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Equilibrium configurations and capillary
interactions of Janus dumbbells and
spherocylinders at fluid–fluid interfaces†

Carmine Anzivino, a Fuqiang Chang,b Giuseppe Soligno, c René van Roij, d

Willem K. Kegelb and Marjolein Dijkstra *a

We numerically investigate the adsorption of a variety of Janus particles (dumbbells, elongated dumbbells and

spherocylinders) at a fluid–fluid interface by using a numerical method that takes into account the interfacial

deformations. We first determine the equilibrium configuration of a single adsorbed particle, and we find that

the overall shape of the induced deformation field has a strong hexapolar mode while non-Janus particles of

the same shape do not induce any interfacial deformation. We then calculate the capillary interactions

between two Janus spherocylinders adsorbed at an interface. The hexapolar deformation field induces

capillary attractions for laterally aligned Janus spherocylinders and repulsions for laterally anti-aligned ones.

We also experimentally synthesize micrometer-sized charged Janus dumbbells and let them adsorb at a

water–decane interface. After several hours we observe the formation of aggregates of dumbbells pre-

dominantly induced by interactions that appear to be capillary in nature. Our Janus dumbbells attach

laterally and are all aligned, as predicted by our numerical calculations.

I. Introduction

Colloidal particles with dimensions between 1 nm and 1 mm
strongly adsorb at a fluid–fluid interface and can self-assemble
into 2D ordered structures.1–3 The adsorption of colloids is a
well understood phenomenon: the interfacial area and hence
the free energy of the interface can be reduced by the adsorp-
tion of particles at the interface.4 By contrast, the self-assembly
process is still not well understood even though a well-known,
macroscopic analogue exists in everyday life when mm–cm
sized breakfast cereals cluster in a bowl of milk. In the case
of this so-called Cheerios effect5 the gravitational force pulls
the cereals down causing deformations in the fluid interface
that are in turn responsible for capillary attractions among
the cereals and consequently for the self-assembly process.

As the gravitational effects can be neglected in the case of
colloidal particles,6–8 the colloidal self-assembly at a fluid–fluid
interface arises from a more intricate phenomenon, although
capillarity still plays an important role as we will see. The self-
assembly of colloids trapped at a fluid–fluid interface can only
be explained by forces that are sufficiently long-ranged and
extend over distances many times the particle dimension.9

Hence, the colloidal self-assembly cannot be explained by
electrostatic and van der Waals forces10 as these are not
sufficiently long-ranged in most solvents. However, interfacial
deformations are long-ranged. The interfacial deformations
arising by sub-mm particles are induced by particle properties
such as the shape and the surface chemistry rather than by
gravitational effects.11–19 The behavior of particles with homo-
geneous chemical properties but anisotropic shape, e.g. rods,
cylinders, cubes, dumbbells and discs, at fluid–fluid interfaces
has been widely studied.20–23 Since the combined effect of the
anisotropic shape and the heterogeneity in the surface chem-
istry is emphasized in the case of so-called Janus particles, i.e.
particles with two ‘‘faces’’ having different chemical surface
properties,24,25 many experimental investigations have been
focused on their self-assembly at an interface.26–36

A pioneering study on the self-assembly of colloids at a
fluid–fluid interface was performed by Pieranski.37 In this work
interfacial deformation effects were neglected and a flat inter-
face was assumed. This assumption, often used in literature,
is actually only valid in the case of homogeneous spherical

a Soft Condensed Matter, Debye Institute for Nanomaterial Science,

Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands.

E-mail: m.dijkstra@uu.nl; Tel: +31 30 253 3270
b Van’t Hoff Laboratory for Physical and Colloidal Chemistry, Debye Institute for

Nanomaterial Science, Utrecht University, Padualaan 8, Utrecht 3584 CH,

The Netherlands
c Condensed Matter and Interfaces, Debye Institute for Nanomaterial Science,

Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
d Institute for Theoretical Physics, Center for Extreme Matter and Emergent

Phenomena, Utrecht University, Princetonplein 5, Utrecht 3584 CC,

The Netherlands

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
c8sm02361a

Received 20th November 2018,
Accepted 25th February 2019

DOI: 10.1039/c8sm02361a

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 2
8 

Fe
br

ua
ry

 2
01

9.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

U
tr

ec
ht

 o
n 

10
/2

4/
20

19
 6

:3
0:

54
 A

M
. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-1704-0127
http://orcid.org/0000-0003-2360-2082
http://orcid.org/0000-0002-2221-294X
http://orcid.org/0000-0002-9166-6478
http://crossmark.crossref.org/dialog/?doi=10.1039/c8sm02361a&domain=pdf&date_stamp=2019-03-07
http://rsc.li/soft-matter-journal
https://doi.org/10.1039/c8sm02361a
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM015012


This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 2638--2647 | 2639

particles in equilibrium. In all other cases, it is equivalent to
ignoring the induced interfacial deformation field. Neverthe-
less, following Pieranski’s assumption of a flat interface, several
numerical techniques have been employed for calculating the
equilibrium configuration of an arbitrarily shaped particle
adsorbed at a fluid interface: e.g. the triangular tessellation
technique (TTT),38–43 and a hit and miss Monte Carlo
method.26,27,29 In order to take into account deformations of
the fluid interface that arise when a particle is adsorbed,
various numerical methods exist, like the widely used Surface
Evolver program,44 or a recently introduced simulated anneal-
ing method.45 By using the latter, it has been shown that
neglecting interfacial effects can lead to erroneous predictions
of the particle orientations while with the inclusion of capillarity,
self-assemblies have been predicted in agreement with experi-
mental observations.45–47

In this paper we employ the simulated annealing method
introduced in ref. 45 to numerically study the equilibrium
configuration of a single Janus particle adsorbed at a fluid–
fluid interface. Our method takes into account the interfacial
deformations so that we can predict the adsorption equilibrium
configuration and the resulting induced interfacial deforma-
tion field. This last information is then exploited for predicting
the capillary interactions between a pair of Janus particles at an
interface. We also present experimental results on the synthesis,
adsorption and self-assembly of charged Janus dumbbells at a
water–decane interface. We compare the experimental results
with the numerical ones, finding qualitative agreement.

The paper is organized as follows. In Section II we introduce
the numerical method employed for our calculations. In Sec-
tion III we study the adsorption of a single Janus particle at a
fluid–fluid interface, i.e. we determine the equilibrium configu-
ration and the resulting interfacial deformations. We then
study the capillary pair interaction between two particles at
an interface. Finally, in Section IV, we present the experimental
results and compare them with the numerical predictions.

II. Numerical method

In this section, we briefly illustrate the numerical method for
our calculations. We consider two immiscible, homogeneous,
and incompressible fluids separated by a fluid–fluid interface.
We assume the fluid–fluid interface as a 2D, possibly curved,
surface, with zero thickness. When no particles are adsorbed,
the fluid–fluid interface coincides with a plane parallel to z = 0,
where a Cartesian coordinate system x, y, z has been intro-
duced. At equilibrium, the shape of the fluid–fluid interface is
given by the Young–Laplace equation, with Young’s law as a
boundary condition for the contact angle.45 The contact angle
is the angle formed by the fluid–fluid interface along the three-
phase contact line, i.e. where the fluid–fluid interface encounters
any solid surface. When a Janus particle is adsorbed at the fluid–
fluid interface, two different contact angles are formed by the
fluid–fluid interface with the surface of the two patches of the
particle, denoted here by green and violet patches, respectively,

in Fig. 1. We call g the fluid–fluid surface tension between the
two fluids, g1, g2 the surface tensions of the violet patch with
fluid 1 and fluid 2, respectively, and g1*, g2* the surface tensions
of the green patch with fluid 1 and fluid 2, respectively. By
convention, fluid 1 is the fluid at z - +N and fluid 2 the fluid at
z - �N. From Young’s Law,45 the contact angles yV and yG,
relative to the violet (V) and green (G) patch of the particle as
indicated in Fig. 1, are given by

cos yV ¼
g1 � g2

g
; cos yG ¼

g1
� � g2

�

g
; (1)

respectively. To study the adsorption of a Janus particle at a
fluid–fluid interface, including the effects of capillary deforma-
tions, the equilibrium shape of the fluid–fluid interface, with
respect to the particle position at the interface, is required. We
compute the equilibrium shape using the numerical method
introduced in ref. 45. In this method, the fluid–fluid interface
is treated as a grid of points, and a simulated annealing
algorithm48 is used to find the point positions that minimize
the thermodynamic potential (‘‘energy’’) of the solid–fluid–fluid
system, given the fixed position of the solid surfaces in
the system as an input parameter. In our case, the solid
surface position is defined by the positions and orientations
of the N particles adsorbed at the fluid–fluid interface. We
define them by the 5N-dimensional vector O = (O1,. . .,ON), with
Oi = (xi, yi, zi, ji, ai) defining the configuration of the i-th
particle (i = 1,. . .,N), where xi, yi are the in-plane Cartesian
coordinates of the center of mass, zi is the difference between
the Cartesian coordinate z of the center of mass and the
interface height far away from the particle, ji is the polar
angle of the vertical axis with respect to the far-field interface
normal (see Fig. 1), and ai is the azimuthal angle of the
particle vertical axis in the interface plane. Note that, since
we consider particle shapes that are rotational invariant
around their long axis, we do not need to specify a third Euler

Fig. 1 Sketch of a Janus particle at a fluid–fluid interface. The particle has
two patches, indicated in green and violet. The various surface tensions are
(see text) g, g1, g2, g1*, g2*. The contact angles (measured inside fluid 2) of
the fluid–fluid interface with the two patches, respectively yG and yV are
given by Young’s Law (see eqn (1)). In our model, the fluid–fluid interface
coincides with a plane parallel to z = 0 when no particle is adsorbed. The
angle j is the polar angle of the particle vertical axis with respect to the
fluid–fluid interface plane with j = p/2 corresponding to the particle
horizontally aligned to the interface, j = 0 to the particle vertically aligned
and with the green patch upwards, j = p to the particle vertically aligned
and with the green patch downwards.
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angle. The energy of the particles–fluid–fluid system can be
written as45

EN(O) = g(S(O) � A + WG(O)cos yG + WV(O)cos yV), (2)

where S(O) is the total fluid–fluid surface area, WG(O) and
WV(O) are the total surface areas between fluid 1 and the green
and violet patches, respectively. The constant A is the planar fluid–
fluid surface area when no particle is adsorbed, and is included in
eqn (2) to set the energy level EN = 0 when all particles are
desorbed from the interface and are immersed in fluid 2.

For a given set of input parameters yG, yV and O, we
compute first the equilibrium shape of the fluid–fluid inter-
face using our numerical method. Once the equilibrium shape
is known, we extract the minimum energy EN for these input
parameters. By repeating this procedure for different O
enables us to find the equilibrium particle configuration
that minimizes the total energy of the system as well as
the equilibrium shape of the fluid–fluid interface, including
the equilibrium position of the three-phase contact line. The
resulting contact angles, after the energy is minimized
matches the input values yG, yV used in eqn (2). In order
to mimic an infinitely flat interface far away from the particle,
we place a solid vertical wall with contact angle p/2 far
away around our particle–fluid–fluid system to avoid particle–
wall capillary interaction effects. In all the calculations pre-
sented in this work, the fluid–fluid interface shape that
minimizes EN(O) (eqn (2)) is computed allowing fluid 1 and
fluid 2 to exchange volume. So the minimum-energy level
of the interface far away from the particles, for a given O,
is automatically found when the equilibrium shape of the
interface is computed. More details on the numerical method
can be found in ref. 49. Other examples of its application to
colloidal particles at fluid–fluid interfaces and for a droplet in
contact with heterogeneous surfaces can be found in ref. 46, 47,
50, 51 and 52.

III. Numerical results

In this section, we report our numerical results for the adsorp-
tion and capillary interactions of Janus colloidal particles at a
fluid–fluid interface. First, the equilibrium orientation of a
single adsorbed particle is shown, for different shapes and
contact angles of the Janus particle. Then, the interfacial
deformations induced by the adsorbed particle are analyzed.
Finally, we study the capillary pair interaction between two
identical particles adsorbed at the interface. The shapes of the
Janus particles considered in this work are shown in Fig. 2: (a) a
dumbbell of two spheres of radius R and center-to-center
distance d, (b and c) a dumbbell with (b) a short and (c) a long
inter-sphere cylindrical neck of radius R0 o R and length L, and
(d) a spherocylinder of cylinder length L and radius R0 = R.
The Janus character of all four particles (a–d) is also illustrated
in Fig. 2, i.e. such that the uniaxial character of the particles
is preserved.

A. Single adsorbed particle

Here we present the equilibrium orientation of a single-
adsorbed Janus particle, for each of the particle shapes shown
in Fig. 2, and for various values of the contact angles yG and yV

of the two particle patches. Next, we analyze the interfacial
deformation field induced by each particle when adsorbed in
equilibrium.

The configuration of a single-adsorbed particle at the inter-
face, using the notation of Section II, is O = (x, y, z, j, a), where
the subscript ‘‘1’’ is omitted since we consider a single particle
(i.e. N = 1). In Fig. 3, we show a 3D view of the equilibrium
adsorption configuration of a Janus particle, for the different
shapes shown in Fig. 2 and for cos yG = �cos yV = �0.4. The
equilibrium values z* and j* of the particle height z measured
with respect to the interface level far away from the particle and

Fig. 2 (a) Janus dumbbell consisting of two interpenetrating spheres with
radius R and center-to-center distance d ¼

ffiffiffi
2
p

R. (b) Janus dumbbell
consisting of two interpenetrating spheres with radius R and a small

cylindrical part connecting them, with radius R0 ¼ R
� ffiffiffi

2
p

and length

L ¼ 1:7�
ffiffiffi
2
p� �

R;, for d = 1.7R. (c) Janus dumbbell consisting of two

touching spheres with radius R and a cylindrical part connecting them,

with R0 ¼ R
� ffiffiffi

2
p

and L ¼ 2�
ffiffiffi
2
p� �

R, for d = 2R. (d) The limiting case of a

Janus spherocylinder of two touching spheres of radius R and a cylindrical
part of length L with 2R0 = L = d = 2R.

Fig. 3 3D views of the equilibrium configuration of a Janus particle with
the shapes shown in Fig. 2 at a fluid–fluid interface, and with contact angles
of the green and violet patches (see Fig. 1) given by cos yG =�cos yV =�0.4.
While the equilibrium particle height on the interface level far away from the
particle is, as expected, z* = 0, in all cases, the orientation j*/p depends on
the particle shape. In case (a) j*/p = 0, and no interfacial deformations are
induced. In cases (b–d), the particle is tilted with respect to the interface and
the interfacial deformation field is dominated by a hexapolar mode with
increasing intensity upon increasing the length of the cylindrical part of the
Janus dumbbell.
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of the particle orientation j are reported for each shape. Since
we consider a single-particle at a planar fluid–fluid interface,
x, y, and a of the particle are irrelevant by symmetry. The
dumbbell (shape (a) of Fig. 2) prefers the vertically aligned
orientation, with the green patch completely immersed in fluid
1 and the violet patch completely immersed in fluid 2. The
other three particle shapes, (b–d) of Fig. 2, instead, prefer a
tilted orientation, with the green patch predominantly
immersed in fluid 1 and the violet patch largely immersed in
fluid 2. The equilibrium polar tilt angle j* increases mono-
tonically from case (a) to case (d). This is due to the fact that for
a longer cylindrical part of the particle, the surface area that is
excluded from the fluid–fluid interface increases, when the
particle is more tilted. As a consequence, the tilt of the
adsorbed particle increases with the length of the cylindrical
neck of the particle. For each of the four cases shown in Fig. 3,
we report in Fig. 4 a contour plot of the fluid–fluid interface
height profile, as computed through our method. The dumb-
bell in its equilibrium adsorption configuration does not
deform the interface, while an asymmetric hexapolar capillary
deformation is found in the other three cases, as will be
discussed in more detail in the next section.

As the interfacial deformation field is most pronounced for
the Janus spherocylinder, we will use this particle shape to
investigate the role of the contact angles yG and yV. In Fig. 5 we
show a 3D view of the equilibrium configuration of a sphero-
cylinder (shape (d) of Fig. 2) for cos yG= �0.4, 0, 0.4 and cos yV =
�0.4, 0, 0.4. In the graph of Fig. 5, the diagonal cases with
cos yG = cos yV correspond to the cases of a homogeneous
(i.e. non-Janus) spherocylinder. The other cases of Fig. 5 are
symmetric with respect to this diagonal, with the green and violet
patch exchanging role (since their contact angles are interchanged).

In the case cosyG = cosyV = 0, the equilibrium height of the
spherocylinder’s center of mass at the interface level is z* = 0, the
spherocylinder prefers the horizontal orientation, i.e. j*/p = 0.5,
and no interfacial deformations are observed, i.e. the interface
remains flat also in the presence of the particle. When cosyG =
cosyV = �0.4, the spherocylinder is also horizontal at the interface,
but z*/R = 0.40. Note that the equilibrium heights are of the same
magnitude, since these cases are symmetric with respect to z
(inverting the sign of the cosine of the contact angle is equivalent
to exchanging fluid 1 and fluid 2, see eqn (1)). Along the diagonal,
where yG = yV, the interfacial height profile is flat as expected.53 In
all the off-diagonal cases, the spherocylinder at the equilibrium
stays tilted at the interface, i.e. j*/pa 0.5. In particular, the bigger
|cosyG � cosyV|, the more the spherocylinder is tilted. Most
interestingly, in all the off-diagonal cases, i.e. where the sphero-
cylinder is a Janus particle, the interfacial deformation field is
dominated by a hexapolar mode, rather than by a flat interface
as observed for the non-Janus spherocylinders. We will discuss
this in detail in the next section.

Analogous graphs to Fig. 5 are reported in Fig. S2–S4 in the
ESI,† for the other three particle shapes which show that the
intensity of the interfacial deformation field decreases upon
decreasing the length of the cylindrical part of the Janus
dumbbell. Also, in Fig. S1 of the ESI,† we report the energy E1

(eqn (2)) computed by our numerical method for all particle
orientations j considered, and for all the particle shapes and
contact angle values considered. Since we perform calculations
for many particle shapes and contact angles we consider a
relatively large step size Dj = 0.05p and a relatively large grid
spacing of 0.007R.

B. Fit of the interfacial deformation field

Within the approximation of small interfacial deformations,
the equilibrium height profile of a fluid–fluid interface around
a colloidal particle centered in the origin can be written as6,13

h r;fð Þ
R

¼ C0 ln
r

R

� �
þ
X1
m¼1

Cm
cos m f� fmð Þð Þ
ðr=RÞm ; (3)

where we introduced the cylindrical coordinates r and f, with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and f ¼ arctan

y

x

� �
, and the fluid–fluid interface

far away from the particle is at z = 0. In eqn (3), the coefficients
C0, Cm and fm are referred to, respectively, as the monopole
(C0), the dipole (C1), the quadrupole (C2), the hexapole (C3), etc.
We consider the case of the Janus spherocylinder with cos yG =
�cos yV = 0.4, as shown in Fig. 3(d) and 4(d). In Fig. 6, we report
the height profile h(r,f)/R as a function of f for the two distinct
values r/R = 2 and r/R = 5 as computed through our numerical
method. The fit shown in the figure is obtained by the multi-
pole expansion eqn (3) with the coefficients as reported in
Table 1, and neglecting the modes with m Z 4.

The monopolar and dipolar modes are not expected for a
particle at its equilibrium adsorption configuration, unless
external forces are applied to the particle.13 In our case these
modes approach zero when a very accurate equilibration of the
particle configuration (step size Dj = 0.001p and grid spacing

Fig. 4 Contour plots of the interfacial deformation field of the Janus
particles adsorbed at a fluid–fluid interface at their equilibrium configura-
tions as shown in Fig. 3. A flat plane corresponds to the shape of the fluid–
fluid interface when no particle is adsorbed. In case (a), the particle does
not induce any deformation (i.e. the interface remains flat). In case (b–d), a
hexapolar mode is observed, whose intensity is maximum in the case of
the spherocylinder (d). This case is analyzed in detail in Section IIIB.
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0.0001R) is performed. However, due to the precision of our
numerical method these modes never disappear completely.
Nevertheless their amplitudes C0 E �0.00071 and C1 E
�0.0063 are much smaller than the one of the hexapolar mode
C3 E �0.069. Additionally the quadrupolar mode C2 E
�0.0072 is also much weaker than C3 and thus the hexapolar
mode is the dominant mode. In Fig. 6 the combination of the
hexapolar and quadrupolar modes can only be appreciated at
small distances (r/R = 2), since at large distances (r/R = 5) only
the lower order terms of eqn (3) survive. The deviation of the fit
from the numerically obtained one for small r/R is caused by
neglecting high-order modes with m Z 4 in eqn (3).

C. Capillary pair interaction

After showing the equilibrium configuration of a single-
adsorbed Janus particle and the induced deformation field,
we consider the capillary pair interactions between two iden-
tical Janus particles adsorbed at the interface. Following ref. 46,
we define the capillary interaction energy per particle as

~EN �
EN

N
� E1 (4)

where N is the number of adsorbed particles and EN is the
energy of the fluid–fluid–particles system numerically com-
puted through the method discussed in Section II. Note that
ẼN = 0 when only one particle is adsorbed (N = 1), or when N
particles are adsorbed, but so far apart that they are not

interacting, i.e. EN = NE1. Here we are interested in the pair
interaction, N = 2. In Fig. 7, we report the interaction energy per
particle Ẽ2 for two adsorbed Janus spherocylinders with contact
angles cos yG = �cos yV = �0.4, as a function of the distance

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2þ y1 � y2ð Þ2

q
between their centers of mass.

The height of the particles at the interface level is z1 = z2 = z*,
and their orientation is j1 = j2 = j*, with z* and j* the
equilibrium values found for this particle shape and contact
angles (see Section IIIA). The relative azimuthal angle of the two
particles in the interface plane is set to a1 � a2 = 0, p, corres-
ponding to a laterally aligned and an anti-aligned configuration,
respectively, see Fig. 7. We find attractive capillary interactions for
the laterally aligned configuration (black), and repulsive capillary
interactions for the anti-aligned configuration (orange). Interest-
ingly, this result is only expected when the dominant mode of
the interfacial deformation field induced by the two particles is a
hexapole, as in our results. Instead, if the dominant mode had
been a quadrupole, attractive capillary interactions would have
been found for both laterally aligned and anti-aligned config-
urations. This is a key finding of this paper that allows us to
experimentally distinguish particles with quadrupolar and
hexapolar deformation fields, as we will discuss in Section IV.
We also mention here that the residual dipolar mode found in
the previous paragraph does not significantly affect the pair
interaction between the spherocylinders. As shown in Fig. 6,
the dipole still survives at a distance r/R = 5 from a single

Fig. 5 3D views of the equilibrium configurations of a Janus spherocylinder (shape (d) in Fig. 2) adsorbed at a fluid–fluid interface, with varying contact
angles yG and yV. The graph is symmetric with respect to the diagonal corresponding to the cases of a homogeneous (non-Janus) spherocylinder, i.e.
yG = yV. When cos yG = cos yV = 0, j*/p = 0.5, z* = 0, no interfacial deformations are induced in the fluid–fluid interface shape. For cos yG = cos yV =�0.4,
j*/p = 0.5, z*/R = 0.40, the induced interfacial deformation fields are flat as expected.53 In all the off-diagonal cases, the deformation field is dominated
by the hexapolar mode, whose intensity is proportional to |cos yG � cos yV|. This is shown in detail in Section IIIB.
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spherocylinder while, as shown in Fig. 7, the interaction energy
per particle is negligible, if compared to the near contact value,
at a distance D/R E 3.6 between two spherocylinders.

A graph analogous to the one in Fig. 7 is presented in
Fig. S5–S7 of the ESI,† for the tip–tip interactions. In this case,
within the precision of our numerical method, we do not
observe any interaction between the spherocylinders.

Note that the pair potential Ẽ2 in Fig. 7 is plotted in units of
gS, where S is the total surface area of a spherocylinder.
For typical values g B 10�2 N m and micrometer-sized areas
S B 10�12 m2, we have gS B 10�14 J B 107kBT, such that
the capillary pair interaction at contact, Ẽ2 B (10�4–10�3)gS
in Fig. 7 corresponds to strong capillary interactions of
hundreds of kBT.

We consider the case of a Janus spherocylinder here as the
numerical result is the most accurate for this particle shape due

to the high intensity of the interfacial deformation field. We
expect similar, but weaker, capillary interactions for the other
particle shapes of Fig. 2(b and c) as the deformation fields are
qualitatively similar but less pronounced.

IV. Experimental results

In this section we present experimental observations on the
adsorption and self-assembly of charged Janus dumbbells at a
water–decane interface. We also report some details of the
synthesis of the dumbbells and a comparison with the theore-
tical predictions of the previous sections.

A. Preparation of smooth Janus dumbbells

We prepared linear polystyrene spheres (PS) via a soap-free
dispersion polymerization. An amount of 90 mg AIBN (Argos
Organics) was dissolved in a mixture of 40 mL methanol and
8 mL styrene (St, Sigma-Aldrich) in a 250 mL round bottle flask.
Then an aqueous solution of 10 mL H2O with 130 mg sodium
4-vinylbenzenesulfonate (NaSS) (Aldrich) was added. The flask
was flushed with N2 for 30 minutes and sealed tightly with a
stopper and Teflon tape. Polymerization was carried out by
placing the flask in an oil bath of 70 1C for 20 hours under
magnetic stirring.

The dumbbells were then prepared in two steps (see Fig. 8).
This procedure is a modified version of the synthesis described in
ref. 54. 3-(Trimethoxysilyl)propylacrylate (TMSPA) was used as
comonomer to prepare functional core–shell spheres with a
functional shell for further modification. First, PS/poly(St-co-
TMSPA) core–shell particles were prepared using dispersion poly-
merization. Typically, a monomer mixture consisting of styrene
with 10 v/v% co-monomer 3-(trimethoxysilyl)propylacrylate
(TMSPA) (Alfa Aesar, 94%) and 1.5 wt% azobisisobytyronitrile

Fig. 6 Interface height profile h(r,f) around the Janus spherocylinder at
its equilibrium adsorption configuration in the case shown in Fig. 3(d) and
4(d), as a function f, and for the two distinct values of r/R = 2 and r/R = 5,
where r and f are cylindrical coordinates (see text). The fit shown in the
figure is the multipole expansion eqn (3) with the coefficients as reported
in Table 1. The dots represent our numerical solution.

Table 1 Coefficients Cm of the multipole expansion (3) obtained through
a fit of the numerical obtained results. Here C0, C1, C2 and C3 are the
amplitudes of the monopolar, dipolar, quadrupolar and hexapolar modes,
respectively, while f1, f2 and f3 are their phases

m 100�Cm fm

0 �0.071 � 0.002 —
1 �0.63 � 0.03 2.26 � 0.01
2 �0.72 � 0.2 0.87 � 0.23
3 �6.9 � 1.0 1.26 � 0.01

Fig. 7 Interaction energy per particle Ẽ2/Sg (eqn (4)) of two parallel Janus
spherocylinders, adsorbed in their equilibrium configuration, as a function
of the distance D between their centers of mass, for laterally aligned (black)
and anti-aligned (orange) orientations. The total surface area is denoted as
S and the fluid–fluid surface tension is g. The contact angles of the Janus
spherocylinders are given by cos yG = �0.4 (in green) and cos yV = 0.4
(in violet).
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(AIBN) was prepared. Then a swelling emulsion was prepared
by adding a monomer mixture to the particle seed dispersion
(5 wt%). The volume ratio of Vmonomers/VPS was fixed at 1. After
swelling for 20 hours on a roller table at 60 rpm, the polymer-
ization was conducted at 70 1C in an oil bath. The core–shell
particles with uniform spherical shape were used as seed
particles for the second dispersion polymerization.

In the second step, we mixed 10 mL of the core–shell
suspension (5 wt%) with a mixture of styrene, toluene (5 vol%
to the styrene) and AIBN (1 wt%) in a 40 mL glass vial, the
swelling ratio Vmonomers/Vcore–shell was varied to get anisotropic
particles. The second swelling process was allowed for 4 hours
on a roller table, followed by polymerization at 70 1C. Like
the PS spheres, the particles were stabilized by adding NaSS
(1 wt/vol% to the polystyrene) to bring charges to the surface of
the protrusion. At swelling ratio 2, the resulting particles are
symmetric dumbbells (see Fig. 10(a)), while at swelling ratio
1.5, slightly asymmetric dumbbells with a relatively small
protrusion lobe could be prepared. These (Fig. 10(b)) were also
synthesized and analyzed as we will see in the following. The
chemical asymmetry of our dumbbells was confirmed by labelling
the seeded lobe with (3-aminopropyl)triethoxysilane-fluorescein

isothiocyanate (APS-FITC) via silane coupling reaction. Methoxy-
silane groups on the surface of the seeded lobe of the dumbbells
could be further modified to be hydrophobic or hydrophilic to
change the equilibrium particle configuration at a liquid–liquid
interface. See for more details Fig. S10 of the ESI.†

Compared to the anisotropic particles with a rough seeded
lobe from the seeded swelling–shrinking process,55 both lobes
of the particles prepared using our strategy feature a smooth
surface due to the linear core–shell seed particles, which is
crucial for the interface experiments. The particles were then
spread onto the water–decane interface following a procedure
described in Fig. S11 of the ESI.†

B. Structure evolution

After the particles were spread onto the water–decane interface,
the structural time evolution of the monolayer was monitored
with optical microscopy. Fig. 9(a) depicts the initial configu-
ration of the microstructure. The charged dumbbells at the
interface give rise to an ordered crystalline monolayer with a
few aggregates present, similar to the well-known behavior
observed by Pieranski for charged spheres.37 This is attributed
to the dipole–dipole repulsions from the charges on both lobes
of the dumbbells. Our particles assemble predominantly by
connecting their waists, thereby forming lateral structures (see
Fig. 9(b)). Only a few tip–tip configurations were observed
which are mainly due to the roughness of the seed lobes during
the seeded dispersion polymerization process. The linear
chains grow in time until they encounter each other to form
interconnected aggregates and branched structures as shown
in Fig. 9(c). Because of the presence of electrostatic interaction,
the structural evolution proceeds relatively slowly. Fig. 9(d)
shows a network structure consisting of rigid linear segments,

Fig. 8 Schematic illustration of the formation of dumbbells via a two-step
dispersion modification. More details on the synthesis can be found in
Fig. S8 of the ESI.†

Fig. 9 The structure evolution in a monolayer containing charged Janus dumbbells at the water–decane interface: (a) microstructure obtained right
after spreading particles at the interface; after (b) 25 hours; (c) 50 hours; (d) 120 hours. The scale bar corresponds to 20 mm.
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and this system evolved to such a state in about 120 hours after
spreading. A zoomed image of the observed lateral structures is
shown in Fig. 10(c).

Fig. 9 also shows that the particles first form doublets and
only at a later stage longer chains, which is expected for charged
particles.

C. Discussion and comparison with theoretical predictions

Even if electrostatic forces are present in our system, capillarity
is still expected to play a major role in the self-assembly process
as was also observed in ref. 56. Therefore a qualitative comparison
between our experimental analysis and the numerical predictions
should be justified.

As shown in Fig. S9 of the ESI,† the shape of our experi-
mentally synthesized dumbbells can best be compared to the
dumbbells of Fig. 2(b and c), rather than to the ones of Fig. 2(c),
i.e. dumbbells consist of smoothly joined, interpenetrating or
touching spheres.

The structures experimentally observed can be explained by
an induced deformation field dominated by a hexapolar mode,
as predicted by our numerical calculations. Indeed the lateral
aggregates that we experimentally observe consist of only
laterally aligned configurations of two neighboring particles
and never of laterally anti-aligned configurations. Actually this
conclusion cannot be inferred from the analysis performed on
the symmetric Janus dumbbells. In this case it is impossible to
distinguish which lobe of the dumbbell is hydrophilic and
which one is hydrophobic so that even if lateral structures are
observed, it is not possible to say if they consist of laterally
aligned configurations or of laterally anti-aligned ones. It then

follows that it is not possible to distinguish between a hexapolar
induced capillary deformation field and a quadrupolar one. To
clarify this point, slightly asymmetric dumbbells (see Fig. 10(b))
were used as reference. In the case of asymmetric dumbbells, it
is possible to distinguish the hydrophobic lobe of the dumbbell
from the hydrophilic one since one lobe is slightly bigger than
the other. As shown in Fig. 10(d), asymmetric dumbbells evolve
into curved chains in which the ‘‘big’’ lobe of each particle
attracts the ‘‘big’’ lobe of the neighboring particle. The same of
course happens between the ‘‘small’’ lobes. This indicates that
the chains consist of laterally aligned configurations and since
the dumbbells are just slightly asymmetric, we expect this to
also hold for less asymmetric and even symmetric dumbbells.
A sketch of the structures observed in these two cases is depicted
in Fig. 10(e and f). As explained in Section IIIC, this finding
allows us to conclude that the capillary deformation field is
hexapolar, in agreement with our numerical predictions.

V. Conclusions

In this paper, we numerically studied the adsorption and the
self-assembly at a fluid–fluid interface of a variety of anisotropic
Janus particles interpolating between a pair of interpenetrating
equal-sized spheres to a spherocylinder by the insertion of a
cylindrical neck. Each particle shape has two distinct ‘‘faces’’
with contact angles yG and yV, respectively. Our study was
performed using a numerical method that takes into account
the interfacial deformations. For (Janus or non-Janus) dumbbells
consisting of interpenetrating spheres, we always find a flat
interface. For dumbbells with a cylindrical neck and for
spherocylinders, we find a flat interface in the non-Janus case
(cosyG = cos yV), and that the deformation field is dominated by
an hexapolar mode in the Janus case (cosyG a cos yV). The
intensity of this hexapole is proportional to the dimension of the
cylindrical neck between the spheres composing the particles
and to the difference between their contact angles. The intensity
of the hexapole is hence strongest in the case of Janus sphero-
cylinders when |cosyG � cos yV| is maximum. We then found
that the hexapolar field induces capillary attractions between
two laterally aligned Janus spherocylinders at the interface and
repulsions for two laterally anti-aligned ones. For micrometer-
sized spherocylinders this attraction is of the order of hundreds
kBT and since the other particle shapes are expected to induce
qualitatively the same deformation field, we expect qualitatively
the same capillary interactions, although a bit weaker. We also
synthesized micrometer-sized charged Janus dumbbells and
experimentally studied their adsorption and self-assembly at a
water–decane interface. We found that interactions that appear
to be predominantly capillary in nature act among the particles
and lead to the formation of structures of laterally aligned Janus
dumbbells. This behavior can be qualitatively explained with our
numerical predictions. We will leave a more detailed study on
the interplay between electrostatic and capillary interactions and
a more quantitative analysis of the deformation field induced by
experimentally synthesized Janus dumbbells to future work.

Fig. 10 Transmission electron microscope images of symmetric Janus
dumbbells (a) and slightly asymmetric Janus dumbbells (b); a linear string
of symmetric Janus dumbbells (c) and a curved chain of slightly asym-
metric Janus dumbbells (d) formed at an interface. In case (c and d) the
scale bar corresponds to 10 mm. Schematic images of the observed
structures: a linear string of laterally aligned symmetric Janus dumbbells
(e), a curved chain of laterally aligned and slightly asymmetric Janus
dumbbells (f).
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