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Consider a closed coisotropic submanifold N of a symplectic manifold (M ,ω) and a

Hamiltonian diffeomorphism ϕ on M . The main result of this article states that ϕ has

at least the cup-length of N many leafwise fixed points w.r.t. N , provided that it is the

time-1-map of a global Hamiltonian flow whose restriction to N stays C0-close to the

inclusion N → M . If (ϕ,N) is suitably nondegenerate then the number of these points is

bounded below by the sum of the Betti-numbers of N . The nondegeneracy condition is

generically satisfied.

This appears to be the first leafwise fixed point result in which neither ϕ
∣∣
N

is

assumed to be C1-close to the inclusion N → M , nor N to be of contact type or regular

(i.e., “fibering”). It is optimal in the sense that the C0-condition on ϕ cannot be replaced

by the assumption that ϕ is Hofer-small.

1 Introduction and Main Result

Consider a symplectic manifold (M ,ω) and a coisotropic submanifoldN ⊆ M . This means

that for every x ∈ N the symplectic complement of TxN ,

TxN
ω := {

v ∈ TxM ,
∣∣ω(v,w) = 0, ∀w ∈ TxN

}
,

is contained in TxN . It follows that TNω = ⊔
x∈N TxN

ω is an involutive distribution on N .

By Frobenius’ theorem such a distribution gives rise to a foliation on N . The leaves of

this foliation are called isotropic leaves.
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2412 F. Ziltener

Let S ⊆ M be a set containing N and ϕ : S → M . A leafwise fixed point for ϕ is

a point x ∈ N for which ϕ(x) lies in the isotropic leaf through x. We denote by Fix(ϕ,N)

the set of such points.

For every function F ∈ C∞(M , R) we denote by XF its Hamiltonian vector field. It

is the unique vector field on M satisfying

dF = ω(XF , ·).

For every function H ∈ C∞([0, 1] × M , R
)

we denote Ht := H(t, ·) and by (ϕtH )t∈[0,1] the

Hamiltonian flow of H , that is, the flow of the time-dependent vector field (XHt )t∈[0,1].

We denote by dom(ϕtH ) ⊆ M the domain of ϕtH . By a global Hamiltonian flow on M we

mean a family (ϕtH )t∈[0,1] arising this way, such that dom(ϕtH ) = M and ϕtH is surjective, for

every t ∈ [0, 1]. (In this case ϕtH is a diffeomorphism of M for every t. As an example this

happens if H has compact support.) By a Hamiltonian diffeomorphism on M we mean

the time-1-map of a global Hamiltonian flow on M . We denote by Ham(M ,ω) the set of

Hamiltonian diffeomorphisms on M .

Let ϕ ∈ Ham(M ,ω). A fundamental problem in symplectic geometry is the

following:

Problem 1. Find conditions under which Fix(ϕ,N) is nonempty and find lower bounds

on its cardinality. �

In the extreme case N = M , the set Fix(ϕ,N) consists of the usual fixed points

of ϕ. Such points correspond to periodic orbits of Hamiltonian systems. Starting with a

famous conjecture by V. I. Arnold [6], the above problem has been extensively studied in

this case. It has led to Hamiltonian Floer homology.

On the opposite extreme, consider the case in which N is Lagrangian, that is, has

half the dimension of M . Then

Fix(ϕ,N) = N ∩ ϕ−1(N)

(provided that N is connected). In this situation, based on seminal work by A. Floer

[12], the above problem has given rise to Lagrangian Floer homology and the Fukaya

category.

As an intermediate case, coisotropic submanifolds of codimension 1 arise in clas-

sical mechanics as energy level sets for an autonomous Hamiltonian. If ϕ is the time-one

flow of a time-dependent perturbation of the Hamiltonian, then Fix(ϕ,N) corresponds

to the set of points on the level set whose trajectory is changed only by a phase shift,

under the perturbation.
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Leafwise fixed points 2413

In order to solve Problem 1, it is necessary to make some assumptions on N and

ϕ. Firstly, one should assume that N is closed, that is, compact without boundary. The

reason is that for example, the interval (0, 1) × {0} is a Lagrangian submanifold of R
2

that can be displaced by a Hamiltonian diffeomorphism that is C∞-close to the identity.

In general one also needs that ϕ is close to the identity in a suitable sense, since every

compact subset of the product of R
2 with a symplectic manifold can be displaced by

some Hamiltonian diffeomorphism.

So far solutions to Problem 1 have been found under restrictive assumptions on

ϕ or N , see [1–5, 7, 8, 10, 11, 13, 15, 18–21, 23–25, 30, 31]. J. Moser [23] and A. Banyaga

[8] assumed that the restriction ϕ|N is C1-close to the inclusion N → M . In most other

results this condition was relaxed to the condition that ϕ be Hofer close to the identity.

On the other hand, strong conditions on N were imposed, namely that it is of contact

type or regular (i.e., “fibering”). For a further discussion of the history of the problem

see [30].

The main result of this article is that the conditions on N (except for closedness)

can be removed altogether, if ϕ is the time-1-map of a Hamiltonian flow whose restriction

to N stays C0-close to the inclusion N → M . To state this result, we need the following.

Let X be a topological space. We define its cup-length cl(X) to be the infimum of all

integers m ∈ {0, 1, 2, . . .} with the following property. If R is a commutative ring with

unity, k1, . . . ,km ∈ {1, 2, . . .}, and ai ∈ Hki(X ,R), for i = 1, . . . ,m, then

a1 � · · · � am = 0.

(Here Hk(X ,R) denotes degree k singular cohomology of X with coefficients in R. Fur-

thermore the cup product of an empty collection of classes is defined to be 1 ∈ H ∗(X ,R).

It follows that cl({pt}) = 1. While defined slightly differently, cl(X) equals the usual

cup-length and the cohomological category defined in [17, Definition 2].)

Some part of the main result concerns the case in which the pair (ϕ,N) is O-

nondegenerate. This notion will be defined in Section 2. It naturally generalizes the usual

nondegeneracy in the caseN = M and transversality of the intersectionN∩ϕ−1(N) in the

Lagrangian case. We denote by bi(X , Z2) the ith Betti number of X with Z2-coefficients.

Theorem 1 (leafwise fixed points). Let (M ,ω) be a symplectic manifold and N ⊆ M be

a closed coisotropic submanifold. Then there exists a C0-neighbourhood U ⊆ C(N ,M) of

the inclusion N → M and a neighbourhood O of the diagonal

Ñ := {(y,y)
∣∣y ∈ N

}
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2414 F. Ziltener

in N × N with the following properties.

(i) If (ϕt)t∈[0,1] is a global Hamiltonian flow on M satisfying ϕt|N ∈ U , for every

t ∈ [0, 1], then ∣∣Fix(ϕ1,N)
∣∣ ≥ cl(N). (1)

If in addition the pair (ϕ1,N) is O-nondegenerate then

∣∣Fix(ϕ1,N)
∣∣ ≥

dimN∑
i=0

bi(N , Z2). (2)

(ii) We denote

Ham(M ,ω, U) := {
ϕ1
∣∣ (ϕt) global Hamiltonian flow: ϕt|N ∈ U}. (3)

The set {
ϕ ∈ Ham(M ,ω, U) ∣∣ (ϕ,N) is O -nondegenerate

}
is dense in Ham(M ,ω, U) in the strong (Whitney) C∞-topology. �

Remarks. • A C0-neighbourhood is a neighbourhood in the compact open

topology on C(N ,M). This topology coincides with the uniform topology

induced by the distance function on M coming from any Riemannian metric

on M .

• IfN 
= ∅ then cl(N) ≥ 1. Hence by Theorem 1 a Hamiltonian diffeomorphism ϕ

onM has a leafwise fixed point, if it is the time-1-map of a global Hamiltonian

flow on M whose restriction to N stays inside U for all times, where U is as

in Theorem 1.

• Condition (ii) means that among Hamiltonian diffeomorphisms that arise

from a flow whose restriction to N stays C0-close to the inclusion N → M ,

the O-nondegenerate ones are “generic.”

• The hypothesis that (ϕ1,N) be O-nondegenerate, is satisfied if (ϕ1,N) is

nondegenerate in the sense of [30] (see Section 2). �

This theorem is optimal in the sense that the C0-hypothesis ϕt|N ∈ U cannot

be replaced by the “C−1-assumption” that ϕt is Hofer-small for every t: To explain this

comment, recall that for H ∈ C∞(M , R) we have dH = ω(XH , ·). Hence the oscillation

supH − inf H can be thought of as a C−1-norm for the Hamiltonian vector field XH .
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Leafwise fixed points 2415

Thus the Hofer norm of a Hamiltonian diffeomorphism can roughly be viewed as its

“C−1-distance” to the identity. Optimality now follows from the next remark.

Remark (Hofer-smallness does not suffice). V. L. Ginzburg and B. Z. Gürel [14, Theorem

1.1] recently proved that for n ≥ 2 there exists a closed smooth hypersurface N ⊆ R
2n

and a compact subset K ⊆ R
2n, such that for every ε > 0 there exists a smooth function

H : R
2n → R with support in K, such that

maxH − minH < ε, Fix
(
ϕ1
H ,N

) = ∅.

Note that ϕtH has Hofer norm bounded above by εt ≤ ε, for every t ∈ [0, 1].
This theorem and Theorem 1 do not contradict each other, since Hofer-smallness

does not imply the hypothesis ϕt|N ∈ U of Theorem 1. More precisely, let (M ,ω) be a

symplectic manifold of positive dimension, and ∅ 
= N ⊆ M a coisotropic submanifold.

Then there exists a C0-neighbourhood U of the inclusion N → M , such that for every

Hofer neighbourhood V ⊆ Ham(M ,ω) of the identity there exists ϕ ∈ V for which ϕ|N 
∈ U .

To show this, we choose x ∈ N and a point y ∈ M \ {x} that lies in a connected

Darboux chart around x. We define

U := {
ψ ∈ C(N ,M)

∣∣ψ(x) 
= y
}
.

This is a C0-neighbourhood of the inclusion N → M . Let V ⊆ Ham(M ,ω) be a Hofer

neighbourhood of the identity. There exists ϕ ∈ V, such that ϕ(x) = y. We may construct

such a Hamiltonian diffeomorphism in any connected Darboux chart containing x and

y. We have ϕ|N 
∈ U . Hence U has the desired property. �

Remark (extreme cases). In the extreme cases N = M and N Lagrangian A. Wein-

stein [28, 29] proved lower bounds on
∣∣Fix(ϕ,N)

∣∣ for the time-one flow ϕ of a C0-small

Hamiltonian vector field. Such a ϕ satisfies a stronger condition than the one in

Theorem 1(i). �

Remark (translated points). In [25, p. 96], S. Sandon also proved a leafwise fixed point

result in a special C0-context (among other results). More precisely, she showed a lower

bound on the number of translated points of the time-1-map of aC0-small contact isotopy

on a closed contact manifold. As explained in [25, p. 97], these points are leafwise fixed

points of a Hamiltonian lift of the time-1-map to the symplectization. �

Remark 2 (C0-small Hamiltonian diffeomorphism). Let (M ,ω) be a symplectic man-

ifold. We denote by Hamc(M ,ω) the group of compactly supported Hamiltonian
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2416 F. Ziltener

diffeomorphisms on M . (This is the set of Hamiltonian time-1-flows of compactly sup-

ported smooth functions on [0, 1] × M .) Let U be a neighbourhood of the identity in

Hamc(M ,ω) w.r.t. the C0 Whitney topology (= strong C0 topology). (If M is closed than

this topology is the compact open topology.)

Question: Does there exist a neighbourhood of the identity V in this topology,

such that for every ϕ ∈ V there exists a compactly supported H ∈ C∞([0, 1] × M , R
)

satisfying ϕ1
H = ϕ and ϕtH ∈ U , for every t?

If the answer to this question is yes then Theorem 1 implies that given a closed

coisotropic submanifold of M , every ϕ in some strong-C0 neighbourhood of the identity

in Hamc(M ,ω) has a leafwise fixed point. The answer is indeed yes for M = R
2n with

the standard symplectic form. This follows from [26, Lemma 3.2]. The answer is also

affirmative if M is a closed surface. This follows from the proof of [26, Proposition 3.1]

and from [26, Lemma 3.2]. In general the question appears to be open. �

To show that there exist U and O satisfying condition (i) of Theorem 1, the idea is

to construct a symplectic submanifold M̃ of the manifold M ×N that contains the diag-

onal embedding Ñ of N as a Lagrangian submanifold. This submanifold is constructed

by using a smooth family of local slices in N that are transverse to the isotropic distri-

bution TNω. Such a family can be viewed as a substitute for the symplectic quotient of

N . (This quotient is well defined precisely if N is regular.)

Because the restriction of the Hamiltonian flow (ϕt) to N stays C0-close to the

inclusion N → M , we can lift it from M to M̃ . Intersection points of Ñ with its image

under the lifted time-1-flow correspond to leafwise fixed points of ϕ1. Using Weinstein’s

theorem we identify a neighbourhood of Ñ in M̃ with a neighbourhood of the zero section

of the cotangent bundle T∗Ñ . Since the zero section is not displaceable in a Hamiltonian

way, it will now follow that there exist U and O satisfying condition (i) of Theorem 1.

(O-nondegeneracy translates into transversality of the Lagrangian intersection in the

cotangent bundle.)

This proof refines an approach from [30] that only works in the regular case. (See

Remark 11 below.)

2 Linear Holonomy of a Foliation and Nondegeneracy

In the second part of Theorem 1(i) the pair (ϕ1,N) is assumed to be O-nondegenerate.

This is a weak version of the notion of nondegeneracy that was introduced

in [30].
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Leafwise fixed points 2417

The notion of O-nondegeneracy is based on the linear holonomy of a foliation.

To explain this, let M be a manifold and F a foliation on M , that is, a maximal smooth

atlas of foliation charts. We denote by TF ⊆ TM the tangent bundle of F , and by

pr := prF : TM → νF := TM/TF

the canonical projection onto the normal bundle of F . For x ∈ M we write TxF := (TF)x
and νxF := (νF)x . (TxF is the linear subspace of TxM tangent to the leaf through x.)

Let F be a leaf of F , a ≤ b and x ∈ C∞([a,b],F). The linear holonomy of F along x

is a linear map holF
x : νx(a)F → νx(b)F , whose definition is based on the following result.

Proposition 3. Let M , F ,F ,a,b and x be as above, Y a manifold, and y0 ∈ Y . Then the

following statements hold.

(i) For every linear map T : Ty0Y → Tx(a)M there exists a map u ∈ C∞([a,b] ×
Y ,M) such that

u(·,y0) = x, ∂tu(t,y) ∈ Tu(t,y)F , ∀t ∈ [a,b], y ∈ Y , (4)

d(u(a, ·))(y0) = T . (5)

(ii) Let u,u′ ∈ C∞([a,b] × Y ,M) be maps satisfying (4), such that

prd(u(a, ·))(y0) = prd(u′(a, ·))(y0). (6)

Then prd(u(b, ·))(y0) = prd(u′(b, ·))(y0). �

Proof. See [30, Proposition 2.1]. �

We define Y := νx(a)F and y0 := 0, and we canonically identify T0

(
νx(a)F

) = νx(a)F .

We choose a linear map T : νx(a)F → Tx(a)M , such that pr T = idνx(a)F , and a map u ∈
C∞([a,b] × νx(a)F ,M

)
such that (4) and (5) hold. We define linear holonomy of F along x

to be the map

holF
x := prd(u(b, ·))(0) : νx(a)F(= T0(νx(a)F)) → νx(b)F . (7)

It follows from Proposition 3 that this map is well-defined. Condition (4) in that proposi-

tion means that the holF
x is obtained by sliding along the leaves of F . The linear holonomy

can be viewed as the linearization of the holonomy of a foliation as defined for example
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2418 F. Ziltener

in Section 2.1 in the book [22]. For a given Riemannian metric on M , holF
x corresponds

to the holonomy of a Bott connection along x (as defined e.g., in [9, Lemma 6.1.5.]).

Let (M ,ω) be a symplectic manifold and N ⊆ M a coisotropic submanifold. We

denote by FN ,ω the isotropic foliation (= characteristic foliation) on N , and abbreviate

holN ,ω := holFN ,ω
,

pr := prFN ,ω
: TN → νTFN ,ω = TN/(TN)ω.

Let U ⊆ M be open and ϕ ∈ C∞(U ,M). Let F ⊆ N be an isotropic leaf and x ∈ C∞([0, 1],F)
a path, such that

x(0) ∈ U , ϕ(x(0)) = x(1). (8)

We call the triple (ϕ,N ,x)nondegenerate iff the only vector v ∈ Tx(0)N∩dϕ(x(0))−1(Tx(1)N)

satisfying

holN ,ω
x prx(0) v = prx(1) dϕ(x(0))v, (9)

is v = 0.

Let O ⊆ N × N . We call (ϕ,N) (or simply ϕ) O-nondegenerate iff the following

holds. Let F ⊆ N be an isotropic leaf and x ∈ C∞([0, 1],F) a path, such that (8) holds and

(
x(0),x(t)

) ∈ O, ∀t ∈ [0, 1]. (10)

Then (ϕ,N ,x) is nondegenerate. This explains the O-nondegeneracy condition in Theo-

rem 1.

Remark. We call (ϕ,N) nondegenerate iff it is N × N-nondegenerate. This version of

nondegeneracy was used in [30]. In the case N = M this condition means that for every

x0 ∈ Fix(ϕ), 1 is not an eigenvalue ofdϕ(x0). Furthermore, in the case thatN is a connected

Lagrangian and ϕ is submersive, (ϕ,N) is nondegenerate if and only if N � ϕ−1(N), that

is, N and ϕ−1(N) intersect transversely. �

3 Proof of Theorem 1

The proof of Theorem 1 is based on the following lemma. Let (M ,ω) be a symplectic man-

ifold and N ⊆ M a closed coisotropic submanifold. We equip M ×M with the symplectic
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Leafwise fixed points 2419

form ω ⊕ (−ω) and denote

2n := dimM , k := codimN , m := n− k,

and by

ιN : N → M

the canonical inclusion.

Lemma 4 (existence of a good symplectic submanifold of M × N ).

(i) There exists a symplectic submanifold (without boundary) M̃ of M × M of

dimension 2n+ 2m that is contained in M × N and contains the diagonal

Ñ := {
(x,x)

∣∣x ∈ N
}
.

(ii) Every such M̃ contains Ñ as a Lagrangian submanifold. �

The idea of proof of this lemma is to choose an open neighbourhood U ⊆ M of N , a

retraction r : U → N , and for each y0 ∈ N a local slice Sy0 ⊆ N through y0 that is

transverse to the isotropic foliation, and to define

“M̃ := {
(x,y) ∈ U × N

∣∣y ∈ Sr(x)
}
.′′

The rank of the isotropic distribution equals codimN . Hence dim(Sy0) = 2n − 2k = 2m,

and therefore M̃ will have the desired dimension 2n+ 2m.

Proof of Lemma 4. (i): We will choose the submanifold M̃ to be a subset of the image

of the map F whose existence is stated in the following claim.

Claim 1 (existence of a good map to M × N ). There exist a smooth manifold M̂ of

dimension 2n+ 2m, a compact subset N̂ ⊆ M̂ , and a smooth map

F : M̂ → M × N

that maps N̂ bijectively to Ñ , such that the following holds. Let

x̂ ∈ N̂ .
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2420 F. Ziltener

We denote

Ṽ := TF (̂x)(M × N), 
̃ := (
ω ⊕ (−ι∗Nω)

)
F (̂x)

, W̃ := dF (̂x)Tx̂M̂ . (11)

Then

W̃ ⊕ Ṽ 
̃ = Ṽ . (12)

�

(Here we denote by Ṽ 
̃ the 
̃-complement of Ṽ ).

Proof of Claim 1. We will use the next claim, which roughly states that there exists

a smooth family of local slices on N that are transverse to the isotropic foliation. We

denote

TyNω := TyN/TyN
ω, ∀y ∈ N , TNω := TN/TNω

Claim 2 (local slices on N ). There exists a smooth map

f : TNω → N ,

such that, defining

fy := f (y, ·),

we have

fy(0) = y, (13)

dfy(0)(TyNω)⊕ TyN
ω = TyN , (14)

for every y ∈ N . Here in (14) we canonically identified T0(TyNω) with TyNω. �

Proof of Claim 2. We choose a Riemannian metric g on N and denote by ⊥ the

orthogonal complement w.r.t. g. The map

TN ⊇ (TNω)⊥ � (y,v) �→ (
y,v + TyN

ω
) ∈ TNω,
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Leafwise fixed points 2421

is an isomorphism of vector bundles over N . We denote by� the inverse of this map and

by exp the exponential map w.r.t. g, and define

f := exp ◦� : TNω → N .

Let y ∈ N . Condition (13) is satisfied. Furthermore, since fy = expy ◦�y , we have

dfy(0)TyNω = d expy(0)(TyN
ω)⊥ = (TyN

ω)⊥.

Equality (14) follows. This proves Claim 2. �

We choose f as in Claim 2, an open neighbourhood U ⊆ M of N , and a smooth

retraction

r : U → N .

(This means that r equals the identity on N .) We define

M̂ := r∗TNω = {
(x,v)

∣∣x ∈ U , v ∈ Tr(x)Nω

}
.

This is a submanifold of M × TNω of dimension 2n+ 2m. We define

N̂ := {
(y, 0y)

∣∣y ∈ N
} ⊆ M̂ ,

F : M̂ → M × N , F(x,v) := (
x, f (r(x),v)

)
.

This map is smooth. Because of (13) it maps N̂ bijectively to Ñ .

To show (12), we define

R : U → M × N , R(x) := (x, r(x)),

R̂ : U → M̂ , R̂(x) := (x, 0r(x)),

ι : TyNω → M̂ , ι(v) := (y,v).

Let x̂ = (y, 0y) ∈ N̂ . The map

TyM × TyNω � (v,v) �→ dR̂(y)v + dι(0)v ∈ Tx̂M̂

is an isomorphism. (Here we identified T0(TyNω) = TyNω.) Since R = F ◦ R̂, we have

dR(y) = dF (̂x)dR̂(y).
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2422 F. Ziltener

Since F ◦ ι(v) = (
y, fy(v)

)
, we have

dF (̂x)dι(0) = (
0,dfy(0)

)
: T0(TyNω) = TyNω → TF (̂x)(M × N).

It follows that

W̃ = dF (̂x)Tx̂M̂ = dR(y)TyM + {0} × dfy(0)TyNω. (15)

Since Ṽ 
̃ = {0} × TyNω, it follows that

W̃ + Ṽ 
̃ ⊇ dR(y)TyM + {0} × (
dfy(0)TyNω + TyN

ω
)
. (16)

Using (14) and the fact that dR(y)TyM is the graph of a linear map (namely of dr(y)), the

right hand side of (16) equals Ṽ . It follows that

W̃ + Ṽ 
̃ = Ṽ . (17)

On the other hand, using (15), the facts that dR(y)TyM is a graph of a linear map, the

sum (14) is direct, and that Ṽ 
̃ = {0} × TyNω, it follows that

W̃ ∩ Ṽ 
̃ = {0}.

(This also follows from (17) and a dimension argument.) This proves (12) and completes

the proof of Claim 1. �

We choose M̂ , N̂ ,F as in this claim. We show that the image M̃ under F of a

suitable subset of M̂ is a symplectic submanifold of M × N that contains Ñ = F(N̂), as

desired. For this we show that F is a symplectic immersion along N̂ .

Let x̂ ∈ N̂ . We define Ṽ , 
̃, W̃ as in (11).

Claim 3. The map dF (̂x) is injective and W̃ = dF (̂x)(Tx̂M̂) is a symplectic linear

subspace of Ṽ w.r.t. 
̃. �

Proof of Claim 3. Condition (12) implies that

dim W̃ ≥ dim Ṽ − dim Ṽ 
̃ = 2n+ 2m. (18)

Since dimTx̂M̂ = 2n+2m, it follows thatdF (̂x) is injective. This proves the first assertion.
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Leafwise fixed points 2423

Since Ṽ ⊆ Ṽ 
̃
̃, we have

W̃ 
̃ ⊆ W̃ 
̃ ∩ Ṽ 
̃
̃ ⊆ (
W̃ + Ṽ 
̃

)
̃ = Ṽ 
̃.

In the last step we used (12). (The inclusions “⊇” also hold, but we will not use them.)

Using that the sum (12) is direct, it follows that

W̃ ∩ W̃ 
̃ ⊆ W̃ ∩ Ṽ 
̃ = {0}.

Hence W̃ is a symplectic linear subspace of Ṽ . This proves Claim 3. �

Using Claim 3 and injectivity of F |N̂ , by Lemma 12 below there exists an open

neighbourhood Û ⊆ M̂ of N̂ , such that F |Û is an embedding. We define

M̃ := {
x̃ ∈ F(Û)

∣∣ω ⊕ (−ω) nondegenerate on Tx̃(F(Û))
}
.

By Lemma 13 below applied with the pullback of ω⊕ (−ω) by the inclusion of F(Û) into

M ×M , the set M̃ is open in F(Û). Therefore M̃ is a symplectic submanifold of M ×M of

dimension 2n+ 2m. It is contained in M × N . Claim 3 and the fact F(N̂) = Ñ imply that

M̃ contains Ñ . Hence M̃ has the required properties. This proves part (i) of Lemma 4.

To prove (ii), let x ∈ N . The vectors in T(x,x)Ñ are those of the form (v,v) with

v ∈ TxN . For v,w ∈ TxN we have

ω ⊕ (−ω)
((

v

v

)
,

(
w

w

))
= 0.

Hence Ñ is an isotropic submanifold of M̃ . It is Lagrangian, since dim M̃ = 2n + 2m =
2 dim Ñ . This proves (ii) and thus Lemma 4. �

Let M̃ ⊆ M × N be a symplectic submanifold as in Lemma 4. The next lemma

relates the Hamiltonian vector fields of a function on M and its lift to M̃ . This will be

used in the proof of Theorem 1 to relate the corresponding Hamiltonian flows.

We denote by ιM̃ the inclusion of M̃ into M ×M , and define

ω̃ := ι∗M̃
(
ω ⊕ (−ω)). (19)

This is a symplectic form on M̃ . Let H ∈ C∞(M , R). We denote by

pr1 : M̃ ⊆ M × N → M , pr2 : M̃ → N
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2424 F. Ziltener

the canonical projections, and define

H̃ := H ◦ pr1 : M̃ → R.

Lemma 5 (Hamiltonian vector field on symplectic submanifold M̃ ). We have

dpr1 XH̃ = XH ◦ pr1, (20)

dpr2 XH̃ ∈ TNω. (21)

�

Proof of Lemma 5. To see (20), observe that

ω̃(XH̃ , ·) = dH̃ = (dH) ◦ pr1 dpr1 = ω
(
XH ◦ pr1,dpr1 ·).

Hence, for every x̃ = (x,y) ∈ M̃ and v ∈ TxM , we have

ω
(
XH (x),v

) = ω̃
(
XH̃ (̃x), (v, 0)

) = ω
(
dpr1 XH̃ (̃x),v

)
.

The second equality follows from the definition (19) of ω̃. It follows that

XH (x) = dpr1 XH̃ (̃x).

This proves (20).

We prove (21). Let x̃ = (x,y) ∈ M̃ . We define

Hy := {
w ∈ TyN

∣∣ (0,w) ∈ Tx̃M̃
}
,

Ṽ := Tx̃(M × N), 
̃ := (
ω ⊕ (−ι∗Nω)

)
x̃
.

Since Tx̃M̃ is a symplectic subspace of Ṽ of maximal dimension 2n+ 2m, we have

Ṽ = Tx̃M̃ + Ṽ 
̃.

Combining this with the fact Ṽ 
̃ = {0} × TyNω, it follows that

TyN ⊆ Hy + TyN
ω. (22)
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Leafwise fixed points 2425

For every w ∈ Hy we have

0 = dHdpr1(̃x)(0,w)

= dH̃ (̃x)(0,w)

= ω̃
(
XH̃ (̃x), (0,w)

)
= −ω(dpr2 XH̃ (̃x),w

)
.

Because of (22) it follows that ω
(
dpr2 XH̃ (̃x),w

) = 0, for every w ∈ TyN . This shows (21)

and completes the proof of Lemma 5. �

The next lemma produces leafwise fixed points for a ϕ ∈ Ham(M ,ω) out of

Lagrangian intersection points of Ñ and its translation under a lift of ϕ. Let

H ∈ C∞([0, 1] ×M , R
)
.

We define

H̃t := Ht ◦ pr1 : M̃ → R, H̃ := (H̃t)t∈[0,1]. (23)

Lemma 6 (Lagrangian intersection points and leafwise fixed points). For every

x̃ ∈ Ñ ∩ (ϕ1
H̃ )

−1(Ñ)

we have

x := pr1(̃x) ∈ Fix(ϕ1
H ,N).

�

Remark. The set (ϕ1
H̃
)−1(Ñ) is contained in the domain of the flow ϕ1

H̃
, which is an open

subset of M̃ . �

Proof of Lemma 6. Since x̃ ∈ dom
(
ϕ1
H̃

)
, equality (20) in Lemma 5 implies that for every

t ∈ [0, 1], we have x ∈ dom(ϕtH ) and

ϕtH (x) = pr1 ◦ϕtH̃ (̃x). (24)
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2426 F. Ziltener

We denote

y : [0, 1] → N , y(t) := pr2 ◦ϕtH̃ (̃x).

Since x̃ ∈ Ñ , we have

y(0) = pr2(̃x) = pr1(̃x) = x ∈ N .

By statement (21) in Lemma 5, we have

ẏ(t) ∈ Ty(t)N
ω, ∀t ∈ [0, 1].

It follows that

y([0, 1]) ⊆ isotropic leaf through x. (25)

Equality (24) and our assumption that x̃ ∈ (ϕ1
H̃
)−1(Ñ) imply that

ϕ1
H (x) = pr1 ◦ϕ1

H̃ (̃x) = pr2 ◦ϕ1
H̃ (̃x) = y(1).

Since y(1) lies in the isotropic leaf of x, it follows that x is a leafwise fixed point for ϕ1
H .

This proves Lemma 6. �

For the proof of Theorem 1 we also need the following.

Lemma 7 (nondegeneracy and transversality). Let U ⊆ M and Ũ ⊆ M̃ be open and

ϕ ∈ C∞([0, 1] × U ,M
)
, ϕ̃ ∈ C∞([0, 1] × Ũ , M̃

)
be maps, such that

ϕ̃0 = inclusion: Ũ → M̃ , (26)

pr1(Ũ) ⊆ U , (27)

pr1 ◦ϕ̃t = ϕt ◦ pr1 |Ũ , ∀t ∈ [0, 1], (28)

pr2 ◦ϕ̃t (̃x) ∈ isotropic leaf through pr2(̃x), ∀x̃ ∈ Ũ , t ∈ [0, 1]. (29)

Let x̃ ∈ Ñ ∩ ϕ̃−1
1 (Ñ). We define

y : [0, 1] → N , y(t) := pr2 ◦ϕ̃t (̃x).

The triple
(
ϕ1,N ,y

)
is nondegenerate if and only if

Tx̃Ñ ∩ dϕ̃1(̃x)
−1
(
Tϕ̃1 (̃x)Ñ

) = {0}. �
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Leafwise fixed points 2427

Remarks. • Because of (27) the condition (28) makes sense.

• It follows from (26) that

y(0) = pr2 ◦ϕ̃0(̃x) = pr2(̃x).

Since x̃ ∈ Ñ , it follows that

x̃ = (
y(0),y(0)

)
. (30)

Since ϕ̃1(̃x) ∈ Ñ , we have ϕ̃1(̃x) = (
y(1),y(1)

)
, and therefore by (28, 30),

y(1) = pr1 ◦ϕ̃1(̃x) = ϕ1 ◦ pr1(̃x) = ϕ1 ◦ y(0). (31)

Hence using (29), the nondegeneracy condition for (ϕ1,N ,y) makes sense.

• The condition (28) implies that

dpr1 dϕ̃1(̃x) = dϕ1dpr1(̃x) on Tx̃M̃ . (32)

�

Proof of Lemma 7. We denote

x := pr1(̃x) = y(0), holy := holN ,ω
y ,

by

pr : TN → TN/(TN)ω

the canonical projection, and

X :=
{
v ∈ TxN ∩ dϕ1(x)

−1
(
Tϕ1(x)N

) ∣∣∣holy pr v = prdϕ1(x)v
}
.

The triple
(
ϕ1,N ,y

)
is nondegenerate if and only if X = {0}. The statement of Lemma 7

therefore follows from the next claim.

Claim 1. The map

dpr1(̃x) : Tx̃Ñ ∩ dϕ̃1(̃x)
−1
(
Tϕ̃1 (̃x)Ñ

) → X (33)

is well defined and bijective. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/8/2411/4093305 by U
niversiteitsbibliotheek U

trecht user on 21 February 2024



2428 F. Ziltener

Proof of Claim 1: Since Ñ = {
(y0,y0)

∣∣y0 ∈ N
}
, the maps

dpr1(̃x) : Tx̃Ñ → TxN , ι : TxN → Tx̃Ñ , ι(v) = (v,v),

are well-defined and inverses of each other. Let

ṽ ∈ Tx̃Ñ .

We define

v := dpr1(̃x)̃v ∈ TxN , w̃ := dϕ̃1(̃x)̃v.

In order to prove Claim 1, it suffices to show that

w̃ ∈ Tϕ̃1 (̃x)Ñ ⇐⇒ dϕ1(x)v ∈ Tϕ1(x)N , holy pr v = prdϕ1(x)v. (34)

For this we need the following claim. We write

wi := dpri
(
ϕ̃1(̃x)

)
w̃.

Claim 2. We have

holy pr v = prw2. �

Proof of Claim 2. Since x̃ = (x,x) ∈ ϕ̃−1
1 (Ñ) ⊆ Ũ , there exists a path z ∈ C∞(R,N), such

that

z(0) = x, ż(0) = v, (z, z)(R) ⊆ Ũ .

We define

u : R × [0, 1] → N , u(s, t) := pr2 ◦ϕ̃t ◦ (z, z)(s).

We have

∂su(0, 0) = ż(0) = v.
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Leafwise fixed points 2429

It follows from (29) that u(s, t) lies in the isotropic leaf through z(s), for every s, t.

Therefore, by the definition of the linear holonomy, we have

holy pr v = pr ∂su(0, 1)

= prdpr2

(
ϕ̃1(̃x)

)
dϕ̃1(x,x)(v,v)

= prw2.

This proves Claim 2. �

The equalities (32) and v = dpr1(̃x)̃v imply that

w1 = dpr1

(
ϕ̃1(̃x)

)
w̃ = dϕ1(x)v. (35)

We show the implication “=⇒” in (34). Assume that w̃ ∈ Tϕ̃1 (̃x)Ñ . Then we have

w2 = w1 ∈ Tpr1 ◦ϕ̃1 (̃x)N = Tϕ1(x)N . (36)

Using (35), it follows that

dϕ1(x)v ∈ Tϕ1(x)N .

Combining Claim 2 and (36,35), we obtain

holy pr v = prdϕ1(x)v.

This shows the implication “=⇒” in (34).

We show the implication “⇐=.” Assume that

dϕ1(x)v ∈ Tϕ1(x)N , holy pr v = prdϕ1(x)v.

By (35) it follows that

prw1 = prdϕ1(x)v = holy pr v. (37)

Using Claim 2, it follows that

prw1 = prw2. (38)
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2430 F. Ziltener

Therefore, for every w̃ ′ = (w ′,w ′) ∈ Tϕ̃1 (̃x)Ñ , we have

ω̃(w̃, w̃ ′) = ω(w1,w ′)− ω(w2,w ′) = ω
(
w1 −w2,w ′) = 0.

Here we used (38) in the last equality. It follows that

w̃ = (w1,w2) ∈ Tϕ̃1 (̃x)Ñ
ω̃ = Tϕ̃1 (̃x)Ñ .

Here we used that Ñ = {
(x,x)

∣∣x ∈ N
}

is a Lagrangian submanifold of M̃ . This proves

the implication “⇐=” in (34). This completes the proof of (34) and therefore of Claim 1

and of Lemma 7. �

The proof of part (ii) of the statement of Theorem 1 is based on the following

result.

Proposition 8. Let A,X ,Z be (smooth) manifolds (without boundary), Y ⊆ Z a subman-

ifold, and f ∈ C∞(A×X ,Z), be a map, such that f � Y , that is, f is transverse to Y . Then

the set

{
a ∈ A

∣∣ f (a, ·) � Y
}

is residual in A, that is, it contains a countable intersection of open and dense sets. �

Proof. [16, 2.7. Theorem]. �

For the proof of part (ii) of Theorem 1 we also need the following lemma and

remark. Let (M ,ω) be a symplectic manifold.

Lemma 9. Let K ⊆ M be compact and K ′ ⊆ M be a compact neighbourhood of K. There

exists � ∈ N and a function H ∈ C∞(B�1 ×M , R
)
, such that for every a ∈ B�1 (the open unit

ball in R
�), the function Ha := H(a, ·) has support in K ′, the map a �→ Ha is the restriction

of a linear map to B�1,

d
(
a �→ ϕ1

Ha
(x)
)
(a) : TaB

�
1 = R

� → Tϕ1
Ha
(x)M is surjective, (39)

∀a ∈ B�1, x ∈ K,

and H0 ≡ 0. (40)

�
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Leafwise fixed points 2431

Proof of Lemma 9. Let x ∈ M . We denote 2n := dimM .

Claim 1. There exists a linear map

Fx : R
2n → C∞(M , R),

such that R
2n � w �→ XFx (w)(x) ∈ TxM is bijective, and Fx(w) has support in K ′, for every

w ∈ R
2n. �

Proof of Claim 1. Let v1, . . . ,v2n be a basis of TxM . Let i ∈ {1, . . . , 2n}. It follows from

an argument in a Darboux chart that there exists a function Fi ∈ C∞(M , R) with support

in K ′, such that

XFi(x) = vi.

We define

Fx : R
2n → C∞(M , R), Fx(w)(y) :=

2n∑
i=1

wiFi(y),

where wi denotes the ith coordinate of w w.r.t. the standard basis. This map has the

required properties. This proves Claim 1. �

We choose Fx as in this claim and write Fx
w := Fx(w). The set

Ux := {
y ∈ M

∣∣R2n � w �→ XFxw (y) ∈ TyM is bijective
}

(41)

is open and contains x. Since K is compact, there exists a finite set S ⊆ K, such that⋃
x∈S

Ux = K.

We define

F : (R2n)S → C∞(M , R), Fa := F(a) :=
∑
x∈S

Fx
a(x).

Claim 2. For every y ∈ K the map

d
(
a �→ ϕ1

Fa
(y)
)
(0) : T0(R

2n)S = (R2n)S → TyM

is surjective. �
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2432 F. Ziltener

Proof of Claim 2. Let v ∈ TyM . We choose x ∈ K such that y ∈ Ux . By (41) there exists

w ∈ R
2n, such that

XFxw (y) = v. (42)

We define

â : S → R
2n, â(x ′) :=

{
w, if x ′ = x,

0, otherwise.

Let t ∈ [0, 1]. We have Ftâ = tFâ, hence XFtâ = tXFâ , and therefore,

ϕ1
Ftâ

= ϕtFâ .

Furthermore, we have

Fâ =
∑
x′∈S

Fx′
a(x′) = Fx

w .

It follows that

d
(
a �→ ϕ1

Fa
(y)
)
(0)̂a = d

dt

∣∣∣∣
t=0

ϕ1
Ftâ
(y)

= d

dt

∣∣∣∣
t=0

ϕtFâ(y)

= XFâ(y)

= XFxw (y)

= v.

Here in the last step we used (42). This proves Claim 2. �

We define � := 2n|S|, choose a linear isomorphism T : R
� → (R2n)S, and define

H : R
� ×M → R, H(a,y) := (

F ◦ T(a))(y).
By Claim 2, restricting H to the product of a ball in R

� and M , and rescaling, we may

assume w.l.o.g. that (39) holds. This function has the required properties. This proves

Lemma 9. �
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Leafwise fixed points 2433

Remark 10. Let (M , F) be a foliated manifold, F a leaf of F , and x,y ∈ C∞([0, 1],F),
such that x(i) = y(i), for i = 0, 1. Assume that there exists a surjective foliation chart

U ⊆ M → R
� × R

k, such that x([0, 1]),y([0, 1]) ⊆ U . Then

holF
x = holF

y .

To see this, consider the case M = R
� × R

k with the standard foliation. Then we have

holF
x = id : νx(0)F = R

� × R
k/{0} × R

k → νx(1)F = R
� × R

k/{0} × R
k,

hence the statement holds. The general situation can be reduced to this case. �

We are now ready for the proof of the main result.

Proof of Theorem 1. We choose a submanifold M̃ as in Lemma 4. Shrinking M̃ if neces-

sary, by Weinstein’s neighbourhood theorem we may assume w.l.o.g. that there exists a

symplectomorphism between M̃ and an open neighbourhood of the zero section in T∗Ñ ,

that is the identity on Ñ .

In order to construct the desired C0-neighbourhood of the inclusion N → M , we

need to ensure that the lifted Hamiltonian flow ϕt
H̃

is defined on the subset Ñ of M̃ . For

this we need to control dpr2 XH̃t , where pr2 : M̃ ⊆ M × N → N denotes the projection.

By Lemma 5 dpr2 XH̃t lies in the isotropic distribution. Using foliation charts, we obtain

local charts for M̃ in which this “isotropic part” of the lifted Hamiltonian vector field

disappears. (See (49) in the proof of Claim 4 below.) This will make the lifted Hamiltonian

flow well-defined on Ñ .

To construct these charts, we need the following. We denote by

π : R
2m × R

k → R
2m

the canonical projection onto the first factor. Let

y ∈ N .

Claim 1. There exists an open neighbourhood V of y in N and a surjective foliation

chart ψ : V → R
2m × R

k, satisfying

(z, z′) ∈ M̃ ∩ (V × V) such that π ◦ ψ(z) = π ◦ ψ(z′) =⇒ z = z′. (43)

�
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2434 F. Ziltener

Proof of Claim 1. We choose an open neighbourhood V0 of y in N and a foliation chart

ψ0 : V0 → R
2m × R

k, satisfying ψ0(y) = 0. For every subset V ⊆ V0 we define

X̃V := (ψ0 × ψ0)
(
M̃ ∩ (V × V)

) ⊆ R
4m+2k.

We define the map

f : X̃V0 × R
k → R

4m+k × R
k, f (̃x,w) := x̃ + (0,w).

We show that X̃V0 is a submanifold of R
4m+2k and that f is an immersion. Let x̃ = (z, z′) ∈

M̃ ∩ (V0 × V0). Since M̃ is a symplectic submanifold of M × N , we have

Tx̃M̃ ∩ ({0} × Tz′N
ω) = {0}.

This intersection is transverse, since

dim(M̃)+ dim ({0} × Tz′N
ω) = dim(M × N).

Hence we have Tx̃M̃ � Tx̃(N ×N). It follows that M̃ ∩ (N ×N) is a submanifold of N ×N ,

and that

Tx̃
(
M̃ ∩ (N × N)

) ∩ ({0} × Tz′N
ω) = {0}.

This implies that X̃V0 is a submanifold of R
4m+2k and that

T(ψ0×ψ0)(̃x)X̃V0 ∩ ({0} × R
k
) = {0}.

It follows that f is an immersion, as claimed.

Since f is immersive, there exist neighbourhoods V ⊆ V0 of y in N and W of 0

in R
k, such that the restriction of f to X̃V ×W is injective. Shrinking V , we may assume

w.l.o.g. that

ψ0(V) = B2m
r × Bkr , Bk2r ⊆ W ,

for some r > 0. Here Bkr denotes the open ball in R
k about 0 with radius r. For every

� = 0, 1, . . . we choose a diffeomorphism χ� : B�r → R
�. We define

ψ := (χ2m × χk) ◦ ψ0|V : V → R
2m × R

k.
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Leafwise fixed points 2435

This is a surjective foliation chart. We show that (43) holds. Let (z, z′) ∈ M̃ ∩ (V × V) be

such that π ◦ψ(z) = π ◦ψ(z′). We denote by π ′ : R
2m × R

k → R
k the canonical projection

onto the second factor. We define

w := π ′(ψ0(z
′)− ψ0(z)

)
.

Since π ′ ◦ψ0(z),π ′ ◦ψ0(z′) ∈ Bkr , we have w ∈ Bk2r . The equality π ◦ψ(z) = π ◦ψ(z′) implies

that π ◦ ψ0(z) = π ◦ ψ0(z′). Hence we have

(
ψ0(z),ψ0(z)

)+ (0,w) = (
ψ0(z),ψ0(z

′)
)
, (44)

where 0 ∈ R
2m+k × R

2m. Since (z, z) ∈ V × V ⊆ Ñ ⊆ M̃ , we have
(
ψ0(z),ψ0(z)

) ∈ X̃V .

Furthermore, we have
(
ψ0(z),ψ0(z′)

) ∈ X̃V . Since the restriction of f to X̃V×Bk2r is injective,

using (44), it follows that ψ0(z) = ψ0(z′) (and w = 0), hence z = z′. Hence (43) holds.

Therefore, ψ has the desired properties. This proves Claim 1. �

We choose V = Vy and ψ = ψy as in Claim 1. We define

ψ̃y := idM × (π ◦ ψy) : M̃ ∩ (M × Vy) → M × R
2m, (45)

x̃ := (y,y).

Claim 2. The derivative

�̃ := dψ̃y (̃x) : Tx̃M̃ → TyM × R
2m

is invertible. �

Proof of Claim 2. We denote

� := dπdψy(y) : TyN → R
2m.

We have

�̃ = id ×� : Tx̃M̃ ⊆ TyM × TyN → TyM × R
2m.

Let ṽ = (v,v ′) ∈ ker �̃. Then v = 0 and v ′ ∈ ker� = TyNω, hence ṽ = (0,v ′) ∈ Tx̃M̃ ω̃.

Since M̃ is symplectic, it follows that ṽ = 0. Therefore �̃ is injective. Since the domain

and target of �̃ both have dimension 2n+ 2m, it follows that �̃ is an isomorphism. This

proves Claim 2. �
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2436 F. Ziltener

Using Claim 2, by the inverse function theorem there exist open neighbourhoods

Uy of y in M and Wy ⊆ R
2m of π ◦ ψy(y), such that the restriction

ψ̃y : Ũy := ψ̃−1
y (Uy ×Wy) → Uy ×Wy (46)

is a diffeomorphism. (Note that

Ũy = (
Uy × (π ◦ ψy)

−1(Wy)
) ∩ M̃).

The map ψ̃y plays the role of a local “chart” for M̃ . (The target of this map is an open

subset of M × R
2m, hence ψ̃y is not a chart in the strict sense). We will show that it has

the desired property, see (49) below.

Shrinking Uy , we may assume w.l.o.g. that Uy ∩ N ⊆ Vy . We choose a compact

neighbourhood Ky of y in Uy ∩ N , such that π ◦ ψy(Ky) ⊆ Wy . The last condition makes

sense, since Uy ∩ N ⊆ Vy and ψy is defined on Vy . Since N is compact, there exist � ∈ N

and points y1, . . . ,y� ∈ N , such that

N ⊆
⋃

i=1,...,�

◦
Kyi . (47)

(Here
◦
X denotes the interior of X in N ). We denote

Ki := Kyi , Vi := Vyi , Ui := Uyi , Wi := Wyi ,

Ũi := Ũyi , ψi := ψyi , ψ̃i := ψ̃yi .

We define

U := {
ϕ ∈ C(N ,M)

∣∣ϕ(Ki) ⊆ Ui, ∀i = 1, . . . , �
}
.

This is a neighbourhood of the inclusion ιN : N → M in the compact open topology

(= C0-topology). We define

O :=
⋃

i=1,...,�

⎛⎝ ◦
Ki \

⋃
j=1,...,i−1

◦
Kj

⎞⎠× Vi. (48)

Here we use the convention that for i = 1 the union
⋃

j=1,...,i−1 Xj is empty.

Claim 3. The set O is a (possibly nonopen) neighbourhood of the diagonal Ñ inN×N . �
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Leafwise fixed points 2437

Proof of Claim 3. Let y ∈ N . Let i0 be the smallest index, such that y ∈ ◦
Ki0 . (Here we use

(47).) We define

V ′ := ◦
Ki0 \

⋃
j∈{1,...,�}:y 
∈Kj

Kj, V ′′ :=
⋂

i∈{1,...,�}:y∈Ki
Vi,

V ′ and V ′′ are open neighbourhoods of y in N . (Here we use that Ki ⊆ Ui ∩ N ⊆ Vi.) It

follows that V ′ × V ′′ is an open neighbourhood of (y,y) in N × N . Applying Remark 14

from the Appendix with J := {1, . . . , �}, I := {
i ∈ J

∣∣y ∈ Ki

}
, Ai := ◦

Ki, and Bi := Ki, it

follows that V ′ × V ′′ ⊆ O. The statement of Claim 3 follows. �

We show that U and O satisfy condition (i) of Theorem 1. The next claim will

be used to show that given a Hamiltonian flow on M as in (i), Ñ intersects its translate

under the lifted flow on M̃ .

Let H ∈ C∞([0, 1] × M , R
)

be a function whose Hamiltonian flow is globally

defined, surjective, and satisfies ϕtH |N ∈ U , for every t ∈ [0, 1]. We define

H̃t := Ht ◦ pr1 : M̃ → R.

Let x̃0 = (y0,y0) ∈ Ñ .

Claim 4. We have

x̃0 ∈ dom
(
ϕtH̃

)
, ϕtH̃ (̃x0) ∈ Ũi,

for every t ∈ [0, 1] and every i ∈ {1, . . . , �}, such that y0 ∈ ◦
Ki. �

Proof of Claim 4. Let i be such that y0 ∈ ◦
Ki. We abbreviate

K := Ki, V := Vi, U := Ui, W := Wi,

Ũ := Ũi, ψ := ψi, ψ̃ := ψ̃i.

Recall that π : R
2m × R

k → R
2m denotes the canonical projection. Let t ∈ [0, 1] and

x̃ = (x,y) ∈ Ũ . Since ψ is a foliation chart, the derivative d(π ◦ ψ)(y) = dπ(ψ(y))dψ(y)

vanishes on TyNω. Hence statement (21) in Lemma 5 implies that

d
(
π ◦ ψ ◦ pr2

)
XH̃t (̃x) = d(π ◦ ψ)(y)d pr2(̃x)XH̃t (̃x) = 0.
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2438 F. Ziltener

Using equality (20) in Lemma 5, it follows that

dψ̃ (̃x)XH̃t (̃x) = (
XHt (x), 0

)
. (49)

By (46), the map ψ̃ : Ũ → U ×W is a diffeomorphism. Hence (49) implies that

ψ̃∗XH̃t := ψ̃∗XH̃t |Ũ

= XHt |U × 0 : vector field on ψ̃(Ũ)

= U ×W .

It follows that

domain of flow of ψ̃∗XH̃ = (
ψ̃∗XH̃t

)
t
= (

domain of flow of
(
XHt |U

)
t

)×W ,

and that

ϕt
ψ̃∗XH̃

= ϕtH |U × id

on this domain. Since by assumption ϕtH |N ∈ U and y0 ∈ K, this point lies in the domain of

the flow of
(
XHt |U

)
t
. Our assumption π ◦ψ(K) ⊆ W implies that π ◦ψ(y0) ∈ W . It follows

that

ψ̃
(̃
x0 = (y0,y0)

) = (
y0,π ◦ ψ(y0)

)
lies in the domain of the flow of ψ̃∗XH̃ . This implies that x̃0 lies in the domain of the flow

of
(
XH̃t |Ũ

)
t
. The statement of Claim 4 follows. �

Since Ñ is compact, using Claim 4, there exists a compact neighbourhood K̃ of Ñ

in M̃ that is contained in the domain of ϕ1
H̃

. By Lemma 15 below there exists a function

Ĥ ∈ C∞([0, 1] × M̃ , R
)

with compact support, such that

ϕtĤ = ϕtH̃ on K̃, ∀t ∈ [0, 1].

We denote by 0Ñ the zero section of T∗Ñ . By our assumption there exists an open neigh-

bourhood U ′ ⊆ T∗Ñ of 0Ñ and a symplectomorphism χ : U ′ → M̃ that equals the identity

on Ñ . (Recall that using Weinstein’s neighbourhood theorem, we have shrunk M̃ in such

a way that such a χ exists.) We define the function H ′
t : T∗Ñ → R by

H ′
t :=

{
Ĥt ◦ χ on U ′,

0 outside U ′.
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Leafwise fixed points 2439

We have

χ
(
0Ñ ∩ (ϕ1

H ′)−1(0Ñ)
) = Ñ ∩ (ϕ1

Ĥ )
−1(Ñ) = Ñ ∩ (ϕ1

H̃ )
−1(Ñ).

By Lemma 6, we have

pr1

(
Ñ ∩ (ϕ1

H̃ )
−1(Ñ)

) ⊆ Fix(ϕ1
H ,N).

Since χ and pr1 : Ñ → M are injective, it follows that

∣∣Fix(ϕ1
H ,N)

∣∣ ≥ ∣∣0Ñ ∩ (ϕ1
H ′)−1(0Ñ)

∣∣. (50)

It follows from [17, Theorem 2] that

∣∣0Ñ ∩ (ϕ1
H ′)−1(0Ñ)

∣∣ ≥ cl(Ñ) = cl(N),

and therefore

∣∣Fix(ϕ1
H ,N)

∣∣ ≥ cl(N),

that is, the inequality (1) holds.

Assume now that (ϕ1
H ,N) is O-nondegenerate. We show that (2) holds. Let

x̃ ∈ Ñ ∩ (ϕ1
H̃ )

−1(Ñ).

We check the hypotheses of the implication =⇒ of Lemma 7 with

U := M , Ũ := dom
(
ϕ1
H̃

)
, ϕt := ϕtH , ϕ̃t := ϕtH̃ ,

y : [0, 1] → N , y(t) := pr2 ◦ϕtH̃ (̃x).

The conditions (27), and (28) follows from equality (20) in Lemma 5. The condition (29)

follows from statement (21) in Lemma 5. We denote by i ∈ {1, . . . , �} the smallest index,

such that y(0) = pr1(̃x) ∈ ◦
Ki. Let t ∈ [0, 1]. By Claim 4, we have

ϕtH̃ (̃x) ∈ Ũi.

By (46), and (45) we have Ũi ⊆ domain of ψ̃i ⊆ M × Vi. It follows that

y(t) ∈ pr2

(
Ũi

) ⊆ Vi. (51)
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2440 F. Ziltener

Since i ∈ {1, . . . , �} is the smallest index, such that y(0) ∈ ◦
Ki, it follows that

(
y(0),y(t)

) ∈
⎛⎝ ◦
Ki \

⋃
j=1,...,i−1

◦
Kj

⎞⎠× Vi ⊆ O .

Hence by our assumption that (ϕ1
H ,N) is O-nondegenerate, the triple

(
ϕ1
H ,N ,y

)
is nonde-

generate. Hence the hypotheses of the implication =⇒ of Lemma 7 are satisfied. Applying

this lemma, it follows that

Tx̃Ñ ∩ dϕ1
H̃ (̃x)

−1
(
Tϕ1

H̃
(̃x)Ñ

) = {0}.

It follows that

Ñ � (ϕ1
H̃ )

−1(Ñ).

Since ϕt
Ĥ

= ϕt
H̃

on K̃, the set K̃ intersects the pre-images of Ñ under ϕ1
Ĥ

and ϕ1
H̃

in the same

set. Since K̃ is a neighbourhood of Ñ , it follows that

Ñ � (ϕ1
Ĥ )

−1(Ñ).

Since 0Ñ = χ−1(Ñ) and (ϕ1
H ′)−1(0Ñ) = χ−1

(
(ϕ1

Ĥ
)−1(Ñ)

)
, it follows that

0Ñ � (ϕ1
H ′)−1(0Ñ).

Therefore, [12, Theorem 1] implies that

∣∣0Ñ ∩ (ϕ1
H ′)−1(0Ñ)

∣∣ ≥
dim 0Ñ∑
i=0

bi (0Ñ , Z2) =
dimN∑
i=0

bi(N , Z2).

Combining this with (50), the claimed inequality (2) follows. It follows that U and O

satisfy condition (i) of Theorem 1.

We show that U and O satisfy condition (ii) of Theorem 1. We choose a compact

neighbourhood K ′ ⊆ M of K := N , and � and H as in Lemma 9. Since H0 ≡ 0, we have

ϕ1
H̃0

= id : M̃ → M̃ . Therefore, using compactness of Ñ , by restricting the function H

to the product of some ball in R
� and M , and rescaling, we may assume w.l.o.g. that

Ñ ⊆ dom(ϕ1
H̃a
), for every a ∈ B�1. We define

A := B�1, X := N , Z := M̃ ,

f : A× X → Z, f (a,x) := ϕ1
H̃a
(x,x), Y := Ñ . (52)
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Leafwise fixed points 2441

Claim 5. For every x ∈ N the map

df (0,x) : R
� × TxN → T(x,x)M̃

is surjective. �

Proof of Claim 5. We write x̃ := (x,x). Let ṽ = (v,w) ∈ Tx̃M̃ . Since (w,w) ∈ Tx̃Ñ ⊆ Tx̃M̃ ,

we have

(v −w, 0) = ṽ − (w,w) ∈ Tx̃M̃ . (53)

It follows from equality (20) in Lemma 5 that pr1 ◦f (a,y) = ϕ1
Ha
(y), for every a ∈ B�1,

y ∈ N . Hence it follows from (39) that there exists â ∈ T0B�1 = R
�, such that

da(pr1 ◦f )(0,x)̂a = v −w. (54)

(Here da denotes the derivative w.r.t. a.) We denote

vi := dpri daf (0,x)̂a = da(pri ◦f )(0,x)̂a, ∀i = 1, 2.

Since daf (0,x)̂a ∈ Tx̃M̃ , it follows from (54,53) that

(0,v2) = daf (0,x)̂a− (
v1 = v −w, 0

) ∈ Tx̃M̃ . (55)

Since a �→ Ha is the restriction of a linear map to B�1, the same holds for the map a �→ H̃a.

It follows that

ϕ1
H̃tâ
(x) = ϕ1

tH̃â
(x) = ϕtH̃â

(x)

(where defined), hence

d

dt

∣∣∣∣
t=0

ϕ1
H̃tâ
(x) = XH̃â

(x),

and therefore,

v2 = d pr2

d

dt

∣∣∣∣
t=0

ϕ1
H̃tâ
(x) = d pr2 XH̃â

(x).

Therefore statement (21) in Lemma 5 implies that

v2 ∈ TxN
ω. (56)
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2442 F. Ziltener

Since M̃ is symplectic, we have Tx̃M̃ ∩ ({0} × TxNω
) = {0}. Combining this with (55), and

(56), it follows that

v2 = 0. (57)

Since f (0,y) = (y,y), for every y ∈ N , we have dxf (0,x)w = (w,w). Combining this with

(54), and (57), it follows that

df (0,x)(̂a,w) = daf (0,x)̂a+ dxf (0,x)w = (v −w, 0)+ (w,w) = ṽ.

Hence df (0,x) is surjective. This proves Claim 5. �

Using Claim 5, by restricting the function H to the product of some ball in R
� and

M , and rescaling, we may assume w.l.o.g. df (a,x) is surjective for every (a,x) ∈ B�1 ×N .

Recall the definition (3) of Ham(M ,ω, U). Let G ∈ C∞([0, 1] × M , R
)

be a function

whose Hamiltonian flow exists globally, such that ϕtG|N ∈ U , for every t ∈ [0, 1]. Let V be

a neighbourhood of

ϕ0 := ϕ1
G

in Ham(M ,ω, U) in the strong C∞-topology.

Claim 6. There exists ϕ ∈ V, such that ϕ is O-nondegenerate. �

Proof of Claim 6. We choose a neighbourhood V ′ of ϕ1
G in C∞(M ,M) in the strong C∞-

topology, such that V = V ′ ∩ Ham(M ,ω, U). We define

A0 := {
a ∈ A = B�1

∣∣ϕ0 ◦ ϕ1
Ha

∈ V ′, ϕtG#Ha

∣∣
N

∈ U , ∀t ∈ [0, 1]} . (58)

Here

(G#Ha)t :=
{

2Ha, for t ∈ [0, 1
2

]
,

2G2t−1, for t ∈ ( 1
2 , 1

]
.

Let a ∈ A. Since Ha has support in the compact set K ′, its Hamiltonian flow exists

globally and is surjective for all times. It follows that the same is true for G#Ha. Hence

the restriction ϕtG#Ha

∣∣
N

in the definition ofA0 makes sense. Furthermore, ϕ1
G#Ha

= ϕ0 ◦ϕ1
Ha

∈
Ham(M ,ω), and therefore

A0 ⊆ {
a ∈ A

∣∣ϕ0 ◦ ϕ1
Ha

∈ V} . (59)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2019/8/2411/4093305 by U
niversiteitsbibliotheek U

trecht user on 21 February 2024



Leafwise fixed points 2443

Since ϕ1
H0≡0 = id, the set of all a ∈ A, such that ϕ0 ◦ϕ1

Ha
∈ V ′, is a neighbourhood of 0. (Here

we use that the solution of an ordinary differential equation depends smoothly on the

initial data and given parameters, if the coefficients of the equation depend smoothly

on the point in space and on the parameters.) Similarly, the set of all a ∈ A, such that

ϕtG#Ha
|N ∈ U , for every t, is a neighbourhood of 0. Using (58), it follows that A0 is a

neighbourhood of 0.

Since df (a,x) is surjective for every (a,x) ∈ A × (X = N), by Proposition 8, the

set

A1 :=
{
a ∈ A

∣∣ f (a, ·) �
(
ϕ1
G̃

)−1
(Ñ)

}
is residual. Here G̃ is defined as in (23). By Baire’s category theoremA1 is therefore dense

in A. It follows that there exists a ∈ A0 ∩ A1. We define

ϕ := ϕ0 ◦ ϕ1
Ha

.

It follows from (59) that ϕ ∈ V. Claim 6 now follows from the next claim.

Claim 7. ϕ is O-nondegenerate. �

Proof of Claim 7: Let F ⊆ N be an isotropic leaf and

x ∈ C∞([0, 1],F) (60)

a path, such that (8,10) hold with U = dom(ϕ). We show that the triple
(
ϕ,N ,x

)
is

nondegenerate. We define

y : [0, 1] → F , y(t) := pr2 ◦ϕt
˜G#Ha

(
x(0),x(0)

)
. (61)

We show that this map is well defined. Since a ∈ A0, we have that ϕtG#Ha
|N ∈ U , for

every t. Hence by Claim 4 applied with H replaced by G#Ha, we have
(
x(0),x(0)

) ∈ Ñ ⊆
dom

(
ϕ1

˜G#Ha

)
. Hence the right-hand side in (61) makes sense. It follows from statement

(21) in Lemma 5 that y(t) ∈ F , for every t ∈ [0, 1]. Hence y is well defined.

Claim 8. The triple (ϕ,N ,y) is nondegenerate. �

Proof of Claim 8. We check the hypotheses of the implication “⇐=” of Lemma 7 with

U := M , Ũ := dom
(
ϕ1
G#Ha

)
, ϕt := ϕtG#Ha

, ϕ̃t := ϕt
˜G#Ha

,

x̃ := (
x(0),x(0)

)
.
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2444 F. Ziltener

It follows from equality (20) in Lemma 5 that the hypotheses (27), and (28) of Lemma 7

are satisfied. By statement (21) in Lemma 5 the hypothesis (29) is satisfied. Since a ∈ A1,

we have

f (a, ·) �
(
ϕ1
G̃

)−1
(Ñ). (62)

By (52), we have

f (a, ·) ◦ pr1 = ϕ1
H̃a

: Ñ → M̃ .

Using (62) and that pr1 : Ñ → N is a diffeomorphism, it follows that

ϕ1
H̃a

∣∣∣
Ñ

�
(
ϕ1
G̃

)−1
(Ñ), that is,

Ñ �
((
ϕ1
H̃a

)−1 ((
ϕ1
G̃

)−1
(Ñ)

)
=
(
ϕ1
G̃ ◦ ϕ1

H̃a

)−1
(Ñ)

)
.

(The composed function on the right-hand side is defined on the pre-image of dom
(
ϕ1
G̃

)
under ϕ1

H̃a
.) Since

ϕ1
G̃ ◦ ϕ1

H̃a
= ϕ1

G̃#H̃a

= ϕ1
˜G#Ha

= ϕ̃1,

it follows that

Ñ � ϕ̃−1
1 (Ñ).

Hence the hypotheses of the implication “⇐=” of Lemma 7 are satisfied. Applying that

lemma, it follows that
(
ϕ = ϕ1,N ,y

)
is nondegenerate. This proves Claim 8. �

Recall that the points y1, . . . ,y� ∈ N are chosen, such that (47) holds, and that x

is a path as in (60). We denote by i the smallest index, such that x(0) ∈ ◦
Ki.

Claim 9. We have

x([0, 1]), y([0, 1]) ⊆ Vi. �

(Recall that Vi = Vyi was chosen as in Claim 1.)
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Leafwise fixed points 2445

Proof of Claim 9. Let t ∈ [0, 1]. By our assumption (10), we have
(
x(0),x(t)

) ∈ O. Using

the definition (48) of O and our choice of i, it follows that x(t) ⊆ Vi. This proves that

x([0, 1]) ⊆ Vi.

By (61), we have y(0) = x(0) ∈ ◦
Ki. Since a ∈ A0, we have that ϕtG#Ha

|N ∈ U , for every

t. Hence by Claim 4, we have

ϕt
˜G#Ha

(
x(0),x(0)

) ∈ Ũi, ∀t ∈ [0, 1].

By (45) and (46), we have Ũi ⊆ domain of ψ̃i ⊆ M × Vi. Using (61), it follows that

y([0, 1]) ⊆ pr2

(
Ũi

) ⊆ Vi.

This proves Claim 9. �

By (61), we have

x(0) = y(0).

Using (8), we have

(
x(1),y(1)

) = (
ϕ1
G#Ha

◦ x(0),y(1)) = ϕ1
˜G#Ha

(
x(0),x(0)

) ∈ M̃ .

Combining this with Claim 9, the fact that x and y are paths in the same leaf F , and (43),

it follows that

x(1) = y(1).

Combining this with Claim 9, Remark 10, and surjectivity of the foliation chart ψi : Vi →
R

2m × R
k, it follows that

holN ,ω
x = holN ,ω

y .

(This statement makes sense, since x(i) = y(i), for i = 0, 1.) Since
(
ϕ,N ,y

)
is nondegener-

ate, using Claim 8, it follows that
(
ϕ,N ,x

)
is nondegenerate, as desired. It follows that

ϕ is O-nondegenerate. This proves Claim 7 and completes the proof of Claim 6. �

Since ϕ ∈ V, it follows from Claim 6 that the set

{
ϕ ∈ Ham(M ,ω, U) ∣∣ϕ is O -nondegenerate

}
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2446 F. Ziltener

is dense in Ham(M ,ω, U) in the strong C∞-topology. This proves (ii) and completes the

proof of Theorem 1. �

Remark 11 (Method of proof of Theorem 1). The method of proof of Theorem 1(i) refines

the technique used in the proof of [30, Theorem 1.1] in the following sense. Assume that

N is regular (i.e., “fibering”) in the sense that there exists a manifold structure on the set

Nω of isotropic leaves of N , such that the canonical projection πN : N → Nω is a smooth

submersion. We denote by ωN the unique symplectic form on Nω that pulls back to ι∗Nω

under πN . We equip the product M̂ := M × Nω with the symplectic form ω̂ := ω ⊕ (−ωN).
In [30], the symplectic manifold (M̂ , ω̂) was used to prove a lower bound on∣∣Fix(ϕ,N)
∣∣ for a regular coisotropic submanifold N . On the other hand, the proof of

Theorem 1 is based on the construction of a certain symplectic submanifold M̃ ⊆ M ×N

(see Lemma 4), which can be viewed as a local version of (M̂ , ω̂). More precisely, if N is

regular then M̃ can be symplectically embedded into M̂ via the map

(x,y) �→ (x,Ny),

where Ny denotes the isotropic leaf of N through y. �

Remark (simplifying the proof). Suppose that we only want to show that there exist U
and O satisfying condition (i) in Theorem 1 (but not necessarily condition (ii)). For this

we do not need Claim 1. Instead we may choose an arbitrary open neighbourhood Vy of

y in N and an arbitrary foliation chart ψy : Vy → R
2m × R

k.

We may simplify the proof further by choosing O := N × N . This means that

we need to show the inequality (2) only if (ϕ1,N) is N × N-nondegenerate, that is,

nondegenerate in the sense of [30]. �

Appendix. Auxiliary Results

In the proof of Lemma 4 we used the following.

Lemma 12 (local embedding). Let M and M ′ be manifolds (without boundary), K ⊆ M a

compact subset, and f : M → M ′ a smooth map whose restriction to K is injective, such

that df (x) is injective for every x ∈ K. Then there exists an open neighbourhood U ⊆ M

of K, such that f |U is a smooth embedding. �
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Leafwise fixed points 2447

In the proof of this lemma we will use the following notation. Let (X ,d) be a

metric space and A,B ⊆ X . We denote

d(A,B) := inf
(a,b)∈A×B

d(a,b).

Proof of Lemma 12. We show that there exists an open neighbourhood U0 of K on

which f is injective. Since f is continuous and f |K is injective, the set

S := {
(x,y) ∈ M ×M

∣∣x = y or f (x) 
= f (y)
}

is a (possibly nonopen) neighbourhood of

{
(x,y) ∈ K × K

∣∣x 
= y
}

in M × M . By the Immersion Theorem every point in K admits an open neighbourhood

in M on which f is injective. It follows that S is a neighbourhood of

{
(x,x)

∣∣x ∈ K
}
,

and therefore of K × K.

Claim 1. There exists an open neighbourhood U0 ⊆ M of K such that U0 × U0 ⊆ S. �

Proof of Claim 1. We choose a distance function d on M that induces the topology. We

define the distance function d̃ on M̃ := M ×M by

d̃
(
(x,y), (x ′,y ′)

)
:= d(x,x ′)+ d(y,y ′).

Since K̃ := K × K is compact, there exists a constant ε > 0, such that the closed ε-

neighbourhood of K̃,

K̃ε :=
{
ã ∈ M̃

∣∣∣ ∃̃b ∈ K̃ : d̃(̃a, b̃) ≤ ε
}

is compact. The same then holds for K̃ε\
◦
S. Hence d̃ attains its minimum on K̃× (K̃ε\

◦
S
)
.

This minimum is positive, since if (̃a, b̃) ∈ K̃ × M̃ is such that d̃(̃a, b̃) = 0 then b̃ = ã ∈
K̃ ⊆ ◦

S. It follows that

ε0 := d̃
(
K̃, M̃\ ◦

S
)
> 0.
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2448 F. Ziltener

We define

U0 :=
{
x ∈ M

∣∣∣ ∃y ∈ K : d(x,y) <
ε0

2

}
.

This is an open neighbourhood of K. Let (x,y) ∈ U0 × U0. Then

d̃
({(x,y)}, K̃) < 2 · ε0

2
,

hence (x,y) ∈ ◦
S. Hence the set U0 has the desired properties. This proves Claim 1. �

We choose U0 as in this claim. The restriction f |U0 is injective.

Claim 2. The set

U1 := {
x ∈ M

∣∣df (x) injective
}

is an open neighbourhood of K. �

Proof of Claim 2. This set contains K. To show openness, consider first the case M =
R
n, M ′ = R

n′
. The set

{
injective linear map from R

n to R
n′}

is open in the space of all linear maps from R
n to R

n′
. Since

df : R
n → {

linear map:Rn → R
n′}

is continuous, it follows that U1 is open. This proves the statement in the case M = R
n,

M ′ = R
n′

. The general situation can be reduced to this case by using charts. This proves

Claim 2. �

We choose U1 as in this claim and an open neighbourhood U ⊆ M of K whose

closure is compact and contained in U0 ∩ U1. The restriction of f to U is proper

onto its image. It follows that this restriction is a smooth embedding. This proves

Lemma 12. �

The next result was also used in the proof of Lemma 4. Let V be a finite dimen-

sional real vector space and b : V × V → R a bilinear map. Recall that b is called
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Leafwise fixed points 2449

nondegenerate iff the map

V � v �→ b(v, ·) ∈ V ∗

is an isomorphism.

Lemma 13 (nondegeneracy). Let M be a manifold and b a field of bilinear forms on M .

Then the set

S := {
x ∈ M

∣∣bx is nondegenerate
}

is open. �

Proof of Lemma 13. Consider the case M = R
n. Then

S =
{
x ∈ R

n
∣∣bx ∈ {nondegenerate bilinear map: R

n × R
n → R

}}
.

This set is open in R
n, since the set{

nondegenerate bilinear map: R
n × R

n → R
}

is open in the set of all bilinear maps and the map x �→ bx is continuous. This proves

the statement in the case M = R
n. The general situation can be reduced to this case by

using charts for M . This proves Lemma 13. �

In the proof of Theorem 1 (Claim 3) we used the following.

Remark 14. Let I ⊆ J ⊆ N be finite subsets, for i ∈ J let Ai ⊆ Bi be sets, and let i0 ∈ I .

Then we have

X := Ai0 \
⋃
j∈J\I

Bj ⊆ Y :=
⋃
i∈I

⎛⎝Ai \
⋃

j∈J : j<i

Aj

⎞⎠ .

To see this, let x ∈ X . We define

i1 := min
{
i ∈ I

∣∣x ∈ Ai

}
.

For every j ∈ J satisfying j < i1, we have x 
∈ Aj. (This follows by considering the cases

j ∈ I and j 
∈ I separately.) It follows that

x ∈ Ai1 \
⋃

j∈J : j<i1

Aj ⊆ Y .
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This proves that X ⊆ Y . �

In the proof of Theorem 1 we also used the following.

Lemma 15 (Hamiltonian flow). Let (M ,ω) be a symplectic manifold (without boundary),

H ∈ C∞([0, 1] ×M , R
)
, and K ⊆ ⋂

t∈[0,1] dom(ϕtH ) = dom(ϕ1
H ) a compact subset. Then there

exists a function

Ĥ ∈ C∞([0, 1] ×M , R
)

with compact support, such that

ϕtĤ = ϕtH on K, ∀t ∈ [0, 1]. �

Proof of Lemma 15. This follows from a cut-off argument as in the proof of [27,

Lemma 35]. �
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