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Abstract

Accurate temperature records for the deep geological past are a vital component of paleoclimate research. Distributional
changes of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids in geological archives including paleosoils are a
promising indicators to infer past continental air temperatures. However, the ‘orphan’ status of the brGDGTs, the potential
effect of temperature-independent parameters on their relative distribution, and the uneven geographical distribution of the
soils used for calibration contribute to the high uncertainty of brGDGT-based transfer functions (root mean squared error,
RMSE: ±5 �C). Here, we expand the soil dataset from the previous calibration(s) with new and published soil data. We use
Bayesian statistics to calibrate the relationship of the 5-methyl brGDGTs (MBT0

5Me) and mean annual air temperature
(MAAT). The addition of soils from warm (>28 �C) environments from India substantially increases the upper limit of the
Bayesian calibration (BayMBT) from 25 to 29 �C, aiding in the generation of temperature records for past greenhouse cli-
mates, such as the Eocene. The BayMBT model also effectively minimizes the structured MAAT residuals prevalent in pre-
vious calibrations, therefore giving the opportunity to explore confounding factors on the calibration. We formulate a set of
alternative calibration models to test the effect of specific environmental parameters and show that soils at mid-latitudes with
temperature seasonalities >20 �C are not well described by the BayMBT model. We find that the MBT0

5Me index is best cor-
related to the average temperature of all months >0 �C, called the BayMBT0 model. This finding supports the hypothesis that
brGDGT production ceases or slows down in the winter months. However, a persistent feature of the BayMBT model and
previous calibrations is the significant scatter at mid-latitudes, which is speculatively linked with a possible increase in diver-
sity of microbial brGDGT-producing communities in these locations.
� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The generation of high-fidelity temperature records for
both recent and deep time is an important component of
paleoclimate research. The distribution of branched glyc-
erol dialkyl glycerol tetraethers (brGDGTs; Sinninghe
Damsté et al., 2000) in soils is a promising proxy for conti-
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nental temperatures (Weijers et al., 2007a). The basic chem-
ical structure of the brGDGTs consists of two linear (C28)
alkyl chains linked to the glycerol moieties on either end
via ether bonds. These alkyl chains contain a variable num-
ber of methyl branches (2–4; at C-13 and C-16 and, addi-
tionally, C-5 and C-6) and cyclopentane moieties (0–2),
the latter formed through internal cyclisation (Sinninghe
Damsté et al., 2000; Weijers et al., 2006). The stereochem-
istry of the glycerol moieties of brGDGTs confirms a bac-
terial origin (Weijers et al., 2006), and indicates that the
producers may be heterotrophic facultative aerobes derived
from Acidobacteria (Weijers et al., 2009, 2010). Indeed, the
simplest brGDGT structure, Ia (Appendix A), was identi-
fied in two species of Acidobacteria (Sinninghe Damsté
et al., 2011). Furthermore, Acidobacteria from the subdivi-
sions 1, 3, 4, and 6 contain iso-diabolic acid, a presumed
building block of brGDGTs, sometimes additionally
methylated at the same position as in the GDGTs
(Sinninghe Damsté et al., 2011, 2018). However, the origin
of brGDGTs other than Ia remains enigmatic, even after an
extensive screening of cultured members of the Acidobacte-
ria (see Sinninghe Damsté et al., 2018, for an overview).

Weijers et al. (2007a) discovered a link between the
degree of methylation of brGDGTs (MBT; methylation
of branched GDGTs) with temperature and pH of soils.
The authors also observed that the number of cyclopentane
moieties is related to soil pH (CBT; cyclisation of branched
GDGTs) and formulated an empirical proxy (MBT/CBT)
to reconstruct past MAAT and soil pH. Application of
these empirical relations on brGDGTs in sedimentary
archives has resulted in continental temperature records
for various locations and geological timescales, up to the
Paleocene (Weijers et al., 2007b, c; Ballantyne et al., 2010;
Inglis et al., 2017). Marine sedimentary records from loca-
tions nearby the mouth of large rivers are especially suited
for these kinds of reconstructions since they receive eroded
soil material from the entire river basin, thereby integrating
the brGDGT-derived temperature signal. Subsequent stud-
ies revealed that brGDGTs may also derive from aquatic
sources (e.g. Peterse et al., 2009a; Sinninghe Damsté
et al., 2009; Tierney and Russell, 2009; Zell et al., 2013a,
b; Zell et al., 2014a, b; De Jonge et al., 2014a; Sinninghe
Damsté, 2016; Weber et al., 2015, 2018), complicating the
application of the brGDGT paleothermometer in geologi-
cal archives where a mixed aquatic and soil input (e.g.
IR ¼
IIa

0� �þ IIb
0h i
þ IIc

0� �þ IIIa
0� �þ IIIb

0h i
þ ½IIIc0 �

IIa0½ � þ IIb
0� �þ IIc½ � þ IIIa0½ � þ IIIb

0� �þ IIIc0½ � þ IIa½ � þ IIb½ � þ IIc½ � þ IIIa½ � þ IIIb½ � þ ½IIIc� ð1Þ
Dearing Crampton-Flood et al., 2018; Warden et al.,
2018) is more likely compared to loess-paleosol sequences
(e.g. Peterse et al., 2011).

An improvement in the chromatographic analysis of
brGDGTs led to the discovery of brGDGT isomers with
a methyl group located at the C-6 rather than the C-5 posi-
tion of the alkyl chain (De Jonge et al., 2013, 2014b).
Reanalysis of soils with this method resulted in an
improved form of the MBT index: the MBT0

5Me index,
which recognizes that only the distribution of 5-methyl
brGDGTs respond to temperature, whereas the relative
abundance of 6-methyl brGDGTs is related to the pH of
the soil (De Jonge et al., 2014b). The discovery of the 6-
methyl brGDGTs also led to the recognition of brGDGT
production in rivers (De Jonge et al., 2014a) and how this
production can affect brGDGT distributions in shelf sedi-
ments (De Jonge et al., 2015).

Recent research into the microbial diversity and commu-
nity composition of global soil datasets suggests that soil
pH and MAAT are the dominant controls on bacterial
communities in a wide range of locations and biomes
(Delgado-Baquerizo et al., 2017; Oliverio et al., 2017).
Despite the strong link of soil-derived brGDGTs with tem-
perature and soil pH, it is reasonably likely that also other
factors, such as temperature seasonality, precipitation, and
microbial community composition, affect their relative dis-
tribution (Weijers et al., 2007a; Peterse et al., 2012; Menges
et al., 2014; Ding et al., 2015; Dang et al., 2016). However,
due to the limited information on the biological sources of
brGDGTs, pure culture experiments with brGDGT pro-
ducers have not been performed to test this. Instead, the
direct influence of temperature on brGDGTs in soils has
been studied in geothermally heated soils, altitudinal tran-
sects, or mesocosm experiments (e.g. Sinninghe Damsté
et al., 2008; Peterse et al., 2009b; Huguet et al., 2014;
Chen et al., 2018; Martı́nez-Sosa and Tierney, 2019).

Four practical challenges exist for the application of the
brGDGT temperature proxy in its current form. Firstly, the
proxy becomes ‘saturated’ (i.e. MBT0

5Me = 1) at tempera-
tures > 25 �C, limiting the application of the proxy in past
greenhouse climates (De Jonge et al., 2014b; Naafs et al.,
2017a). Secondly, there is evidence for soil moisture content
exerting an effect on the methylation patterns of brGDGTs
in arid areas, which are dominated by 6-methyl brGDGTs
and are associated with large errors in reconstructed tem-
peratures, even using the MBT0

5Me index which is based
solely on the distribution of 5-methyl brGDGTs (Dang
et al., 2016). In light of this observation, the most recent
calibration of MBT0

5Me with temperature (Naafs et al.,
2017a) imposed a cut-off based on the relative proportion
of 6-methyl brGDGTs expressed as the Isomer Ratio (IR;
De Jonge et al., 2014a):
Naafs et al. (2017a) removed all soils with IR > 0.5,
excluding about 50% of the dataset. The authors proposed
to use this cut-off as a method of screening environmental
archives for the applicability of the proxy. However, this
approach is challenging to apply marine sedimentary
archives with mixed brGDGT sources. The third challenge
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is that some of the previous calibration models (e.g. De
Jonge et al., 2014b) tend to under-predict temperatures
for warmer soils and over-predict for colder soils. This is
caused by ‘‘regression dilution”, where random measure-
ments in the independent variable (in this case the MBT0

5Me

index) cause a bias of the regression slope coefficient toward
zero (referred to as slope attenuation). This can be allevi-
ated by using Deming regression (for details see Naafs
et al., 2017a), but this technique requires an a priori

assumption of the analytical error for MBT0
5Me and

MAAT, which are not well constrained. The fourth and
probably most important challenge is related to the rela-
tively high root mean squared error (RMSE) of the proxy
and especially the large difference of the predicted and
observed MAAT values (i.e. MAAT residuals) at mid-
latitudes (30–50�; e.g. Fig. 11 in De Jonge et al., 2014b).
This may reflect (1) a seasonal bias, as brGDGT production
might increase during the warmer summer months (e.g.
Weijers et al., 2011; Deng et al., 2016); (2) the heteroge-
neous nature of soils, which may affect the representability
of samples in soil datasets; (3) variation in the difference
between soil temperatures affecting brGDGT distributions
directly and air temperature; and/or (4) variation in the
microbial diversity of brGDGT producers. To take some
of these considerations into account, Naafs et al. (2017a)
considered in their brGDGT soil calibration growing
degree days above freezing (GDD), a measure of annual
soil heat accumulation, and the moisture index (MI) of soils
as potentially better indicators for the conditions that soil
bacteria experience. A new transfer function including these
parameters resulted in a slightly reduced RMSE (4.1 �C)
and improved model fit (R2 = 0.76). Nevertheless, the error
in brGDGT-based temperature estimates is still substantial,
demonstrating that we still do not have a full understanding
of the factors influencing brGDGT methylation.

Here, we use Bayesian statistics to construct a general
calibration model for the MBT0

5Me index vs. MAAT that
propagates observational and parametric uncertainties.
Previous calibrations using ordinary least squares (OLS)
regression and Deming regression are limited in that the
MBT0

5Me was treated as the independent variable. This is
because the goal of the proxy calibration is to predict tem-
peratures (MAAT, i.e. dependant variable) from a given
MBT0

5Me index value. However, given the scatter in the
MBT0

5Me-MAAT relationship, this will result in severe
regression dilution if using OLS due to the random mea-
surement error in MBT0

5Me index, and mild dilution in
the Deming case, if the uncertainty in the observations is
underestimated. With the Bayesian approach, the MBT0

5Me

index can be treated as the dependent variable in the cali-
bration model, respecting the intuitive (etiological) reason-
ing of the relationship between MBT0

5Me and MAAT (i.e.
brGDGT-producing bacteria respond to changes in tem-
perature, not the other way around). Using this approach
an ensemble of possible regression parameters are obtained
that are able to account for errors in the measurement of
both MAAT and MBT0

5Me. A second application of Bayes’
rule can then be used to invert the relationship between the
two variables, in order to predict MAAT values from a
given MBT0
5Me value, i.e. the goal of a paleoclimatological

study. In addition, the mounting evidence for controls other
than MAAT on the brGDGT temperature proxy calls for
an exploration of the variance in MBT0

5Me indices that is
not explained by MAAT. In this paper, we also explore pat-
terns in the residuals of the Bayesian calibration model with
regard to presumably confounding environmental parame-
ters, namely: temperature seasonality, mean annual precip-
itation (MAP), precipitation seasonality, and soil pH. We
also explore other Bayesian calibration models that take
these environmental parameters into account and discuss
their suitability for certain datasets.

2. METHODS

2.1. Surface soil dataset

The soil brGDGT data used in this study are listed in
Table 1. All analyses were performed using high-resolution
chromatographic methods separating 5-methyl and
6-methyl brGDGT isomers (De Jonge et al., 2013). For this
study, 66 new soils from India, Russia, New Zealand, and
China were added to the global soil dataset of De Jonge
et al. (2014b) to extend the spatial distribution of the calibra-
tion dataset (Fig. 1A). Published soil data from China (Ding
et al., 2015; Xiao et al., 2015; Yang et al., 2015; Lei et al.,
2016; Wang et al., 2016) and data from 96 globally dis-
tributed peatlands (Naafs et al., 2017b) were also added to
the dataset. All newly obtained soils were freeze-dried,
homogenized, and extracted (3x) using dichloromethane
(DCM):methanol (9:1, v/v) with an accelerated solvent
extractor (ASE 350, DionexTM) for 5 min at 100 �C and
7.6 � 106 Pa. The extracts were dried under a gentle stream
of N2 prior to separation into apolar and polar fractions
using an activated Al2O3 column with hexane:DCM (9:1, v/
v) and DCM:methanol (1:1, v/v). An internal standard (IS,
GTGT46) was added to the polar fraction (Huguet et al.,
2006). For GDGT analysis, the polar fraction was dried
under N2, re-dissolved in hexane:isopropanol 99:1 (v/v),
and filtered through a 0.45 lm PTFE filter. Samples were
analysed with an Agilent 1260 Infinity ultra high perfor-
mance liquid chromatography (UHPLC) coupled to an
Agilent 6130 single quadrupole mass detector using the
method of Hopmans et al. (2016). The system consists of
two silica Waters Acquity UPLC BEH Hilic (1.7 mm,
2.1 mm � 150 mm) columns maintained at 30 �C, with a
guard column of the same material preceding the first col-
umn. GDGTs were separated using isocratic elution at
0.2 ml/min, starting with 82% A and 18% B for 25 min, fol-
lowed by a linear gradient to 70% A and 30% B for 25 min,
where A = hexane and B = hexane:isopropanol 9:1. Sample
injection volumes were 10 mL. GDGTs were ionized using
atmospheric pressure chemical ionization with the following
source conditions: gas temperature 200 �C, vaporizer tem-
perature 400 �C, drying gas (N2) flow 6 L/min, capillary volt-
age 3500 V, nebulizer pressure 25 psi, corona current 5.0 mA.

BrGDGTs were identified using selected ion monitoring
(SIM) mode using detection of the [M�H]+ ions at m/z

1050, 1048, 1046, 1036, 1034, 1032, 1022, 1020, 1018. The



Table 1
Number, location, and references for soils and peats used for the Bayesian calibration of MBT0

5Me and gridded MAAT.

Number of soils/peats* Location Reference(s)

229 Globally distributed Weijers et al. (2007a), Peterse et al. (2012), De Jonge et al. (2014b)
46 India This study
4 Russia/Siberia This study
1 New Zealand This study
15 China This study
27 China Xiao et al. (2015)
26 China Yang et al. (2015)
27 China Ding et al. (2015)
44 China Lei et al. (2016)
148 China Wang et al. (2016)
96* Globally distributed Naafs et al. (2017b)
N = 663

* Indicates peats.

Fig. 1. (A) Geographical location of the soils and peats used in the
study. Soils analysed for the previous calibration are represented by
circles (De Jonge et al., 2014b), soils added to the dataset in this
study are represented by black stars (Xiao et al., 2015; Yang et al.,
2015; Lei et al., 2016; Ding et al., 2015; Wang et al., 2016; this
study), and peats are represented by squares (Naafs et al., 2017b).
(B) Plot of measured MBT0

5Me indices for global soils (black
circles) and peats (green squares) versus MAAT. Pearson correla-
tion coefficients (r) and p values are shown. Gridded MAAT is
obtained from the CRU TS v. 3.24.01 dataset (Harris et al., 2014).
(For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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internal standard was detected at m/z 744. Samples were
integrated manually using the Chemstation software
B.04.02.
2.2. The MBT0
5Me index

We used MBT0
5Me rather than the MATmr function to

infer MAAT from the distribution of brGDGTs, as the
MBT0

5Me incorporates only 5-methyl brGDGTs, which
have the strongest relationship with MAAT (De Jonge
et al., 2014b), and is a straightforward index for the degree
of methylation, the presumed biophysical response to tem-
perature. The formula for MBT0

5Me (De Jonge et al.,
2014b) is defined as:

MBT05Me ¼ Iaþ Ibþ Ic

Iaþ Ibþ Icþ IIaþ IIbþ IIcþ IIIa
ð2Þ
2.3. Environmental parameters

Due to the scarcity of in situ soil temperature logger
data, MBT0

5Me indices in this study were compared to mean
annual air temperatures (MAAT). Nearest gridded MAAT
to the soil sampling sites (determined by chordal distance)
were extracted from the 0.5� gridded CRU TS v. 3.24.01
dataset (Harris et al., 2014). As the turnover time for
brGDGTs in soils is on the order of decades (Peterse
et al., 2010; Weijers et al., 2010, 2011; Huguet et al.,
2014), we used monthly or annual mean temperatures aver-
aged over January 1901 to December 2015. The chordal dis-
tance between the MBT0

5Me observations and the centroid
of the nearest MAAT observation is smaller than 40 km
for all sites (median 21 km; Appendix C), except for one
case: USA-10; Hawaii, where it is 48 km. Using this method
to estimate MAAT leads to a homogeneous temperature
collection, which is preferable to compilation using different
datasets/weather stations, as was done in previous work
(Weijers et al., 2007a; Peterse et al., 2012; De Jonge et al.,
2014b). Nevertheless, comparison of the gridded MAAT
with the instrumental MAAT from the dataset of De
Jonge et al. (2014b) shows a good correlation (r = 0.90;
p < 0.0001).

Gridded precipitation data (MAP) for each month was
also taken from the CRU TS v. 3.24.01 dataset (Harris
et al., 2014). Extraction of the precipitation data and
assignment to the MBT0

5Me values followed the same
method as above.
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In case that two or more soils fall within the same grid-
box used to estimate MAAT, average MBT0

5Me values were
taken to avoid weighting the regression exercises (cf. Tierney
and Tingley, 2018), leaving the total number of soil ‘packets’
considered in this study as 343. This formatted dataset
(n = 343) is used for the construction of the Bayesian regres-
sion model (BayMBT) and all following exercises.

2.4. Bayesian regression model (BayMBT)

Bayes’ theorem (or Bayes’ rule) is a method to determine
the probability or outcome of an event given some prior
knowledge (e.g. a hypothesis) that might be related to the
outcome. Bayes’ rule in the general form is:

p hypothesisjdatað Þ ¼ p datajhypothesisð ÞpðhypothesisÞ
pðdataÞ

ð3Þ
where p(hypothesis|data) is the posterior probability, p
(hypothesis) is the prior probability, p(data|hypothesis) is
the likelihood, and p(data) is the marginal likelihood.

Following the approach of Tierney and Tingley (2014),
who obtained a calibration model to estimate sea surface
temperatures based on isoprenoidal GDGTs, Bayes’ rule
is applied twice here: once to infer regression parameters
between MBT0

5Me and gridded MAAT, and second to pre-
dict MAAT from MBT0

5Me values.
The first application of Bayes’ rule is used to infer the

parameters of a linear regression model of the general
form:

Y ¼ Xbþ � ð4Þ
e � N 0;r2; I

� � ð5Þ
where Y is a n � 1 vector of MBT0

5Me values, X is a n � 2
matrix of corresponding gridded MAAT (where the second
column is a column of ones), b is a 2 � 1 vector of the
regression parameters (i.e. slope and intercept) and e is a
n � 1 vector of the error, which is normally distributed
around zero with a variance of r2. By assigning the Y
parameter as MBT0

5Me and the X parameter as gridded
MAAT the relationship between MBT0

5Me and gridded
MAAT is formulated in the etiologically correct way.

Bayesian inference of the parameters is thus:

p b;r2jY� � ¼ p Yjb;r2
� � � pðb;r2Þ ð6Þ

where p(b,r2jY) is the posterior probability of the regres-
sion parameters b and r2 given the values of MBT0

5Me, p
(Yjb,r2) is the likelihood of the MBT0

5Me values given the
regression parameters, and p(b,r2) is the prior on the
regression parameters. The priors on b and r2 are conjugate
(Multivariate Normal and Inverse Gamma, respectively)
and the resulting conditional posteriors are:

bj� � N WV;Vð Þ ð7Þ
where

W ¼ l0r
�2
0 Iþ XTYr�2

n ð8Þ
V ¼ ðr�2

0 Iþ XTXr�2
n Þ�1 ð9Þ
And

r2
n � IG a; bð Þ ð10Þ

where

a : a£ þN

2
ð11Þ

b : b£ þ 1

2

� �
� ðY�XbÞTðY�XbÞ ð12Þ

m0 and r0 are priors on b, and aØ and bØ are priors on
r2
n. We use a Gibbs sampler to draw from these conditional

posterior distributions of b and r2 (Gelman, 2003) and gen-
erate an ensemble of possible values of the slopes, inter-
cepts, and error variances of the calibration model.

The second application of Bayes’ rule, i.e. the step used
to invert the relationship between the X and Y variables to
estimate MAAT, is the ‘prediction model’, which takes the
form:

p MAATjMBT; b;r2
� � / p MBTjMAAT; b;r2

� �
� pðMAATÞ ð13Þ

where p(MAATjMBT,b,r2), p(MBTjMAAT,b,r2) and p
(MAAT) are the posterior probability, the likelihood, and
the prior, as above.

The full conditional posterior is:

MAATj� / NðWV;VÞ ð14Þ
where

W ¼ lMr
�2
M Iþ bTYr�2 ð15Þ

V ¼ ðr�2
M þ bTbr�2Þ�1 ð16Þ

Inference of MAAT proceeds by plugging in each paired
slope, intercept, and error variance value into the condi-
tional posterior such that the uncertainties in the regression
parameters are propagated through to the estimation.

The second application of the Bayesian model requires
the choice of a prior mean (mM) and a prior standard devi-
ation (rM) in order to predict MAAT from MBT0

5Me val-
ues. For the inferences in this work, the prior mean is set
to the mean of modern MAAT across all soil locations
(10 �C). The prior standard deviation is set to triple the
standard deviation across modern MAAT (30 �C). A large
standard deviation is chosen to ensure the MAAT predic-
tions are dominated by the MBT0

5Me-MAAT regression
model (see discussions in Tierney and Tingley, 2014, 2018).

3. RESULTS

3.1. Sample selection

Due to the statistical similarity of the peat-specific cali-
bration (Naafs et al., 2017b) and the soil calibrations (De
Jonge et al., 2014b, Naafs et al., 2017a), there is no strong
evidence that these datasets should be separated (Fig. 1B;
Appendix B). We also find no difference in the Pearson cor-
relation coefficient of the MBT0

5Me index with MAAT
between the soil and peat dataset (n = 663, r = 0.79) and
the soil-only dataset (n = 567, r = 0.79).
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Previously, Naafs et al. (2017a) found that excluding
soils with a high proportion of 6-methyl brGDGTs
(IR > 0.5) improved calibration statistics. However, in our
expanded dataset, we find that the Pearson correlation coef-
ficient between MBT0

5Me and gridded MAAT only nomi-
nally increases if the soils/peats with an IR > 0.5 are
removed, going from 0.79 (whole dataset, n = 663) to
0.80 (IR < 0.5, n = 311). Therefore, in the interest of retain-
ing as much data as possible, we included soils with
IR > 0.5 in the Bayesian calibration model.

3.2. Bayesian calibration model

The prior and posterior distributions for the slope, inter-
cept and error variance of the Bayesian calibration model
based on the MBT0

5Me index, i.e. BayMBT, are shown in
Fig. 2A. The posterior distributions are greater in probabil-
ity density and far narrower than the prior distributions,
indicating that the likelihood exerts the bulk of control
on the posterior, rather than the prior.

The RMSE of predicted temperatures using the
BayMBT model is 6.0 �C (Table 2). The upper limit of
the BayMBT model is �30 �C, and the lower limit is
��26 �C. A comparison of MAAT residuals from the
BayMBT model (Fig. 2C) with Fig. 9D of De Jonge et al.
Fig. 2. (A) Plot of prior (dotted black lines) and posterior (solid red lin
variance of the BayMBT calibration model. (B) Plot of the Bayesian regre
residuals plotted against gridded MAAT (CRU TS v. 3.24.01 dataset; Ha
shown. (For interpretation of the references to color in this figure legend
(2014b) shows that the leaning trend in MAAT residuals
is resolved, as revealed by the low Pearson correlation coef-
ficient (r = 0.08, Fig. 2C). However, the scatter (MAAT
residuals ranging from �18 to 22 �C) at sites with MAAT
between 0 and 15 �C (i.e. soils residing at mid-latitudes;
Fig. 2C) remains a large source of uncertainty in the
calibration.

3.3. Alternative calibration models

To test the sensitivity of the BayMBT model for poten-
tially confounding factors, we developed seven sub-models
using different subsets of the soil dataset. We explored mod-
ified regression models that consider seasonal variation, the
timing and length of the growing season, and days without
freezing. The effect of a large temperature shift throughout
the annual cycle is tested with the BayMBTHighSeas
model, which excludes all soils/peats with low temperature
seasonality. A cut-off of 20 �C was chosen (see Fig. 3A).
Conversely, the BayMBTLowSeas model excludes soils
with temperature seasonality > 20 �C. The BayMBTLow-
Seas model has a R2 value of 0.76, whereas the R2 of the
BayMBTHighSeas model is 0.13 (Table 2).

The next set of models, i.e. the BayMBT0, BayMBT-5,
and BayMBT-10 models, calibrate the MBT0

5Me index to
es) probability density functions for the slope, intercept, and error
ssion model with fitted line (dashed grey line). (C) BayMBTMAAT
rris et al., 2014). The Pearson correlation coefficient and p value are
, the reader is referred to the web version of this article.)



Table 2
The BayMBT and other Bayesian regression models for predicting MAAT in global soils. Gridded MAAT values are obtained from the CRU
TS v. 3.24.01 dataset (Harris et al., 2014).

Model n R2 Variance in
residuals (MAAT)

RMSE
(�C)

Upper limit
(MBT0

5Me = 1)
Lower limit
(MBT0

5Me = 0)

BayMBT 343 0.64 36.4 6.0 29.9 �25.6
BayMBTLowSeas 168 0.76 21.7 4.6 29.3 �19.2
BayMBTHighSeas 175 0.13 36.6 6.0 26.9 �25.1
BayMBT0 343 0.70 14.2 3.8 27.1 0.9
BayMBT-5 343 0.68 18.3 4.3 27.6 �3.5
BayMBT-10 343 0.64 24.4 4.9 27.8 �7.7
BayMBT500 229 0.71 26.3 5.1 28.7 �22.9
BayMBT500 + MAT > 0 �C 229 0.74 14.6 3.8 27.5 �13.2
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the average temperature of all months that have an average
temperature above 0, �5, and �10 �C, respectively. These
models are designed to test the effect of the production of
brGDGTs in soils in higher latitudes/altitudes, where the
production days may be directly related to the days where
temperature does not drop below a certain threshold value.
This investigation is functionally similar to the growing
degree days parameter investigated by Naafs et al.
(2017a), which they found to result in a slightly better R2

value and a reduction in the range of low temperature resid-
uals. Out of the BayMBT0, BayMBT-5, and BayMBT-10 set
of models, the BayMBT0 model had the highest R2

value (0.70), followed by the BayMBT-5 (0.68), and the
BayMBT-10 (0.64) models (Table 2).

The influence of aridity is tested with the BayMBT500
model, which excludes all soils/peats with MAP val-
ues < 500 mm/year, i.e. dry, arid soils. The BayMBT500
model has a higher R2 value (R2 = 0.71) and a slightly
lower RMSE (5.1 �C) than the BayMBT model (Table 2).

4. DISCUSSION

4.1. Comparison of the BayMBT model with previous

calibration models

The RMSE of the BayMBT model is higher than that of
previous calibrations using OLS and Deming regressions
(De Jonge et al., 2014b; Naafs et al., 2017a). This is part
because, in contrast with OLS, the uncertainties in the slope
and intercept are captured by the Bayesian inference, but it
is also likely due to the expanded dataset considered here.
The upper limit for the BayMBT model is substantially
higher than previous calibrations (DT � 5 �C; cf. De
Jonge et al., 2014b; Naafs et al., 2017b), increasing the
range of temperatures that may be predicted (Fig. 2B). This
increased upper limit arises from a slightly steeper slope of
the expanded soil dataset as well as the elimination of
regression dilution. In contrast, the upper limit of the
OLS method using the expanded dataset of this study is
only 25 �C (not shown), which is likely an artefact of regres-
sion dilution. It is also likely that the addition of the Indian
soils with MAAT exceeding 26–27 �C contributes to the
steeper slope in the Bayesian regression model. The lower
limit of the calibration is also brought down substantially
(DT � 10 �C; Table 2) compared to previous calibrations.
This is the result of the steeper slope in the Bayesian regres-
sion model, and the addition of soils from Siberia, extend-
ing the low end of the MBT0

5Me range from 0.35 (De Jonge
et al., 2014b) to 0.17 (this study).

4.2. Identifying confounding factors on BayMBT model

residuals

The extremely large range of MAAT residuals (�40 �C;
Fig. 2C) for soils located at mid-latitudes indicates that
MAAT alone fails to explain a substantial portion of the
MBT0

5Me variance. Here, we explore whether other envi-
ronmental parameters, namely temperature seasonality, soil
pH, and the magnitude and timing of precipitation, may
explain this scatter, while recognizing that covariance
between environmental variables (e.g. pH vs. MAP and
MAAT vs. MAP) could hinder the attribution of variance
to a single parameter.

4.2.1. Temperature seasonality

Temperature seasonality (temperature of warmest month
– temperature of coldest month) explains some of the vari-
ance of the BayMBTMAAT residuals (r = �0.28; Fig. 3A).
BayMBT overestimates temperatures for soils experiencing
high temperature seasonality, which is consistent with a bias
of the proxy toward summer temperatures. This follows the
earlier suggestion that soil bacteria may preferentially pro-
duce brGDGTs during the growing season in summer
(Weijers et al., 2007a, 2011; Rueda et al., 2009; Peterse
et al., 2012; Deng et al., 2016). However, there are indica-
tions that microbial biomass synthesis in soils also continues
under frozen conditions (Nedwell, 1999; Drotz et al., 2010)
and no seasonal variations in brGDGT distributions were
observed in mid-latitude soils over the course of a year
(Weijers et al., 2011). Thus, these contrasting observations
warrant further investigation into the effect of temperature
seasonality on brGDGT distributions in soils.

4.2.2. Soil pH

pH is the primary control on the distribution and abun-
dance of microbes in soils (Lauber et al., 2009). Empirical
studies suggest that soil pH influences the degree of cyclisa-
tion of brGDGTs (expressed in the CBT index; Weijers
et al., 2007a) and the relative abundance of 6-methyl
brGDGT isomers (De Jonge et al., 2014b; Dang et al.,
2016). Although the calibrations using the MBT0

5Me index
only include 5-methyl brGDGTs, which are not thought



Fig. 3. (A-D) MAAT residuals (gridded – predicted MAT estimates) of BayMBT model plotted against temperature seasonality, Soil pH,
MAP, and IR. Arid soils (<600 mm/year) are plotted as blue (<10 �C) and red circles (>10 �C), respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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to respond to pH (De Jonge et al., 2014b), a pH effect may
not be unexpected, and may have a bearing on the MAAT
residuals of the BayMBT model. Overall, the BayMBT
model performs slightly better on acidic soils (pH < 6) than
alkaline soils (pH > 6), as seen by the larger variance of
residuals for alkaline soils compared to acidic soils (i.e.
37.9 vs. 27.7; Fig. 3B; p = 0.04). It is also apparent from
Fig. 3B-C that alkaline soils with MAAT < 10 �C and a
low precipitation (<600 mm/year) are particularly difficult
for the BayMBT model to predict, indicated by a larger
population variance in low precipitation and alkaline soils
than in high precipitation and acidic soils (F-test,
p = 1.1 � 10�3). Coincidentally, those soils are located in
areas which (i) are located at high altitudes (average ca.
1400 m), and (ii) occur at mid-to-high latitudes in the
Northern Hemisphere (31–78 �N). 67% of these alkaline
soils with MAAT < 10 �C are located in China. These Chi-
nese soils are further associated with a high temperature
seasonality (>25 �C), and a grassland biome. Therefore,
while pH may be a meaningful factor dictating the scatter
of MAAT residuals, co-variance with other environmental
variables makes the prediction of the scatter unclear. As
most of the alkaline soils were associated with high temper-
ature seasonality, it is probable that temperature seasonal-
ity has a stronger effect than pH on the large scatter of
MAAT residuals.

Interestingly, low soil pH is known to reduce bacterial
diversity in soils (Lauber et al., 2009), and thus, perhaps
on the brGDGT distribution of soil bacteria and their
response to environmental parameters. This reduced micro-
bial diversity may explain why the acidic soils perform bet-
ter in the BayMBT model (Fig. 3B). However, a more
detailed discussion on this point is hampered due to missing
information on the full identity of microbial brGDGT pro-
ducers, the response of brGDGT distributions in these bac-
teria to environmental parameters, and the distribution of
these bacteria in soils in different settings.

A trend in MAAT residuals seems apparent at IR val-
ues > 0.8, with almost all MAAT residuals having negative
values (Fig. 3D). In principle, the abundance of 6-methyl
brGDGTs in soils should not have an effect on the
MBT0

5Me index. However, the non-random behavior in
the MAAT residuals at IR > 0.8 suggest some effect, per-
haps related to the dominance of bacteria that produce 6-
methyl brGDGTs that may also produce small quantities
of 5-methyl brGDGTs in these soils.

4.2.3. MAP

The amount and intensity of rainfall can, to some extent,
(indirectly) influence the ‘wetness’ of a soil. Further to that,
the soil pH, andby extension brGDGTdistributions, are also
indirectly influenced by precipitation. Interestingly, the rela-
tionship of MAP to theMAAT residuals in Fig. 3C does not
possess a significant Pearson correlation coefficient
(r = 0.02). However, this may be an artefact of the significant
correlation between MAAT andMAP throughout the data-
set (r = 0.65; p < 0.0001). Previous studies have shown that
MAAT is severely underestimated (>20 �C) in soils at high
elevation and in environments with low (<500 mm/year) pre-
cipitation (Peterse et al., 2012;Dirghangi et al., 2013;Menges
et al., 2014; De Jonge et al., 2014b). However, MAAT resid-
uals of dry soils cluster almost symmetrically around 0 �C in
the BayMBTmodel (Figs. 3C and 4A). The symmetrical dis-
tribution is also a result of treating theMBT0

5Me index as the
dependent variable in the regression. However, the largest
spread of MAAT residuals in Fig. 3C is indeed associated
with dry soils (MAP < 600 mm/year; p = 1.8e10�4 for F-
test vs. wet soils > 600 mm/year), suggesting thatMAPbears
a notable influence on MAAT residuals. The highest residu-
als for the dry soils are associated with higher gridded
MAATs (red circles, Fig. 3C), however the low number of
these specific soils (n = 15) precludes any statistical tests to
determine if this is meaningful.

The distribution of rainfall throughout the year is
another factor that could influence the communities of
brGDGT-producing soil bacteria, and thus the brGDGT
distribution of a soil. For instance, a short duration of pre-
cipitation may lead to seasonally arid conditions, therefore
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exerting moisture stress on soil microbes. Furthermore, the
timing of precipitation in relation to that of the warmer
months and growing season could also influence brGDGT
production, and hence, distributions. Using the monthly
MAP data, the difference in MAP between the month with
the maximum amount of rainfall and the overall average
amount of rainfall throughout the year was calculated
and used to estimate the seasonality of precipitation

(SoP = MAPmax-MAP
�

). Thus, a low SoP is indicative of
a region/soil with an overall low MAP throughout the year,
or a region where MAP is constant throughout the year. On
the other hand, a high SoP may indicate that rainfall may
be concentrated in one time of the year, such as regions that
have a heavily distinct ‘wet’ and ‘dry’ season. Ergo, the SoP
index can aid in interpreting whether a potential production
bias is present for regions experiencing various timings of
precipitation.

We do not observe a strong correlation between SoP and
the residuals; however soils in regions with relatively low
SoPs (<100) have a substantially larger scatter in MAAT
residuals associated with the model (Fig. 4C), and the vari-
ance of the residuals is correlated with SoP (r = -0.24,
p = 1.02e-4), however slightly less so with MAP
(<600 mm/year; r = 0.15, p = 0.07). In general, soils with
a MAAT > 20 �C associated with high SoPs (>100) per-
form better, with MAAT residuals within a 5 �C range (typ-
ical RMSE of the proxy; Figs. 2C and 4C). This indicates
that warm soils located in regions with a seasonally heavy
rainfall have brGDGT distributions which estimate MAAT
relatively well. However, these soils are associated with a
lower range of temperature seasonality, which probably
leads to a more accurate reconstructed MAAT due to no
temperature bias toward a particular season.

4.2.4. Saturation of the BayMBT model at high temperature

A subtle feature of the soils from locations associated
with MAAT > 20 �C is that they appear to contain some
Fig. 4. (A) MAAT residuals (gridded – predicted MAAT estimates) of dry
fill indicating IR value. (B) MAAT residuals plotted against the coeffici
MAAT. (C) MAAT residuals plotted against the seasonality of precip
interpretation of the references to color in this figure legend, the reader
evidence of non-random distribution in their MAAT resid-
uals (Fig. 2C). This becomes more evident when the MAAT
residuals of these soils are plotted against MAAT, temper-
ature seasonality, MAP, altitude, soil pH, and IR (Fig. 5).
Several other cutoffs (25 and 15 �C; not shown) were also
considered, but 20 �C is the cutoff that consists of a reason-
able number of soils (n = 88) and shows the most distinc-
tive trend in MAAT residuals. This subset of the data
shows clear relationships between MAAT residuals and
MAAT (r = 0.43), temperature seasonality (r = 0.36), soil
pH (r = 0.60), MAP (r = �0.47) and IR (r = 0.21). No
clear relationship with altitude (r = �0.17) was observed
for these soils (as is the case for the whole dataset, r = 0.15).

The trends in Fig. 5 may indicate that above 20 �C, the
MBT0

5Me signal represents a complex interplay between the
magnitude and timing of precipitation, and temperature
seasonality. In particular, BayMBT overestimates MAAT
(on average 1.6 ± 0.3 �C) for warm soils linked with high
MAP (>2000 mm/year, e.g. tropical rainforests; Fig. 5D).
Alternatively, the trends in residuals in Fig. 5 may indicate
that the proxy becomes non-linearly sensitive to MAAT as
it approaches its saturation point. This raises the question
as to whether an adjustment of the MBT0

5Me index to deal
with non-linearity is needed at this higher end of the cali-
bration, or indeed whether a nonlinear calibration is neces-
sary. However, soil data from India dominate the warm end
of the calibration dataset; other warm locations are under-
represented. Thus, fitting a non-linear function at this time
might unduly bias a global regression towards Indian soils.
A further consideration is that the absolute saturation tem-
perature for this proxy is not explicitly known, given that
brGDGT-producing bacteria have not been cultured. It is
therefore important to note that the upper limit proposed
in this study, 29 �C, may therefore not be a true limit inso-
far as the bacteria responsible for synthesizing brGDGTs
may continue to do so at higher temperatures. Another
likely option is the saturation effect could be a result of
the fact that brGDGT-synthesizing bacteria only produce
(MAP < 600 mm/year) soils plotted against MAP with circle color
ent of variation of rainfall (MAP), with circle color fill indicating
itation (SoP) index, with circle color fill indicating MAAT. (For
is referred to the web version of this article.)



Fig. 5. (A-E) Crossplots of MAAT residuals (gridded – predicted MAAT estimates) of the BayMBT model of soils from settings with a
MAAT > 20 �C with (A) MAAT, (B) temperature seasonality, (C) Soil pH, (D) MAP, and (E) IR. Pearson correlation coefficients and p
values are plotted.

Fig. 6. Global map showing soils plotted with corresponding
values for temperature seasonality (obtained from CRU TS v.
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one type of brGDGT (e.g. tetramethylated brGDGTs)
above a certain threshold temperature. However, both
options are possible and must be considered as long as
the brGDGT-producing bacteria remain unknown and
uncultured.

4.3. Assessing the influence of confounding factors on the

BayMBT model performance

4.3.1. Influence of temperature seasonality

The low R2 of the BayMBTHighSeas model is most
likely an artefact of the exclusion of the high-MAAT soils
that anchor the calibration at the higher MAAT (>25 �C)
end of the calibration. Nevertheless, it is important to note
the tighter fit of the BayMBTLowSeas model compared to
the BayMBT model (Table 2). It seems that seasonal biases
in MAAT estimates are more pronounced in soils where
temperature seasonality exceeds 20 �C, regardless of loca-
tion or latitude (Fig. 3A). Soils with large temperature sea-
sonality (n = 175) occur in both mid to high latitudes
(Fig. 6), although there are only 15 soils with temperature
seasonality > 20 �C located in ‘high’ latitudes areas (>60�
N, in Finland, Russia, Sweden, Canada, USA, Iceland,
and Svalbard). Both the BayMBTHighSeas and BayMB-
TLowSeas models are associated with a high RMSE (6.0
and 4.6 �C, respectively), and contain a large degree of scat-
ter in the proxy that affects the accuracy of predicted
MAAT. Despite the improved regression parameters of
the BayMBTLowSeas model, the smaller sample size and
exclusion of a large proportion of soils (�50%) does pre-
clude its adoption as a calibration to reconstruct
paleoclimate.

Calibration of MBT0
5Me to gridded temperatures of the

warmer months, shows that the BayMBT0 and BayMBT-5

models possess the most improved RMSE values (3.8–4.3 �
C) compared to the BayMBT. However, the coefficient of
3.24.01; Harris et al., 2014).
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determination value (R2) for the BayMBT0 is only marginally
higher than that of the BayMBTmodel (Table 2, Fig. 7). The
BayMBT-5 and BayMBT-10 models do not exhibit any advan-
tage over the BayMBT0, however, the BayMBT-5 model still
performs better than the BayMBT and BayMBTHighSeas
models in terms of R2 and RMSE values.

The lower RMSE of the threshold-based BayMBT0 sug-
gest that calibration to temperatures above the freezing
point of water (0 �C) may more accurately describe varia-
tion inMBT0

5Me. Indeed, a study that examined the seasonal
variation of bacterial communities in the active layer of per-
mafrost from Svalbard demonstrated that the strongest
changes in community structure recorded by DNA and
RNA-based analyses occurred during the freezing in Octo-
ber and the spring thaw in May (Schostag et al., 2015). This
raises the question of whether brGDGT-producing
microbes are part of distinct communities that are more
abundant in the summer as opposed to the winter. Indeed,
a recent study that paired microbial community composi-
tion with brGDGT lipid distributions in geothermally
heated soils determined that bacterial community changes
from colder to warmer soils are associated with variability
in the MBT0

5Me index (De Jonge et al., 2019). However, this
interpretation remains speculative until brGDGT produc-
tion has been demonstrated in other bacterial phyla.

The fact that the BayMBT0 model is inclusive of all soils
considered, together with the lower RMSE (3.8 �C) and
lowest variance of MAAT residuals indicates that it is the
most suitable calibration to apply to paleoclimate datasets.
Fig 7. Plots of gridded MAAT vs. predicted MAAT for the eight Bayesian
cross) and low (<20, blue circle) temperature seasonalities represented by
(C) BayMBTHighSeas, (D) BayMBT0, (E) BayMBT-5, (F) BayMBT-10,
reference line has been added to each plot and the coefficients of determin
references to color in this figure legend, the reader is referred to the web
Besides, the BayMBT0 model also takes the strong effect of
temperature seasonality and potential seasonality of
brGDGT production on the calibration models into
account. However, if BayMBT0 is used for paleoclimate
reconstruction, one must be aware of the difference in tem-
peratures (i.e. all months above zero vs. annual average
temperatures) reconstructed by the BayMBT and
BayMBT0 calibrations, respectively.

4.3.2. Influence of precipitation amount and seasonality

The slight improvement of the BayMBT500 model may
arise from the reduced size of the dataset (Table 2). The
BayMBT model does not structurally underestimate
MAAT in arid regions (Fig. 3C), as was the case in the cal-
ibration of Peterse et al. (2012). The removal of the temper-
ature bias in arid soils is a result of the removal of the 6-
methyl brGDGTs from the MBT0

5Me index, and was
already observed in the calibration of De Jonge et al.
(2014b). Due to the decreased size of the dataset, we find lit-
tle justification for adopting BayMBT500.

The BayMBTIR model has similar values for the coeffi-
cient of determination (R2 = 0.64) and RMSE (5.9 �C,
Table 2) to the original BayMBT model. Removing the
soils with IR > 0.8 does not substantially improve the pre-
diction of MAAT for global soils. Thus, the BayMBTIR
model in this study suggests that an increased proportion
of 6-methyl brGDGTs in soils does not appear to have a
substantial impact on proxy calibration based on 5-
methyl brGDGTs discussed here.
regression models. (A) the BayMBT model, with high (>20 �C, red
red crosses and blue circles, respectively. (B) the BayMBTLowSeas,
(G) BayMBT500, and (H) BayMBTIR models, respectively. A 1:1
ation (R2) and RMSE values are shown. (For interpretation of the
version of this article.)
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4.4. Reasons for the remaining scatter in the BayMBT model

Despite the better performance of the BayMBT0 model,
which reduces part of the scatter at mid-latitudes, the
source of the persistent remaining scatter remains elusive.
The first source of the scatter discussed here is the choice
of method used for the MAAT estimates in the calibration
(Section 2.3). For example, the 0.5� gridded CRU TS v.
3.24.01 (Harris et al., 2014) dataset may not be highly
resolved enough to estimate temperature for regions with
micro-topography. This may lead to large differences in
the gridded MAATs with actual temperatures at a specific
location. However, the absence of residual patterns that
trend with altitude (r = 0.15; p = 0.03; not shown), indicate
that this factor does not exert a strong influence on the
calibration.

Another possible source of the scatter at mid-latitudes is
the potential offset between soil and air temperature
(Weijers et al., 2011). This offset is not equal everywhere,
and could account for a large proportion of residual scatter
in Figs. 2C and 3. For example, Grundstein et al. (2005)
found that the annual thermal offset with MAAT for soils
from North Dakota experiencing a seasonal snow cover
ranged between 1.5 and 4 �C, over the study period 1990–
2001. For the soils in this study that experience snow cover,
the influence of snowpack insulation on the offset between
soil/air temperatures could play a significant role on pre-
dicted temperatures using the BayMBT model. The offset
between soil and air temperature may be caused by the
presence of soils in the dataset which are located in areas
that are perennially shaded, affected by vegetation, or by
virtue of being located on the northern side of a mountain,
for example. Unfortunately, soil temperature data is not
available for the soils included in this study, which pre-
cludes any further investigation into this effect.

A third source for the large scatter at mid-latitudes
could relate to the microbial community composition in
soils, which may be different in cold and warm, or high
and low temperature seasonality soils (Delgado-Baquerizo
et al., 2016, 2017). Since only a very limited portion of
the microbial population in soils are known to produce
brGDGTs, this influence on the scatter of the residuals of
the BayMBT model is hard to elucidate. Nevertheless, dif-
ferent brGDGT-producing communities could have distinct
relations to temperature (Oliverio et al., 2017). BrGDGTs
have only presently been identified in 2 out of 46 strains
of Acidobacteria (Sinninghe Damsté et al., 2018), and most
of the brGDGT structures are still ‘orphans’. A recent
study by Oliverio et al. (2017) compared the temperature
response of soil microbes and found that the relative abun-
dance of most (13 out of 15) phylotypes within the family
Koribacteraceae in Acidobacteria decreased as temperature
increases. This observation was found to hold true for other
families (Acidobacteriaceae and Soilbacteres) within the
Acidobacteria phylum, as well as some families within the
Proteobacteria phylum, which are the two most dominant
soil phyla in the Northern Hemisphere (Oliverio et al.,
2017). Hence, it is possible that temperature-dependent
changes in the relative abundances of brGDGT producers
with distinct MBT0

5Me-MAAT relationships may
contribute to the high scatter in this proxy. However, the
empirical observation that the degree of branching of
brGDGTs in the membrane of microbes changes with tem-
perature is likely a physical adaptation that probably does
not vary too much from species to species.

Interestingly, 98% (172/175) of soils in the
BayMBTHighSeas model reside in mid-latitudes, compared
to only 32 % (53/168) of soils in the BayMBTLowSeas
model. Due to the higher R2 value of the BayMBTLowSeas
model compared to the BayMBTHighSeas model (Table 2),
the source of the scatter in the latter could be a result of a
microbial community shift or the co-occurrence of multiple
communities that respond differently to temperature
change. The diversity of brGDGT-producing bacteria in
the mid-latitude soils with distinct relationships to temper-
ature may thus lead to scatter in the calibration. If the
brGDGT-producers were eventually identified, this raises
an important question: is it possible to know which com-
munity dominates when? However, as mentioned before,
the difference in R2 values between the BayMBTLowSeas
and BayMBTHighSeas models may be a result of the exclu-
sion of soils associated with high MAATs in the
BayMBTHighSeas model, so this question cannot be imme-
diately answered. Future work that combines DNA studies
with lipid brGDGT abundances in soils along a latitudinal
and/or seasonality gradient would be a step forward in
understanding and answering this question.

5. BAYMBT PALEOCLIMATE APPLICATION

In this section we test the performance of the BayMBT0

model on brGDGTs in an Eocene lignite sequence fromWes-
tern Europe (Inglis et al., 2017), as well as on brGDGTs in
Pliocene sediments from theNorth Sea Basin, after correction
for a possible in situ marine overprint (Dearing Crampton-
Flood et al., 2018). We compare and contrast the recon-
structed temperatures of these two records, termed MAAT0

(the mean temperature of all months > 0 �C) with MAAT
obtained using the soil (De Jonge et al., 2014b; Naafs et al.,
2017a) and peat (Naafs et al., 2017b) calibrations.

5.1. Eocene climate in Western Europe

The BayMBT models have a higher upper limit (i.e.
27 �C for BayMBT0) compared to that of previous calibra-
tions, which should make them better suited to reconstruct
the higher temperatures during greenhouse periods of
Earth’s history, such as the Eocene. To illustrate, a recent
study that used brGDGTs in a lignite sequence from west-
ern Europe to reconstruct paleotemperatures for the
Eocene concluded that the magnitude for early Eocene
warming (2–3 �C) was likely a minimum estimate, as recon-
structed temperatures reached up to 26 �C, 1–2 �C higher
than the upper limit of the De Jonge et al. (2014b) calibra-
tion used (Inglis et al., 2017). In contrast, temperature
reconstructions for the Bighorn Basin, Wyoming based on
leaf physiognomy indicate that the amplitude of early
Eocene warming was much larger, in the order of 4–6 �C
(Wilf, 2000). This is also corroborated by TEX86 sea surface
temperature (SST) reconstructions, which also show a
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warming of 4–6 �C for the same time interval in both the
Western Siberian Sea (Frieling et al., 2014), and the South
West Pacific (Hollis et al., 2012; Bijl et al., 2013; Inglis et al.,
2015). We test here if the application of the BayMBT0

model to the lignite record will result in a larger amount
of warming than initially reconstructed. Due to the deep-
time application, modern MAAT could not be used to esti-
mate the prior mean. Instead, an average of the MATmr

temperatures presented in Inglis et al. (2017) was chosen
(24 �C) as the prior mean. A suitably broad prior standard
deviation of 15 was chosen, in order to avoid placing too
much emphasis on the prior mean. An effect of a smaller
and larger choice of prior standard deviation on the model
outcomes is discussed in Tierney and Tingley (2014). In
brief, unless the prior standard deviation is set to be unre-
alistically small (e.g., less than 5 �C), the choice of prior
standard deviation does not exert much bearing on the
MAAT predictions.

The absolute MAAT0 reconstructed using BayMBT0 for
the Eocene lignites ranges between 25 and 27 �C (Fig. 8).
These temperatures are �2 �C warmer than temperatures
using MATmr, and �4 �C warmer than temperatures recon-
structed using MBT0

5Me (De Jonge et al., 2014b). The war-
mer temperatures reconstructed using BayMBT0 are likely
a result of the reconstruction of temperatures of all
months > 0 �C, which produces warmer temperatures.
Despite the difference in reconstructed temperatures
(MAAT0 vs. MAAT), the BayMBT0 model yields a similar
estimate for the magnitude of early Eocene warming
(�2 �C) as the original MATmr and MBT0

5Me-based (De
Jonge et al., 2014b) temperature records (main seam to seam
3; Fig. 8; Inglis et al., 2017). However, caution should be used
when comparing these warming estimates as MAAT and
MAAT0 are not equivalent.

Importantly, the upper limit of the BayMBT0 is reached,
so the magnitude of early Eocene warming using this cali-
bration may still be underestimated. In contrast, the magni-
tude of warming using the peat calibration (Naafs et al.,
2017b) is slightly higher, at 4 �C. The average early Eocene
temperature of �27 �C (Seams 3–9) predicted using
BayMBT0 is 4–5 �C higher than MBT0

5Me estimates using
Fig. 8. Reconstructed continental temperatures during the Eocene from
mine in Germany (Inglis et al., 2017). Lignite seams (thickness not to sca
the MBT0

5Me based MAT estimates using the Naafs et al. (2017b; dotted
MAAT0 record reconstructed using the BayMBT0 calibration is depicted
BayMBT0 record.
the De Jonge et al. (2014b) calibration, but 1–2 �C lower
than the Naafs et al. (2017b) peat calibration (Fig. 8). How-
ever, as long as the calibration used is based on the
MBT0

5Me index, the saturation state will not change and
the maximum temperature will depend on the temperature
limit of the model. Regardless, the absolute reconstructed
MAAT0 temperatures using the BayMBT0 model and the
MAAT using the peat calibration (Naafs et al., 2017b) bet-
ter fit with TEX86-based early Eocene sea surface tempera-
ture reconstructions, indicating that also continental
temperatures were above 25 �C at mid- and high latitudes
(Frieling et al., 2014).

5.2. Pliocene climate of Northwestern Europe

A recent terrestrial temperature reconstruction of the
Pliocene Northwestern Europe indicated that temperatures
during the Early-Mid Pliocene were mostly stable, and fluc-
tuated between 10–13 �C (Dearing Crampton-Flood et al.,
2018). A decrease in temperatures of �3 �C is visible in
the younger part of the record, and corresponds to the
Plio-Pleistocene transition. Absolute temperatures in the
corrected record of Dearing Crampton-Flood et al. (2018)
were comparable with temperatures reconstructed from
pollen assemblages in Northwestern Europe (13–14 �C;
Head, 1998; Uhl et al., 2007; Utescher et al., 2000). Thus,
application of the BayMBT0 model may further reduce
the error associated with this record, and further constrain
the temperature estimates for the Pliocene of NW Europe.
The published temperature record of Dearing Crampton-
Flood et al. (2018) has been corrected for possible marine
overprint by ‘subtracting’ the marine MBT0

5Me value from
the total ‘mixed’ MBT0

5Me values in the sediments. We use
the corrected MBT0

5Me indices, representing the terrestrial
component, as input for the BayMBT0 model. A prior
mean of 10 �C (modern MAAT of the Netherlands) and a
prior standard deviation of 15 were chosen as model input.

The trends in the records generated by all three methods
are practically identical (Fig. 9). As expected due to the dif-
ference in reconstructed temperatures of the calibrations,
the MAAT0s reconstructed using BayMBT0 are higher than
a series of lignites (black circles) located in the Schöningen Südfeld
le) and approximate ages are indicated. MAAT reconstructed using
lines), and De Jonge et al. (2014b; dashed lines) calibrations. The
by a solid lines. The shaded region indicates the 1r error on the



Fig. 9. Reconstructed temperatures for the Pliocene marine sediment sequence from the Hank core located in the Netherlands (Dearing
Crampton-Flood et al., 2018). The BayMBT0 (solid line with black circles), De Jonge et al. (dashed line; 2014b), and Naafs et al. (dotted line;
2017a) calibrations based on a corrected MBT0

5Me index are plotted against depth and relative ages. The shaded region indicates the 1r error
on the BayMBT0 record.
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those of the De Jonge et al. (2014b) and Naafs et al. (2017a)
soil calibrations, by 1–3 and 3–4�, respectively. However,
the pollen assemblage of warm-adapted species (e.g. Tax-
odium) found in sediments from the Netherlands indicate
that it is unlikely that temperatures went below zero for
extended amounts of time during the Pliocene (Zagwijn,
1963; Suc and Zagwijn, 1983; Pross and Klotz, 2002). This
provides more confidence in comparing the temperatures
reconstructed using the De Jonge et al. (2014b) and Naafs
et al. (2017a) calibrations (i.e. MAAT) with the MAAT0

reconstructed using the BayMBT0 calibration. All records
show a decrease in temperature from the early Pliocene to
the Pleistocene/late Pliocene, reflecting the global climate
cooling that took place that the end of the Pliocene (Fig. 9).

The slightly higher absolute BayMBT0-derived tempera-
tures for the Early and Late Pliocene (�13–16 �C) fit well
with reconstructed temperatures based on pollen from Ger-
many (13.9 ± 0.5 �C; Uhl et al., 2007), England (12.8 ± 1.3 �
C; Head, 1998) and the Lower Rhine Basin (14.1 ± 0.2 �C;
Utescher et al., 2000). Moreover, MAAT0 estimates from
the BayMBT0 model actually better agree with temperature
estimates for the mid-Pliocene in Germany (13.8 ± 0.4 �C)
based on the HadAM3 GCM model (Pope et al., 2000;
Haywood et al., 2002; Salzmann et al., 2008), compared to
the original calibration of De Jonge et al. (2014b). MAAT0

estimates from the BayMBT0 record are also associated with
a smaller error (3.8 �C; Table 2) than the original record,
therefore increasing the reliability of the Pliocene tempera-
ture record for inclusion into climate models.

6. CONCLUSIONS

Our study presents the BayMBT model that utilizes
Bayes’ rule to calibrate the relationship between MBT0

5Me

and MAAT. The BayMBT model encompasses an
expanded dataset that includes both soils and peats, and
improves the coverage of the Asian continent. In this new
model, the regression dilution of previous calibrations is
removed, allowing for a more detailed investigation of the
effects of confounding factors on the MBT0
5Me for soils.

The largest MAAT residuals of the BayMBT model belong
to mid-latitude soils with a high temperature seasonality
(>20 �C). The large scatter may speculatively be attributed
to several co-existing communities of brGDGT-producing
soil bacteria. A series of modified calibrations indicates that
the most accurate temperature reconstructions can be
obtained using the BayMBT0 model. This model is based
on the mean temperature of all months above 0 �C, which
produces a record of MAAT0, which must be taken into
account when interpreting paleotemperature reconstruc-
tions using this model. Finally, we stress the need for stud-
ies measuring both DNA and lipids to make a step forward
in constraining the temperature control on brGDGT-
producing microbial communities and resolving the large
scatter of MAAT residuals at mid-latitudes.

RESEARCH DATA AND MATLAB CODE

The MATLAB code for the BayMBT and BayMBT0

models are available on the GITHUB repository of J.E.T
(https://github.com/jesstierney). The soil dataset used in
this study is available on Pangaea.
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APPENDIX A

See Fig. A1.
Fig. A1. Molecular structures of the tetramethylated (Ia-Ic),
pentamethylated (IIa-IIc), and hexamethylated (IIIa-IIIc)
brGDGTs. Isomers of the penta- and hexamethylated brGDGTs
are denoted by a methyl group present on the C-5 or C-6’ position.
From De Jonge et al. (2014b).
APPENDIX B

See Fig. B1.
Fig. B1. Statistical similarity of the Peat (Naafs et al., 2017b) and
soil calibrations.
APPENDIX C

See Fig. C1.
Fig. C1. Histogram of chordal distances between soil locations and
gridboxes from CRU MAAT dataset (Harris et al., 2014).
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Rosell-Melé A. (2014) Influence of water availability in the

http://refhub.elsevier.com/S0016-7037(19)30629-5/h0010
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0010
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0010
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0010
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0015
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0015
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0015
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0015
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0020
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0020
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0020
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0020
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0025
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0025
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0025
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0025
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0025
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0030
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0030
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0030
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0030
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0030
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0035
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0035
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0035
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0035
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0035
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0040
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0040
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0040
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0040
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0040
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0040
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0040
https://doi.org/10.1016/j.orggeochem.2019.07.006
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0050
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0050
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0050
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0050
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0050
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0055
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0055
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0055
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0055
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0060
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0060
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0060
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0060
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0060
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0065
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0065
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0065
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0070
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0070
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0070
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0070
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0070
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0075
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0075
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0075
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0075
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0080
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0080
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0080
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0080
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0085
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0085
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0085
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0085
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0090
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0090
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0090
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0095
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0095
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0095
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0100
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0100
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0100
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0100
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0105
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0105
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0105
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0110
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0110
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0110
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0110
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0115
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0115
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0115
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0115
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0115
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0120
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0120
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0120
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0125
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0125
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0125
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0125
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0125
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0130
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0130
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0130
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0130
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0135
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0135
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0135
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0135
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0135
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0140
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0140
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0140
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0140
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0140
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0145
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0145
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0145
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0145
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0150
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0150
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0150
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0150
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0155
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0155
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0155
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0160
http://refhub.elsevier.com/S0016-7037(19)30629-5/h0160


158 E. Dearing Crampton-Flood et al. /Geochimica et Cosmochimica Acta 268 (2020) 142–159
distributions of branched glycerol dialkyl glycerol tetraether in
soils of the Iberian Peninsula. Biogeosciences 11(10), 2571.

Naafs B. D. A., Gallego-Sala A. V., Inglis G. N. and Pancost R. D.
(2017a) Refining the global branched glycerol dialkyl glycerol
tetraether (brGDGT) soil temperature calibration. Org. Geo-

chem. 106, 48–56.
Naafs B. D. A., Inglis G. N., Zheng Y., Amesbury M. J., Biester

H., Bindler R., Blewett J., Burrows M. A., del Castillo Torres
D., Chambers F. M. and Cohen A. D. (2017b) Introducing
global peat-specific temperature and pH calibrations based on
brGDGT bacterial lipids. Geochim. Cosmochim. Acta 208, 285–
301.

Nedwell D. B. (1999) Effect of low temperature on microbial
growth: lowered affinity for substrates limits growth at low
temperature. FEMS Microbiol. Ecol. 30(2), 101–111.

Oliverio A. M., Bradford M. A. and Fierer N. (2017) Identifying
the microbial taxa that consistently respond to soil warming
across time and space. Global Change Biol. 23(5), 2117–2129.

Peterse F., Kim J. H., Schouten S., Kristensen D. K., Koç N. and
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Sinninghe Damsté J. S., Ossebaar J., Schouten S. and Verschuren
D. (2008) Altitudinal shifts in the branched tetraether lipid
distribution in soil from Mt. Kilimanjaro (Tanzania): Implica-
tions for the MBT/CBT continental palaeothermometer. Org.

Geochem. 39(8), 1072–1076.
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