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On the Frequency of Algebraic Brauer
Classes on Certain Log K3 Surfaces

Jörg Jahnel and Damaris Schindler

Abstract. Given systems of two (inhomogeneous) quadratic equations in four variables, it is known
that theHasse principle for integral points may fail. Sometimes this failure can be explained by some
integralBrauer–Manin obstruction. We study the existence of a non-trivial algebraic part of the Brauer
group for a family of such systems and show that the failure of the integral Hasse principle due to an
algebraic Brauer–Manin obstruction is rare, as for a generic choice of a system the algebraic part of
the Brauer-group is trivial. We use resolvent constructions to give quantitative upper bounds on the
number of exceptions.

1 Introduction

We consider a system of two rational quadratic forms in 5 variables given by

Q1(x) = xtAx and Q2(x) = xtBx,

whereA, B ∈ M5×5(Q) are two symmetricmatriceswith rational entries. For a generic
choice of A and B, the intersection

(1.1) SA,B ∶ Q1(x) = Q2(x) = 0

deûnes a del Pezzo surface of degree four in P4
Q. It is well known that theHasse prin-

ciple and weak approximation may fail for such surfaces (see, for example, [BSD]).
In all known examples, for del Pezzo surfaces of degree four, the failure of the Hasse
principle can be explained by a Brauer–Manin obstruction; i.e., in all of these situ-
ations, one has adelic points on SA,B , but the Brauer–Manin set SA,B(AQ)Br, that is
the subset of adelic points that are in the kernel of the Brauer–Manin pairingwith the
Brauer group Br(SA,B), is empty.

More recently, Colliot-hélène andXu [CX], initiated the study of integral Brauer–
Manin obstructions. In [CX], they studied integral points on homogeneous spaces
and representation problems by integral quadratic forms. In another direction, the
concept of Brauer–Manin obstructions for aõne varieties was pursued in [CW] for
families of aõne cubic surfaces, such as representation problems of an integer by sums
of three cubes. Moreover, see work of Bright and Lyczak [BL] for certain log K3 sur-
faces and Berg [Be] on the description of the Brauer–Manin obstruction for aõne
Châtelet surfaces.
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In the situation of a del Pezzo surface of degree four, one can choose a hyperplane
H ⊂ P4

Q and consider the complement U ∶= SA,B ∖H. Integral points on an integral
modelU ofU then essentially correspond to integer solutions of systems of two inho-
mogeneous quadratic equations in four variables. When does such a system have an
integer solution? A necessary condition is that it has real solutions and solutions in
Zp for every prime p. However, these conditions may not be suõcient. Again, there
could be a Brauer–Manin obstruction leading to a violation of the local-global princi-
ple. We are interested in the question of how o�en one should expect a violation of the
local-global principle due to a Brauer–Manin obstruction. A Brauer–Manin obstruc-
tion can only occur if there are non-constant Brauer classes in the Brauer group of
the scheme U . he Brauer classes that vanish a�er a base change to the algebraic clo-
sure ofQ aremost accessible to computations. In this article we study upper bounds
on how o�en the algebraic part of the Brauer-group is non-trivial for certain families
of systems of two inhomogeneous quadratic equations in four variables. It would be
very interesting to ûnd lower bounds as well (for certain families see [JS1]), or get a
prediction of the density of such examples within a given family.

In [JS1], the authors computed a list of the algebraic parts of the Brauer group that
can occur for such surfaces assuming that the intersection SA,B ∩ H is geometrically
integral. Note that these resultswere recently extended to del Pezzo surfaces of degree
at most 7 by Bright and Lyczak [BL]. We recall that the list in the case of the comple-
ment of a hyperplane section in a del Pezzo surface of degree four consists of 0,Z/2Z,
(Z/2Z)2, (Z/2Z)3, (Z/2Z)4, Z/4Z, Z/2Z ×Z/4Z, and (Z/2Z)2 ×Z/4Z. Under the
assumption that H∩SA,B is geometrically irreducible (for amore general criterion see
[JS1, Lemma 4.1]), the algebraic part of the Brauer group is given by the ûrst Galois
cohomology group

Br1(U)/Br0(U) ≅ H1(Gal(Q/Q),Pic(UQ)) .

Moreover, any hyperplane H lies in the anticanonical class, and hence the algebraic
part of the Brauer group is independent of which rational hyperplane we remove as
long as we assume H ∩ SA,B to be geometrically irreducible.

In this note, we study the question of how o�en one can typically expect to ûnd a
non-trivial algebraic part of the Brauer group Br1(U)/Br0(U), where we vary over
certain subfamilies of SA,B . We ûx a matrix A ∈ M5×5(Z) with det(A) ≠ 0 and vary
over integral matrices B. Note that if the intersection in (1.1) is smooth of codimension
2 as a projective scheme in P4, then SA,B is indeed a del Pezzo surface of degree four.

We deûne N2(P) to be the number of symmetricmatrices

B = (b i j)1≤i , j≤5 ∈ M5×5(Z)

with ∣b i j ∣ ≤ P for all 1 ≤ i ≤ j ≤ 5, such that SA,B is smooth of codimension 2 and
Br1(U)/Br0(U) ≠ 0 for any hyperplane H with H ∩ SA,B geometrically irreducible.

heorem 1.1 Let A ∈ M5×5(Z) and assume that det(A) ≠ 0. hen for every ε > 0,
one has the upper bound

N2(P) ≪ε ,A P14+1/5+ε .

552



On the Frequency of Algebraic Brauer Classes

In total, there are about P15 integer matrices B that we consider, and hence the ex-
ceptional ones, counted by N2(P), are sparse in this very precise sense. In particular,
for any choice of B outside of the exceptional set counted by N2(P), there is no alge-
braic Brauer–Manin obstruction to integral points for the system

Q1(x) = Q2(x) = 0, L(x) = ±1,
where L(x) is a suõciently general linear form in the variables x with integral coef-
ûcients. It would be interesting to understand the transcendental part of the Brauer
group of U as well; see, for example, [JS1] for some discussions.

he frequency of violations of the local-global principle has recently also been
studied by Mitankin [Mi] for aõne quadric surfaces. Even more is known for a few
selected examples of families of projective varieties; see, for example, [JS16, BB2].

Our strategy for the proof for heorem 1.1 is inspired by work of Dietmann [Di].
He bounds the number ofmonic integer polynomials of degree n of bounded height
that have a certain Galois group strictly smaller than Sn .

Under the assumptions ofheorem1.1, the set ofmatrices B, counted byN2(P), is a
thin subset in 15-dimensional aõne space (seeRemark 4.1). herefore, sievemethods,
as used in [Se,heorem 13.1], would lead to the bound

N2(P) ≪ P14+1/2 log P.

With our methods, we improve upon the exponent in this estimate.

2 Preparations

With two symmetric 5×5matrices A and Bwe associate the characteristic polynomial

f (λ, µ;A, B) ∶= det(λA+ µB),
which is homogeneous of degree 5 in λ, µ. Sometimes we write f (λ, µ) for
f (λ, µ;A, B) when the matrices A and B are considered ûxed. We recall that we can
read oò from the polynomial f (λ, µ) whether the associated variety SA,B is smooth
of codimension 2.

Lemma 2.1 ([Wi, Proposition 3.26]) Let A, B ∈ M5×5(Q) be two symmetricmatrices
and let SA,B be deûned as in (1.1), where Q1 and Q2 are the two quadratic forms associ-
ated with A and B. hen SA,B is smooth over Q and pure of codimension 2 as a variety
in P4 if and only if the characteristic polynomial f (λ, µ) is not identically zero and is
separable.

Let Disc( f ) be the discriminant of f (λ, µ) (see, for example, [Sch]). If we ûx
A ∈ M5×5(Z), then Disc( f ) is a polynomial in the coeõcients (b i j) of B. Moreover,
SA,B is smooth of codimension 2 if and only if Disc( f ) ≠ 0. Hence we can trivially
handle the count ofmatrices B of bounded height forwhich SA,B isnot a del Pezzo sur-
face of degree 4. Note thatDisc( f ) isnot identically zero ifwe assume that det(A) ≠ 0.
In that case, we have

♯{B ∈ M5×5(Z) ∶ BT = B, ∣b i j ∣ ≤ P∀1 ≤ i , j ≤ 5, Disc( f ) = 0} ≪ P14 .

Note that in this estimate the implied constant does not depend on thematrix A.
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he roots of the characteristic polynomial f (λ, µ) correspond to pairs of pencils of
conics contained in SA,B . hese pencils of conics generate Pic(UQ) up to index two,
and the algebraic part of the Brauer group of U is determined by the operation of the
Galois group on these conics. Moreover, one can already read oò from the charac-
teristic polynomial f (λ, µ) some information about 2-torsion elements contained in
Br1(U)/Br0(U). Note that if H ∩ SA,B is geometrically integral and SA,B is smooth
of codimension 2, then U = X ∖ H is an open del Pezzo surface of degree four as in
the language of [JS2, Deûnition 2.5]. As we work over the base ûeld Q, we have an
isomorphism

Br1(U)/Br0(U) ≅ H1(Gal(Q/Q),Pic(UQ)) .
he latter group is analysed in detail in [JS2] for an open degree four del Pezzo surface,
and we now recall a result from that paper, which forms one of the key inputs for our
estimates for N2(P).

heorem 2.2 ([JS2, Corollary 3.11]) Let SA,B be a smooth del Pezzo surface of degree
4, as deûned in (1.1), and let H ⊂ P4 be a hyperplane such that H ∩ SA,B is geometri-
cally integral. If Br1(U)/Br0(U) ≠ 0, then the characteristic polynomial f (λ, µ) has a
rational root or splits oò a factor of degree 2 over the rationals.

For the ûrst part of our estimates to follow, we use the following result due to
Bombieri and Pila [BP].

heorem 2.3 ([BP, heorem 4]) Let G(x , y) ∈ Z[x , y] be an absolutely irreducible
polynomial of absolute degree d. LetN ≥ exp(d6) be an integer. hen one has the bound

♯{x , y ∈ ([0,N] ∩Z) 2 ∶ G(x , y) = 0} ≤ N 1/d exp (12
√
d logN log logN) .

Note that this result is more precise than what we need, as in our application the
degree d is ûxed.

3 Irreducibility Results and a Resolvent Construction

In our proof ofheorem 1.1, we need the following result on geometric irreducibility
of ûbers. It can be found in online lecture notes by Osserman [Os, Proposition 2.3].
For the convenience of the reader, we give our own proof here.

Proposition 3.1 Let Abe aNoetherian ring, set X ∶= SpecAand let g ∈ A[x1 , . . . , xn]
be a polynomial of total degree d. hen there is a Zariski closed subset Z ⊂ X with the
following property.
A prime ideal p ∈ X is contained in Z if and only if there exists an algebraically closed
ûeld extension k of the residue ûeld κ(p) such that g is reducible or has degree strictly
less than d when considered as a polynomial over k.

Remark 3.2 Note that the last statement in Proposition 3.1 is equivalent to saying
that for every algebraically closed extension ûeld k of κ(p) the polynomial g is re-
ducible or has degree less than d when considered as a polynomial over k. (See, for
example, [Ha, Exercise II.3.15].)
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Proof Step 1: First, we consider the homogenization G(x0 , . . . , xn) of the polyno-
mial g(x1 , . . . , xn), deûned by

G(x0 , . . . , xn) ∶= xd0 g(
x1

x0
, . . . ,

xn

x0
) .

hen G deûnes a hypersurface V ⊂ Pn
A. Let p ∈ X and let k be some extension ûeld of

κ(p). We note that the polynomial g is reducible or of degree strictly smaller than d
over k if and only if G is reducible over k. Moreover, G is reducible over k if and only
if the reduction of V over k is reducible or not reduced over k.
By [EGAIV,héorème 9.7.7], the set of prime ideals p such that G is reducible over

k is constructible. In order to show that this set is even Zariski closed, it is hence
suõcient to show that it is closed under specialization. We will prove the following
claim.

Claim 1: Let p ⊂ P be prime ideals in A. If the image of g in Q(A/p)[x1 , . . . , xn] is
of degree strictly smaller than d or becomes reducible over a ûnite extension ûeld of
Q(A/p), then the image of g in Q(A/P)[x1 , . . . , xn] is reducible or of degree smaller
than d a�er taking a ûnite extension ûeld. (Here we write Q(B) for the quotient ûeld
of an integral domain B.)

Since we assumed A to be Noetherian, it is enough to prove the claim for the case
where there is no other prime ideal between p andP.

Step 2: If the reduction of g modulo p is of degree strictly smaller than d, then clearly
the same is true for the reduction of g moduloP. We hence assume that the image of
g in Q(A/p)[x1 , . . . , xn] is reducible over Q(A/p).

Step 3: In replacing the ring A by A/p, we can assume without loss of generality that
A is an integral domain, p = (0), and P is a minimal prime ideal. We now consider
the localization AP, which is a Noetherian, one-dimensional, local integral domain
with maximal ideal PAP. Moreover, AP/PAP = Q(A/P). It is hence suõcient to
establish the following claim.

Claim 2: Let A be a one-dimensional, Noetherian, local integral domain with max-
imal ideal m and assume that g, considered as a polynomial in Q(A)[x1 , . . . , xn], is
reducible over a ûnite extension ûeld. hen the reduction of g in (A/m)[x1 , . . . , xn]
is of degree strictly smaller than d or is reducible, possibly over a ûnite extension ûeld
of A/m.

Step 4: Assume that Q(A) ⊂ L is a ûnite extension ûeld, such that g factors over L.
Let R be the integral closure of A in L. By the Going-up heorem [Mat, heorem
9.4 i)], there is a prime ideal n ⊂ R of height one lying above m. We note that R
is Noetherian by the theorem of Krull–Akizuki [Mat, heorem 11.7]. Hence, Rn is a
Noetherian, one-dimensional, local domain, which is integrally closed in its fraction
ûeld. By [Mat,heorem 11.2], Rn is a discrete valuation ring. We have assumed that g
factors over Q(Rn) = Q(R) = L. Since Rn is a discrete valuation ring, it is a unique
factorization domain, and Gauss’s lemma implies that g already factors over Rn.

555



J. Jahnel and D. Schindler

Step 5: As g is reducible in the polynomial ring Rn[x1 , . . . , xn], its reduction in
Rn/nRn[x1 , . . . , xn] is also reducible or of strictly smaller degree. We conclude the
proof in noting that Rn/nRn = Q(R/n) and that Q(A/m) ⊂ Q(R/n) is a ûnite
extension ûeld. ∎

In the sequel, we assume that both A and B are symmetric matrices and
write (b i j)1≤i≤ j≤5 for the coeõcients determining the matrix B. Moreover, we set
b′ ∶= (b i j)1≤i≤ j≤5,(i , j)≠(1,1) for the vector consisting of all entries except for the ûrst
one, b11.

Lemma 3.3 Let A = Id5 be the identity matrix. hen there is a Zariski closed subset
Z0 ⊊ A14

Q with the following property. If b′ ∈ A14(Q) ∖ Z0(Q), then f (λ, 1; Id5 , B) is
absolutely irreducible of degree ûve as a polynomial in the variables λ and b11.

Proof We apply Proposition 3.1 to the ring A = Q[b12 , . . . , b55] and the polynomial
f (λ, 1; Id5 , B) ∈ A[b11 , λ]. Let Z0 ⊂ A14

Q be the Zariski closed subset given by Propo-
sition 3.1. It remains to show that Z0 is not equal to the whole 14-dimensional aõne
space. Calculations using magma show that the polynomial

g(λ, b11 , b12) ∶= det

⎛
⎜⎜⎜⎜⎜
⎝

λI5 +

⎛
⎜⎜⎜⎜⎜
⎝

b11 b12 0 0 0
b12 b12 b12 0 0
0 b12 b12 b12 0
0 0 b12 b12 b12
0 0 0 b12 b12

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

deûnes an irreducible curve of genus 0 in the projective plane. Moreover, up to height
100 we ûnd eight regular Q-rational points. Hence, the curve is geometrically irre-
ducible, and the polynomial g(λ, b11 , 1) is absolutely irreducible and of degree ûve.
We conclude that Z0 ⊊ A14

Q , as desired. ∎

Since f (λ, 1; Id5 , B) is homogeneous of degree ûve, we obtain the following
corollary.

Corollary 3.4 he polynomial f (λ, 1; Id5 , B) is absolutely irreducible in the 16 vari-
ables λ and (b i j)1≤i≤ j≤5.

Now we show that similar statements hold when we replace the identity matrix I5
by some symmetric invertiblematrix A ∈ M5×5(Q).

Lemma 3.5 Let A ∈ M5×5(Q) be a symmetric matrix, and assume that det(A) ≠ 0.
hen the polynomial f (λ, 1;A, B) is absolutely irreducible in the 16 variables λ and
(b i j)1≤i≤ j≤5.

Proof As we ask for absolute irreducibility, we can work overQ. Let T be an invert-
iblematrix such that T tAT = Id5. hen we have

f (λ, 1;A, B) = det(λA+ B) = det (λ(T−1)t Id5 T−1 + B)
= det(T−1)2 det(λI5 + T tBT).

(3.1)
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By Corollary 3.4, the polynomial det(λI5 + B) is absolutely irreducible, considered
as a polynomial in 16 variables. Hence, the polynomial on the right-hand side of
(3.1) is absolutely irreducible in λ and (b i j)1≤i≤ j≤5, as the linear variable substitution
B ↦ T tBT does not aòect absolute irreducibility. ∎

For the case A = Id5, Lemma 3.3 shows that the polynomial f (λ, 1; Id5 , B) is ab-
solutely irreducible in λ and b11 for almost all b′. We now provide a comparable
statement for a general matrix A. For the proof, we use Lemma 3.5 together with
a Bertini-type theorem for absolute irreducibility to deduce that there is a curve in
the corresponding family that is absolutely irreducible. his will suõce for another
application of Proposition 3.1.

Proposition 3.6 Let A ∈ M5×5(Q) be a symmetric matrix with det(A) ≠ 0. hen
there exist a tuple v′ ∶= (v i j)1≤i≤ j≤5,(i , j)≠(1,1) ∈ Z14 and a Zariski closed subset ZA ⊊ A14

Q
with the following property.
Deûne the polynomial

hA(λ, b11 , c′) ∶= det
⎛
⎜⎜⎜
⎝
λA+

⎛
⎜⎜⎜
⎝

b11 c12 + v12b11 . . . c15 + v15b11
c12 + v12b11 c22 + v22b11 . . . c25 + v25b11

⋮ ⋮ ⋱ ⋮
c15 + v15b11 c25 + v25b11 . . . c55 + v55b11

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
.

hen hA(λ, b11 , c′) is absolutely irreducible as a polynomial in λ and b11, for each
c′ ∶= (c i j)1≤i≤ j≤5,(i , j)≠(1,1) ∈ A14(Q) ∖ ZA(Q).

Proof By Lemma 3.5, the polynomial f (λ, 1;A, B) is absolutely irreducible in
the 16 variables λ and (b i j)1≤i≤ j≤5. Consider the aõne variety X ⊂ A16

Q , given by
f (λ, 1;A, B) = 0, which is then geometrically integral. Deûne the projection

ϕ12 ∶ X Ð→ A2
Q

(λ, (b i j)) z→ (b11 , b12),

and note that this is a dominant map. hen an application of [Jo, héorème 6.3.3)
and 4)] shows that the intersection

X(2) ∶ f (λ, 1;A, B) = 0,
u12 + v12b11 +w12b12 = 0

is geometrically integral for almost all triples (u12 , v12 ,w12) ∈ A3, in the sense that
the exceptional set is contained in a Zariski closed subset of A3. By homogeneity,
the same holds a�er normalizing w12 = −1, say. Hence, there are integers u12 and v12

such that X(2) is geometrically integral. We now apply the same argument to to ûnd
integers u13 and v13 such that the intersection

X(3) = X(2) ∩ {b13 = u13 + v13b11}
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is geometrically integral. We repeat this process in total 14 times to obtain tuples
(u i j)1≤i≤ j≤5,(i , j)≠(1,1) , (v i j)1≤i≤ j≤5,(i , j)≠(1,1) ∈ Z14 such that the aõne curve given by

det
⎛
⎜⎜⎜
⎝
λA+

⎛
⎜⎜⎜
⎝

b11 u12 + v12b11 . . . u15 + v15b11
u12 + v12b11 u22 + v22b11 . . . u25 + v25b11

⋮ ⋮ ⋱ ⋮
u15 + v15b11 . . . . . . u55 + v55b11

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
= 0

is geometrically integral. (Note that the maps ϕ1 j are all dominant, since the poly-
nomial f (λ, 1;A, B) contains the term det(A)λ5, and one can therefore always solve
for λ.) Hence, hA(λ, b11 , u) is absolutely irreducible as a polynomial in λ and b11. An
application of Proposition 3.1 provides us with a Zariski closed subset ZA ⊊ A14

Q with
the desired property. ∎

he results so far are enough to deal with the case of Brauer classes that can
occur due to f (λ, µ;A, B) having a rational root in λ, µ. We now need to provide
similar irreducibility results for a resolvent that detects when the polynomial
f (λ, µ;A, B) splitsoò a factorof degree two. Recall thatwehave deûned f (λ, µ;A, B)=
det(λA+ µB). We can write f (λ, µ) in the form

f (λ, µ) =
5

∑
l=0

p l(A, B)µ5−l λ l ,

with p l(A, B) a polynomial of degree l in the coeõcients of thematrixAand of degree
5 − l in the coeõcients of thematrix B. Moreover, p0(A, B) = det(B) and p5(A, B)=
det(A). Assume that det(A) ≠ 0 and that A and B are ûxed. We rewrite f (λ, µ) as

(3.2) f (λ, µ) = det(A)
5

∑
l=0

p l(A, B)
det(A) µ5−l λ l .

Over some algebraic closure ofQ, we then have

(3.3) f (λ, µ) = det(A)
5

∏
i=1

(λ + α iµ).

We now deûne the resolvent

Φ(z;A, B) ∶= det(A)4 ∏
1≤i< j≤5

(z + α i + α j).

Lemma 3.7 (i) he resolvent Φ(z;A, B) has the form

Φ(z;A, B) =
10

∑
k=0

qk(A, B)zk ,

with qk(A, B) ∈ Z[A, B] polynomials in the coeõcients of the two matrices A, B.
(ii) he leading coeõcient satisûes q10(A, B) = det(A)4, and, for 0 ≤ k ≤ 10, the

polynomial qk(A, B) is homogeneous of degree 10− k in the coeõcients of B and homo-
geneous of degree 10 + k in the coeõcients of A.

(iii) If f (λ, µ;A, B) splits oò a factor of degree two over the rationals thenΦ(z;A, B)
has a rational root z ∈ Q.
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Proof Using the notation above, we can ûrst write

Φ(z;A, B) = det(A)4
10

∑
k=0

q̃k(α)zk ,

with q̃k(α) polynomials in the roots α i , for 1 ≤ i ≤ 5. Note that q̃k(α) are symmetric
polynomials in the variables α i . Hence, they can be expressed in terms of the following
elementary symmetric polynomials

E1 ∶=
5

∑
i=1
α i , E2 ∶=∑

i< j
α iα j , E3 ∶= ∑

i< j<k
α iα jαk ,

E4 ∶= ∑
i< j<k<l

α iα jαkα l , E5 ∶=
5

∏
i=1
α i .

We compare equation (3.2) with equation (3.3) and obtain

det(A)
5

∑
l=0

p l(A, B)
det(A) µ5−l λ l = det(A)

5

∏
i=1

(λ + α iµ).

Hence,

E i =
p5−i(A, B)
det(A) , for 1 ≤ i ≤ 5.

By a short calculation in magma, we can express each of the polynomials q̃k(α) in the
elementary symmetric polynomials E i , for 1 ≤ i ≤ 5. We ûnd that they are of total
degree at most four in this representation. Consequently, all the

qk(A, B) ∶= det(A)4 q̃k(α), 0 ≤ k ≤ 10,

are polynomials in Z[A, B], where qk(A, B) is homogeneous of degree 10 − k in the
coeõcients of B and homogeneous of degree 10 + k in the coeõcients of A. his
completes part (i) and (ii) of the proof of the lemma. Part (iii) follows directly from
the construction of the resolvent polynomial Φ(z;A, B). ∎

We next need a statement analogous to Lemma 3.6 for the resolvent Φ(z;A, B).
he strategy of proof is the same as that for the polynomial f (λ, µ) itself.

Proposition 3.8 Let A ∈ M5×5(Q) be a symmetric matrix with det(A) ≠ 0. hen
there exist a tuple t′ ∶= (t i j)1≤i≤ j≤5,(i , j)≠(1,1) ∈ Z14 and a Zariski closed subset VA ⊊ A14

Q
with the following property.

he expression Φ(z;A, (b11 , c′ + b11t′)) is absolutely irreducible as a polynomial in
the variables z and b11 if

c′ ∶= (c i j)1≤i≤ j≤5,(i , j)≠(1,1) ∈ A14(Q) ∖ VA(Q).

Proof First, a short calculation using magma shows that the polynomial

Φ(z; Id5 , (b11 , c′ + b11t′))
is absolutely irreducible in z, b11, if we set t′ ∶= 0 and c i j ∶= 1, for ∣i − j∣ ≤ 1, and
c i j ∶= 0, otherwise. Indeed, in this case, the homogenization of the polynomial
Φ(z; Id5 , (b11 , c′ + b11t′)) deûnes an irreducible curve of genus 3 with two regular
rational points of height less than 100.
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SinceΦ(z; Id5 , (b11 , c′+b11t′)) is absolutely irreducible of degree 10 in z and b11 for
these special choices of c′ and t′, we deduce that Φ(z; Id5 , B) is absolutely irreducible
in the 16 variables z, (b i j)1≤i≤ j≤5.

Now let A ∈ M5×5(Q) be an arbitrary symmetricmatrix with det(A) ≠ 0. OverQ,
we can diagonalize Awith an invertiblematrix C such that

C tAC = Id5 .

hen we have
f (λ, µ;A, B) = det(C)−2 det(λC tAC + µC tBC)

= det(C)−2 f (λ, µ; Id5 ,C tBC).
For the corresponding resolvents, we hence get the relation

Φ(z;A, B) = det(C)−8Φ(z; Id5 ,C tBC).
We conclude thatΦ(z;A, B) is an absolutely irreducible polynomial in the 16 variables
z, (b i j)1≤i≤ j≤5. he rest of the proof proceeds in exactly the same way as the proof of
Lemma 3.6. Note that, for A ûxed with det(A) ≠ 0, the polynomial Φ(z;A, B) always
has degree 10. ∎

4 Proof of Theorem 1.1

In this section, we prove heorem 1.1. Let A ∈ M5×5(Z) be ûxed and assume that
det(A) ≠ 0. Let S(1)(P) be the number of symmetric matrices B ∈ M5×5(Z) with
∣b i j ∣ ≤ P, for all 1 ≤ i ≤ j ≤ 5, such that f (λ, µ;A, B) has a rational root in λ, µ.
Similarly, let S(2)(P) be the number of such matrices B such that Φ(z;A, B) has a
rational root in z.
By heorem 2.2, and the construction of the resolvent polynomial Φ(z;A, B), we

can bound N2(P) by
N2(P) ≪ S(1)(P) + S(2)(P).

If f (λ, µ;A, B) has a rational root in λ, µ, then, by homogeneity, it also has a so-
lution λ, µ ∈ Z2 with gcd(λ, µ) = 1. Since the coeõcient of λ5 in f (λ, µ) is equal to
det(A), we deduce that µ ∣det(A). For a divisor d∣det(A), we deûne S(1)

d (P) to be
the number of symmetricmatrices B ∈ M5×5(Z)with coeõcients bounded by P such
that f (λ, d;A, B) has an integer root in λ. hen we can bound

(4.1) S(1)(P) ≤ ∑
d ∣ det(A)

S(1)
d (P),

where the sum over d runs over all positive and negative divisors of det(A).
Similarly, ifΦ(z;A, B)has a rational root, say z = r

s ,with r, s ∈ Z2 and gcd(r, s) = 1,
then s ∣det(A)4. For any divisor d ∣det(A)4,we let S(2)

d (P) be the number of symmet-
ricmatrices B ∈ M5×5(Z) with coeõcients bounded by P such that d 10Φ(d−1z;A, B)
(which is again a polynomialwith integer coeõcients) has an integer root in z. Hence,
we have the upper bound

S(2)(P) ≤ ∑
d ∣ det(A)4

S(2)
d (P),

where again the sum is over all positive and negative divisors d of det(A)4.
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With d ∣det(A) ûxed, we now proceed to bound S(1)
d (P). We recall the notation

f (λ, µ;A, B) =
5

∑
l=0

p l(A, B)µ5−l λ l ,

with p l(A, B) polynomials of degree 5 − l in the coeõcients of B. If B is a matrix
with coeõcients bounded by P, then p l(A, B) ≪ P5−l . As soon as f (λ, d;A, B) has
a complex root λ0, we then deduce that there is a positive constant C0 ≥ 1 such that
∣λ0∣ ≤ C0P, by heorem (27,3) in [Ma] (see also [Di, Lemma 1]). Let v′ and ZA be
as in Lemma 3.6. hen f (λ, 1;A, (b11 , c′ + b11v′)) is absolutely irreducible in λ, b11 if
c′ ∉ ZA. By a linear change of variables, we deduce that

f (λ, d;A, (b11 , c′ + b11v′)) = f (λ, 1;A, (db11 , dc′ + db11v′))

is absolutely irreducible in the two variables λ, b11 if c′ ∉ d−1ZA. Let R(1)
d (P)

be the number of vectors (b11 , c′) ∈ (Z ∩ [−P, P])15 such that the polynomial
f (λ, d;A, (b11 , c′ + b11v′)) has an integer root in λ. hen there is a positive constant
C1 such that

(4.2) S(1)
d (P) ≤ R(1)

d (C1P).

For c′ ∈ Z14, we deûne

T(1)
d (c′; P) ∶= ♯{(b11 , λ) ∈ (Z ∩ [−P, P]) 2 ∶ f (λ, d;A, (b11 , c′ + b11v′)) = 0} .

Let
E(1)
d (P) ∶= ♯{c′ ∈ (Z ∩ [−P, P])14 ∶ c′ ∈ d−1ZA}.

hen we can bound R(1)
d (C1P) by

R(1)
d (C1P) ≪ ∑

c′∈(Z∩[−C1P ,C1P])14

c′∉d−1ZA

T(1)
d (c′;C2P) + PE(1)

d (C1P),

for a suõciently large constant C2. An application ofheorem 2.3 gives the bound

T(1)
d (c′;C2P) ≪ε P1/5+ε ,

with an implied constant that is independent of c′. On the other hand, as ZA ⊊ A14
Q is

Zariski closed, we have
E(1)
d (C1P) ≪ P13 .

Together these estimates lead to the bound

R(1)
d (C1P) ≪ε P14+1/5+ε

for any ε > 0. Here, the implied constantmay depend on d and C1, but is independent
of P. Since A is considered ûxed, we can trivially perform the summation in equation
(4.1), and together with equation (4.2), we obtain the bound

S(1)(P) ≪ε P14+1/5+ε .
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he bound for S(2)(P) is obtained in the same way as the bound for S(1)(P), with
Proposition 3.8 in place of Proposition 3.6. In fact, since Φ(z;A, B) is typically irre-
ducible of degree 10, one obtains the bound

S(2)(P) ≪ε P14+1/10+ε ,

for any ε > 0.

Remark 4.1 Let A be as above. As the polynomials f (λ, 1;A, B) and Φ(z;A, B)
are irreducible inQ(b i j)1≤i≤ j≤5[λ] andQ(b i j)1≤i≤ j≤5[z], respectively, the polynomial
interpretation of thin sets as in [Se, section 9.1] shows that thematrices B counted by
N2(P) indeed form a thin subset.
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