proof of Theorem B.3, we can assume
that ν((s, t] × J) � t− s a.s. for each t � s � 0, and apply Step 2.

Step 4: J is general, ν is general. Without loss of generality assume that Eν(R+ × J) < ∞.
Let f be simple P̃-measurable, that is, there exist a K � 1 and a partition J = J1 ∪ · · · ∪ JK
of J into disjoint sets such that

f(t, ω, j) =
K∑

k=1

fk(t, ω)1j∈Jk
, t � 0, ω ∈ Ω, j ∈ J,

where f1, . . . , fk : R+ × Ω → Lq(S) are predictable. Fix jk ∈ Jk, k = 1, . . . ,K, and define
J̃ = {j1, . . . , jK}. Let ν̃ be a new random measure on R+ × Ω × J̃ defined by

ν̃(A× {jk}) = ν(A× Jk), A ∈ P, k = 1, . . . ,K.
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Let Ŝp′,ν̃
q′ be as constructed in (B.5) for the measure ν̃. Let f̃ ∈ Ŝp′,ν̃

q′ be such that f̃(jk) = fk

for each k = 1, . . . ,K. Then ‖f̃‖Ŝp′,ν̃
q′

= ‖f‖Ŝp′
q′

. By Step 3, there exists a g̃ ∈ Ŝp,ν̃
q such that

‖g̃‖Ŝp,ν̃
q

= 1 and 〈f̃ , g̃〉 �p,q ‖f̃‖Ŝp′,ν̃
q′

.

Define g ∈ Ŝp
q by setting g(j) = g̃(jk) for each k = 1, . . . ,K and j ∈ Jk. Then ‖g‖Ŝp

q
=

‖g̃‖Ŝp,ν̃
q

= 1. Moreover,

〈f, g〉 = E

∫
R+×J

〈f(t, j), g(t, j)〉dν(t, j) = E

K∑
k=1

∫
R+×Jk

〈f(t, j), g(t, j)〉dν(t, j)

= E

∫
R+×J̃

〈f̃(t, j), g̃(t, j)〉dν̃(t, j) �p,q ‖f̃‖Ŝp′,ν̃
q′

= ‖f‖Ŝp′
q′
.

Hence, ‖f‖Ŝp′
q′

�p,q ‖f‖(Ŝp
q )∗ .

Step 5: (Ŝp
q )∗ = Ŝp′

q′ . In Step 4, we proved that Ŝp′

q′ ↪→ (Ŝp
q )∗ isomorphically, so it remains to

show that (Ŝp
q )∗ = Ŝp′

q′ . This identity follows from the same Radon–Nikodym argument that
was presented in Step 3 of the proof of Theorem B.3. �

Corollary B.8. Let 1 < p, q < ∞. Then I∗
p,q = Ip′,q′ , where Ip,q is as defined in (5.35),

and

‖f‖Ip′,q′ �p,q ‖f‖I∗
p,q

, f ∈ Ip′,q′ . (B.9)

Proof. The result follows by combining Theorem B.3 (for X = Lq(S)), Theorem B.6 and
(2.2). �
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