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The alarming increase in the incidence of obesity and obesity-associated disorders makes the etiology of
obesity a widely studied topic today. As opposed to ‘homeostatic feeding’, where food intake is restricted to
satisfy one's biological needs, the term ‘non-homeostatic’ feeding refers to eating for pleasure or the trend to
over-consume (palatable) food. Overconsumption is considered a crucial factor in the development of obesity.
Exaggerated consumption of (palatable) food, coupled to a loss of control over food intake despite awareness
of its negative consequences, suggests that overeatingmay be a form of addiction. At a molecular level, insulin
and leptin resistance are hallmarks of obesity. In this review, we specifically address the question how leptin
resistance contributes to enhanced craving for (palatable) food. Since dopamine is a key player in the
motivation for food, the interconnection between dopamine, leptin and neuropeptides related to feeding will
be discussed. Understanding the mechanisms by which these neuropeptidergic systems hijack the
homeostatic feeding mechanisms, thus leading to overeating and obesity is the primary aim of this review.
The melanocortin system, one of the crucial neuropeptidergic systems modulating feeding behavior will be
extensively discussed. The inter-relationship between neuronal populations in the arcuate nucleus and other
areas regulating energy homeostasis (lateral hypothalamus, paraventricular nucleus, ventromedial
hypothalamus etc.) and reward circuitry (the ventral tegmental area and nucleus accumbens) will be
evaluated and scrutinized.
ll rights reserved.
© 2011 Elsevier B.V. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2. Homeostatic control of food intake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1. Leptin resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2. Hypothalamic control of feeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Hedonic control of food intake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1. Dopamine and overeating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2. Leptin, reward circuitry and overeating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3. Melanocortin system in feeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4. Orexins and overeating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5. Brain derived neurotropic factor and implications in overeating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Conflict of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1. Introduction

The rapid urbanization throughout the globe in the past few
decades, marks the rise in the incidence of many chronic illnesses,
including obesity and diabetes (Fry and Finley, 2005). Recent data
from Europe and The United States shows a high incidence of obesity
in the general population, 20% and 34%, respectively (Fry and Finley,
2005; Nguyen and El-Serag, 2010). Interestingly, only in an insignif-
icant subset, obesity is a result of single mutation in genes involving
energy homeostasis. A majority of cases of obesity results from a
combination of genetic, behavioral and environmental factors. The
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improvements in food availability and alterations in dietary patterns
with a prevalence of energy-dense fat and sweet foods are crucial
environmental factors in today's obesity epidemic. Distinguished from
‘homeostatic feeding’, where food intake is restricted to satisfy one's
biological needs, this kind of ‘non-homeostatic feeding’ or ‘feeding for
pleasure’ has gained a special place in our society and overeating, food
craving and compulsive eating are important deleterious factors
culminating in obesity.

The increased attraction towards pleasurable feeding and the loss of
control over food intake have been compared to addictive behavior.
Studies on animals and humans have demonstrated activation of the
brain reward systemwhen subjects are exposed to palatable food. Thus,
homeostatic control of feeding, where the brain maintains a temporal
control on the amounts of food ingested involves the hypothalamus and
the brainstem, whereas the reward circuit, encompassing brain areas
such as the ventral striatum, prefrontal cortex and amygdala is sensitive
to the hedonic aspects of food. Interestingly, the systems involved in
homeostatic and non-homeostatic feeding are not entirely separated, as
multiple connections between these two systems exist (Lutter and
Nestler, 2009). Additionally, in a situation of hunger even non-palatable
foods will be rewarding. This suggests the existence of a distributed
neural network that controls different aspects of feeding behavior, with
rostral limbic and cortical brain areas beingmore important for pleasure
feeling and caudal parts for controlling meal size (Adan et al, 2008).
Overconsumption in this paper will be studied in the light of two
contributing factors: (a) increase in meal size, i.e. animals consume
bigger amounts of food due to defective satiation and/or augmented
desire for certain foods (Fulton, 2010) and (b) increase in meal
frequency. We aim to understand the neural mechanisms by which
the hedonic signals interact and hijack the homeostatic regulation of
food intake. Although at first glance, hijacking of the homeostatic
regulatory mechanisms by its hedonic counterpart may seem
conflicting, it should be borne in mind that during evolution, humans
have lived in an environmentwhere food availabilitywas restricted and
uncertain (e.g. hunter–gatherers) and the biological system has been
‘hard-wired’ to maximize energy stores (Schwartz et al, 2003).

2. Homeostatic control of food intake

The question concerning the regulation of food intake has intrigued
scientists for several decades. The actual shift from the earlier
‘peripheral’ theories, where hunger and satiation were considered to
be a unique property of the stomach, to the more ‘central’ theories,
involving the brain in feeding control, did not occur until the 1950s.
Correspondingly, the glucostat theory of Mayer and the lipostat theory
of Kennedy suggested the role of carbohydrate and fat as major
components regulating energy balance (Kennedy, 1953; Mayer, 1955).
Lesion experiments during this period also identified the ventromedial
hypothalamus and the lateral hypothalamus as the brain ‘satiety’ and
‘feeding’ center, respectively (Mayer and Thomas, 1967). These
observations, although somewhat preliminary, laid the foundation for
further elucidation of the complex neuronal networks influencing
feeding and satiation. A major breakthrough in obesity research came
through studying spontaneously obesemice, the ob/ob (obese) and the
db/db (diabetic) mice being the forerunners (Speakman et al., 2007).
Using surgical vascular-anastomosis between these strains and normal
mice, it was shown that the ob/ob and the db/db mice had a
dysfunctional ‘satiety factor’ and ‘satiety center’, respectively (Coleman,
1973). Later, with the advent of better molecular cloning techniques,
this satiety factor was identified in 1994 as circulating leptin, which
appeared to be absent in the ob/ob mouse, while a dysfunctional long
formof leptin receptor (seebelow)was identified as the cause of obesity
in the db/db mouse (Zhang et al., 1994; Tartaglia et al., 1995).

Leptin is perhaps the most widely studied biological factor
controlling food intake. Secreted primarily from the adipose tissue,
leptin is a 146 amino acid protein circulating in the blood. It
accomplishes a biochemical communication between adipose tissue
and the brain areas involved in energy homeostasis, updating the
latter on the degree of peripheral adiposity (Margetic et al., 2002). The
action of leptin in the brain is mediated by the leptin receptor, which
belongs to the class-I cytokine receptor family (Tartaglia, 1997). Three
principal forms of leptin-receptor have been found in mammals: the
secreted (leptin receptor-c), the long (leptin receptor-b) and short
intracellular domain (leptin receptor-a) leptin receptor. Each carries
the same extracellular domain but differs in the length of the
cytoplasmic domain (Myers et al., 2008; Ahima and Osei, 2004). The
leptin receptor-b is vital for the physiological action of leptin in the
hypothalamus. The arcuate nucleus, dorsomedial hypothalamus,
ventromedial hypothalamus and lateral hypothalamus express this
form of leptin receptor (Elmquist et al., 1998). Similar to other
cytokine receptors, the leptin receptor lacks an intrinsic enzymatic
activity and is dependent on the Jak-2 kinases for signal transduction.
Fig. 1 indicates the principal components of the leptin-signaling
pathway.

2.1. Leptin resistance

The amount of circulating leptin is proportional to the degree of
peripheral adiposity (Considine et al., 1996). Intriguingly, enhanced
(and prolonged) increase in the circulating levels of leptin, does not
further enhance the leptin receptor-b signaling cascade (Myers et al.,
2008). Analogous to the concept of insulin resistance, where
augmented amounts of insulin fail to decrease plasma glucose levels,
leptin resistance implies a clinical condition associated with obesity,
where the anorectic action of leptin is blunted despite its high
circulating amounts in the periphery (Munzberg et al., 2005).

Being one of the central issues in understanding obesity, several
explanations have been put forward to explain the phenomenon of
leptin resistance. First, studies comparing the db/db mouse, which
lacks only leptin receptor-b and mouse mutants devoid of all isoforms
of leptin receptor, showed that the soluble and short isoforms of leptin
receptor may be responsible for leptin's transport across the blood
brain barrier (Shimizu et al., 2007). Deficiencies in the peripheral
levels of these isoforms in obese conditions indicate their potential
role in leptin resistance (Ogier et al., 2002). Second, the inability of
leptin to reach its target can be also due to other factors, like the high
levels of circulating triglycerides in obesity, which hinder leptin
transport across the blood brain barrier (Banks et al., 2004). Third,
intracellular mechanisms activated by the leptin signaling cascade
also modulate the action of leptin receptor by negatively regulating its
own receptor activity. One such mechanism is suppressor of cytokine
signaling-3 (SOCS-3) activation. Signal transducer activator of
transcription-3 (STAT-3) protein activated upon phosphorylation of
leptin receptor-b, further activates SOCS-3 protein, which in turn
suppresses the activity of the leptin receptor by acting at the level of
Jak-2 kinase and Tyr 985 residue of the leptin receptor. Neuronal
SOCS-3 deficient mice show enhanced STAT-3 protein phosphoryla-
tion together with a leaner phenotype (Mori et al., 2004). Focusing on
the dose-related effect of leptin on its receptor to explain leptin
resistance, Munzberg et al. (2005) hypothesized that under baseline
levels, small increments in leptin concentrations would result in
enhancement of leptin signaling, whereas elevated amounts of leptin
as encountered in obesity, would lead to higher expression of SOCS-3,
thereby dampening leptin signaling. The increase of SOCS-3 expres-
sion in obesity may also occur irrespective of blunted STAT3
activation, indicating the involvement of an alternative pathway
(Tups, 2009). Lastly, the tyrosine phosphatase protein 1B has shown
to negatively regulate the activity of the Jak-2 kinase (Cheng et al.,
2002; Zabolotny et al., 2002). Single nucleotide polymorphisms (SNP)
in the gene have been associated with obesity and diabetes mellitus
type II (Bento et al., 2004; Cheyssac et al., 2006). Thus, current
evidence indicates the involvement of multiple simultaneous
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Fig. 1. Leptin receptor signaling cascade. Binding of leptin to the extracellular domain of its receptor leads to the activation of janus kinase-2 (Kloek et al., 2002), which in turn
induces the phosphorylation of three downstream tyrosine residues (Try 985, Tyr 1077 and Try 1138) (Myers et al., 2008). Jak-2 autophosphorylation further activates several
downstream proteins like the insulin receptor substrate (IRS), extracellular signal regulated kinases (Jansen et al., 2003; Rahmouni et al., 2009) and the phosphor inositid 3-kinases
(PI3-K) (Sahu, 2003). It is through the PI3-K kinase pathway by which Neuropeptide Y (NPY) levels are downregulated in the arcuate nucleus upon leptin action. Furthermore, active
PI3-K leads to the stimulation of the mammalian target of rapamycin (mTOR) pathway via Protein Kinase B (Act) (Kahn and Myers, 2006). Tryosine phosphatase protein 1B (PTP1B)
acts as a negative modulator of JAK-2 kinase (Sahu, 2003). Tyr 1138 phosphorylation activates the signal transducer activator of transcription-3 (STAT-3) protein which thereby
promotes propoiomelanocortin (POMC) expression (Hakansson and Meister, 1998), suppressor of cytokine signaling 3 (SOCS3) synthesis (Bjorbaek et al., 1999; Bjorbaek et al.,
2000) and possibly brain-derived neurotrophic factor (BDNF) (Komori et al., 2006). SOCS-3 negatively influences the activity of the Try 985 and Jak-2 proteins (Munzberg et al.,
2005; Shimizu et al., 2007). At the Try 985 residue, phosphorylation commences the activity of the SHP-2 protein, which competes with SOCS-3 to bind to Try 985 and further
promote ERK activity (Bjorbaek et al., 2001). The function of active signal transducer activator of transcription-5 (STAT-5), at the Try1077 still needs to be clarified (Hekerman et al.,
2005).
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mechanisms in leptin resistance. Therefore, targeting a single process
to combat this phenomenon is not likely to be successful. Additionally,
leptin resistance itself and the presence of a feedback loop within the
leptin signaling cascade draws our attention to its evolutionary
perspective where increased adiposity may be beneficial (e.g.
seasonal animals and pregnancy) (Tups, 2009). Keeping this evolu-
tionary bias towards weight gain in mind, Leibel (2005) in his studies
on obese and non-obese human subjects reported that a 10% decrease
in body weight in either group, resulted in the decrease in non-resting
energy expenditure of up to 20%, enough for recidivating obesity. This
effect may be partially due to the dose–response curve of leptin.When
leptin levels are below a particular ‘threshold’, a decrease in catabolic
expenditure with simultaneous enhancement in feeding occurs.
Conversely, high-circulating levels of leptin (as seen in obesity)
have no pronounced effect on metabolism and feeding. This
‘threshold’ is in turn defined as a neurobiological correlate that is
influenced by genetic, internal and external environmental factors.
Interestingly, chronically elevated levels of leptin can also alter this
‘threshold’. It has been hypothesized that a rightward-shift in the
‘threshold’ can be encountered in obese subjects, i.e. even small dips
in leptin levels will lead to increased activation of anabolic
mechanisms culminating in pronounced weight gain (Leibel, 2005).
Fig. 2 summarizes the above-mentioned mechanisms of leptin
resistance.

2.2. Hypothalamic control of feeding

The hypothalamus is a prime relay station controlling feeding
behavior and the distinct roles of the various hypothalamic sub-nuclei
with respect to food intake have been studied in great detail. After
crossing the blood brain barrier, circulating leptin reaches the arcuate
nucleus, which contains two principal neuronal populations: the
neuropeptide Y/agouti related peptide (AGRP) and the pro-opio
melanocortin (POMC)/cocaine and amphetamine related transcript
(CART) neurons (Schwartz et al., 2000). Both populations express the
leptin receptor, project to other hypothalamic nuclei and have an
opposing action on energy balance (Schwartz et al., 1996; Cheung et al.,
1997). The action of leptin on these neurons is also contrasting.
Intracerebroventricular (i.c.v.) administration of leptin decreases
neuropeptide Y/AGRP expression (Morrison et al., 2005) while
enhancing the activity of the POMC neurons (Cowley et al., 2000). A
sub-population of the neuropeptide Y neurons containsγ-aminobutyric
acid (GABA) and sends inhibitory projections to the POMC neurons
within the arcuate nucleus (Cowley et al., 2000; Horvath et al., 1997).
Furthermore, i.c.v. administration of neuropeptide Y has been shown to
increase feeding (Hulsey et al., 1995). Likewise, states of negativeenergy
balance such as fasting result in increased neuropeptide Y levels in the
arcuate nucleus, indicating the anabolic effect of this neuropeptide
(Schwartz and Seeley, 1997; Arora and Anubhuti, 2006). The POMC
neurons, on the other hand, secreteα-melanocyte stimulating hormone
(α-MSH) and promote anorexia, an effect mediated by second order
neurons primarily in the paraventricular nucleus and ventromedial
hypothalamus expressing the melanocortin 3 or 4 receptor (MC3
receptor and MC4 receptor). In contrast, AGRP, a protein co-secreted by
the neuropeptide Y neurons of the arcuate nucleus, is a potent and long
lasting orexinergic agent that has an inverse agonistic action on theMC4
receptor (Adan et al., 2008; Schwartz et al., 2000). Both neuropeptide Y
and POMC neurons project to different hypothalamic second order
neurons in various hypothalamic areas (e.g. paraventricular nucleus,
lateral hypothalamus and ventromedial hypothalamus) that further
regulate anabolic or catabolic events. Within the paraventricular
nucleus, several target neurons of the POMC/CART and neuropeptide
Y/AGRP have been identified: thyrotropin releasing hormone, oxytocin
and corticotropin releasing hormone neurons, all well-known catabolic
modulators (Kim et al., 2002; Lu et al., 2003; Schwartz et al., 2000).

Another hypothalamic nucleus, the lateral hypothalamus, contains
neurons that produce two orexinergic neuropeptides, i.e. orexin and
melanin concentrating hormone. I.c.v. infusion of both elicits a robust
feeding response (Griffond and Risold, 2009; Rossi et al., 1997). The
orexins (orexins A and B) are alternative splice forms of the orexin
precursor protein. From the lateral hypothalamus, the orexin-
containing neurons project to various brain areas regulating feeding
and arousal. Furthermore, orexinergic fibers also project to the
neuropeptide Y/AGRP and POMC/CART neurons of the arcuate
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Fig. 2. Leptin resistance. The possible mechanisms of leptin resistance in obesity. For references see text. Additional references (Caro et al., 1996; Kastin et al., 1999; Talbert et al.,
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nucleus, thus activating the former and inhibiting the latter cell-
populations via orexin 1 and 2 receptors (OX1 receptor and OX2

receptor), respectively (Willie et al., 2001). The underlying mecha-
nisms by which orexins and melanin concentrating hormone control
feeding are poorly understood, but the projections to the brain reward
centers may play an important role (Cason et al., 2010; Griffond and
Risold, 2009). Finally, the ventromedial hypothalamus, an important
hypothalamic site containing brain derived neurotropic factor (BDNF)
neurons, receives connections from neuropeptide Y/AGRP and POMC/
CART neurons. Recent studies have shown BDNF to be a downstream
target of MC4 receptor, and BDNF also acts as a direct effector for
leptin-mediated anorexia (Komori et al., 2006; Nicholson et al., 2007).
The downstream targets of BDNF mediating feeding remain to be
elucidated. The importance of the MC4 receptor and BDNF for human
body weight regulation has been recently shown in genome wide
association studies, where allelic variants in these loci contribute to
the variance of body mass index observed in human population (see
Fig. 3) (Loos et al., 2008).

3. Hedonic control of food intake

It is important to note that not only hunger elicits feeding.
Humans, for example, tend to ‘finish their plate’ and cue-induced
feeding in a satiated state has been shown in both rats and humans
(Jansen et al., 2003; Weingarten, 1983). This phenomenon of
enhanced food consumption beyond one's nutritional need relates
to the fact that food is a natural reward. Food has been shown to be
reinforcing in the similar manner as drugs are, although this does not
necessarily mean that food is addictive, as animals will work for a
variety of natural rewards that benefit survival, such as water and sex
(Corsica and Pelchat, 2010; Koob, 1992; Wilson, 2010). When trying
to relate drug addiction to overeating, it is important that we define
terms like: ‘liking’, ‘wanting’ and ‘compulsion’, because they are often
used to describe components of the addiction syndrome (Everitt and
Robbins, 2005; Berridge et al., 2009; Koob and Volkow, 2010). ‘Liking’
refers to the pleasurable feeling associated with the receipt and
consumption of a reward, while ‘wanting’ is considered a subjective
desire that induces a goal-directed behavior to obtain a reward
(Corsica and Pelchat, 2010; Finlayson et al., 2007). The neural
substrates of ‘wanting’ and ‘liking’ have been widely discussed.
Berridge has described that the neural substrate of ‘liking’ is a
combination of several brain nuclei. Starting from deep brainstem
structures which act as an initial gateway for sensory perception, it
includes higher order centers like the nucleus accumbens, ventral
pallidum and the orbitofrontal cortex, involving GABAergic, opioid,
and endocannabinoid neurotransmission (Berridge, 2009). ‘Wanting’,
which is often considered to be closely related to motivational
influences on behavior, has been associated with dopamine signaling
in the mesolimbic system, as well as its connections with the
prefrontal cortex and amygdala (Barbano and Cador, 2007; Berridge,
2009; Berridge and Robinson, 1998; Salamone et al., 2009).
‘Compulsion’ refers to behavior that is continued or repeated, while
being dissociated from an apparent goal, or in the light of adverse
consequences. It is important to realize that ‘compulsion’ (rather than
‘wanting’ or ‘liking’) is a key term in the definition of addiction
(American Psychiatric Association and American Psychiatric Associ-
ation, Task Force on DSM-IV, 2000; Koob and Volkow, 2010). In fact, it
has been observed that certain addicts no longer ‘like’ but rather
‘need’ drugs of abuse, although the reductions in the hedonic
properties of drugs (‘liking’) in addiction strongly depend on the
type of drug used (Lambert et al., 2006). The behavior of drug addicts
is no longer primarily mediated by the outcome of their actions
(action— outcome behavior), as the neural circuits underlying reward
and motivation have been altered by prolonged drug abuse, so that
exposure to drug-associated stimuli leads to automatic, habitual
patterns of drug seeking, that are no longer voluntary or goal-directed
(stimulus — response behavior) (Everitt and Robbins, 2005). The
neural substrates of compulsive drug seeking constitute involvement
of dorsal striatal regions thatmediate habitual behavior, together with
a breakdown of cognitive control over behavior, mediated by the
prefrontal cortex (Everitt and Robbins, 2005; Porrino et al., 2004). In
addition, prolonged drug abuse engages brain stress systems, and
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dysregulates neural substrates of motivation (Robinson and Berridge,
1993; Koob and Volkow, 2010). The ability of food to induce
compulsive behavior, like drugs of abuse do, has (in our view) not
convincingly been shown. It has, however, been shown that food has a
very high motivational value and may sometimes even be preferred
over drugs (Lenoir et al., 2007). In fact, although obesity may or may
not be explained as a ‘food addiction’, certain similarities between
overconsumption and addiction (e.g. both relate to a ‘loss of control’
over intake) are worth mentioning. The following sections will
elaborate more on this and the interaction of the dopaminergic
system with leptin and other (feeding) neuropeptides (melanocortin
system, orexins, BDNF, and opioids) with respect to overeating will be
discussed in detail.

3.1. Dopamine and overeating

Drugs of abuse increase dopamine levels in the nucleus accumbens,
activating postsynaptic dopamine 1 and 2 receptors (D1 receptor andD2

receptor) on the target neurons (Di Chiara and Imperato, 1988; Koob,
1992). These elevated dopamine levels may enhance the association of
primary rewards with environmental cues and initiate goal-directed
behavior (Berridge and Robinson, 1998; Hyman et al., 2006). The
mechanism by which this elevation of dopamine is achieved differs for
the various substances of abuse (See Fig. 4) (Hyman et al., 2006; Ritz
et al., 1987; Sulzer et al., 2005; Trigo et al., 2010).

Similarities between drug addiction and obesity come from
multiple studies. First, involvement of the brain reward circuitries
during feeding comes from in-vivo microdialysis studies in rodents,
where increased levels of dopamine were detected in the brain
reward regions in response to eating and drinking (Yoshida et al.,
1992), analogous to receipt of other rewards (Schultz et al., 1993),
although it should be borne in mind that the magnitude of the
dopamine response to food is much smaller than the dopamine
response to drugs. In addition, activation of comparable brain areas
(hippocampus, insula, caudate nucleus, and the ventral striatum) in
response to food and drug cravings has also been shown (Kilts et al.,
2001; Pelchat, 2009; Pelchat et al., 2004; Rolls andMcCabe, 2007). The
mesolimbic dopaminergic system, projecting from the ventral
tegmental area to the nucleus accumbens and the frontal cortex, is
one of the major pathways implicated in addictive behavior, and is
therefore a focus in this review.

It has been shown that drugs of abuse increase extra-synaptic
levels of dopamine in the nucleus accumbens, either directly or
indirectly (Koob and Volkow, 2010). The repeated increase in
dopamine in response to prolonged abuse of addictive substances,
in the long run leads to a reduced D2 receptor density in the striatum
(Volkow et al., 2002). Interestingly, D2 receptor levels in the striatum
of obese subjects are also decreased (Wang et al., 2001), possibly
affecting the cortico-striatal top-down inhibitory mechanisms
(Volkow et al., 2008). Conversely, D2 receptor levels are upregulated
in previously obese subjects who underwent gastric bypass surgery to
combat excessive adiposity (Steele et al., 2010). Decreased D2

receptor levels have been simultaneously noted in some rodent
models of obesity (Hamdi et al., 1992), and this reduction in D2

receptor levels in these animals is reversed if animals are placed on a
restricted feeding schedule. This data suggests that overeating may be
a compensatory mechanism to adjust for decreased dopamine
activity. This process, referred to as the ‘reward deficiency syndrome’,
is often used as a model to explain compulsive behavior in an
addictive state. It hypothesizes that the initial use of drugs of abuse
leads to exaggerated amounts of synaptic dopamine in the nucleus
accumbens leading to excessive stimulation of the post-synaptic
dopaminergic receptors (Koob and Le Moal, 2001). This chronic
receptor stimulation ultimately results in a decreased post-synaptic
receptor density. Due to this de-sensitization to increased dopami-
nergic stimulation, some of the effects of a fixed drug dose wane over
time, resulting in tolerance to these effects. This may be reflected by
the decreased thresholds for electrical self-stimulation in rats given
extended access to cocaine. These rats become insensitive to low
electrical currents and only self-stimulate when the reward (stimu-
lation intensity) is substantially increased (Ahmed et al., 2002).
Consistent with this notion, Wang et al. (2002) have proposed the
dopaminergic hypofunction theory of overeating, where overeating is
an adjustment of the obese brain to compensate for low extracellular
dopamine levels (Stice et al., 2009. Indeed, it was recently shown that
obese rats fed on high-fat diet for a span of 40 days display an increase
in the threshold for rewarding self-stimulation (Johnson and Kenny,
2010). In addition, using a lenti-viral approach, Johnson and Kenny
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(2010) demonstrated that knocking down striatal D2 receptors
resulted in compulsive eating in rats exposed to high caloric diet
(Johnson and Kenny, 2010). However, whether the decreased D2

receptors levels are a cause or a consequence of addiction is not clear.
Studies have shown that humans with the Taq1A allele near the D2

receptor gene have lower number of these receptors and are also
more prone to addiction (Blum et al., 2008; Pohjalainen et al., 1998).
In addition, as the dopaminergic system is involved in the motiva-
tional aspects of reward, decreased dopamine and D2 receptor levels
in various addictive states and obesity have been hypothesized to lead
to an increased motivation for drugs and palatable food (Wang et al.,
2002). Consistently, animals exposed to high fat high sucrose choice
diet show an increased motivation for a sucrose reward when tested
under a progressive ratio schedule of reinforcement (la Fleur et al.,
2007). However, it still needs to be elucidated how chronically
reduced dopaminergic neurotransmission in the nucleus accumbens
induces increased motivation for rewards in addiction and obesity, as
reduced dopaminergic transmission in the nucleus accumbens is well
known to reduce the motivation for food and drugs (Barbano and
Cador, 2007; Berridge, 2009; Salamone et al., 2009).

The role of opioids with respect to intake of drugs has been well
established (Trigo et al., 2010). Opioid infusions in the nucleus
accumbens result in enhanced intake of palatable solutions (including
ethanol and saccharin solutions) and increased preference for high-fat
food (Zhang et al., 1998; Zhang and Kelley, 2002). It has been
suggested that opioids do so by increasing the hedonic appreciation of
a reward, in other words: by increasing ‘liking’ (American Psychiatric
Association, 2007; Barbano and Cador, 2007, but see: Pecina, 2008),
rather than throughmodulation of themotivation for rewards (which,
as mentioned above, depends upon dopaminergic activity). Interest-
ingly, this also works the other way around, as consumption of highly
palatable food results in changes in opioid expression (Welch, 1996).
Most importantly, when access to a highly palatable diet is
discontinued in rats, decreased levels of endogenous opioids are
encountered in these animals when compared to animals that were
never (or only briefly) exposed to palatable chow (Kelley et al., 2003).
This, of course, is also reminiscent of the reward deficiency theory.
Furthermore, important interactions between the opioid system and
cannabinoids in both addiction and feeding have been identified.
Examples include the permissive function that opioids and cannabi-
noids have on alcohol intake: increased alcohol intake by treatment
withmorphine is blocked by administration of a cannabinoid receptor
antagonist (Rimonabant) and stimulation of alcohol consumption
using a cannabinoid receptor 1 agonist is blocked by naloxone
(Colombo et al., 2005; Cota et al., 2006).

Although the compulsive aspects of procurement and intake have
not been as convincingly shown for food (Johnson and Kenny, 2010),
as they have been for drugs (e.g. Deroche-Gamonet et al., 2004;
Vanderschuren and Everitt, 2004; Hopf and Bonci, 2010; Lesscher
et al., 2010; Vanderschuren and Everitt, 2005), the evidence described
above indicated that there definitely is some overlap between
overeating and addiction. However, these similarities between
overeating/obesity and addiction, still fail to answer the fundamental
question as to how the homeostatic mechanisms controlling body
weight are overpowered by its hedonic counterpart. One of the
answers might lie in the extended role of leptin beyond the
hypothalamus and its interaction with the dopaminergic system.

3.2. Leptin, reward circuitry and overeating

The earliest evidence of leptin-induced modulation of the brain
reward pathways comes from intracranial self-stimulation studies in
rodents (Fulton et al., 2000). The presence of a metabolically active
leptin receptor in the dopaminergic neurons of the ventral tegmental
area suggests an interaction between brain reward mechanisms and
leptin (Figlewicz et al., 2003). Food deprivation decreases circulating
leptin levels, and this has been used for many years to study the effect
of leptin on the brain reward centers.

Food restriction in rodents has been shown to reduce the threshold
for lateral hypothalamus self-stimulation (Abrahamsen et al., 1995)
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and central administration of leptin attenuates the effects of food
restriction on self-stimulation (Fulton et al., 2000). Moreover, the
rewarding properties of heroin are enhanced under food-restricted
conditions (Shalev et al., 2001). As food restriction lowers the amount
of circulating leptin, Figlewicz and Benoit (2009) have argued that
reduced amounts of leptin are thus associated with higher reward
sensitivity, whereas increased leptin signaling will dampen this
heightened reward sensitivity. Indeed, a functional magnetic reso-
nance imaging study by Farooqi et al. (2007) on two congenital leptin
deficient human subjects showed that 7 days of leptin replacement
therapy modulated the activity of the ventral striatum together with
decrease in total calorie intake and attenuated liking ratings to food
images. In line with this finding, it was reported that food-restricted
animals demonstrate conditioned place preference for low calorie
sucrose pellets that was reversed by peripheral leptin administration
(Figlewicz et al., 2001). I.c.v. administration of leptin or insulin
blocked the high fat diet-induced conditioned place preference in rats
(Figlewicz et al., 2004). Likewise, sucrose self-administration in rats
on a progressive ratio schedule of reinforcement was also attenuated
by i.c.v. administration of insulin or leptin (Figlewicz et al., 2006).
Supported by their studies on food-deprived animals, Figlewicz et al.
(2006) and Figlewicz and Benoit (2009) suggest that the rewarding
value of food is determined by the nutritional state of the individual at
that time. Hence, a hungry individual (with lower leptin levels) will
assign a higher rewarding value to food compared to an individual
that is satiated. However, does that imply that the obese brain is
always ‘hungry’ and thus assigns a higher value to food?

Based on the concept of cross-sensitization between food and drugs
of abuse, Carr (2002) showed that animals that aremaintained at 80% of
their initial body weight exhibit an augmentation of the rewarding
effects of cocaine and amphetamine in an intracranial self-stimulation
paradigm. Consistently, prior studies have shown that food-restricted
animals consume higher amounts of drugs of abuse (Carroll et al., 1979).
An important question addressed by Carr was whether the increased
sensitivity for drug reward in food-deprived conditions is a form of
sensitization and persisted after cessation of food deprivation (Carr,
2002). In fact, the change to an ad-libitum diet simultaneously reversed
the effect of food restriction on amphetamine reward. This indicates that
the enhancement of reward sensitivity to drugs during food-restriction
might differ from the sensitization due to repeated drug exposure (Carr,
2002), as drug inducedbehavioral sensitization is known tobepersistent
(Robinson and Berridge, 1993; Vanderschuren and Kalivas, 2000).
However, it is important to note that in the food-restriction paradigm
animals are non-satiated. Therefore it is difficult to distinguish whether
the witnessed alterations in behavior are due to the homeostatic or
hedonic aspects of low leptin levels. Stress is yet another confounding
element in these studies, because food-restriction may cause stress and
stressed animals are more sensitive to the motivational and rewarding
properties of food and drugs (Abrahamsen and Carr, 1996; Shalev et al.,
2006; Goeders and Guerin, 1996; Piazza and Le Moal, 1998).

Interestingly, when comparing studies in food-restricted rodents
with leptin-resistance/obesity, we notice certain striking similarities.
In both situations, attenuated leptin signaling either due to low
circulating amounts or due to alterations in the leptin signal
transduction pathway, leads to heightened motivation for food
rewards. Low leptin levels, occurring during obesity/leptin resistance,
may trigger a pathological situation where the body ‘thinks’ it is in a
hungry state and simultaneously enhances motivation for obtaining
rewards. This would imply, that normalizing the disrupted leptin
signaling cascade in the obese brain may be sufficient to decrease
motivation for food reward.

At least two studies have shown activation of the leptin signaling
pathway in the dopaminergic neurons of the ventral tegmental area
(Fulton et al., 2006; Hommel et al., 2006), but the proposed
mechanisms by which leptin regulates the dopaminergic neurons
are contrasting. Fulton et al. (2006), based on their studies of the ob/
ob mice, showed that decreased dopamine content in the ventral
tegmental area and nucleus accumbens encountered in these mice, is
reversed by 3-days of leptin administration. In contrast, Hommel et al.
(2006) demonstrated that direct administration of leptin into the
ventral tegmental area inhibited the firing of dopaminergic neurons
and attenuated feeding. Furthermore, a virus-mediated knockdown of
the leptin receptor-b led to enhanced feeding and sensitivity to
palatable food (Hommel et al., 2006). This discrepancy between the
two studies (i.e. opposing effects of leptin on the ventral tegmental
area neurons) can be attributed to the fact that total deficiency of
leptin during development can result in morphological alterations in
the neuronal circuits and synapses resulting in a different behavioral
response (Bouret et al., 2004; Louis and Myers, 2007). Interestingly,
the decrease in feeding in response to i.c.v. leptin-treatment was also
accompanied by lower dopamine levels in the nucleus accumbens
(Krugel et al., 2003). An attenuated feeding response was also noted
when leptin was directly injected into the ventral tegmental area
(Morton et al., 2009). Taken together, it is evident that leptin action is
not limited to the homeostatic centers for food intake, but extends to
the brain reward circuits. Therefore, conducting further studies as to
how leptin resistance contributes to preference for palatable food will
be central to the understanding of leptin's role in overeating.

Prolonged exposure to a high fat diet in rodents has shown to induce
diet-induced obesity together with leptin resistance (Lin et al., 2000). In
a study by Munzberg et al. (2004), it was reported that exposure of
animals to a high fat diet results in the development of leptin resistance
selectively in the arcuatenucleus (measuredbySTAT-3phosphorylation
levels), while other brain areas expressing the leptin receptor were
spared. Since knocking down the leptin receptor would mimic a leptin-
resistant state, the study byHommel et al. (2006) provides a novel view
on the effects of leptin on brain reward circuitry. In addition, Munzberg
et al. (2004) detected altered STAT-3 protein levels after 16 weeks of
high fat diet consumption. Hence, it is possible that a leptin-resistant
condition can develop in brain areas other than the arcuate nucleus, but
at a different time-point after exposure to a high fat diet. Again, animals
exposed to diet-induced obesity showdecreased dopamine levels in the
nucleus accumbens combined with an attenuated response to sucrose
and amphetamine rewards (Davis et al., 2008). Thus, analogous to
chronic substance abuse (Volkow et al., 2002), prolonged exposure to a
high fatdiet can lead tohypofunctionof thedopaminergic system(Davis
et al., 2008). Likewise, nucleus accumbens dopamine levels are
decreased in obesity-prone animals but not obesity-resistant animals,
further underscoring the fact that mesolimbic dopaminergic signaling
may be dampened in leptin-resistant conditions. Central leptin
administration in lean animals decreases basal and food-invoked
dopamine levels in thenucleus accumbens (Krugel et al., 2003) together
with a decrease in food intake (Mistry et al., 1997). However, leptin-
resistant conditions (as in diet-induced obesity) also dampen meso-
limbic dopaminergic signaling (Davis et al., 2008) but simultaneously
enhance feeding (Farley et al., 2003). One of the answers to this paradox
mightbe that leptinpossibly activates alternative intracellular pathways
in the ventral tegmental area and the hypothalamus, exerting
differential effects on food intake (Morton et al., 2009). It is also
possible that under lean conditions, leptin reduces dopamine levels
without altering the dopamine receptor densities, whereas, overeating
and obese conditions decrease dopamine andD2 receptor levels (Huang
et al., 2006). Interestingly, it is not only leptin that influences the
dopaminergic system; recentfindings suggest that the leptin–dopamine
interaction is bi-directional anddopaminehas been shown tonegatively
influence leptin action in the hypothalamus (Kim et al., 2010).

3.3. Melanocortin system in feeding

The melanocortin system, comprising the melanocortin receptors,
natural agonists and inverse agonists, plays a critical role in the
regulation of bodyweight. Of the fivemelanocortin receptors, theMC3
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receptor and MC4 receptor are widely expressed in the brain, and
these have been extensively studied with respect to energy balance
(Cone, 2005). Studies on C57/BL/6J MC4 receptor knockout animals
have shown that these animals exhibit late-onset obesity, accompa-
nied by enhanced longitudinal growth, hyperphagia, hyperinsuline-
mia and hyperleptinemia. Male MC4 receptor knockout mice
additionally show a reduction in nocturnal locomotion (Marsh et al.,
1999). Thus, weight gain in the MC4 receptor knockout animals has
been conceived as being the result of increased food consumption and
low locomotor activity (Adan et al., 2006). TheMC3 receptor knockout
animals, on the other hand, display obesity, hyperleptinemia and
decreased locomotion without hyperphagia. Weight gain in these
animals occurs as a result of increased feeding efficiency (weight gain
to food intake ratio) (Chen et al., 2000a,b). Heterozygous MC4

receptor mice show an intermediate phenotype compared to wild
type and MC4 receptor knockout animals, whereas the heterozygous
MC3 receptor animals do not differ significantly from their wild type
littermates (Chen et al., 2000a,b).

α-MSH, the endogenous ligand of the MC3 receptor and MC4
receptor is the product of the precursor pro-opio-melanocortin
(POMC) protein. As indicated in the preceding section, the POMC
neurons of the arcuate nucleus synthesize α-MSH that acts on MC3
receptor and MC4 receptor expressing neurons (see Section 2.2).
AGRP, co-synthesized in the neuropeptide Y neurons is an inverse
agonist at the MC4 receptor. Downstream targets of the melanocortin
system include several neuronal populations in diverse brain areas
implicated in food intake, meal choice and satiety (Adan et al., 2006).
Immunohistochemical studies show that MC3 receptors and MC4
receptors are expressed in the hypothalamus, cortex, amygdala and
parts of the brainstem (Kishi et al., 2003). Interestingly, MC3 receptors
are also expressed in the POMC neurons of the arcuate nucleus,
establishing a feedback regulatory control over the melanocortin
system. Both peripheral and central administration of anMC3 receptor
agonist stimulates feeding, whereas treatment with a low dose of an
MC3 receptor antagonist has an opposite effect (Marks et al., 2006; Lee
et al., 2007). The expression of POMC messenger RNA in response to
MC3 receptor agonist treatment has been also shown to decrease,
underscoring the autoreceptor role of MC3 receptor in these neurons
(Lee et al., 2007).

Comparable to MC4 receptor knockout animals, mutations in the
MC4 receptor in humans have been associated with obesity,
hyperphagia, tall-stature and hyperinsulinemia, suggesting a similar
role of the melanocortin pathway in humans and rodents (Farooqi et
al., 2000; Govaerts et al., 2005). Indeed, there is converging evidence
to support the association between human MC4 receptor mutation
andmorbid obesity (Farooqi et al., 2000; Mergen et al., 2001; Vaisse et
al., 1998). Mutations in the MC3 receptor have been also reported in
humans (Tao, 2007; Tao and Segaloff, 2003; Lee et al., 2007). These
mutations have been associated with obesity, hyperleptinemia and
relative hypophagia, features reminiscent of the MC3 receptor
knockout animals (Chen et al., 2000a).

The connection between leptin and the melanocortin system has
been well established. Low leptinemic conditions such as fasting
increase the amount of AGRP/neuropeptide Y messenger RNA. The
levels of POMC messenger RNA correspondingly decrease (Swart et
al., 2002). Furthermore, animals with defective leptin signaling, such
as the ob/ob and db/db mice, show increased AGRP and attenuated
POMC expression, mimicking conditions of fasting (Mizuno et al.,
1998). Both POMC and AGRP neurons express the leptin receptor-b
and leptin has been shown to increase the firing of the former neurons
while inhibiting the latter (Pinto et al., 2004). Thus, there is
convincing evidence to suggest that the melanocortin system is
crucial in body weight regulation, and a number of mechanisms have
been hypothesized by which this regulation is achieved. Compared to
wild type mice, peripheral injections of the MC3 receptor / MC4
receptor agonist Melatonan II in MC4 receptor knockout mice failed to
decrease food consumption or enhancemetabolism. This confirms the
notion that the melanocortin system acts by either decreasing the
amount of food consumed or by increasing metabolism (Chen et al.,
2000a,b). However, leptin does not mediate its anorexic effects
exclusively via the melanocortin system; simultaneous catabolic
pathways other than melanocortin system exist. Evidence from
humans with MC4 receptor deficiency or leptin deficiency shows
that ad-libitum feeding in the former group is less, suggesting the
presence of alternative anorexic pathwaymediated by leptin (Farooqi
et al., 2003). By influencing downstream catabolic modulating
neurons, the melanocortin system promotes energy expenditure,
presumably via the paraventricular nucleus. Indeed, microinjection of
the α-MSH analog Melatonan II into the paraventricular nucleus has
been shown to result in reduced feeding. This inhibition of feeding
was blocked by a pre-injection of a MC3 receptor/MC4 receptor
antagonist (Cowley et al., 1999). In contrast, over-expression of the
MC4 receptor inverse agonist agouti in the paraventricular nucleus
resulted in hyperphagia and weight gain (Kas et al., 2004). Among the
second order neurons populating the paraventricular nucleus,
thyrotropin releasing hormone and corticotropin releasing hor-
mone-containing neurons are important targets of the melanocortin
system. It has been shown in vitro that both leptin and α-MSH
enhance the promoter activity of thyrotropin releasing hormone gene,
an integral neuropeptide in the hypothalamus–pituitary–thyroid axis
that regulates energy expenditure. I.c.v. administration of AGRP
suppresses circulating thyrotropin releasing hormone levels in male
rats while injection of α-MSH analog has an opposing effect (Kim et
al., 2000). Similar to fasting levels of leptin and α-MSH, thyrotropin
releasing hormone levels are also decreased during periods of fasting,
where energy conservation is the primary goal (Boelen et al., 2008;
Hollenberg, 2008). In an analogous fashion, Melatonan II potently
increases corticotropin releasing hormone gene transcription in the
paraventricular nucleus and subsequently enhances plasma cortico-
sterone levels in rats, thus modulating activity of the hypothalamus–
pituitary–adrenal axis (Lu et al., 2003). The exact mechanism by
which these second order neurons in the paraventricular nucleus
regulate energy balance is unclear. Recent data suggest that the BDNF
system may be a downstream target of melanocortin system that
mediates anorexia. One of the following sections in the current review
specifically focuses on this neuropeptide. We have already mentioned
that leptin-resistant conditions like obesity or high fat diet exposure
are accompanied by blunted leptin receptor signaling. Interestingly,
although decreased leptin signaling in the arcuate nucleus leads to
lower α-MSH secretion, the functionality of the melanocortin system
downstream of the POMC neurons remains intact. Enriori et al. (2007)
demonstrated that when Melatonan II was injected intraperitoneally
in diet-induced obesity animals, they showed up to 90% decrease in
food intake.

Another mechanism by which the melanocortin system might
regulate feeding is by influencing the amount of food consumed
during a meal, i.e. the meal size. Meal size is determined by several
parameters including gut-associated satiation signals (cholecystoki-
nin, amylin, glucagon, peptideYY (3–36), metabolic signals (leptin
and glucose), meal composition and palatability (Kennedy et al.,
1994; Moran, 2006). Administration of Melatonan II in the third or
fourth ventricle reduces total caloric intake in terms of meal size
although the meal frequency and inter-meal intervals remain
unaltered (Goldberg, 2010; Zheng et al., 2005). Evidence suggests
that during meal consumption, gut-associated peptides relay satiety
signals to the brain, either by the afferent fibers of the vagus nerve or
through area postrema, which ultimately converge on the nucleus of
solitary tract (Moran, 2006; Smith et al., 1985). The nucleus of solitary
tract, in turn, is reciprocally connected to brain areas involved in
feeding, meal choice and motivation (Fattore et al., 2010). This
nucleus serves as a sensory gateway for various visceral signals, and it
sends projections to a range of brain areas, including hypothalamic
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and extra-hypothalamic sites monitoring food intake (Grill, 2010).
Importantly, the brainstemmelanocortin system comprises a separate
population of POMC neurons in the nucleus of solitary tract (Palkovits
et al., 1987), the POMC neuronal projections from the arcuate nucleus
that extend to the dorsal vagal complex and the melanocortin
receptors in the brainstem (Cone, 2005; Grill et al., 1998). This
suggests that the melanocortin systemmight play a role in the control
of feeding by altering meal size. In fact, it was shown that MC3
receptor/MC4 receptor agonist or antagonist (SHU9119) administra-
tion either into the fourth ventricle or directly to the dorsal vagal
complex, elicited a suppression and enhancement in feeding
response, respectively (Grill et al., 1998; Williams et al., 2000).
Through a series of experiments, Zheng et al., 2005 have stressed the
importance of the connection between gastric satiety signal chole-
cystokinin and the brainstem melanocortin system to induce meal
termination. It was shown that brainstem-specific Melatonan II
infusion decreases feeding by enhancing the satiating capacity of a
given meal, independent of diet type (regular chow Vs high fat diet)
(Zheng et al., 2005). Furthermore, Melatonan II and SHU9119 can both
modulate ERK 1/2 activity within the cholecystokinin signal trans-
duction pathway, which mediates the cholecystokinin-induced
suppression in food intake (Sutton et al., 2004, 2005; Zheng et al.,
2005). In addition MC4 receptor have been identified to modulate
presynaptic vagal and non-vagal glutamergic inputs into the nucleus
of solitary tract (Wan et al., 2008), which is consistent with the fact
that peripheral administration of cholecystokinin decreases food
consumption in MC3 receptor knockout but not MC4 receptor
knockout animals (Rodgers et al., 2002). Thus, the nucleus of the
solitary tract is considered to be a neural hub where the peripheral
satiety signal cholecystokinin (via dorsal vagal afferents) and
melanocortin signaling (via hypothalamic projections or native
population) interact to influence downstream second order neurons
necessary for meal termination (Cone, 2005; Grill et al., 1998; Kishi
et al., 2003; Nicholson et al., 2007; Sutton et al., 2005; Williams et al.,
2000). Regardless of the evidence of the involvement of the
melanocortin system to influence feeding via a brainstemmechanism,
further research is necessary to fully elucidate whether the hyper-
phagia observed in MC4 receptor knockout animals is a consequence
of defective satiation.

The third mechanism by which the melanocortin system may
influence feeding is through reward-related brain structures. A close
relationship exists between the MC3 receptor, MC4 receptor and
dopaminergic neurotransmission in the ventral tegmental area and
nucleus accumbens (Adan and Gispen, 1997; Alvaro et al., 1996).
Thus, infusion of Melatonan II into the ventral tegmental area
increases dopamine release in the nucleus accumbens (Lindblom et
al., 2001). Other evidence on the influence of melanocortin system on
the reward circuitry comes from studies where animals exposed to
various addictive drugs show alterations in hypothalamic POMC
transcripts (Bronstein et al., 1990; Le Merrer et al., 2009). Also, central
administration of Melatonan II facilitates the threshold-lowering
effect of amphetamine in a lateral hypothalamic self-stimulation
paradigm (Cabeza de Vaca et al., 2002), i.e. melanocortin receptor
stimulation increased the rewarding properties of amphetamine.
Consistent results were also reported by Hsu et al. (2005) where the
rewarding and psychomotor stimulant effects of cocainewere blocked
by intra-nucleus accumbens injection of SHU9119. Furthermore, up
and down-regulation of the MC4 receptor in the striatum has been
shown respectively after chronic cocaine or morphine treatment
(Alvaro et al., 2003; Hsu et al., 2005). It was also demonstrated that
the locomotor activation after cocaine administration was abolished
in the MC4 receptor knockout mice and reduced in heterozygous MC4
receptor animals (Hsu et al., 2005). The upregulation of striatal MC4
receptor in animals in response to repeated cocaine administration
suggests that the melanocortin system plays a role in drug induced
behavioral sensitization. Collectively, these studies suggest that
increased melanocortin signaling via the α-MSH pathway enhances
the sensitivity to drugs while reduced α-MSH signaling will lead to
the opposite. Thus, if we compare drug and food reward, an opposite
situation would be expected. As the melanocortin system mediates
anorexia and satiation, the reward-enhancing effect of melanocortins
appears paradoxical. This discrepancy may be due to the fact that
several of the above studies used Melatonan II, which binds to both
MC3 receptor and MC4 receptor, making it impossible to distinguish
the individual roles of these receptors. Second, it is possible that the
melanocortin system interacts with other neuropeptidergic systems
to influence homeostatic and reward mechanisms, but future studies
need to clarify this. Cabeza de Vaca et al. (2002) also suggest that a
differential α-MSH tone exists in brain areas responding to food or
drug rewards. This results in a differential role of melanocortins in
regulating food-intake as opposed to rewarding effects of drugs. Even
though several studies have been conducted to study the interrela-
tionship between melanocortins, dopamine and drugs of abuse, there
are almost no data on the role of melanocortin signaling in the
mesolimbic dopaminergic neurons with respect to food intake.

3.4. Orexins and overeating

The lateral hypothalamus is one of the fundamental sites bridging
the gap between the homeostatic and hedonic aspects of feeding.
Lesions of the lateral hypothalamus induce anorexia (Bernardis and
Bellinger, 1993), underscoring its role in feeding. Evidence of its
influence on the brain reward circuit comes from electrical stimula-
tion studies, as electric stimulation of the lateral hypothalamus is
highly reinforcing (Carr, 2002; Johnson and Kenny, 2010; Markou and
Koob, 1992; Wise, 1996). Studies in rodents have shown connections
between the lateral hypothalamus and brain reward areas (the
ventral tegmental area and nucleus accumbens) (Balcita-Pedicino and
Sesack, 2007; Leinninger et al., 2009; Peyron et al., 1998), and lateral
hypothalamic neuronal populations of orexinergic (Borgland et al.,
2010), GABAergic (Leinninger et al., 2009) and melanin concentrating
hormone-containing neurons (Pissios et al., 2008), have been shown
to modulate signaling in the mesolimbic dopamine circuit.

The role of orexins with respect to feeding and addiction has been
widely studied. Acute central administration of orexin leads to a robust
hyperphagic response in rodents and other vertebrates (Rodgers et al.,
2002). Analogous to leptin, orexin also plays a dual role in regulating
both homeostatic and hedonic aspects of food intake. It has been
suggested that orexin mediates its homeostatic aspect of feeding
through its connection with the arcuate nucleus where it has been
shown to regulate the neuropeptide Y and POMC neurons (Tsujino and
Sakurai, 2009). Leptin hyperpolarizes orexinergic neurons (Yamanaka
et al., 2003) and decreases orexin messenger RNA expression (Sahu,
2003). However, administration of an OX1 receptor antagonist only
partially reverses the obese phenotype in ob/ob mice (Haynes et al.,
2002). Likewise, leptin only partly ameliorates the orexinergic effect of
orexin in rats (Zhu et al., 2002), suggestive of simultaneous neuronal
pathways being involved in bodyweight regulation. A single i.c.v. orexin
A administration induced enhanced food intake in satiated animals
(Haynes et al., 1999), indicating that orexinA-inducedhyperphagiamay
be mediated by orexin's effect on the brain reward mechanisms. In
addition, similar to drugs of abuse, orexin administration in the nucleus
accumbens increases locomotor activitywith a simultaneous increase in
feeding (Thorpe and Kotz, 2005). Likewise, increased c-fos activation in
the lateral hypothalamus orexinergic cells was shown in animals that
demonstrated a conditioned place preference for cocaine, morphine or
food (Harris et al., 2005). In the same paper, it was also shown that
systemic injection of an OX1 receptor antagonist reverses the condi-
tioned place preference formorphine. Furthermore, chemical activation
of orexinergic neurons in the lateral hypothalamus reinstated extin-
guishedmorphine place preference (Harris et al., 2005). Together, these
data indicate an important role for orexins in the modulation of the
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reward function and that activation of these neurons is important to
couple drug rewards with environmental cues (Harris and Aston-Jones,
2006).

Multiple lines of research also connect orexins to hedonic feeding.
Central administration of orexin A increased free feeding of sucrose
pellets and also responding for sucrose pellets under fixed ratio and
progressive ratio schedules of reinforcement (Thorpe et al., 2005). The
increased self-administration of sucrose pellets was decreased by
a systemic injection of an OX1 receptor antagonist (Cason et al., 2010).
I.c.v. administration of orexin also augments high fat diet preference
(Clegg et al., 2002) and treatment with an OX1 receptor antagonist
decreased self-administration of a high fat diet (Nair et al., 2008),
indicating that the approach behavior towards a reward is possibly
mediated through the OX1 receptor. Analogously, animals given i.c.v.
orexin show enhanced breakpoints for high fat diet reward under a
progressive ratio schedule, and this increase in breakpoints is
reversed when an OX1 receptor antagonist is systemically adminis-
tered (Choi et al., 2010). In a recent publication, Choi et al. (2010) also
showed that systemic administration of an OX1 receptor antagonist
decreased high fat diet consumption in satiated animals, an
observation similar to that of Nair et al. (2008). Hence, it may be
concluded that orexin signaling is important in overriding homeo-
static mechanisms regulating food intake to drive animals towards
hedonically determined food consumption. Orexinergic fibers from
the lateral hypothalamus project both to the ventral tegmental area
and the nucleus accumbens. In the former area, they make extensive
connections with dopaminergic cell bodies (Fadel and Deutch, 2002)
that express OX1 receptor and OX2 receptor (Narita et al., 2006).
Indeed, orexin A injections into the ventral tegmental area cause
elevated dopamine levels in the nucleus accumbens (Narita et al.,
2006) and orexins have been found to increase the firing of
dopaminergic neurons in vitro (Korotkova et al., 2003). Since orexins
modulate dopaminergic signaling in the nucleus accumbens, it is
likely that the effects of orexin on reward processes discussed in the
preceding paragraph are mediated via the mesolimbic dopaminergic
circuit. Direct effects of orexin A in the nucleus accumbens were also
reported by Thorpe and Kotz (2005), who showed that infusion of
orexin A into the nucleus accumbens shell was accompanied by
heightened locomotion and feeding. It is interesting to note that
dopaminergic neurons of the ventral tegmental area project both to
the nucleus accumbens shell and neurons from the nucleus
accumbens shell project back to the lateral hypothalamus orexin
neurons, establishing a feedback loop in this circuitry (Harris and
Aston-Jones, 2006).

Recently, it was shown that appetite, meal frequency and length of a
meal were also increased after central administration of orexin A (Baird
et al., 2009). This suggests that hindbrain satiation mechanisms may be
involved in orexin Amediated feeding. In fact, orexin A administration in
animals with hindbrain (area postrema, nucleus of solitary tract) lesions,
resulted in a decrease in meal size without altering the meal frequency
(Baird et al., 2009). In support of this, orexin-immunoreactive fibers and
orexin receptors are present in the dorsal vagal complex, a neural hub
where peripheral satiety signals interact with neuropeptidergic systems
to control satiety (Kirchgessner, 2002). Thus, we can conclude that
orexin-mediated hyperphagia may result from enhanced hedonic
feeding or altered satiation. However, the exact mechanism of action of
orexin demands further investigation.

3.5. Brain derived neurotropic factor and implications in overeating

The ventromedial hypothalamus is another hypothalamic area
participating in energy balance. Lesions of this area are associated
with enhanced feeding while electrolytic stimulation results in
suppression of feeding (King, 2006; Ruffin and Nicolaidis, 1999). Brain
derived neurotropic factor (BDNF), a neuronal growth factor, belonging
to the neurotropin family (Tapia-Arancibia et al., 2004), is expressed in
high levels in theventromedial hypothalamus (Kernie et al., 2000).More
than a decade ago, the importance of BDNF in feeding was established
(Pelleymounter et al., 1995; Kernie et al., 2000). It was shown that i.c.v.
infusion of BDNF led to weight loss in rodents (Pelleymounter et al.,
1995).Miceheterozygous in theBDNF locus showedenhancedadiposity
accompanied with increased locomotor activity and leptin resistance
(Kernie et al., 2000). Reduction of the BDNF receptor, tyrosine kinase B
(TrkB receptor) leads toweight gain andhyperphagia,while stimulation
of the receptor is accompanied by weight loss in animals exposed to a
diet-induced obesity paradigm (Tsao et al., 2008). Food deprivation has
been also shown to reduce BDNF expression in the ventromedial
hypothalamus (Xu et al., 2003), highlighting the anorexic role of BDNF.
Studies in humans support this anorexic property of this neuropeptide,
as mutations in the BDNF gene were accompanied by hyperphagia,
obesity and hyperactivity (Gray et al., 2006). Similarly, Yeo and
colleagues reported a de-novo missense mutation in the TrkB receptor
gene that resulted in overt hyperphagia and obesity (Tamminga, 2010).
Genome wide association studies conducted on a European population
reported a BDNF locuswith a genomewide significance (p≤1.6×10−7)
for obesity (Scherag et al., 2010).

Since BDNF is widely expressed in the ventromedial hypothalamus
(Xu et al., 2003), the next stepwas to understand if the anorexic effects of
BDNF were region specific. Indeed, ventromedial hypothalamus-specific
depletion of BDNF has been shown to enhance weight gain and
hyperphagia (Unger et al., 2007), but the underlying molecular
mechanisms governing BDNF effect on feeding remain unclear. One of
the hypotheses is that BDNF is a downstream target of the melanocortin
system, asMC4 receptor stimulationenhancesBDNF secretion (Nicholson
et al., 2007). In keeping with this hypothesis, reduction of MC4 receptor
signaling in the ventromedial hypothalamus is characterized by
decreased BDNF messenger RNA, and melanocortin receptor agonist
treatment reverses the food deprivation-induced reduction in BDNF
messenger RNA in the ventromedial hypothalamus (Xu et al., 2003).
While exogenous leptin injection does not revert hyperphagia in diet-
induced obesity models, it was shown that BDNF injection in these
animals successfully decreased food intake (Nakagawa et al., 2003). This
suggests that despite disrupted leptin receptor signaling in obesity,
downstreameffector pathways (melanocortins, BDNF) are still functional
and modulation of these pathways may be helpful in devising new tools
to treat obesity. Indeed, it was demonstrated in the same paper that
chronic BDNF infusion for 6 daysnot onlydecreased food intake andbody
weight, but also decreased serum leptin concentrations in animals
exposed tohigh fat diet for 4 months. Likewise, fasting insulin levelswere
also reduced in diet-induced obesity animals repeatedly treated with
BDNF (Nakagawa et al., 2003). However, there are also data to suggest
that BDNF is directly regulated by leptin onBDNF secretingneurons, since
after leptin administration, co-localization of phosphorylated STAT-3
protein positive neurons and BDNF messenger RNA was observed
(Komori et al., 2006).

Apart from being a downstream target of the melanocortin system,
BDNF can also modulate feeding by influencing the mesolimbic
dopaminergic circuit. Alterations BDNF and TrkB receptor messenger
RNA levels in the ventral tegmental area are found in animals exposed to
a high fat diet paradigm (Cordeira et al., 2010). The connection between
BDNF, drugs of abuse and mesolimbic dopaminergic system has been
studied to some extent. BDNF knockdown in the ventral tegmental area
and nucleus accumbens reduced cocaine place conditioning (Graham
et al., 2007). Furthermore, nucleus accumbens-specific TrkB receptor or
BDNF deletion decreased cocaine self-administration (Graham et al.,
2009). Likewise, cocaine injections elevate BDNF protein and TrkB
receptors in the nucleus accumbens. There is evidence to indicate that
theventral tegmental area has its ownsub-populationof BDNF secreting
neurons and recently, it was shown that BDNF knockout animals, were
not only hyperphagic, as previously reported (Unger et al., 2007), but
also showed increased high fat diet consumption in a restricted access
paradigm, simulating binge eating behavior (Cordeira et al., 2010).
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Converging evidence further indicates that BDNF increases
dopaminergic signaling in the mesolimbic circuitry (Cordeira et al.,
2010). Central BDNF depletion was accompanied by blunted dopa-
mine release and diminished D2 receptor in the nucleus accumbens
shell and the dorsal striatum. Furthermore, knocking down the BDNF
gene in the ventral tegmental area increased the desire for high fat
diet compared to standard chow (Cordeira et al., 2010). Thus, Cordeira
et al. (2010) suggest: (1) differential functions of hypothalamic and
ventral tegmental area BDNF, the former modulating homeostatic
control of feeding and the latter governing its hedonic aspects; and
(2) since electrically evoked dopamine release in the dorsal striatum
is reduced in BDNF knockout mice, it may be possible that the
hyperphagia found in ventral tegmental area BDNF knockout animals
is a way to compensate for low dopamine levels.

It is known that hypothalamic BDNF levels are decreased in
response to high fat diet consumption in obesity-sensitive mice (Yu
et al., 2009), which is in line with the finding that high fat diet induces
leptin resistance and directly or indirectly (via the melanocortin
system) decreases BDNF secretion. Animals fed on palatable food,
show an increase in the TrkB receptor transcript and a decrease in
BDNF in the ventral tegmental area 30 and 60 min post high fat diet
exposure (Cordeira et al., 2010). However, the effects mentioned
above were either in the hypothalamus or transient. Thus, the
consequence of leptin resistance for BDNF expression in the ventral
tegmental area/nucleus accumbens is yet to be determined. Compar-
ing BDNF effects in the hypothalamus and in the ventral tegmental
area, in the former, leptin resistance might induce low levels of BDNF
and thus minimize its anorectic effect, while in the latter the situation
is more complex. Based on the dopamine hypo functioning theory of
addiction (Koob and Volkow, 2010; Volkow et al., 1997), one might
expect that decreased leptin receptor signaling, as encountered in
obesity, will also decrease BDNF levels, further dampening dopamine
release and thereby elevating craving for rewards in order to
compensate for lower striatal dopamine levels. However, a detailed
analysis of the state of the BDNF system in the mesolimbic circuitry
needs to be performed with respect to diet-induced obesity and
different stages of leptin resistance, to assess the possible similarities
of this system in obesity and addiction.

It has been reported that BDNF might interact with satiety
signals in the brainstem to reduce food intake (Bariohay et al.,
2005). BDNF immunoreactive fibers and TrkB receptors are found in
the dorsal vagal complex (Bariohay et al., 2005). Infusions of BDNF
into the dorsal vagal complex have been shown to attenuate food
consumption and promote weight loss. Moreover, the amounts of
endogenous BDNF in this site were diminished in response to low
leptinemic condition as in food restriction whereas they were
correspondingly increased after peripheral injections of leptin or
satiety hormone cholecystokinin (Bariohay et al., 2005). However,
whether this anorexic action of BDNF is mediated by leptin itself or
via the melanocortin pathway is uncertain. Therefore, further studies
looking into the effect of BDNF on meal size would be helpful.

4. Conclusions

The emerging similarities between obesity and substance abuse
disorders, makes us think about the possibility that obesity is a form of
addiction where the brain reward system, which responds to natural
rewards like food and sex, has been biologically re-programed to
enhance ‘liking’ and/or ‘wanting’ for food. Several similarities
between overeating and drug addiction have been shown. These
include highly increased motivation to seek food and lasting
neurobiological changes in reward-associated brain regions. Howev-
er, whereas there is an enormous body of evidence to document the
changes in brain and behavior that result from repeated and
prolonged exposure to drugs of abuse which may contribute to the
development of drug addiction (Vanderschuren and Kalivas, 2000;
Hyman et al., 2006; Koob and Volkow, 2010), this kind of research on
the neurobiology of obesity is only emerging (Adan et al., 2008).

Therefore, future research must be directed at studying the most
pertinent aspects of addiction in the context of obesity, e.g. to compare
food and drug seeking behavior under aversive consequences, to
elucidate whether overeating indeed has a compulsive element
(Deroche-Gamonet et al., 2004; Vanderschuren and Everitt, 2004;
Johnson and Kenny, 2010). The link between the hypothalamic sites
which integrate metabolic information and the brain reward system
becomes increasingly clear (Corsica and Pelchat, 2010; Schwartz et al.,
2000; Pelchat, 2009). In the currentpaper,we specifically focusedon the
mesolimbic dopaminergic system due to the extensive studies
conducted on this system, but it should be borne in mind that other
systems like the opioid and the endocannabinoid systems substantially
contribute to the brain's response to drug or food rewards as well.
Readers are referred to excellent recent reviews on this topic (Fattore et
al., 2010; Fulton, 2010; Taha, 2010; Trigo et al., 2010). The present
review focused on the homeostatic and hedonic roles of three crucial
neuropeptidergic systems: melanocortin system, orexins and BDNF,
which act downstream of leptin. Other neuropeptides (e.g. melanin
concentrating hormone and Neuropeptide Y) that play a distinct role in
overeating have not been discussed here (see Chee and Colmers, 2008;
Depoortere, 2009; DiLeone et al., 2003; Griffond and Risold, 2009 for
excellent reviews on this topic). It is evident that the function of the
peptides involved in feeding regulation is not entirely homeostatic. In
fact, the homeostatic and hedonic aspects of feeding are not mutually
exclusive and one influences the other.

Themelanocortin system is perhaps the principal catabolicmodulator
of energy balance in animals. α-MSH mediates its anorexic effect by
affecting several downstream nuclei: paraventricular nucleus (increasing
energy expenditure), lateral hypothalamus (via orexinergic neurons and
its connection to the mesolimbic dopaminergic circuit), ventromedial
hypothalamus (BDNF and its downstream targets), nucleus of solitary
tract/dorsal vagal complex (by interacting with peripheral satiety signal
cholecystokinin) and directly influencing the mesolimbic circuit
(motivated approach behavior) (Adan et al., 2006; Cone, 2005; Kim
et al., 2000, 2002; Kishi et al., 2003; Lindblom et al., 2001; Lu et al., 2003).
Overconsumption can be seen as a secondary phenomenon in response to
altered neuropeptidergic systems and rewiring of the brain reward
circuitry encountered in leptin-resistant states. Hence, understanding the
concrete roles of these neuropeptidergic systems with respect to the
reward circuitry in both physiological and leptin resistant states will
provide more answers to the leptin resistance–overeating link. It is
important to note that although several similarities exist between
over-eating and addiction, it does not automaticallymean that overeating
is a form of addiction. Nevertheless, the booming scientific interest on
this field together with a rapidly evolving line of research categorically
focusing onovereating as a formof addictive behaviormayhelpus resolve
the ‘missing link’ between these two conditions.
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