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BLOW-UPS IN GENERALIZED COMPLEX GEOMETRY

M. A. BAILEY, G. R. CAVALCANTI, AND J. L. VAN DER LEER DURÁN

Abstract. We study blow-ups in generalized complex geometry. To that end
we introduce the concept of holomorphic ideals, which allows one to define
a blow-up in the category of smooth manifolds. We then investigate which

generalized complex submanifolds are suitable for blowing up. Two classes
naturally appear: generalized Poisson submanifolds and generalized Poisson
transversals. These are submanifolds for which the geometry normal to the
submanifold is complex, respectively symplectic. We show that generalized
Poisson submanifolds carry a canonical holomorphic ideal, and we give a nec-
essary and sufficient condition for the corresponding blow-up to be generalized
complex. For generalized Poisson transversals we prove a normal form theo-
rem for a neighborhood of the submanifold and use it to define a generalized
complex blow-up.
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1. Introduction

The notion of blowing up was invented by algebraic geometers in the study of
birational transformations. Although it is unclear to the authors when and by
whom precisely the notion of blowing up was invented, Zariski [18] introduced it in
modern language and used it to study singularities. This work culminated in results
by Abhyankar and Hironaka on resolutions of singularities in all dimensions. Later
Hopf [12] introduced the corresponding notion in the context of complex analytic
geometry. Blowing up a submanifold preserves the class of Kähler manifolds, and it
was pointed out by Gromov in [9] that it can be defined in the symplectic category
as well. This was then used by McDuff in [15] to produce examples of simply-
connected non-Kählerian symplectic manifolds.
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The fact that blow-ups exist in both complex and symplectic geometry naturally
raises the question whether the same is true in generalized complex geometry, a con-
cept introduced by Hitchin and developed by Gualtieri [10] and which unifies com-
plex and symplectic structures into one framework. This question was first investi-
gated in [7], where it was shown that a blow-up exists for a non-degenerate point of
complex type in a generically symplectic 4-manifold. This was then used to produce
new examples of generalized complex structures on the manifolds mCP2#nCP2 for
m odd.

In this paper we study blow-ups in generalized complex geometry. The first step
is to understand which submanifolds are suitable for blowing up. In the complex and
symplectic categories these are the complex, respectively symplectic, submanifolds.
There are a number of possible ways to define a generalized complex submanifold,
and the one which we will use has complex and symplectic submanifolds as special
examples. However, for blowing up this notion is too general, and we will restrict
ourselves to two special subclasses. The first are the generalized Poisson submani-
folds, where the geometry normal to the submanifold is complex. Using the normal
form theorem of the first author [2] we prove that these submanifolds come nat-
urally equipped with a special ideal which gives them a holomorphic flavor, and
we use that to construct the blow-up as a differentiable manifold. The question
of whether this blow-up has a generalized complex structure for which the blow-
down map is holomorphic then boils down to the analogous question in the context
of holomorphic Poisson geometry. This has been answered by Polishchuk in [16],
and, building on that, we give necessary and sufficient conditions for blowing up a
generalized Poisson submanifold.

The second class of submanifolds comprises the generalized Poisson transversals,
where the geometry normal to the submanifold is symplectic. As in the symplectic
category, to blow them up we first need a normal form for the generalized complex
structure in a neighborhood of the submanifold. Such a neighborhood theorem was
constructed in [8] in the context of Poisson geometry, and it has a direct counterpart
in our setting. We then blow up the submanifold globally. An elegant way to
perform this last step uses reduction methods, just as the symplectic blow-up can
be performed using symplectic cuts, as shown in [13]. In contrast with generalized
Poisson submanifolds, the blow-up is not canonical but depends on some additional
choices. This is also the case for blow-ups in symplectic geometry, for even if one
specifies the symplectic volume of the exceptional divisor, it is not known in general
whether the blow-up is unique up to symplectomorphism.

Organization: In Section 2 we briefly review all the necessary ingredients from
generalized complex geometry that are needed in the paper. Most of this material
is due to [10], and all statements without explicit references are from there. We
then proceed in Section 3 to the blow-up procedure. We first define the notion of
a holomorphic ideal and argue that this is the natural input to define a blow-up
procedure in the category of smooth manifolds. Then, in Section 3.1 we introduce
generalized Poisson manifolds and explain the extra assumptions that are needed
for the blow-up. In Section 3.2 we define generalized Poisson transversals, give
a normal form for their neighborhoods, and use it to blow them up. Finally, in
Section 3.3 we discuss other types of generalized complex submanifolds and give a
concrete example of one that cannot be blown-up.
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BLOW-UPS IN GENERALIZED COMPLEX GEOMETRY 2111

2. Generalized complex geometry

Let M be a real 2n-dimensional manifold equipped with a closed real 3-form H.
The main idea of generalized geometry is to replace the tangent bundle TM by
the bundle TM := TM ⊕ T ∗M . The latter carries two natural structures, the first
being a fiberwise natural pairing

〈X + ξ, Y + η〉 := 1

2
(ξ(Y ) + η(X)),

which is a non-degenerate metric of signature (2n, 2n). The second is a bracket
on its space of sections which replaces the Lie bracket and is called the Courant
bracket. It is given by

�X + ξ, Y + η� := [X,Y ] + L
X
η − ι

Y
dξ − ι

Y
ι
X
H.

This version of the Courant bracket is not skew-symmetric but does satisfy the
Jacobi identity.

Definition 2.1. A generalized complex structure on (M,H) is a complex structure
J on TM which is orthogonal with respect to the natural pairing and whose (+i)-
eigenbundle L ⊂ TMC is involutive.1

A Lagrangian, involutive subbundle L ⊂ TMC is also called a Dirac structure,
and it follows from the definition that generalized complex structures correspond
in a one-to-one fashion with Dirac structures L satisfying the non-degeneracy con-
dition L ∩ L̄ = 0.

Example 2.2. The main examples are provided by complex and symplectic geom-
etry:

JI =

(
−I 0
0 I∗

)
, Jω =

(
0 −ω−1

ω 0

)
.(2.1)

The associated Dirac structures are given by LI = T 0,1M ⊕ T ∗1,0M , where T 0,1M
denotes the (−i)-eigenbundle of I, and Lω = {X − iω(X)| X ∈ TMC}. Another
important example is provided by a holomorphic Poisson structure (I, σ). If σ =
Q− iIQ, then

Jσ =

(
−I 4IQ
0 I∗

)
(2.2)

is generalized complex, with Dirac structure LI,σ = {X + σ(ξ) + ξ|X ∈ T 0,1M,
ξ ∈ T ∗1,0M}. In these examples the 3-form is taken to be 0.

A useful way to look at generalized complex structures is through spinors. There
is a natural action of the Clifford algebra of (TM, 〈, 〉) on differential forms given
by

(X + ξ) · ρ = ι
X
ρ+ ξ ∧ ρ,

yielding an identification between the space of differential forms and the space of
spinors for Cl(TM, 〈, 〉). A line subbundle K ⊂ Λ•T ∗MC gives rise to an isotropic
subbundle L ⊂ TMC by taking its annihilator

L = {X + ξ ∈ TMC|(X + ξ) ·K = 0}.

1A subbundle of TM is called involutive if its space of sections is closed with respect to the
Courant bracket.
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This gives rise to a one-to-one correspondence between Dirac structures L ⊂ TMC

and complex line bundles K ⊂ Λ•T ∗MC which satisfy the following two conditions.
Firstly, K has to be generated by pure spinors, i.e., forms ρ which at each point x
admit a decomposition

ρx = eB+iω ∧ Ω,(2.3)

where B + iω is a 2-form and Ω is decomposable. This condition is equivalent to
L being of maximal rank. Secondly, if ρ is a local section of K there should exist
X + ξ ∈ Γ(TMC) with

dHρ = (X + ξ) · ρ.
This condition amounts to the involutivity of L. The condition L ∩ L̄ = 0 can
then be expressed in spinor language using the Chevalley pairing : If ρ ∈ Γ(K) is
non-vanishing, then

L ∩ L̄ = 0 ⇐⇒ (ρ, ρ̄)
Ch

:= (ρ ∧ ρ̄T )top �= 0.

The superscript T stands for transposition, acting on a degree l-form by (β1 ∧ . . .∧
βl)

T = βl∧ . . .∧β1, and the subscript top stands for the highest degree component.
If ρ is given by (2.3) at a particular point x, then this condition becomes

ωn−k ∧ Ω ∧ Ω̄ �= 0,(2.4)

where 2n is the real dimension of M and k = deg(Ω). The line bundle K associated
to a generalized complex structure J is called the canonical line bundle, and the
integer k appearing in (2.4) is called the type of J at x. Structures of type 0 are
called symplectic, and those of maximal type n complex.2 Another description of
the type is as follows. Every generalized complex structure naturally induces a
Poisson structure given by the composition

πJ : T ∗M ↪→ TM
J−→ TM � TM.(2.5)

The conormal bundle to the leaves, i.e., the kernel of πJ , is given by the complex
distribution

νJ := T ∗M ∩ J (T ∗M).

Note that νJ might be singular as its complex dimension can jump in even steps
from one point to the next. The type at a point x is then given by

typex(J ) = dimC(νJ )x =
1

2
corankR(πJ )x.

Having laid out the relevant geometric structures we need to define morphisms
between them.

Definition 2.3. A generalized map between (M1, H1) and (M2, H2) is a pair Φ :=
(ϕ,B), where ϕ : M1 → M2 is a smooth map and B ∈ Ω2(M1) satisfies ϕ∗H2 =
H1 + dB.

2The reason being that they are equivalent to symplectic or complex structures, where equiv-
alence is defined in Definition 2.4.
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BLOW-UPS IN GENERALIZED COMPLEX GEOMETRY 2113

We will often abbreviate (ϕ, 0) by ϕ and drop the prefix “generalized”. An
important role is played by B-field transformations, maps of the form3 (Id,−B) =:
eB∗ . They act on TM via

eB∗ : X + ξ 
→ X + ξ − ιXB.(2.6)

Given u ∈ Γ(TM) we denote by ad(u) : Γ(TM) → Γ(TM) the adjoint action with
respect to the Courant bracket. This infinitesimal symmetry has a flow, i.e., a
family of isomorphisms ψt : TM → TM characterized by the equation

d

dt
ψt(v) = −�u, ψt(v)�.

Concretely, if u = X + ξ and ϕt denotes the flow of X, then

ψt = (ϕt)∗ ◦ e
−

∫ t
0
Bsds

∗ ,(2.7)

where Bs := ϕ∗
s(dξ + ι

X
H). A map Φ = (ϕ,B) gives rise to a correspondence

X + ξ ∼
Φ
Y + η

def⇐⇒ ϕ∗X = Y, ξ = ϕ∗η − ι
X
B.

Definition 2.4. A map Φ : (M1, H1,J1) → (M2, H2,J2) is called generalized
holomorphic if

X + ξ ∼
Φ
Y + η =⇒ J1(X + ξ) ∼

Φ
J2(Y + η).

It is called an isomorphism if it is in addition invertible.

Remark 2.5. It follows immediately from the definition that ϕ is a Poisson map,
i.e., ϕ∗πJ1

= πJ2
. This is quite restrictive; for example if the target is symplectic,

then ϕ has to be a submersion. In the complex category we recover the usual notion
of holomorphic maps.

In case ϕ is a diffeomorphism a more concrete description in terms of spinors can
be given. If Ki is the canonical bundle for Ji, Φ being an isomorphism amounts to

K1 = eB ∧ ϕ∗K2.

We now state the analogue of the Newlander-Nirenberg and Darboux theorems in
generalized complex geometry.

Theorem 2.6 ([2]). Let (M,H,J ) be a generalized complex manifold. If x ∈ M is
a point where J has type k, then a neighborhood of x is isomorphic to a neighborhood
of (0, 0) in

(R2n−2k, ωst)× (Ck, σ),(2.8)

where ωst is the standard symplectic form, σ is a holomorphic Poisson structure
which vanishes at 0, and the 3-form is zero.

Finally we come to the notion of a generalized complex submanifold. For this
the notion of holomorphic map as defined above is actually too restrictive. Let
Φ = (ϕ,B) be a map and let L2 be a Dirac structure on (M2, H2). We define the
backward image of L2 along Φ by

BΦ(L2) := {X + ϕ∗ξ − ι
X
B|ϕ∗X + ξ ∈ L2} ⊂ TM1.(2.9)

3The minus sign is chosen so that eB ∧ ((X + ξ) · ρ) = (eB∗ (X + ξ)) · eB ∧ ρ.
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This is a Dirac structure on (M1, H1), provided it is a smooth vector bundle. A
sufficient condition for that is that ker(dϕ∗) ∩ ϕ∗L is of constant rank. Similarly,
the forward image of a Dirac structure L1 on (M1, H1) is given by

FΦ(L1) := {ϕ∗X + ξ|X + ϕ∗ξ − ιXB ∈ L1} ⊂ ϕ∗TM2.

This will be smooth if ker(ϕ∗) ∩ e−B
∗ L has constant rank and projects down to

M2 if it is constant along the fibers of ϕ. In case ϕ is a diffeomorphism we have
FΦ(L) = ϕ∗(e

−B
∗ (L)). A more detailed description of forward and backward images

in Dirac geometry, including proofs of the above statements, can be found in [5].

Definition 2.7. A generalized complex submanifold is a submanifold i : Y ↪→
(M,H,J ) such that Bi(L) is generalized complex, i.e., is smooth and satisfies

Bi(L) ∩Bi(L) = 0.

Remark 2.8. A sufficient condition for smoothness is that N∗Y ∩ J (N∗Y ) is of
constant rank. Moreover, the second condition is equivalent to J (N∗Y )∩(N∗Y )⊥ ⊂
N∗Y . In complex or symplectic manifolds we recover the usual notion of complex,
respectively symplectic, submanifolds. Also, a point is always a generalized complex
submanifold. Note that in the symplectic case the inclusion map is only generalized
holomorphic if Y is an open subset.

3. Blowing up submanifolds

Before considering blow-ups in generalized complex geometry we discuss the
notion of blowing up a submanifold in the general context of smooth manifolds.
We emphasize that the blow-ups that will be considered here refer to complex
blow-ups and in particular should not be confused with so-called real (oriented)
blow-ups.

Definition 3.1. Let M be a smooth manifold and let C∞
M be the sheaf of complex

valued smooth functions on M . Let Y ⊂ M be a closed4 submanifold of real
codimension 2l, with l ≥ 1. A holomorphic ideal for Y is an ideal sheaf IY ⊂ C∞

M

with the following properties:

(i) IY |M\Y = C∞
M |

M\Y .

(ii) Each y ∈ Y has a neighborhood U together with z1, . . . , zl ∈ IY (U), such
that z := (z1, . . . , zl) : U → Cl is a submersion with Y ∩ U = z−1(0),
and IY |U = 〈z1, . . . , zl〉.

A holomorphic ideal turns NY into a complex vector bundle via N∗YC = N∗1,0Y
⊕N∗0,1Y , where N∗1,0

y Y := 〈dyz| z ∈ IY 〉. Given a complex structure on NY there
are many holomorphic ideals inducing it, and one way to obtain them is as follows.
The zero section inNY carries a natural holomorphic ideal generated by Γ(N∗1,0Y ),
viewed as fiberwise linear functions on NY . We will call this ideal I linY . Using a
tubular embedding of NY into M we can then glue this ideal on NY to the trivial
ideal on M\Y . In fact, all holomorphic ideals for Y arise in this way.

Proposition 3.2. Let IY be a holomorphic ideal for Y , inducing a complex struc-
ture on NY . Then there exists a tubular embedding ι : NY → M such that
ι∗IY = I linY .

4Closed in the sense of topological subspace; we do not necessarily assume that Y is compact.
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Proof. Let κ : NY → M be a tubular embedding and consider κ∗IY , which is a
holomorphic ideal for Y on NY inducing the same complex structure5 on NY as
I linY . It suffices to show that there exists a diffeomorphism ϕ of NY defined in a
neighborhood of Y that fixes Y and satisfies ϕ∗κ∗IY = I linY . Then ι := κ ◦ϕ will be
the desired tubular embedding. We will construct ϕ on N1,0Y , which is isomorphic
as a complex vector bundle to NY .

Pick an open cover {Uα} of Y together with trivializing frames eα = (eα1 , . . . , e
α
k )

for N1,0Y over Uα, with k = codimC(Y ). Such a local frame induces an identifi-
cation q−1Uα

∼= Uα × Ck by letting (x, zα) ∈ Uα × Ck correspond to
∑

i z
i
αe

α
i (x).

Here q : N1,0Y → Y denotes the projection. Let eαi = (gαβ)
j
i eβj be the transition

on a double overlap Uα ∩ Uβ , so that in particular ziβ = (gαβ)
i
j z

j
α. By taking the

Uα sufficiently small we may assume that κ∗IY is generated, on a neighborhood of
Uα in q−1Uα, by functions w1

α, . . . , w
k
α. By assumption, we know that

dwi
α|Uα

= (hα)
i
jdz

j
α|Uα

(3.1)

for some family of invertible matrices hα on Uα. We may absorb hα in the local
frame eα and assume without loss of generality that hα = Id. Let {ρα} be a
partition of unity subordinated to {Uα}. The expression wαq

∗(ραe
α) defines a map

from a neighborhood of Y in N1,0Y to N1,0Y , given by

v 
→
∑
i

wi
α(v)ρα(q(v))e

α
i (q(v)).

It sends fibers to fibers and restricts to the identity on Y , and outside Uα it maps
all fibers to zero. Note that the same expression without the ρα would only be
defined over Uα. Define

ψ :=
∑
α

wαq
∗(ραe

α) : N1,0Y → N1,0Y,(3.2)

which is well-defined in a neighborhood of Y in NY . Again, this map is fiber
preserving and restricts to the identity on Y . We claim that its derivative along Y
is the identity, so that it induces a diffeomorphism of neighborhoods of Y in NY .
Indeed, to check this we look in a particular coordinate chart q−1Uα

∼= Uα × Ck.
There, ψ is given by

ψ : (x, ziα) 
→
(
x,

∑
β

ρβ(x)(gβα(x))
i
j (x)w

j
β(x, zα)

)
.(3.3)

Using (3.1) with hα = Id we see that

d
( ∑

β

ρβ(x)(gβα(x))
i
j w

j
β(x, zα)

)
|Y =

∑
β

ρβ(x)(gβα(x))
i
j dw

j
β(x, zα)|Y

=
∑
β

ρβ(x)dz
i
α|Y = dziα|Y ,

which implies that dψ|Y = Id; hence ψ is a local diffeomorphism around Y . From
the local expression (3.3) it is clear that ψ∗I linY = κ∗IY , so ϕ = ψ−1 is the desired
diffeomorphism. �

5This is because dκ|Y : T (NY )|Y → TM |Y induces the identity map on NY .
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The main point in the above proof is the construction of the map ψ in (3.2) which
relates any holomorphic ideal for Y on NY to its linearization. Since the functions
wα(t) := (1 − t)zα + twα all satisfy dwα(t)|Y = dzα|Y , the family ψt, defined by
the same equation as ψ but with wα replaced by wα(t), defines an isotopy from the
identity to ψ = ψ1 on a small enough neighborhood of Y in NY . Consequently,
if Y is compact we may use the isotopy extension theorem to obtain the following
corollary.

Corollary 3.3. If Y is compact and if IY and I ′Y are two holomorphic ideals for
Y that induce the same complex structure on NY , then there is a diffeomorphism
ϕ of M with ϕ∗IY = I ′Y .

We will mainly be interested in holomorphic ideals for smooth submanifolds, but
in order to state the definition of the blow-up we also consider singular submanifolds
of codimension 1.

Definition 3.4. A divisor on M is an ideal sheaf IY ⊂ C∞
M which locally can be

generated by a single function and whose zero set Y is nowhere dense in M .

Remark 3.5. To define the blow-up it is enough to work only with divisors whose
zero set Y is smooth. This is not necessary though, and working with general
divisors gives a slightly more general universal property in Definition 3.6 below.
The condition on Y being nowhere dense is necessary because we are working with
functions that are not necessarily analytic.

Equipped with these definitions we can define the notion of blowing up in the
same way as is usually done in algebraic geometry.

Definition 3.6. Let Y ⊂ M be a closed submanifold and let IY be a holomorphic

ideal for Y . The blow-up of IY in M is defined as a smooth manifold M̃ together

with a smooth blow-down map p : M̃ → M such that IỸ := p∗IY is a divisor and is
universal in the following sense: For any smooth map f : X → M such that f∗IY is

a divisor, there is a unique f̃ : X → M̃ such that the following diagram commutes:

X

f
��
��

��
��

��
f̃

�� M̃

p

��

M

Theorem 3.7. The blow-up (M̃, p) exists and is unique up to unique isomorphism.

Moreover, p : M̃\Ỹ → M\Y is a diffeomorphism, IỸ is smooth, and p : Ỹ → Y is

isomorphic to6 P(NY ) → Y .

Proof. By definition we can cover M by charts which are either disjoint from Y
or are of the form Cl × Rm with coordinates (z1, . . . , zl, x1, . . . , xm), where the
zi are as in Definition 3.1 (ii) and xi are coordinates on Y . If we can construct
the blow-up on each individual chart, then the universal property implies that all

the local constructions can be glued into the desired manifold M̃ . On a chart not
intersecting Y we do nothing as IY is already (trivially) a divisor there. On a chart

6Here P(NY ) denotes the complex projectivization ofNY with respect to the complex structure
on NY induced by the holomorphic ideal.
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BLOW-UPS IN GENERALIZED COMPLEX GEOMETRY 2117

U = Cl × Rm as above with Y ∩ U = {0} × Rm we define Ũ := C̃l × Rm and

p = (π, Id) : Ũ → U where π : C̃l → Cl is the blow-up of the origin. Recall that

C̃l = {(z, [x])|z ∈ [x]} ⊂ Cl × Pl−1

has a cover by l charts on which π has the form

(v1, . . . , vi−1, zi, vi+1, . . . , vl) 
→ (ziv1, . . . , zivi−1, zi, zivi+1, . . . , zivl)(3.4)

for i ≤ l. Now suppose that f : X → U is a map such that f∗(IY |U ) is a divisor

with nowhere dense zero set D. The desired lift f̃ : X → U is already uniquely
defined on X\D because π is an isomorphism over Cl\{0}, so we only have to show

that f̃ extends smoothly over D. To that end write f = (f1, . . . , f l, f ′1, . . . , f ′m),
so that f∗(IY |U ) = 〈f1, . . . , f l〉. By definition of being a divisor there exists, on
a neighborhood V of any x0 ∈ D, a function g with 〈g〉 = 〈f1, . . . , f l〉. Therefore
there exist ai, bi ∈ C∞(V ) with f i = aig and g =

∑
i bif

i, and so, since g �= 0 on a
dense set, we obtain

∑
i a

ibi = 1. In particular there is an index i0 such that, after

possibly shrinking V , ai0 is nowhere zero. The map f̃ : V \D → Ũ maps into the
chart (3.4) for i = i0, where it is necessarily of the form

f̃ : x 
→
( f1(x)

f i0(x)
, . . . , f i0(x), . . . ,

f l(x)

f i0(x)
, f ′1(x), . . . , f ′m(x)

)
.

Since f i/f i0 = ai/ai0 we see that f̃ indeed extends smoothly over the whole of
V and therefore over the whole of D. So, from the above discussion the blow-up

p : M̃ → M indeed exists and is unique. Its further mentioned properties are easily
verified from the construction. �
Remark 3.8. It follows from the universal property that the blow-up construction
is functorial; i.e., for any map f : (M1, IY1

) → (M2, IY2
) with f∗IY2

= IY1
, there

is a unique map f̃ : M̃1 → M̃2 making the obvious diagram commute. Note that
f∗IY2

= IY1
implies that the induced map df : NY1 → NY2 is complex linear and

injective. One case where this occurs is when f : M1 → (M2, IY2
) is transverse to

Y2. Then f∗IY2
is a holomorphic ideal for Y1 := f−1Y2.

If Y ⊂ M is a compact submanifold whose normal bundle NY is equipped with
a complex structure, then we obtain a holomorphic ideal for Y on M which, by
Corollary 3.3, is unique up to (non-canonical) diffeomorphism. In particular, we

can blow up Y in M to obtain another smooth manifold M̃ , which is unique up to
(non-canonical) diffeomorphism.

Definition 3.9. Let Y ⊂ M be a compact submanifold with complex normal

bundle. The blow-up M̃ of Y in M is defined as the blow-up with respect to any
holomorphic ideal inducing the given complex structure on NY .

Remark 3.10. We call M̃ the blow-up of Y in M , even though M̃ is only unique
up to non-unique diffeomorphism.

3.1. Generalized Poisson submanifolds. In this section we will look at general-
ized complex submanifolds for which the geometry in normal directions is complex.
The precise definition is as follows.

Definition 3.11. Let J be a generalized complex structure on M . A generalized
Poisson submanifold is a submanifold Y ⊂ M such that J (N∗Y ) = N∗Y .
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This condition is equivalent to J (N∗Y ) ∩ (N∗Y )⊥ = N∗Y ; hence general-
ized Poisson submanifolds are automatically generalized complex7 in the sense of
Definition 2.7. Since J is orthogonal it also preserves (N∗Y )⊥, and this gives
an explicit description of the generalized complex structure induced on Y via
TY ∼= (N∗Y )⊥/N∗Y . In this description it is clear that the inclusion map is
generalized holomorphic, and so Y is a Poisson submanifold for πJ , justifying the
terminology. The key fact in the blow-up theory of generalized Poisson submani-
folds is the following.

Proposition 3.12. Let Y ⊂ (M,J ) be a closed generalized Poisson submanifold.
There is a canonical holomorphic ideal IY whose associated complex structure on
N∗Y is given by J .

Proof. Consider a generalized complex chart U = (R2n−2k, ωst)× (Ck, σ) around a
point in Y as provided by Theorem 2.6. Since Y is a union of symplectic leaves we
have Y ∩U = W×Z where W ⊂ R2n−2k is open and Z ⊂ Ck is a complex submani-
fold which is Poisson for σ. By choosing appropriate holomorphic coordinates zi on
Ck we may assume that Z = {z1, . . . , zl = 0}, and a natural choice of holomorphic
ideal for Y in U is then given by 〈z1, . . . , zl〉. To patch these local ideals into a
global one we need to show that on the overlap of two charts the corresponding
ideals match. So suppose (R2n−2k, ωi) × (Ck, σi), i = 1, 2, are two local models8

and suppose that (ϕ,B) is a generalized complex isomorphism between them which
maps Y to itself. Let (x, z) and (y, w) be coordinates on the two charts, where x, y
and z, w denote the symplectic, respectively complex, directions, and such that IY
is given by 〈z1, . . . , zl〉, respectively 〈w1, . . . , wl〉. By symmetry it suffices to show
that ϕ∗wi ∈ 〈z1, . . . , zl〉 for all i ≤ l. As is shown in [14, Ch. VI], this condition
may be verified on the level of Taylor series, and since ϕ∗wi ∈ 〈z1, . . . , zl, z̄1, . . . , z̄l〉
because ϕ(Y ) = Y , we only need to verify that

∂rwi

∂z̄i1 . . . ∂z̄ir

∣∣∣∣
Y

= 0, ∀r ≥ 0, ∀i, i1, . . . , ir ∈ {1, . . . , l}.(3.5)

Here we are abbreviating wi := ϕ∗wi. The case r = 0 reads wi|Y = 0, which is
satisfied since ϕ(Y ) = Y . To verify (3.5) we first write what it means for (ϕ,B) to
be an isomorphism:

eiω1 ∧ eσ1(dz1 . . . dzk) = ef+B+iω2 ∧ eσ2(dw1 . . . dwk).(3.6)

The factor ef is there because we are taking representatives of the spinor line. At
Y , using that Y is Poisson, (3.6) becomes

eiω1 ∧ dz1 . . . dzl ∧ eσ1(dzl+1 . . . dzk) =ef+B+iω2 ∧ dw1 . . . dwl ∧ eσ2(dwl+1 . . . dwk).

Now apply dwi ∧ ι∂
z̄i1

, with i, i1 ≤ l, to both sides. The left hand side vanishes,
while the only survivor on the right is given by

∂wi

∂z̄i1
ef+B+iω2 ∧ dw1 . . . dwl ∧ eσ2(dwl+1 . . . dwk),

7Note that N∗YC ∩ i∗L = N∗YC so Bi(L) is automatically smooth, where i : Y ↪→ M denotes
the inclusion.

8Strictly speaking we should look at open neighborhoods of 0, but for the sake of notation
we suppress this. Also note that we can assume that the “k” in both charts is the same, as the
type can only jump in even steps and (R4s, ωst) is isomorphic to (C2s, σ0) for σ0 an invertible
holomorphic Poisson structure.
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so (3.5) holds for r ≤ 1. This implies in particular that the forms dz1 . . . dzl and
dw1 . . . dwl are proportional along Y , where again we think of wi as a function of
(x, z).

Suppose inductively that for some m ≥ 1 equation (3.5) is satisfied for all r ≤ m.
Apply dwi ∧ L∂

z̄i1
. . .L∂z̄im

, for any i, i1, . . . , im ≤ l, to both sides of (3.6) and
evaluate the resulting expression at Y . The left hand side will vanish again because
ω1 is independent of z and σ1 is holomorphic. Using multi-index notation, the
Leibniz rule gives

0=dwi∧
∑

I�J�K�L
={i1,...,im}

L∂z̄I
(ef+B+iω2)L∂z̄J

(eσ2)L∂z̄K
(dw1 . . . dwl)L∂z̄L

(dwl+1 . . . dwk).

(3.7)

Claim. We have L∂z̄J
σ2(dw

j)|
Y
= 0 for all J ⊂ {i1, . . . , im} and j ≤ l.

Let us accept this claim for the moment and continue with the proof. We com-
pute

L∂z̄K
dwj =

∑
1≤a≤k

∂|K|+1wj

∂za∂z̄K
dza +

∑
1≤a≤k

∂|K|+1wj

∂z̄a∂z̄K
dz̄a +

∑
1≤b≤2n−2k

∂|K|+1wj

∂xb∂z̄K
dxb.

(3.8)

If j ≤ l, the function ∂|K|wj/∂z̄|K| vanishes along Y by the induction hypothesis.
Hence, at Y the first and second terms above with a > l together with the entire
third term vanish, because we differentiate in directions tangent to Y . If in addition
|K| < m, the second term vanishes by the induction hypothesis. It follows that
for K � {i1, . . . , im}, L∂z̄K

(dw1 . . . dwl)|Y is proportional to (dw1 . . . dwl)|Y . Using
the Claim, these terms all disappear from (3.7) because we wedge everything with
dwi. It is then readily verified that (3.7) reduces to

0 = ef+B+iω1eσ2

∑
1≤im+1≤l

∂m+1wi

∂z̄i1 . . . ∂z̄im+1
dz̄im+1dw1 . . . dwk

at Y . So (3.5) holds for r = m+ 1 as well and therefore for all r by induction. �

Proof of Claim. If we write σ2 = σab
2 ∂wa∂wb , the Poisson condition implies that σab

2

vanishes at Y for a ≤ l or b ≤ l. A repeated Lie derivative on σ2 will be a sum of
terms of the form

∂rσab
2

∂z̄i1 . . . ∂z̄ir
(L∂

z̄j1
. . .L∂z̄js

∂wa)(L∂
z̄k1

. . .L∂
z̄kt

∂wb).(3.9)

Using the chain rule and the fact that σ2 is holomorphic we can rewrite the first
term in terms of w-derivatives. By the induction hypothesis there are no derivatives
in the wi-directions for i ≤ l, because these come together with a term of the form
∂wi/∂z̄ij or a further derivative thereof. Moreover, if either a ≤ l or b ≤ l there
are also no wi-derivatives for i > l because these are tangent to Y along which σab

is constantly equal to zero. Hence (3.9) will only be non-zero at Y for a, b > l, and
so to prove the Claim it suffices to show that (L∂

z̄j1
. . .L∂z̄js

∂wa)(dwj)|Y = 0 for

a > l, j ≤ l. Abbreviating J = {j1, . . . , js} we have

0 = Lz̄J (dwj(∂wa)) =
∑

J1�J2=J

(Lz̄J1dw
j)(Lz̄J2∂wa).
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From equation (3.8) and the comments below it we see that Lz̄J1dw
j is a linear

combination of dwj′ with j′ ≤ l. The result then follows by induction over s. �

Having a canonical holomorphic ideal for Y we obtain a canonical blow-up M̃ .

We now investigate whether M̃ carries a generalized complex structure for which
the blow-down map p is holomorphic. Clearly this structure exists and is unique on

M̃\Ỹ , and we only need to verify whether it extends over Ỹ . From the definition
of the ideal IY and the blow-up construction, p is locally given by

R2(n−k) × Bl
Z
Ck → R2(n−k) × Ck,

where Bl
Z
Ck is the complex blow-up of Z ⊂ Ck. The target is equipped with

the generalized complex structure determined by the standard symplectic form on
R2(n−k) and a holomorphic Poisson structure σ on Ck. Clearly this structure lifts if
and only if σ lifts. So we are led to the following question: When does a holomorphic
Poisson structure lift to a blow-up? This was addressed by Polishchuk in [16], and
for completeness we review the results here in more differential geometric language.
Recall that Z ⊂ (X, σ) is a holomorphic Poisson submanifold if and only if its
holomorphic ideal sheaf IZ of functions vanishing on Z is a Poisson ideal. In that
case N∗1,0Z inherits a fiberwise Lie algebra structure, given by the Poisson bracket
under the natural isomorphism N∗1,0Z ∼= IZ/I

2
Z . To state the blow-up conditions

on Z we need the following terminology.

Definition 3.13. A Lie algebra g is degenerate if the map Λ3g → Sym2(g) given
by

x ∧ y ∧ z 
→ [x, y]z + [y, z]x+ [z, x]y

vanishes.

Remark 3.14. Geometrically, this is equivalent to the condition that the Lie bracket
of any two elements lies in the plane spanned by them. In particular, it depends
on the base field over which g is defined. For instance, the complexification of a
degenerate Lie algebra over R is degenerate over C, but a degenerate Lie algebra
over C need not be degenerate over R when we restrict scalars. It is shown in [16]
that degeneracy is equivalent to being either Abelian or isomorphic to the algebra
generated by e1, . . . , en−1, f , with relations [ei, ej ] = 0 and [f, ei] = ei. Note that
2-dimensional Lie algebras are always degenerate.

If Z is Poisson we call N∗1,0Z degenerate if its fiberwise Lie algebra structure is
degenerate over C. This is equivalent to the condition

{f, g}h+ {g, h}f + {h, f}g ∈ I3Z ∀f, g, h ∈ IZ .(3.10)

Now let p : X̃ → X denote the complex blow-up along a complex submanifold Z,

and let Z̃ be the exceptional divisor. We say that σ can be lifted if there exists

a holomorphic Poisson structure σ̃ on X̃ for which p is a Poisson map. Note that
a lift is necessarily unique, because p is an isomorphism almost everywhere. The
proof of the following proposition is due to Polishchuk [16]; for the convenience of
the reader we reproduce it here.

Proposition 3.15 ([16]). There exists a lift σ̃ on X̃ if and only if Z is a Poisson

submanifold and N∗1,0Z is degenerate. The exceptional divisor Z̃ is a Poisson
submanifold if and only if N∗1,0Z is Abelian.
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Proof. Let z1, . . . , zk be local coordinates on X with Z = {z1, . . . , zl = 0} for some

l ≤ k. This is covered by l charts on X̃ on which the projection has the form (cf.
(3.4))

p : (v1, . . . , za, . . . , vl, zl+1, . . . , zk) 
→ (zav1, . . . , za, . . . , zavl, zl+1, . . . , zk)(3.11)

for a ≤ l. Then p is an isomorphism on the open dense set {za �= 0}, where we
have vj = zj/za. We have to verify when the brackets extend smoothly over the
exceptional divisor {za = 0}. There are two types of brackets that cause trouble.
Firstly,

{zi, vj} = {zi, z
j

za
} =

1

za
{zi, zj} − zj

(za)2
{zi, za},(3.12)

for i = a or i > l, and j ≤ l with j �= a. Secondly,

{vi, vj} = { z
i

za
,
zj

za
} =

1

(za)3
(
za{zi, zj}+ zi{zj , za}+ zj{za, zi}

)
,(3.13)

for 1 ≤ i, j ≤ l, i �= a �= j. Now (3.12) extends smoothly over za = 0 for all a if
and only if IZ is Poisson, while (3.13) extends over za = 0 for all a if and only if
IZ is degenerate in the sense of (3.10). Finally, IZ̃ is generated by za, and this is a
Poisson ideal if and only if the right hand side of (3.12) for i = a is divisible by za,
which is equivalent to {IZ , IZ} ⊂ I2Z . �

If Y ⊂ (M,J ) is a generalized Poisson submanifold, then Y is in particular a
Poisson submanifold for πJ , and so N∗Y inherits a fiberwise Lie algebra structure
in the same manner as discussed above in the holomorphic Poisson context. As
e.g. shown in the proof below, this Lie bracket is complex linear with respect to
the complex structure on N∗Y induced by J . We call N∗Y degenerate if the Lie
algebra structure is degenerate over C.

Theorem 3.16. Let Y ⊂ (M,J ) be a generalized Poisson submanifold and let

p : M̃ → M denote the blow-up with respect to the canonical holomorphic ideal IY .

Then M̃ has a generalized complex structure for which p is holomorphic if and only
if N∗Y is degenerate.

Proof. Pick a local chart where Y = W ×Z ⊂ (R2(n−k), ω0)× (Ck, σ) with W open
and Z a holomorphic Poisson submanifold (cf. the proof of Proposition 3.12). As
explained in the discussion above, the generalized complex structure lifts to the
blow-up if and only if σ lifts to the blow-up of Z in Ck, which we now know to be
equivalent to N∗1,0Z being degenerate. Denote by N∗Z the normal bundle of Z
considered as a real submanifold, which carries a complex structure because Z is a
complex submanifold. If Q = Re(σ) we have

[α, β]Q = dQ(α, β) = d(
1

2
σ(α1,0, β1,0) +

1

2
σ̄(α0,1, β0,1))

=
1

2
[α1,0, β1,0]σ +

1

2
[α0,1, β0,1]σ̄,

for α, β ∈ N∗Z. Consequently the complex isomorphism N∗Z → N∗1,0Z given
by α 
→ α1,0 carries [, ]Q over to 1

2 [, ]σ. In particular, N∗1,0Z is degenerate if and
only if (N∗Z, [, ]Q) is degenerate as a complex Lie algebra. Now in the local chart

N∗Y = N∗Z and πJ = −ω−1
0 ⊕ 4IQ. Hence [, ]Q and [, ]πJ agree up to a complex

multiple, and so one is degenerate over C if and only if the other one is. �
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Since degeneracy is automatic in codimension 2, we obtain Corollary 3.17.

Corollary 3.17. If Y is a generalized Poisson submanifold of complex codimension
2, then it has a generalized complex blow-up.

Example 3.18. Let (M,J ) be a generalized complex manifold. In [3] it is shown
that the complex locus, i.e., the points of type 0, carries canonically the structure
of a complex analytic space. Any complex submanifold of the complex locus is then
a generalized Poisson submanifold and can be blown up as soon as its conormal
bundle is degenerate. The easiest applications are in complex codimension 2 where
degeneracy is automatic. For example, any point in the complex locus on a gen-
eralized complex 4-manifold can be blown up. This generalizes the corresponding
result from [7], where it was assumed that the point lies in the smooth part of the
complex locus.

Example 3.19. We mention here an explicit example of a generalized Poisson
submanifold of positive dimension that can be blown up. In [11] it is shown
that any even-dimensional compact Lie group admits a generalized Kähler struc-
ture, i.e., a commuting pair of generalized complex structures (J1,J2) for which
(u, v) 
→ 〈J1u,J2v〉 is positive definite on TM . As shown in [17], one can construct
such a generalized Kähler structure out of left- and right-invariant complex struc-
tures on the group in such a way that a maximal torus is a generalized Poisson
submanifold for J1. Applying this to the Lie group S3 × S3 yields a generalized
Poisson submanifold S1 × S1 ⊂ S3 × S3, which can be blown-up because it has
complex codimension 2.

The following result shows how blow-ups can be used to desingularize the type
change locus of a generalized complex 4-manifold.

Theorem 3.20. Let (M,J ) be a 4-dimensional generalized complex manifold which
is of symplectic type on an open dense set and with complex locus Z ⊂ M . Then

there exists a generalized complex manifold (M̃, J̃ ) whose complex locus Z̃ has at
most normal crossing singularities, together with a generalized holomorphic map

p : M̃ → M that induces an isomorphism between M̃\Z̃ and M\Z.

Proof. Since Z is locally described by the vanishing of a holomorphic Poisson tensor
in two complex dimensions, it locally looks like a complex curve. By Example 3.18
we can blow up any point on Z to obtain another generalized complex manifold.
In general, if C ⊂ X is a complex curve on a complex smooth surface X, one can
perform a locally finite number of blow-ups on X so that the underlying analytic
set of the total transform of the curve C has only ordinary double points. A proof
of this fact can be found e.g. in [4]. In particular, the total transform9 itself will be
a normal crossing divisor with possible multiplicities (so in local coordinates z1, z2
it will be given by za1z

b
2 = 0 for some a, b ∈ Z>0). Now we do not have a global

complex structure available, but this desingularization procedure is purely local, so
we conclude that after a finite number of blow-ups we get a generalized complex
manifold whose complex locus, as a complex analytic space, has at most normal
crossings as singularities. �

9The total transform of a subset C under a blow-up equals p−1(C) where p is the blow-down

map, while the proper transform equals p−1(C)\E.
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3.2. Generalized Poisson transversals. We now focus on submanifolds where
the geometry normal to the submanifold is symplectic.

Definition 3.21. Let (M,J ) be a generalized complex manifold. A generalized
Poisson transversal is a submanifold Y ⊂ M satisfying

J (N∗Y ) ∩ (N∗Y )⊥ = 0.(3.14)

Remark 3.22. The above condition automatically implies N∗Y ∩ J (N∗Y ) = 0;
hence generalized Poisson transversals are in particular generalized complex sub-
manifolds.10 Note that (3.14) is equivalent to πJ (N∗Y ) + TY = TM |Y ; i.e., Y is
a Poisson transversal for the underlying Poisson structure πJ . Geometrically, Y
intersects the symplectic leaves of πJ transversally and symplectically. Note that
if J is complex, then Y has to be an open subset, while if J is symplectic, then Y
has to be a symplectic submanifold.

3.2.1. A normal form theorem. Let Y ↪→ (M,J) be a generalized Poisson transver-
sal. To blow up Y we need a description of a neighborhood of Y in M . Since Y
is a generalized complex submanifold it has its own generalized complex structure
JY . Moreover, the splitting TM |Y = TY ⊕ NY , with NY := πJ (N∗Y ), induces
a decomposition (πJ )|Y = πJY

+ ωY , where πJY
equals the Poisson structure on

Y induced by JY and ωY ∈ Γ(Λ2NY ) is non-degenerate. The suggestive notation
for the latter indicates that we will consider ωY as a symplectic structure on the
bundle N∗Y . In what follows we will implicitly identify Y with the zero section in
N∗Y and use the decomposition

T (N∗Y )|Y = N∗Y ⊕ TY.(3.15)

We will first show that associated to (JY , ωY ), there is a family of generalized
complex structures on a neighborhood of Y in N∗Y . For that we need the following
lemma.

Lemma 3.23. There exists a closed 2-form σ on the total space of N∗Y , which
along Y is given by ωY ⊕ 0.

Proof. Choose a Hermitian structure (g, I) on N∗Y compatible with ωY . Let ej be
a local unitary frame with dual frame ej , such that ωY = i

2

∑
j e

j ∧ ēj . We obtain

local coordinates (x, z) on N∗Y by identifying (x, z) with the point
∑

j z
jej(x).

Note that the z-coordinates are complex. If ρα is a partition of unity and eαj are
local frames as above, define

λ :=
∑
α,j

p∗(ρα)
i

2
zαjdz̄αj .(3.16)

Then σ := dλ restricts to ωY on Y , and its restriction to each fiber of N∗Y is the
translation invariant extension of ωY . Note that this particular choice of λ is also
U(1)-invariant. �

Theorem 3.24. Associated to the data (JY , ωY ) there is a family of mutually
isotopic generalized complex structures on a neighborhood of Y in N∗Y .

10As i∗L ∩N∗YC = 0, Bi(L) is smooth. Here i : Y ↪→ M denotes the inclusion.
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Proof. If σ is a closed extension of ωY as in Lemma 3.23 we define a Dirac structure
Lσ on the total space of N∗Y by

Lσ := eiσ∗ (Bp(LY )),(3.17)

where p : N∗Y → Y is the projection. It is integrable with respect to the 3-form

H̃ := p∗HY where HY := i∗H, and along the zero section we have

Lσ|Y = {X + ξ + e− iωY (e)|X + ξ ∈ LY , e ∈ N∗Y },
where we used the decomposition (3.15). In particular Lσ∩Lσ = 0 at Y , hence also
in a neighborhood of Y in N∗Y . We will denote the resulting generalized complex
structure by Jσ. The family of the theorem is by definition the set of Jσ, where σ
ranges over the closed extensions of ωY . If σ and σ′ are two closed extensions, we
obtain a family of closed 2-forms σt := (1− t)σ+ tσ′ all extending ωY . We can now
apply Lemma 3.25 below, which is a generalization of the well-known Moser trick,
to conclude that Jσ and Jσ′ are isotopic. �
Lemma 3.25. Let σt be a family of closed 2-forms extending ωY and let Lσt

be
the corresponding family of Dirac structures. Then there is a neighborhood U of
Y in N∗Y and a family of embeddings11 Φt = (ϕt, Bt) : U → N∗Y , satisfying
Φ0 = (Id, 0) and FΦt(Lσ0

) = Lσt
. Furthermore, Φt = (ϕt, Bt) fixes Y up to first

order, in the sense that ϕt|Y = Id, dϕt|Y = Id, and Bt|Y = 0 for all t.

Proof. Since σt − σ0 vanishes on Y , Lemma 3.26 below provides a family ηt ∈
Ω1(N∗Y ) with σt − σ0 = dηt and such that the 1-jet of ηt vanishes

12 along Y . By
definition,

Lt := Lσt
= eiσt

∗ (Bp(LY )) = eidηt
∗ (Lσ0

).

Since dηt vanishes at Y , Lt defines a family of generalized complex structures Jt

in a neighborhood U ′ of Y , integrable with respect to the 3-form H̃. Consider the
time-dependent generalized vector field Jtη̇t =: Xt + ξt on U ′ and let ψt,s be its
flow, given by

ψt,s = (ϕt,s)∗ ◦ e
−

∫ t
s
ϕ∗

r,s(dξr+ιXr H̃)dr
∗ ,(3.18)

where ϕt,s is the flow of the time-dependent vector field Xt. Since the 1-jet of ηt
vanishes on Y , we can find a smaller neighborhood U ⊂ U ′ with the property that
ϕt,s : U → U ′ is a well-defined embedding, fixing Y to first order. We claim that

Lt = ψt,0L0.(3.19)

From the formula for Lt this amounts to showing that e−idηt
∗ ψt,0L0 = L0. We have

d

dt
e−idηt
∗ ψt,0(u) = −i�η̇t, e

−idηt
∗ ψt,0(u)� − e−idηt

∗ �Jtη̇t, ψt,0(u)�

= �−iη̇t − J0η̇t, e
−idηt
∗ ψt,0(u)�.(3.20)

This shows that e−idηt
∗ ψt,0 integrates the adjoint action of −iη̇t − J0η̇t ∈ Γ(L0).

Since Γ(L0) is involutive, (3.19) indeed holds. The desired family is then given by

Φt = (ϕt, Bt) := (ϕt,0,

∫ t

0

ϕ∗
r,0(dξr + ι

Xr
H)dr). �

11We call a generalized map (ϕ,B) an embedding if the underlying smooth map ϕ is.
12That is, if we write ηt =

∑
i ηt,i(x)dx

i in a local coordinate system, then the functions ηt,i
and ∂jηt,i all vanish on Y for each t.
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Lemma 3.26. Let αt ∈ Ωk
cl(E) be a family of closed forms on the total space

of a vector bundle E over Y , which all vanish at Y . Then there exists a family
ηt ∈ Ωk−1(E) with dηt = αt, such that for each t the 1-jet of the form ηt vanishes
along Y .

Proof. Let V denote the Euler vector field on E, i.e., Vξ = ξ for ξ ∈ E. Its flow is
given by ϕs(ξ) = esξ, and we have

αt = lim
s→−∞

(
ϕ∗
0αt − ϕ∗

sαt

)
=

∫ 0

−∞

d

ds
ϕ∗
sαtds = d

(
ι
V

∫ 0

−∞
ϕ∗
sαtds

)
=: dηt.

Another formula for ηt is given by ηt = ιV
∫ 1

0
1
sL

∗
sαtds, where Ls denotes left-

multiplication by s on E. The forms ηt then satisfy all the properties of the lemma.
�

Theorem 3.24 shows that for any symplectic vector bundle over a generalized
complex manifold, a neighborhood of the zero section carries a generalized complex
structure for which the zero section is a generalized Poisson transversal. Our next
aim is to show that all compact generalized Poisson transversals locally arise from
this construction. To establish that, we will construct an embedding of a neighbor-
hood of Y in N∗Y into M that pulls back J to one of the structures of Theorem
3.24. This embedding will only depend on the choice of a connection on TM , and
all such embeddings will turn out to be isotopic to each other.

Let p : T ∗M → M be the cotangent bundle and choose a connection ∇ on TM ,
whose dual connection on T ∗M we also denote by ∇. Using the Poisson structure
πJ we obtain a vector field V on the total space of the bundle T ∗M , whose value
at ξ ∈ T ∗M is given by Vξ := πJ (ξ)hξ , the horizontal lift of the vector πJ (ξ) at the
point ξ ∈ T ∗M with respect to the connection ∇. We denote by ϕt : T

∗M → T ∗M
the flow of V and define

exp := p ◦ ϕ1|N∗Y
: N∗Y → M.

Lemma 3.27. The map exp restricts to a diffeomorphism between a neighborhood
of Y in N∗Y and a neighborhood of Y in M . If ∇′ is a different connection, then
exp′ is isotopic to exp via maps which all agree along Y up to first order.13

Proof. By definition of V we have L∗
sV = sV for s ∈ R, where Ls denotes mul-

tiplication by s on the fibers of T ∗M . It follows that14 ϕt(Lsξ) = Ls(ϕst(ξ)) for
ξ ∈ T ∗M . Hence,

dyϕt(ξ) =
d

ds

∣∣∣∣
s=0

ϕt(Lsξ) = ξ + tπJ (ξ),

for y ∈ Y ⊂ N∗Y . Since V vanishes at Y we have exp |
Y
= Id, and so

dyϕt(ξ, v) = (ξ, v + tπJ (ξ))(3.21)

in terms of the decomposition (3.15). Composing with p gives dy exp(ξ, v) = v +
πJ (ξ); hence by transversality of Y we see that exp is a local diffeomorphism. Since
exp |

Y
= Id and Y is properly embedded, exp gives a diffeomorphism between a

neighborhood of Y in N∗Y and a neighborhood of Y in M . As the space of

13That is, they all restrict to the identity on Y , and their derivatives Ty(N∗Y ) → TyM all

coincide for y ∈ Y .
14This equality is similar to the more familiar equality γsX (t) = γX (st) for geodesics.
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connections is affine, we can connect any other connection ∇′ to ∇ by a path
of connections {∇t}t∈[0,1] (e.g. the linear path), whose exponentials expt give the

desired isotopy. Since (3.21) is independent of ∇t, the maps expt all agree up to
first order along Y . �

We will now explicitly construct one of the generalized complex structures from
Theorem 3.24 which agrees with exp∗(J ) (up to B-field transform). Denote by ωcan

the canonical symplectic form on T ∗M , and recall that for y ∈ M and X,Y ∈ TyM ,
α, β ∈ T ∗

yM ,

(ωcan)y(α+X, β + Y ) = α(Y )− β(X)(3.22)

in terms of T (T ∗M)|
M

= T ∗M ⊕ TM .

Lemma 3.28. Define

σ̃t := −
∫ t

0

(ϕs)
∗ωcands ∈ Ω2

cl(T
∗M),(3.23)

where ϕs is the flow of the vector field V . Then σ := i∗σ̃1 is a closed extension of
ωY , where i : N∗Y ↪→ T ∗M denotes the inclusion.

Proof. Recall that T (N∗Y )|Y = N∗Y ⊕ TY , so that elements of Ty(N
∗Y ) can be

written as α + X, for α ∈ N∗
yY and X ∈ TyY . Using (3.21), (3.22), and the

definition of σ̃t, we obtain

σy (α+X, β + Y ) =−
∫ 1

0

(ωcan)y
(
α+ (X + sπJ (α)), β + (Y + sπJ (β))

)
ds

=−
∫ 1

0

2sα(πJ (β))ds = ωY (α, β)

for all α, β ∈ N∗
yY and X,Y ∈ TyY . This shows that σ is indeed an extension of

ωY . �
We are now ready to state the normal form theorem.

Theorem 3.29. Let Y ⊂ (M,J ) be a generalized Poisson transversal.15 Then a

neighborhood of Y in (M,J ) is isomorphic to a neighborhood of Y in (N∗Y, J̃),

where J̃ is one of the generalized complex structures of Theorem 3.24.

Remark 3.30. In particular, this result tells us that on a neighborhood of Y , J is
completely determined by the induced generalized complex structure JY on Y and
the induced symplectic structure on the vector bundle N∗Y .

Proof. The vector field V defined above is part of the generalized vector field V
on T ∗M defined by Vξ := (J ξ)hξ , the horizontal lift of J ξ ∈ Tp(ξ)M to ξ ∈ T ∗M
with respect to the connection ∇. If ψt denotes the flow of V , then a computation
similar to (3.20) shows that

d

dt
ψte

iσ̃t
∗ (u) = �−iλcan − V , ψte

iσ̃t
∗ (u)�.

Since (−iλcan − V)ξ = (−iξ − J ξ)hξ ∈ Bp(L) and Bp(L) is involutive, ψte
iσ̃t
∗

preserves Bp(L) and so

eiσ̃t
∗ Bp(L) = ψ−tBp(L),(3.24)

15Note that Y is not assumed to be compact, but we do require it to be closed in M .
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as Dirac structures on T ∗M . Here is an overview of all the maps involved:

N∗Y

p

��

i �� T ∗M

p

��

ϕt �� T ∗M

p
����
��
��
��
�

Y �� M

The left square is commutative, but the right triangle is not. Now if we apply Bi
to (3.24) at t = 1, the left hand side becomes eiσ∗ BiBp(L) = eiσ∗ Bp(LY ) where
σ = i∗σ̃1. This is precisely one of the structures from Theorem 3.24. If we write
ψt = (ϕt)∗e

−Bt
∗ (see (2.7)), the right hand side becomes

Bi(ψ−1Bp(L)) = BiBΦ1Bp(L) = B(p ◦ Φ1 ◦ i)(L),
where Φt := (ϕt, Bt). Now p ◦ Φ1 ◦ i = (exp, i∗B1), so if we define B := i∗B1, then

(exp, B) is indeed holomorphic with respect to J and J̃ . �
3.2.2. Blowing up. In this section we will use the normal form theorem for Y to
construct the symplectic version of the blow-up. To motivate the upcoming dis-
cussion let us recall how to blow up a point using symplectic cuts (cf. [13]). Let
ωst =

i
2 (dw ∧ dw̄ +

∑
j dz

j ∧ dz̄j) be the standard symplectic structure on C× Cn

and consider the Hamiltonian S1-action given by eiθ · (w, z) = (eiθw, e−iθz), with
moment map

μ(w, z) =
1

2
(|z|2 − |w|2).(3.25)

Now S1 acts freely on μ−1( 12ε
2) for ε > 0, and the map κ : μ−1( 12ε

2) → Cn × Pn−1

given by

κ : (w, z) 
→ (
wz

|z| , [z])

induces a diffeomorphism from μ−1( 12ε
2)/S1 onto C̃n = {(x, l)|x ∈ l}, the blow-up

of Cn at the origin. It is a well-known fact that κ∗(pr∗1ωst + ε2pr∗2ωFS) = ωst,
giving an explicit description of the symplectic form on the reduced space. Finally,
consider the following slice for the S1-action:

ϕ : Cn\Bε → μ−1(
1

2
ε2), u 
→ (

√
|u|2 − ε2, u).

Here Bε is the ball of radius ε. Clearly ϕ∗ωst =
i
2

∑
j du

j∧dūj , which shows that the

symplectic quotient μ−1( 12ε
2)/S1 is symplectomorphic, away from the exceptional

divisor, to (Cn\Bε, ωst).
To use this in our setting we need a reduction procedure for generalized complex

structures. A general reduction theory has been introduced in [6], but we only need
a very special case, which we will present here. In what follows, an S1-action on
(Z,H,J ) is understood to be an S1-action on the manifold Z which preserves J
and for which ιXH = 0, where X is the associated action vector field. In analogy
with symplectic geometry we call μ : Z → R a moment map if JX = dμ.

Proposition 3.31. Suppose we have an S1-action on (Z,H,J ) with moment map
μ. If i : μ−1(c) ↪→ Z is a regular level set with quotient q : μ−1(c) → μ−1(c)/S1,
then Fq(Bi(L)) gives a generalized complex structure J ′ on μ−1(c)/S1. If ρ is a
local spinor for J which is S1-invariant, then i∗ρ = q∗ρ′ for a unique form ρ′ on
the quotient which is a spinor for J ′.
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Proof. The inclusion of a regular level set i : μ−1(c) ↪→ Z has real codimension 1
so that Bi(L) is automatically smooth, and we have

Bi(L) ∩Bi(L̄) = C ·X.(3.26)

By the assumption ιXH = 0 we can write H = q∗H ′ for a (unique) 3-form H ′ on
the quotient, so q is a generalized map. It satisfies ker(dq) ∩Bi(L) = C ·X, which
is of constant rank 1, so the forward image Fq(Bi(L)) is smooth and projects down
to μ−1(c)/S1 because Bi(L) is S1-invariant. It is generalized complex because of
(3.26) and the fact that X spans the kernel of q∗. Let ρ be a local spinor for L
which is S1-invariant. Then i∗ρ is non-zero on μ−1(c) and is an S1-invariant spinor
for Bi(L). Moreover,

0 = (X − iJX) · ρ = (X − idμ) · ρ
implies that ι

X
i∗ρ = 0; hence i∗ρ comes from a unique differential form on

μ−1(c)/S1. This will be a spinor for the induced generalized complex structure
on the quotient. �

Consider now a generalized Poisson transversal Y ⊂ (M,J ), with ωY the in-
duced symplectic structure on N∗Y . As in the proof of Lemma 3.23 we choose a
compatible Hermitian structure (g, I) on the bundle N∗Y and use it to construct
an S1-invariant 1-form λ on the manifold N∗Y of the form (3.16). In particu-
lar its differential σ = dλ is a closed extension of ωY which is S1-invariant and
whose restriction to the fibers is translation invariant. Consider the S1-action on
Z := C×N∗Y given by

eiθ · (w, z) = (eiθw, e−iθz),

and denote by X ∈ Γ(TZ) the induced action vector field. We equip Z with the
3-form p∗HY and the generalized complex structure which is the product of the
standard symplectic structure on C and Jσ on N∗Y as defined by equation (3.17).

Lemma 3.32. The map μ : Z → R given by μ(w, z) := 1
2g(z, z) −

1
2 |w|2 is a

moment map.

Proof. We can write X = (X1, X2) on C×N∗Y with Xi the corresponding action
vector field on the separate factors. In particular X2 is vertical, and by definition
of Jσ we have J (X1, X2) = (ωst(X1), σ(X2)). Since ωst + σ = d(λst + λ) where
both λst and λ are S1-invariant, we get JX = −dιX(λst + λ). Hence it suffices to
show that −ιX(λst + λ) = μ. This is a fiberwise equality and can be verified on
C× Cn. �
Remark 3.33. If one starts with an arbitrary extension σ = dλ of ωY one can
average it over S1 to render it invariant, and the map −ιX(λst + λ) is again a
moment map. The advantage of our choice above is that the moment map has an
explicit description in terms of a metric.

For ε > 0, Proposition 3.31 implies that Ñ∗Y ε := μ−1( 12ε
2)/S1 is generalized

complex, which is diffeomorphic to the blow-up of Y in N∗Y with respect to the
linear holomorphic ideal. We would like to show that this blow-up can be glued
back into the original manifold M to produce the blow-up of Y in M . For that we
consider the slice

ϕ̃ : N∗Y \Bε ↪→ μ−1(
1

2
ε2) ⊂ Z, z 
→ (

√
|z|2 − ε2, z).(3.27)
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Here Bε is the disc bundle of radius ε. If q denotes the quotient map of the S1-
action, we obtain a diffeomorphism

ϕ := q ◦ ϕ̃ : N∗Y \Bε −→ Ñ∗Y ε\E,

where E denotes the exceptional divisor. To show that ϕ is holomorphic it suffices,
by definition of the generalized complex structure on the quotient, to show that ϕ̃
pulls back a local spinor on Z to a local spinor for Jσ. If ρ = eiωst+iσ∧p∗ρY is such
a spinor on Z, then from the definition of ϕ̃ we see that indeed ϕ̃∗ρ = eiσ ∧ p∗ρY
is a spinor for Jσ.

Theorem 3.34. Let Y ⊂ (M,J ) be a compact generalized Poisson transversal.
Then the blow-up16 of Y in M carries a generalized complex structure which, outside
a neighborhood of the exceptional divisor, is isomorphic to the complement of a
neighborhood of Y in M .

Remark 3.35. We call (M̃, J̃ ) the blow-up of Y in (M,J ), even though that termi-
nology is slightly ambiguous. Indeed, the construction depends on several choices
and it is not clear, even in the symplectic category, whether different choices lead
to isomorphic blow-ups.

Proof. Equip a neighborhood U of Y inN∗Y with the generalized complex structure
Jσ where σ is as above. By Theorems 3.24 and 3.29, if U is small enough there is
a holomorphic embedding ι : (U,Jσ) → (ι(U),J ) with ι(U) a neighborhood of Y

in M . Since Y is compact there is an ε > 0 such that Bε ⊂ U . Set Ũ := ϕ(U) ∪E
and define the blow-up of Y in M by

M̃ := M\ι(Bε) ∪
ι◦ϕ−1

Ũ .(3.28)

Here the glueing takes place between Ũ\E and ι(U\Bε). �

Remark 3.36. The drawback of defining M̃ by (3.28) is that there is no canon-
ical blow-down map. It is possible to define blow-down maps, but they are not
particularly useful because they will not be holomorphic around the exceptional
divisor.

Example 3.37. Let (M,J1,J2) be a generalized Kähler manifold and let Y ↪→
M be a generalized Poisson submanifold for J1, i.e., J1N

∗Y = N∗Y . Since
〈J1α,J2α〉 > 0 for all α ∈ N∗Y , we see that J2N

∗Y ∩ (N∗Y )⊥ = 0; i.e., Y is
a generalized Poisson transversal17 for J2. In Example 3.19 we discussed how the
maximal torus in a compact-even dimensional Lie group is a generalized Poisson
submanifold for J1 which, because of the degeneracy condition, can almost never
be blown up. With respect to J2 however there are no restrictions, so all maximal
tori can be blown up for J2. In [17] a more thorough investigation of these examples
is given and it is shown that if the maximal torus can be blown up for J1 and J2,
then the result is again generalized Kähler.

16Since Y is a generalized Poisson transversal, its normal bundle has a complex structure, and
we can blow up Y in M as in Definition 3.9.

17In Kähler geometry this amounts to the well-known fact that a complex submanifold is
automatically symplectic.
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3.3. A remark on other types of submanifolds. Our definition of a generalized
complex submanifold is, besides a smoothness criterion, characterized by

J (N∗Y ) ∩ (N∗Y )⊥ ⊂ N∗Y.(3.29)

In the previous sections we investigated the blow-up theory of the two extreme cases,
namely those for which the above inclusion is either an equality (the generalized
Poisson case) or the intersection is zero (the generalized Poisson transversals). An
obvious question at this point is whether the “intermediate” cases admit a blow-up
theory as well. The techniques we used for generalized Poisson submanifolds and
generalized Poisson transversals are so different from each other that it does not
seem we can use either of them when the type in the normal direction is mixed. We
will now give an example where we can explicitly prove that there does not exist
a blow-up. The following proposition is a consequence of a more general result by
Atiyah [1]; we give a direct proof for the convenience of the reader.

Proposition 3.38. Let M be a compact 4-dimensional generalized complex mani-
fold of type 1. Then the Euler characteristic χ(M) is even.

Proof. A type 1 structure gives rise to a decomposition TM = L1 ⊕ L2, where L1

is the distribution tangent to the symplectic foliation and L2 is a choice of normal
bundle. In particular L1 and L2 are orientable and we can think of them as complex
line bundles,18 giving an almost complex structure on TM . By Wu’s formula, using
that c1(TM) ≡ w2(M) mod 2 and c1(TM) = c1(L1) + c1(L2), we obtain

α2 ≡ α ∪ c1(L1) + α ∪ c1(L2) mod 2 ∀α ∈ H2(M,Z).

Applying this to α = c1(L1) we see indeed that χ(M) = c1(L1)c1(L2) is even. �

Now let M be a compact 4-dimensional generalized complex manifold of type 1.

The blow-up of a point in M is differentiably given by M#CP
2
, which has Euler

characteristic χ(M)+1. If the blow-up would have a generalized complex structure
that agrees with the one on M outside a neighborhood of the exceptional divisor,
it would have type 1 everywhere since the type can only change in even amounts.
By the proposition we conclude that the blow-up cannot be generalized complex,
at least not in a way that is reasonably related to the original structure on M .

In the example above, equation (3.29) is neither zero nor an equality. There
are, however, generalized complex submanifolds Y for which (3.29) is zero at some
points and an equality at others. Further study is needed to see what can be said
about these types of submanifolds.
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