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Abstract

Two-degree-of-freedom Hamiltonian systems with an elliptic equilibrium at the origin are characterised 
by the frequencies of the linearisation. Considering the frequencies as parameters, the system undergoes 
a bifurcation when the frequencies pass through a resonance. These bifurcations are well understood for 
most resonances k:l, but not the semisimple cases 1:1 and 1:−1. A two-degree-of-freedom Hamiltonian 
system can be approximated to any order by an integrable normal form. The reason is that the normal 
form of a Hamiltonian system has an additional integral due to the normal form symmetry. The latter is 
intimately related to the ratio of the frequencies. For a rational frequency ratio this leads to S1-symmetric 
systems. The question we wish to address is about the co-dimension of such a system in 1:1 resonance 
with respect to left-right-equivalence, where the right action is S1-equivariant. The result is a co-dimension 
five unfolding of the central singularity. Two of the unfolding parameters are moduli and the remaining 
non-modal parameters are the ones found in the linear unfolding of this system.
© 2018 Elsevier Inc. All rights reserved.
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The case k = l = 1 (1:1 resonance) turns out to be surprisingly complicated.
J.J. Duistermaat in [10]

1. Introduction

One of the few available methods to study the dynamics of Hamiltonian systems is to con-
centrate on the equilibria. The motion itself being trivial by definition, one considers the local 
dynamics and linearises the vector field. A hyperbolic equilibrium, with no eigenvalues on the 
imaginary axis, is dynamically unstable and on a sufficiently small neighbourhood the motion is 
completely determined by the linearisation.

In the elliptic case the non-linear terms cannot be disposed of completely, but lead to normal 
forms of which one hopes that they capture the essence of the dynamics. The reasons for irre-
movable terms are the resonances between the eigenvalues on the imaginary axis. Excluding zero 
eigenvalues, the resonances of lowest order, i.e. the 1:1 and 1:−1 resonances, relate double pairs 
of imaginary eigenvalues.

1.1. Resonant equilibria

In the present paper we concentrate on the 1:1 resonance and study an equilibrium around 
which the Hamiltonian expands as

H(q,p) = 1

2
(p2

1 + p2
2) + 1

2
(q2

1 + q2
2 ) + . . . (1)

where we omit the irrelevant constant term. The Hessian D2H(0) is positive definite and this 
excludes nilpotent terms. Thus a 1:1 resonance is always semisimple. It occurs persistently in 
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3-parameter families, cf. [19,9,10,6,18]. This is in sharp contrast with the 1:−1 resonance where 
the Hessian is not definite. Then we have to distinguish a semisimple and a non-semisimple 
case. Unfolding the latter leads to the Hamiltonian Hopf bifurcation, which occurs persistently 
in 1-parameter families, cf. [29,7,15]. The semisimple 1:−1 resonance also occurs persistently 
in 3-parameter families, cf. [20,18,14]. We expect its unfolding to share features of that of the 
1:1 resonance.

A comprehensive study of k:l resonances, excluding the 1:±1 cases, has been made in [10]. 
It turns out that all higher order cases are very similar to each other. In general the unfolding 
co-dimension of the unfolding is two, where one parameter can be considered as a detuning of 
the resonance and the other is a modulus, see [33,13]. Exceptions are the resonances 1:2 and 1:3
with co-dimensions 1 and 3, respectively. Again one of the parameters is a detuning and in the 
case of 1:3 resonance, two parameters are moduli. In all cases there is a bifurcation associated 
to the resonance. In general a pair of stable and unstable periodic solutions branches off from 
the origin. The 1:2 and 1:3 cases have a slightly different unfolding scenario, see [10,4,13,8]. As 
mentioned before the non-semisimple or nilpotent 1:−1 resonance shows a different bifurcation 
(the Hamiltonian Hopf bifurcation, see [29]) and the bifurcations triggered by the semisimple 
1:±1 resonances are still open.

This paper is organised as follows. In section 1.2 we state an informal version of our main 
theorem. Although informal it still contains the essential properties of the main theorem. Before 
proving our main result we review some facts on Hamiltonian systems in section 2. The system 
we study is in normal form and we discuss the properties we use in section 3, especially the 
induced S1-symmetry. Finally in section 4 we state and in section 5 we prove our main theorem 
using singularity theory for S1-equivariant mappings. The concluding section 6 puts our results 
in context. Our approach fits in the tradition of [10,29,9] and it complements [6].

1.2. Informal statement of the main theorem

In order to state our main result we need a few definitions. Here our aim is not full generality, 
the main theorem is formulated more precisely in section 4.2.

We study a C∞ Hamiltonian system on R4 with standard symplectic form in the neighbour-
hood of an elliptic equilibrium in 1:1 resonance. We may assume that the equilibrium is at the 
origin, thus the linear part of the Hamiltonian H at 0 vanishes. The matrix associated to the 
linearisation of the Hamiltonian vector field has coinciding pairs of eigenvalues with equal sym-
plectic sign, therefore this matrix has no nilpotent part, see [16]. As a consequence the quadratic 
part of the Hamiltonian in the 1:1 case has Morse index 0. This contrasts with the 1:−1 resonance 
where the corresponding matrix generically does have a nilpotent part, see [29].

As a first step we apply several (symplectic) co-ordinate transformations. The first of these 
takes the quadratic part H2 of H into the form presented in equation (1). Moreover, after a 
finite number of normal form transformations (see for example [29]), we may assume that a 
corresponding part of the Taylor expansion of H Poisson commutes with H2. We now make an 
approximation by restricting to this finite part and call it H again. The flow of H2 generates an S1

symmetry group and the fact that H and H2 Poisson commute implies that H is S1-symmetric. 
The consequences of this approximation are discussed in the remarks following Theorem 1.1.

The second step is a reduction with respect to the S1 symmetry. Restricted to the 3-sphere 
{H2 = 1}, the projection mapping involved is a Hopf mapping so the reduced phase space is 
a 2-sphere. Then we apply equivariant singularity theory to the map germ (H, H2) and find a 
universal unfolding subject to non-degeneracy conditions on the coefficients in the higher order 
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terms of H . By the nature of our method, we can not hope for more than local results and we 
exploit this fact by switching to germs, see [3,28,31]. Very briefly: a map germ is the collection 
of mappings equal to one another on an arbitrary small neighbourhood of a given point, say 0. 
Map germs are essentially determined by their Taylor expansions or even Taylor polynomials 
in a sense that is made more precise in section 4.1.1. In the sequel we say mapping but tacitly 
assume map germ.

In order to proceed we need the generators of the S1-invariant functions as co-ordinates. 
These are given by

I1 = 1
2 (q2

1 + p2
1 + q2

2 + p2
2)

I2 = 1
2 (q2

1 + p2
1 − q2

2 − p2
2)

I3 = q1q2 + p1p2

I4 = q1p2 − q2p1,

see section 3.1 for more details. The generators are not independent but related by the syzygy
I 2

1 = I 2
2 + I 2

3 + I 2
4 . Nevertheless, H and H2 can now be expressed as functions of I , that is 

H2(I ) = I1 and H(I) = H2(I ) + H4(I ) + H6(I ) + · · · + Hk(I). The final result is given in the 
next theorem.

Theorem 1.1. A universal unfolding of the S1-invariant Hamiltonian

H(I) = I1 + a1I
2
2 + a2I

2
3 + a3I

2
4 + b1I

3
2 + b2I

3
3 + b3I

3
4

is given by the five parameter family (μ ∈R5)

H(I ;μ) =I1 + a1I
2
2 + a2I

2
3 + a3I

2
4 + b1I

3
2 + b2I

3
3 + b3I

3
4

+ μ1I2 + μ2I3 + μ3I4 + μ4I
3
2 + μ5I

3
3

provided that the real coefficients a1, a2, a3, b1, b2 and b3 satisfy the non-degeneracy condition

(a1 − a2)(a2 − a3)(a3 − a1) b1b2b3 �= 0.

This theorem holds for S1-symmetric Hamiltonian systems in 1:1 resonance. Let us make a 
few remarks on its scope.

Remark 1.2.
1. The unfolding terms μ4I

3
2 and μ5I

3
3 can be replaced by any pair from I2, I3 and I4.

2. The reduction of the 3-sphere defined by 1
2 (q2

1 + p2
1 + q2

2 + p2
2) = h2 to the 2-sphere I 2

2 +
I 2

3 + I 2
4 = h2

2 is regular if h2 �= 0, so every point on the reduced phase space corresponds to 
an S1-orbit on the original phase space R4.

3. On the reduced phase space the solution curves are defined by (H, H2) = (h, h2). Thereby 
time parametrisation is lost. Solution curves consisting of a single point on the reduced phase 
space correspond to periodic orbits on R4, whereas closed curves on the reduced phase space 
correspond to 2-tori on R4. The former are generically isolated on S2, but the latter come in 
1-parameter families.
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4. Non-S1-symmetric perturbations (i.e. including non-S1-invariant terms in the Taylor expan-
sion of H ) do affect our result. However, normal form transformations enable us to make these 
perturbations as small as we wish. Nevertheless their effect is that families of 2-tori, on R4, 
do not survive as such. From KAM theory one expects that these families are Cantorised, i.e. 
the 2-tori persist as a Cantor subfamily of large 2-dimensional Hausdorff measure, where the 
dense set of internal resonances leads to gaps in the parametrisation. Periodic orbits, as long 
as they are elliptic or hyperbolic, do persist, as do their bifurcations. Thus our result gives 
information on low periodic orbits of general Hamiltonian systems in 1:1 resonance. Homo-
clinic and heteroclinic connections on the reduced phase space generically do break up under 
non-S1-symmetric perturbations yielding chaotic regions familiar from Poincaré sections of 
for example the Hénon–Heiles system.

5. In view of the previous remark, the bifurcation diagram for the equilibrium at 0 on R4 with 
branches of periodic orbits is valid for general Hamiltonian systems in 1:1 resonance.

2. A few facts about Hamiltonian systems

Here we very briefly review some facts from the theory of Hamiltonian systems. We concen-
trate on R4. However everywhere in the following sections R4 can be replaced by M , a C∞ real 
symplectic manifold. For a thorough treatment we refer to for example [1,2].

2.1. Symplectic spaces and Hamiltonian systems

Let ω be a closed, non-degenerate skew symmetric 2-form on R4, making (R4, ω) a symplec-
tic space. Furthermore let H be a function in C∞(R4, R), then the triple (R4, ω, H) is called a 
smooth real Hamiltonian system. Now let X (R4) be the set of smooth vector fields on R4. The 
vector field XH ∈ X (R4) satisfying

ω(XH ,Y ) = dH(Y )

for all Y ∈ X (R4), is called the Hamiltonian vector field of H . The vector field XH defines the 
flow of the Hamiltonian system on R4, we also call this the flow of H . A function f is preserved 
under the flow of the vector field XH if and only if the Lie derivative of f is identically zero. 
Using LXH

(f ) = df (XH ) we find that the Hamiltonian function H is preserved by the flow of 
XH because

LXH
(H) = dH(XH ) = ω(XH ,XH ) = 0.

The last equality follows from the skew symmetry of ω.

2.2. Poisson brackets

Let f and g be in C∞(R4, R), then we define the Poisson bracket of f and g as

{f,g} = ω(Xf ,Xg).

It follows from this definition that
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{f,g} = LXg(f ) = −LXf
(g).

Suppose that the function f is preserved under the flow of XH , then

0 = LXH
(f ) = {f,H }

and vice verse, so once we have the Poisson bracket we do not need the vector field XH to deter-
mine whether f is preserved under the flow of H . Furthermore {f, g} = −{g, f } so {H, H } = 0
from which again follows that H is preserved under the flow of XH . The Poisson bracket satisfies 
Jacobi’s identity whence Hamiltonian vector fields form a Lie algebra; in fact we have

[Xf ,Xg] = −X{f,g}.

Thus (C∞(R4), {·, ·}) is a Lie algebra of functions.

2.3. Standard forms

Darboux’s theorem now states that there are co-ordinates such that ω becomes constant. Then 
by applying linear algebra we can bring ω into a standard form such that

ω(ξ, η) = 〈ξ | �η〉
for all ξ, η ∈ R4. Here 〈· | ·〉 is the standard inner product on R4 and � is a linear mapping with 
� = −�t = −�−1 which takes the standard form

� =
(

0 I

−I 0

)

on the standard basis {e1, e2, f1, f2}. Let us take co-ordinates z = (q1, q2, p1, p2) with respect 
to this basis, then the Poisson bracket becomes

{f,g} =
2∑

i=1

(
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

)
.

Using the Poisson bracket on these co-ordinates we obtain the canonical equations of motion

q̇i = {qi,H } = ∂H

∂pi

, ṗi = {pi,H } = −∂H

∂qi

for the Hamiltonian H . The Poisson bracket allows us to use functions instead of vector fields, 
which simplifies many computations.

3. Resonant Hamiltonian systems and S1-symmetry

On the symplectic space (R4, ω) we consider C∞ Hamiltonian systems with an equilibrium 
at the origin. Furthermore suppose that the linearisation of the corresponding Hamiltonian vector 
field has resonant imaginary eigenvalues.
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When this system has been transformed into normal form it admits an S1-symmetry group. 
Resonant eigenvalues are not generic, but when they appear in parameter families of Hamil-
tonian systems they are a source of bifurcations. Therefore it is useful to study unfoldings of 
resonant systems. Most resonances in 4-dimensional Hamiltonian systems have been studied 
before, see [10] and references therein. This approach has to be refined for the 1:1 and 1:−1 res-
onances, where the sign is the symplectic sign. See [29] for an extensive study of the so-called 
nilpotent 1:−1 resonance which in a parameter family gives rise to the Hamiltonian Hopf bifur-
cation. Our aim here is to study the 1:1 resonance. While this case has already been considered 
in [6], the arguments presented there are incomplete.

A resonant Hamiltonian system naturally leads to an S1-invariant system when passing to a 
normal form truncation. But we may also consider Hamiltonian systems with an externally given 
symplectic S1-action. Our results hold for such systems as well, provided that the S1-action 
satisfies the conditions in the next section.

3.1. S1-symmetry related to the 1:1 resonance

Since we work in the class C∞(R4) the Hamiltonian function H has an infinite Taylor series. 
We now put some more structure on these functions by collecting homogeneous terms, turning 
(C∞(R4), {·, ·}) into a graded Lie algebra. Then we expand

H = H2 + H3 + · · · + Hk + · · ·

with Hk ∈ R[z] homogeneous of degree k. The normal form procedure acts in a very nice way 
on this Lie algebra, for details see [29]. The final result is that for the normal form we have 
{H2, Hk} = 0 for all k and therefore {H2, H } = 0. This means that the normal form of H is 
invariant under the flow of H2 which is generated by XH2

. Now we assume that the linear part 
XH2

of the vector field XH is in 1:1 resonance, then (the normal form of) H is S1-invariant with 
respect to the S1-action

φ : S1 ×R4 −→ R4

(ϕ, z) 	→ Rϕz
(2)

where

Rϕ =

⎛
⎜⎜⎝

cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ

⎞
⎟⎟⎠

and z = (q1, p1, q2, p2). The quadratic part of such a Hamiltonian system reads

H2(q1,p1, q2,p2) = 1
2 (q2

1 + p2
1) + 1

2 (q2
2 + p2

2).

Note that this function has Morse index 0 which is intimately related to the fact that the eigenval-
ues of the linear part of the corresponding Hamiltonian vector field have equal symplectic sign, 
see [5].
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Every S1-invariant C∞-function can be written as a function of so called invariants. This 
is a consequence of far more general results which we now state. We start with a theorem on 
invariant polynomials.

Theorem 3.1 (Hilbert, Schwartz). Let 	 be a compact group which acts linearly on Rn and 
let R[z]	 denote the set of 	-invariant polynomials. Then a finite number r of polynomials 
ρ1, . . . , ρr ∈ R[z]	 exist that generate R[z]	. The ρ1, . . . , ρr form a Hilbert basis and are called
generators. Furthermore every 	-invariant C∞-function f ∈ C∞(Rn)	 can be written as a 
C∞-function f̂ ∈ C∞(Rr ) of the r generators of R[z]	.

Unfortunately the function f̂ need not be unique for there may be syzygies among the ρj .
Let us now determine the invariants of the S1-action associated to the 1:1 resonance. These 

are polynomials on the phase space and they Poisson commute with H2.

Lemma 3.2. The generators in R[q, p]S1
of the invariants of the S1-action associated to the

1:1 resonance are given by

I1 = 1
2 (q2

1 + p2
1 + q2

2 + p2
2)

I2 = 1
2 (q2

1 + p2
1 − q2

2 − p2
2)

I3 = q1q2 + p1p2

I4 = q1p2 − q2p1

with syzygy I 2
1 = I 2

2 + I 2
3 + I 2

4 .

For a proof we refer to [7].
Thus every S1-invariant C∞-function on R4 can be written as a C∞-function of the Hilbert 

basis {I1, I2, I3, I4}. From now on we restrict to a smaller set of functions, namely the formal 
series in R[[I ]]. The reasons we can do this are 1) every polynomial in I is the Taylor series 
of a C∞-function of I ; 2) we only allow for a finite number of conditions on the coefficients 
of a series. The latter means that we do not encounter the subtleties on infinitely flat functions, 
however see Remark 1.2, item 4. Moreover we are only interested in C∞-functions that are 
zero at the origin. Therefore we only consider formal series without constant terms, denoted by 
R[[I ]]0.

Now a function in R[[I ]]0 is not unique, due to the syzygy among the generators. In this 
respect it is worth noting that when we consider functions in R[[I ]]0 modulo the ideal generated 
by I 2

1 − (I 2
2 + I 2

3 + I 2
4 ), denoted by R[[I ]]0/∼, we have the following splitting, see [7]. This 

splitting is also not unique, but seems natural in view of the syzygy.

Lemma 3.3. R[[I1, I2, I3, I4]]0/∼ = R[[I2, I3, I4]]0 ⊕ I1R[[I2, I3, I4]]0.

When chosen in this last space the function f̂ in Theorem 3.1 is unique. Now that we know 
the generators of the invariants we can write H and H2 as functions of these. In particular, we 
have H2(I ) = I1.
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3.2. Reduction of the S1-symmetry: Hamiltonian systems on S2

We are primarily interested in the flow of H . Since the flow of H and the S1-action commute 
(H and H2 Poisson commute), the orbits of H through an S1-orbit are equivalent. Therefore 
we wish to reduce to the orbit space R4/S1 where points correspond to S1-orbits on R4. The 
projection mapping

(q,p) 	→ I (3)

defined in Lemma 3.2 just does that. It allows us to reduce the dynamics of H on R4 to a 
2-dimensional phase space.

The S1-action is generated by the vector field XH2
. Now H2 is preserved by its own flow, 

therefore the S1-action preserves I1 which defines a 3-sphere

{
(q,p ∈ R4

∣∣ h2 = I1 = 1
2 (q2

1 + p2
1 + q2

2 + p2
2)

}
.

As H and H2 Poisson commute, the flow of H also preserves this 3-sphere. Because of the 
syzygy I 2

1 = I 2
2 + I 2

3 + I 2
4 the projection mapping takes the flow of H to a 2-sphere in the 

reduced phase space; the reduced phase space is determined by I1 = h2, I 2
1 = I 2

2 + I 2
3 + I 2

4 . The 
reduced dynamics of H can simply be characterised by the level h of H . This means that an orbit 
of the reduced flow of H is determined by the equations

(H,H2) = (h,h2)

I 2
2 + I 2

3 + I 2
4 = h2

2 .

The reduced dynamics of H consists of curves on a 2-sphere. Note that in order to know the time 
parametrisation of these curves we still have to solve a generally difficult differential equation. 
But we do have a full geometric characterisation.

This leads us to the following. We consider the set of smooth S1-invariant mappings 
C∞(R4, R2)S

1
of the form (H, H2). The reduced dynamics of H is determined once we specify 

its value by (H, H2) = (h, h2). In the next section we address the question whether a polyno-
mial H exists such that this mapping is stable in the sense of singularity theory.

Remark 3.4.
1. For a far more complete account of general regular reduction see for example [1,2]. More 

details about the 1:1 resonance can be found in [7] where the projection mapping (3) is shown 
to be the Hopf mapping from S3 to S2.

2. Other resonances like k:l give rise to a different reduced phase space, having singularities. 
These arise from non-trivial isotropy subgroups of the S1-symmetry group in these cases. 
They again turn up in new generators with a higher order syzygy. In 4-dimensional reso-
nant Hamiltonian systems the situation is relatively simple, there are four generators and one 
syzygy. In higher dimensions both the number of generators and the number of syzygies de-
pend on the resonance, i.e. on the ratios k1 : k2 : · · · : kn, making it computationally difficult. 
Then the Gröbner basis algorithm is indispensable.
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Table 1
Poisson bracket of the real generators I
of the invariants.

{·, ·} I1 I2 I3 I4
I1 0 0 0 0
I2 0 0 −2I4 2I3
I3 0 2I4 0 −2I2
I4 0 −2I3 2I2 0

Both sides of the syzygy define a Casimir element, i.e. their Poisson brackets with the I

vanish. A straightforward calculation yields Table 1 of Poisson brackets.
The invariants from Lemma 3.2 are sometimes called Hopf variables. Indeed, I1 generates 

the S1-symmetry (2) and hence is an integral of motion for every Hamiltonian system with that 
symmetry. The Hopf mapping

(I2, I3, I4) : S3
2I1

−→ S2
I 2

1

from the 3-sphere

S3
2I1

=
{

(q,p) ∈ T ∗R2
∣∣ q2

1 + q2
2 + p2

1 + p2
2 = 2I1

}

to the 2-sphere

S2
I 2

1
=

{
(I2, I3, I4) ∈R3

∣∣ I 2
2 + I 2

3 + I 2
4 = I 2

1

}

performs the reduction to one degree of freedom by identifying points related through (2).
The phase portraits are obtained by intersecting, within R3, the level sets of the Hamiltonian 

H = H(I2, I3, I4) with S2. Where H is a Morse function, this yields finitely many centres and 
saddles, with no heteroclinic connections between the latter. Under variation of parameters local 
and global bifurcations may occur.

4. The universal unfolding

In this section we state our main theorem. First we provide a context for the theorem by 
introducing the notion of stable mappings under left-right-equivalence.

4.1. Equivalence classes for S1-invariant Hamiltonian systems

The meaning of ‘universal unfolding’ depends on the universe in which we work and the 
notion of equivalence. As explained in section 3.2 we consider Hamiltonian systems on R4 that 
are S1-invariant and can be reduced to S2. If we content ourselves with characterising the reduced 
dynamics of H by the orbits only we just need to specify values of H and H2. That is the orbits 
of the reduced Hamiltonian systems are the fibres of the mapping (H, H2). Note however that 
H2(I ) = I1 and H2 is an integral of the Hamiltonian system. So I1 is constant and therefore 
not to be considered as a variable but rather a parameter. Furthermore note that the fibres of 
the mappings (H, H2) and (H, H 2

2 ) are identical. Using the relation of the generators of the 
invariants I , we have H2(I )2 = I 2 = I 2 + I 2 + I 2. This leads us to define K(I) = H2(I )2 and 
1 2 3 4
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consider the mapping F(I ) = (H(I), K(I)) on our universe C∞(R4, R2)S
1

0 , the S1-invariant 
C∞-mappings from R4 to R2 taking (0, 0) to (0, 0).

A natural notion of equivalence on C∞(R4, R2)S
1

0 is provided by so called left-right-
equivalences, see Definition 4.1 below. For if F and G are left-right-equivalent then the fibres of 
F and G are diffeomorphic. This in turn implies that the orbits of the S1-invariant Hamiltonian 
systems in F = (H, K) and G = (H ′, K ′) can be mapped to each other by a simple diffeomor-
phism.

Definition 4.1. The mappings F, G ∈ C∞(R4, R2)S
1

0 are called left-right-equivalent if (ψ, φ) ∈
Diff(R2)0 × Diff(R4)S

1

0 exists such that (ψ, φ) ·F = G, where (ψ, φ) ·F = ψ ◦F ◦ φ.

4.1.1. Stable S1-invariant mappings, co-dimension and unfolding
The idea of stability of a mapping F is that every mapping G nearby F is equivalent to F , or 

put differently, that G is an element of the orbit of F under left-right-equivalence. Here we give 
a short overview in a series of definitions and theorems.

Definition 4.2. The orbit of F ∈ C∞(R4, R2)S
1

0 under left-right-equivalences is given by

OrbF = {(ψ,φ) ·F | (ψ,φ) ∈ Diff(R2)0 × Diff(R4)S
1

0 }.

To define ‘nearby’ we use the definition of a deformation.

Definition 4.3. A deformation (or unfolding) of a mapping F ∈ C∞(R4, R2)S
1

0 is a C∞-mapping 
F : R4 ×Rp −→R2 defining a family of S1-equivariant Fν , ν ∈ Rp , such that F0 =F .

This allows to formulate a parametric version of F being an interior point of the orbit of F .

Definition 4.4. A mapping F ∈ C∞(R4, R2)S
1

0 is called stable if for every deformation Fν there 
is an open neighbourhood U of 0 ∈Rp such that for all ν ∈ U , Fν ∈ OrbF .

The conditions of stability in this sense are hard to check. The conditions of infinitesimal 
stability are much easier to check and this notion of stability turns out to be equivalent with the 
previous one.

Definition 4.5. F is called infinitesimally stable if the tangent space of OrbF at F is equal to 
the tangent space of C∞(R4, R2)S

1

0 at F .

A proof of the next theorem can be found in [28].

Theorem 4.6. A mapping is stable if and only if it is infinitesimally stable.

Stable mappings form an open and dense subset of C∞(R4, R2)S
1

0 , see [32]. A mapping that 
fails to be stable has therefore non-zero co-dimension

Definition 4.7. Two deformations Fν and Gμ are left-right-equivalent if there are (ψν, φν) and 
μ(ν) with ψν ◦Fν ◦ φν = Gμ(ν).
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This allows to generalise the previous discussion of mappings to deformations.

Definition 4.8. A versal unfolding is a stable deformation.

The minimal number of parameters of a versal unfolding of a mapping F0 coincides for 
C∞(R4, R2)S

1

0 with the co-dimension of F0.

4.1.2. The tangent space of OrbF at (H, K)

Let X (R4) be the Lie algebra of Diff(R4)0 and X (R4)S
1

be the Lie algebra of Diff(R4)S
1

0 .

Lemma 4.9. The tangent space of OrbF , F ∈ C∞(R4, R2)S
1

0 , at (H, K) is given by

{X(F) + dF(Y ) | X ∈ X (R2), Y ∈X (R4)S
1}.

Proof. For every near-identity transformation (ψ, φ) ∈ Diff(R2)0 × Diff(R4)S
1

0 there exist X ∈
X (R2) and Y ∈X (R4)S

1
such that for some t ∈ R we have (ψ, φ) = (etX, etY ). Then the tangent 

vectors are d
dt

(etX ◦F ◦ etY )|t=0 = X(F) + dF(Y ). �
Taking a closer look at the tangent space of OrbF at F = (H, K) in Lemma 4.9; we explicitly 

have

X(F) + dF(Y ) = (X1(H,K) + Y(H),X2(H,K) + Y(K)). (4)

In this expression X is any vector field on R2, but Y is an S1-equivariant vector field on R4. 
Using Theorem 4.6 we have to check that every S1-equivariant map germ can be written as 
(X1(H, K) + Y(H), X2(H, K) + Y(K)) for a suitable choice of X and Y .

4.1.3. The restricted tangent space of OrbF at (H, K)

The S1-equivariant vector fields are such that Y(K) can be any function of degree 2 and 
higher in the set of S1-invariant functions on R4. This follows from an explicit calculation of 
these vector fields in section 5.2. Thus the stability of F is determined by the first component. 
More precisely we have the following.

Proposition 4.10. The co-dimension of (H, K) in C∞(R4, R2)S
1

0 with the full group of left-

right-equivalences is equal to the co-dimension of H in C∞(R4)S
1

0 with the group of left-right-
equivalences that fix K .

Therefore we restrict to vector fields in Y ∈ X (R4)S
1

such that X2(H, K) + Y(K) = 0. Or, 
from a slightly different point of view, we look for a normal form of the mapping F = (H, K). 
But the second component can already be regarded as being in normal form. Therefore we may 
restrict to transformations that preserve K , that is X2(H, K) + Y(K) = 0.

Lemma 4.11. The set of S1-equivariant vector fields Y with Y(K) ∈ R[[H, K]]0 can be decom-
posed as the direct sum of two modules. The first is a module over R[[I ]]0/∼ and consists of 
vector fields Y ∈X (R4)S

1
taking K to zero. The second is a module over R[[H, K]]0, generated 

by vector fields Y ∈ X (R4)S
1

taking K to K or to H .
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Proof. S1-equivariant vector fields Y such that Y(K) ∈ R[[H, K]]0 are generated by
S1-equivariant vector fields satisfying one of the three equations Y(K) = 0, Y(K) = K and 
Y(K) = H . �

From now on we consider the restricted tangent space of OrbH under left-right-transforma-
tions and we call it T1. The restricted tangent space of OrbH is again the sum of two (function) 
modules J ⊕M. Suppose U1, · · · , Uk generate the solutions of Y(K) = 0 and V1 and V2 solve 
Y(K) = K and Y(K) = H , respectively. Furthermore let Fi = Ui(H) for i ∈ {1, . . . , k} and 
Gj = Vj (H) for j ∈ {1, 2}. Then we have the following.

Lemma 4.12. The restricted tangent space of OrbH is the sum of two modules J ⊕M, the first 
is a module over R[[I ]]0/∼ and the second is a module over R[[H, K]]0. That is, every function 
f in the tangent space of OrbH is of the form f = ξ1F1 + · · ·+ ξkFk + η0 + η1G1 + η2G2, with 
ξi ∈R[[I ]]0/∼ and ηi ∈R[[H, K]]0.

Thus the question about the co-dimension and universal unfolding of the mapping F ∈
C∞(R4, R2)S

1

0 reduces to finding the co-dimension and a complement of the first component 
of the tangent space of F with respect to restricted left-right transformations. This in turn can be 
reformulated as follows. Let G be the mapping

G :
(
C∞(R4,R)S

1

0

)k ×
(
C∞(R2,R)

)3

0
−→ C∞(R4,R)S

1

0

(ξ1, . . . , ξk, η0, η1, η2) 	→ X1(H,K) + Y(H)
.

Then the questions we want to answer are:
1. What is the co-dimension of the image of G in R[[I ]]0/∼ ?
2. If the latter is nonzero, then what is a complement?

4.2. Statement of main theorem

Our main theorem is about the universal unfolding of the mapping (H, K) : C∞(R4)S
1

0 −→
R2 with respect to restricted left-right-equivalence from the previous section. That is we consider 
all left-right transformations that preserve K = H 2

2 . As explained in section 1.2 we are interested 
in the fibres of the mapping (H, K). For this mapping we have the following result.

Theorem 4.13. The universal unfolding of the mapping (H, K) with respect to restricted left-
right-equivalence is given by

H(I ;μ) = I1 + a1I
2
2 + a2I

2
3 + a3I

2
4 + b1I

3
2 + b2I

3
3 + b3I

3
4

+ μ1I2 + μ2I3 + μ3I4 + μ4I
3
2 + μ5I

3
3

K(I) = I 2
2 + I 2

3 + I 2
4

provided that the real coefficients a1, a2, a3 and b1, b2 and b3 satisfy the non-degeneracy condi-
tion

(a1 − a2)(a2 − a3)(a3 − a1) b1b2b3 �= 0.
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The parameters μ4 and μ5 are moduli.

5. Proof of main theorem

We now prove our main theorem. Our starting point is the mapping F = (H, K). We split the 
higher order terms of H into two parts, H4 is of degree 2 in I , H6 is of degree 3.

The proof consists of several steps which we now list.

1) Apply preliminary transformations to F to get rid of as many coefficients as possible.
2) Determine the tangent space of OrbF at F .
3) Find the S1-equivariant vector fields on R4.
4) Observe that we can restrict to the first component of F using restricted vector fields.
5) Observe that we can proceed by degree when we split C∞(R4, R)S

1

0 as a direct sum of spaces 
of homogeneous polynomials. The cases of relative large degree turn out to be the easiest. 
Then we are left with a finite number of low degree cases that have to be treated separately.

5.1. Preliminary transformations

We start with the mapping F = (H, K), where H is a polynomial of degree 3 in I , that is H =
H2 +H4 +H6. We assume that symplectic transformations already have been used exhaustively. 
But since we consider F in a more general context, more transformations are allowed.

The first observation is that we can always subtract H2 from H because H2 is a conserved 
function in the sense of Hamiltonian systems. Thus we have H = H4 + H6. Furthermore, since 
H2(I ) = I1 we consider I1 as a parameter. Therefore I1 appears at most in the coefficients of H . 
So in fact H and K only depend on I2, I3 and I4, without further restrictions or relations.

K(I2, I3, I4) = I 2
2 + I 2

3 + I 2
4

H4(I2, I3, I4) = a1I
2
2 + a2I

2
3 + a3I

2
4 + a23I2I3 + a24I2I4 + a34I3I4

H6(I2, I3, I4) = b1I
3
2 + b2I

3
3 + b3I

3
4

The second observation is that by a transformation from id × SO(3) we can always achieve 
a23 = 0, a24 = 0 and a34 = 0. Note that such a transformation preserves both K and the relation 
I 2

1 = I 2
2 + I 2

3 + I 2
4 .

Remark 5.1. We may include more third degree terms in H6, like I2I
2
4 . However, they turn out 

to be unimportant.

5.2. S1-equivariant vector fields

Considering the mapping (H, K) instead of (H, H2) where I1 is a parameter, we take I2, I3

and I4 as co-ordinates on R3 without any restrictions. Now (H, K) is a mapping in C∞(R3, R2)0. 
Origin preserving transformations on R3 are generated by the vector fields
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X1 = I2
∂

∂I2
,X2 = I3

∂
∂I2

,X3 = I4
∂

∂I2
,

X4 = I2
∂

∂I3
,X5 = I3

∂
∂I3

,X6 = I4
∂

∂I3
,

X7 = I2
∂

∂I4
,X8 = I3

∂
∂I4

,X9 = I4
∂

∂I4
.

(5)

To define the restricted tangent space of the mapping F we have to find the vector fields solving 
X(K) = 0, X(K) = K and X(K) = H .

Lemma 5.2. The vector fields solving X(K) = 0 are generated by

U1 = X2 − X4, U2 = X3 − X7, U3 = X6 − X8.

The vector fields solving X(K) = K and X(K) = H respectively are generated by

V1 = 1
2 (X1 + X5 + X9)

V2 = 1
2 ((a1 + b1I2)X1 + (a2 + b2I3)X5 + (a3 + b3I4)X9).

Proof. Let X = 1
2

∑9
i=1 ξiXi then

X(K) = ξ1I
2
2 + ξ5I

2
3 + ξ9I

2
4 + (ξ2 + ξ4)I2I3 + (ξ3 + ξ7)I2I4 + (ξ6 + ξ8)I3I4

and after some straightforward calculations the results follow. �
5.3. The structure of the restricted tangent space

The restricted tangent space T1, see section 4.1.3, is the sum of a module M and an ideal J
both subsets of R[[I2, I3, I4]]0. M is a module over R[[H, K]]0 and generated by the functions 
1, G1 and G2. J is the ideal generated by F1, F2, F3. So if f ∈ T1 then f = ξ1F1 + ξ2F2 +
ξ3F3 + η0 + η1G1 + η2G2, with ξi ∈R[[I2, I3, I4]]0 and ηi ∈ R[[H, K]]0.

In Lemma 5.2 we defined the vector fields U1, U2, U3, V1 and V2. Thus we know the genera-
tors of J and M

F1 := U1(H) = (a1 − a2)I2I3 + h.o.t.

F2 := U2(H) = (a1 − a3)I2I4 + h.o.t.

F3 := U3(H) = (a2 − a3)I3I4 + h.o.t.

G1 := V1(H) − H = H6(I2, I3, I4)

G2 := V2(H) = a2
1I 2

2 + a2
2I 2

3 + a2
3I 2

4 + h.o.t.

Defining G1 as V1(H) −H instead of V1(H) is just convenient but not essential. In the definition 
above we only show the leading terms of F1, . . . , G2.

In principle each term in f ∈ R[[I2, I3, I4]]0 is an infinite series, but with a term of lowest 
degree. For our purposes it makes sense to call this the degree of f and the term with lowest 
degree the leading term. Recall that the degree is at least 1 as we only consider formal series 
without constant term. Before using this to define a filtration on T1 we formally define the degree 
of f and the leading term.
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Definition 5.3. For 0 �= f ∈ R[[I2, I3, I4]]0 we define the degree of f as k ∈ N for which 
0 < limt→0 t−kf (tI ) < ∞. Suppose k = degree(f ) then we call L(f ) = limt→0 t−kf (tI ) the 
leading term of f .

The following properties of degree and leading term are almost obvious.

Lemma 5.4. Let f and g be functions (germs) in R[[I2, I3, I4]]0 and let m and n be monomials 
in R[[I2, I3, I4]]0, then

i) if m(I) = I l then degree(m) = |l| := l1 + l2 + l3
ii) if degree(m) < degree(n) then degree(m + n) = degree(m) and L(m + n) = m

iii) degree(f + g) = min(degree(f ), degree(g)) and if degree(f ) < degree(g) then L(f + g) =
L(f )

iv) degree(f · g) = degree(f ) · degree(g) and L(f · g) = L(f )L(g)

With this notion of degree we define a filtration on R[[I2, I3, I4]]0. Since J and M are subsets 
of R[[I2, I3, I4]]0 they immediately inherit the filtration.

Definition 5.5. For k ∈ N>0 let Rk be the set {f ∈ R[[I2, I3, I4]]0 | degree(f ) = k}. Then we 
have Rk+1 ⊂ Rk and R1 = R[[I2, I3, I4]]0, therefore Rk is a filtration of R[[I2, I3, I4]]0. Simi-
larly {Jk} and {Mk} are filtrations.

Remark 5.6. As an analogy of a Gröbner basis for polynomial ideals, see [4], we could hope that 
T1 is generated by L(F1), L(F2), L(F3), 1, L(G1), L(G2) in the following sense: every f ∈ T1 can 
be written as ξ1L(F1) + ξ2L(F2) + ξ3L(F3) + η0 + η1L(G1) + η2L(G2), with ξi ∈ R[[I2, I3, I4]]0
and ηi ∈ R[[H, K]]0.

5.4. Splitting into homogeneous parts

Since the co-dimension of F as a smooth mapping is the same as the co-dimension of the 
mapping as a formal power series, we can simplify the problem by looking at homogeneous 
functions and add the co-dimensions found for each degree starting at degree one. This is carried 
out in the following chain of assertions.

Let Hk(I2, I3, I4) be the set of all homogeneous functions of degree k in I2, I3 and I4. In fact 
we have Hk(I2, I3, I4) = Rk/Rk+1. Furthermore let Hk(H, K) be the set of all homogeneous 
functions of degree k in K and H , then Hm(H, K) ⊂ R2m. Since Hm(H, K) is not homogeneous 
in I we use a projection k : Rk → Hk(I2, I3, I4) selecting the homogeneous part of a function 
f ∈ Rk . The following general result leaves us with a small number of cases.

Proposition 5.7. The co-dimension of k(T1) in Hk(I2, I3, I4) is zero for k = 4 and k ≥ 6. Or, 
put differently, the mapping (odd degree)

H2m−1(I2, I3, I4)
3 ×Hm−1(H,K) →H2m+1(I2, I3, I4) :

(ξ1, ξ2, ξ3, η1) 	→ 2m+1
(
ξ1L(F1) + ξ2L(F2) + ξ3L(F3) + η1L(G1)

)

is onto for m ≥ 3 and also the mapping (even degree)
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H2m−2(I2, I3, I4)
3 ×Hm(H,K) ×Hm−1(H,K) →H2m(I2, I3, I4) :

(ξ1, ξ2, ξ3, η0, η2) 	→ 2m

(
ξ1L(F1) + ξ2L(F2) + ξ3L(F3) + η0 + η2L(G2)

)

is onto for m ≥ 2.

Thus we have to investigate degrees 1, 2, 3 and 5 separately. First we prove Proposition 5.7 in 
three lemmas. In order to do so it is useful to introduce some notation, which is motivated by the 
fact that the projection of ξ1L(F1) + ξ2L(F2) + ξ3L(F3) on 〈I k

2 , I k
3 , I k

4 〉 is always zero.

Definition 5.8. The space Hk(I2, I3, I4) has a monomial basis denoted by bk = {. . . , I k
2 , I k

3 , I k
4 }. 

Let b�
k be the set of monomials I k

2 , I k
3 and I k

4 . Furthermore let b�
k be the set of monomials in bk

with the monomials in b�
k excluded. Finally let B�

k be the subspace of Hk(I2, I3, I4) spanned 

by b
�
k , similarly B�

k is spanned by b
�
k .

The next three lemmas treat different parts of Proposition 5.7. The following lemma shows 
that the mapping from Hk−2(I2, I3, I4)

3 to B
�
k is onto for each k ≥ 2. Thus we get rid of the first 

factor of the mapping in Proposition 5.7. Later on we use this lemma again for the remaining low 
degree cases.

Lemma 5.9. The mapping Hk−2(I2, I3, I4)
3 → B

�
k : (ξ1, ξ2, ξ3) 	→ ξ1L(F1) + ξ2L(F2) + ξ3L(F3)

is onto provided that a1 − a2 �= 0, a2 − a3 �= 0 and a3 − a1 �= 0 and k ≥ 2.

Proof. Every monomial in B�
k can be written as either I lI2I3, I lI3I4 or I lI2I4 for some multi-

index l with |l| = k−2. Therefore every f ∈ B
�
k can be expressed as ξ1L(F1) +ξ2L(F2) +ξ3L(F3)

for some ξi ∈ Hk−2(I2, I3, I4), but only if a1 − a2 �= 0, a2 − a3 �= 0 and a3 − a1 �= 0. If for ex-
ample a1 − a2 = 0, then I2I3 /∈ T1. �

The following two lemmas show that the second factor of the mapping in Proposition 5.7
maps onto B�

k , but we have to distinguish the odd and even degree cases.

Lemma 5.10 (Odd degree). The mapping Hm−1(H, K) → H2m+1(I2, I3, I4) : η1 	→
2m+1

(
η1L(G1)

)
followed by projection on B�

2m+1 is onto provided that a1 −a2 �= 0, a2 −a3 �= 0, 
a3 − a1 �= 0 and b1b2b3 �= 0 and m ≥ 3.

Proof. The projection of the functions Km−1L(G1), Km−2HL(G1), . . . , Hm−1L(G1) on B�
2m+1

is given by the vectors in the matrix

⎛
⎜⎝

b1 a1b1 a2
1b1 am−1

1 b1

b2 a2b2 a2
2b2 . . . am−1

2 b2

b3 a3b3 a2
3b3 am−1

3 b3

⎞
⎟⎠

which has rank three as soon as the conditions are met. �
Finally we state and prove a lemma for the even degree case.
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Lemma 5.11 (Even degree). The mapping Hm(H, K) × Hm−1(H, K) → H2m(I2, I3, I4) :
(η0, η2) 	→ 2m

(
η0 +η2L(G2)

)
followed by projection on B�

2m is onto provided that a1 −a2 �= 0, 
a2 − a3 �= 0 and a3 − a1 �= 0 and m ≥ 2.

Proof. The projection of the functions

Km,Km−1H, . . . ,Hm,Km−1L(G2),K
m−2HL(G2), . . . ,H

m−1L(G2)

on B
�
2m is given by the vectors in the matrix

⎛
⎜⎝

1 a1 a2
1 am

1

1 a2 a2
2 . . . am

2

1 a3 a2
3 am

3

⎞
⎟⎠ (6)

which has rank three as soon as the conditions are met. �
With these three lemmas we prove Proposition 5.7.

Proof of Proposition 5.7. The odd degree part of the proposition is covered by combining 
Lemmas 5.9 and 5.10 showing that the product mapping is onto H2m+1(I2, I3, I4). Similarly 
combining Lemmas 5.9 and 5.11 shows that in case of even degree the product mapping is 
onto H2m(I2, I3, I4). �

Finally we consider the remaining cases: degrees 1, 2, 3 and 5. In all cases we follow the 
same pattern, we determine the co-dimension of k

(
ξ1F1 + ξ2F2 + ξ3F3 + η0 + η1G1 + η2G2

)
in Hk(I2, I3, I4) for k ∈ {1, 2, 3, 5}. But in view of Lemma 5.9 we only have to consider the 
projection on B

�
k . The main result of this part is the next proposition.

Proposition 5.12. A complement of T1 in R is spanned by the functions 〈I2, I3, I4, I 3
2 , I 3

3 〉 or 
〈I2, I3, I4, I 3

2 , I 3
4 〉 or 〈I2, I3, I4, I 3

3 , I 3
4 〉 as a linear space.

We prove this proposition in several lemmas. The following lemma is immediately clear.

Lemma 5.13 (Degree one). A monomial basis of functions of degree one is {I2, I3, I4}. Since T1

does not contain functions of degree one, the co-dimension in this space is three and a comple-
ment is B�

1 itself.

Thus we get unfolding terms: μ1I2, μ2I3 and μ3I4.

Lemma 5.14 (Degree two). Functions of degree two with a nonzero projection on B�
2 are K , H

and G2. These three functions are independent a soon as (a1 − a2)(a2 − a3)(a3 − a1) �= 0.
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Proof. The projection of K , H and G2 onto B�
2 is given by the matrix

A
�
2 =

⎛
⎜⎝

1 a1 a2
1

1 a2 a2
2

1 a3 a2
3

⎞
⎟⎠ ,

cf. (6). The determinant of A�
2 is (a1 − a2)(a2 − a3)(a3 − a1). �

Lemma 5.15 (Degree three). There is only one function in T1 with a nonzero projection on B
�
3 , 

namely G1. Thus the co-dimension of T1 in the space of homogeneous functions of degree three 
is two. As a complement any pair of I 3

2 , I 3
3 and I 3

4 will do. We take for example μ4I
3
2 and μ5I

3
3

as unfolding terms, then we must impose the condition b3 �= 0.

Proof. The projection of G1, μ4I
3
2 and μ5I

3
3 on B

�
3 is given by the matrix

A
�
3 =

⎛
⎝b1 μ4 0

b2 0 μ5
b3 0 0 �

⎞
⎠

Lemma 5.16 (Degree five). There are only two functions of degree five in T1, namely KG1

and HG1, with a nonzero projection on B
�
5 . However, a function F5 ∈ T1 exists such that 

k

(
F5

) = 0 for k ≤ 4 and 5
(
F5

) �= 0. With F5 the co-dimension of T1 in the space of ho-
mogeneous functions of degree five is zero, provided that (a1 −a2)(a2 −a3)(a3 −a1)b1b2b3 �= 0.

Proof. Let

F5 = ξ1I2I3F1 + ξ2I2I4F2 + ξ3I3I4F3 + η01K
2 + η02KH + η03H

2 + η21KG2 + η22HG2

be a function of degree 4, with ξ1, . . . , η22 ∈ R. Then a non-trivial solution of 4
(
F5

) = 0 exists 

while 5
(
F5

) �= 0. The projection of the functions 5
(
KG1

)
, 5

(
HG1

)
and 5

(
F5

)
onto B

�
5

has the matrix

A
�
5 =

⎛
⎜⎝

b1 a1b1 −(a2
1 − a2a3 + a1(a2 + a3))b1

b2 a2b2 −(a2
2 − a1a3 + a2(a1 + a3))b2

b3 a3b3 −(a2
3 − a1a2 + a3(a1 + a2))b3

⎞
⎟⎠

and det(A�
5) = (a1 − a2)(a2 − a3)(a3 − a1)b1b2b3. �

The last lemma is about the modal parameters.

Lemma 5.17. Parameters μ4 and μ5 are moduli.

Proof. Let H(I ; μ) be as in the main Theorem 4.13. From the previous proofs it follows al-
most immediately that the unfoldings of (H(I ; 0, 0, 0, 0, 0), K) and (H(I ; 0, 0, 0, μ4, μ5), K)

are equal for small values of μ4 and μ5. Therefore μ4 and μ5 are moduli. �
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The proof of Theorem 4.13 follows from Proposition 5.7, Proposition 5.12 and Lemma 5.17.

Remark 5.18. As a by product we find that T1 is not generated by

L(F1),L(F2),L(F3),1,L(G1),L(G2).

See Remark 5.6.

6. Discussion

The dynamics of an n-degree-of-freedom Hamiltonian system locally around an elliptic equi-
librium at the origin is characterised by an n-tuple ω ∈ Rn of frequencies. When the frequencies 
satisfy an integer relation 〈m | ω〉 �= 0 with m ∈ Zn we say that the frequencies are resonant. For 
most equilibria the frequencies are non-resonant. However, when the system depends on param-
eters there are resonances at a dense subset of parameter values. Since low order resonances are 
accompanied by bifurcations the corresponding points in parameter space are of special interest.

Here we consider two-degree-of-freedom systems. In that case ω = (ω1, ω2), so ω is resonant 
if ω1/ω2 is an element of Q. We may assume without loss of generality that ω1 and ω2 are relative 
prime integers k and l at resonance. The linear part of the vector field is determined by ω = (k, l)
if k �= ±l. In linear Hamiltonian systems imaginary eigenvalues, in case the frequencies k, l have 
a sign. The sign is related to the Morse index of the Hamiltonian. Therefore a k:l resonance is 
not equivalent to a k:−l resonance; in particular the 1:1 and 1:−1 resonances are not equivalent. 
Moreover, eigenvalues with equal sign are always semi-simple, whereas the 1:−1 resonance can 
also be nilpotent. Thus there are three resonances with equal frequencies, namely the semi-simple 
1:−1, the nilpotent 1:−1 and the 1:1 resonance. The latter is always semi-simple. The nilpotent 
1:−1 resonance is what triggers the Hamiltonian Hopf bifurcation.

As indicated in the introduction the k:l resonances, with k, l ∈ N, are very similar. In particu-
lar, in the sense of section 4.1.1 the co-dimension is 2, provided that k:l is not equal to 1:1, 1:2
or 1:3. The last two exceptional cases have co-dimension 1 and 3, respectively. Thus all definite 
resonances except 1:1 have in common that they occur persistently in 1-parameter families and 
if more parameters are present these are moduli, see [10]. In this respect our case of the 1:1 res-
onance is very exceptional: its co-dimension is 5, it occurs persistently in 3-parameter families 
and two of the unfolding parameters are moduli. When we restrict to the linear unfolding, there 
is a transformation group acting on the unfolding. This can be used to reduce the number of 
parameters. Using invariants of this transformation group we find that one of the generators is 
μ2

1 + μ2
2 + μ2

3. Then in a reduced linear unfolding the 1:1 resonance occurs persistently in a 
1-parameter family, see [17] for more details.

Before applying singularity theory we reduce the S1-symmetric system using invariants. An-
other approach is that in [4] where the system is first reduced to a planar system. Then singularity 
theory using right equivalence is applied to obtain an unfolding. With a different notion of equiv-
alence one may expect different co-dimensions. In [4], by nature of the method, one finds lower 
bounds for the co-dimensions. For the resonances 1:2, 1:3 and 1:4 these lower bounds are com-
puted and they coincide with the co-dimensions found in [10], namely 1, 3 and 2, respectively. 
However, the non-degeneracy conditions of [4] and [10] differ. It would be interesting to compare 
both methods for the 1:1 resonance.

The results obtained so far are a starting point for extensions and applications. Let us list a few. 
In general, when a system passes a resonance upon varying one or more parameters, one expects a 
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bifurcation to occur. We see this phenomenon in the resonances mentioned earlier. Therefore we 
would like to explore the bifurcation scenario of the 1:1 resonance, or more general explore the 
geometry of level sets of the momentum mapping depending on parameters near 1:1 resonance. 
A similar program can be carried out for Hamiltonian systems in 1:1 resonance which are also 
reversible, see [25], or symmetric (other than the S1 symmetry induced by the 1:1 resonance). 
For a reversible unfolding with an additional Z2-symmetry see [26,27] and references therein.

For unfoldings with a single parameter λ ∈ R Theorem 4.13 yields a left–right equivalence 
with

H(I ;μ(λ)) = H(I) + μ1(λ)I2 + μ2(λ)I3 + μ3(λ)I4 + μ4(λ)I 3
2 + μ5(λ)I 3

3 .

In [30] 1-parameter unfoldings of H2 are studied that are invariant under the linear symplectic 
action of a compact symmetry group 	. In case the 1-parameter unfolding is universal with 
respect to 	-symmetric unfoldings it is shown that the bifurcation diagram is determined by the 
linear part — the moduli μ4(λ) and μ5(λ) can be removed, conforming to Lemma 5.17.

The unfolding of the semisimple 1:−1 resonance is similar to the unfolding of the 1:1 res-
onance, but the bifurcation scenario is most likely very different. A well-known system in 
1:1 resonance is the Hénon–Heiles system. Our original plan, to apply the unfolding and bifur-
cation results, now comes within reach. Furthermore we wish to relate our results to the results 
in a series of articles by Elipe, Lanchares et al. and Frauendiener [11,12,21–25] for families of 
S1-symmetric Hamiltonian systems. These are the subjects of future publications.
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