
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 21:1, 2019, #10

Stable gonality is computable

Ragnar Groot Koerkamp1 Marieke van der Wegen1,2

1 Mathematical Institute, Utrecht University, The Netherlands
2 Department of Information and Computing Sciences, Utrecht University, The Netherlands

received 30th Oct. 2018, revised 19th Apr. 2019, accepted 22nd Apr. 2019.

Stable gonality is a multigraph parameter that measures the complexity of a graph. It is defined using maps to trees.
Those maps, in some sense, divide the edges equally over the edges of the tree; stable gonality asks for the map with
the minimum number of edges mapped to each edge of the tree. This parameter is related to treewidth, but unlike
treewidth, it distinguishes multigraphs from their underlying simple graphs. Stable gonality is relevant for problems
in number theory. In this paper, we show that deciding whether the stable gonality of a given graph is at most a
given integer k belongs to the class NP, and we give an algorithm that computes the stable gonality of a graph in
O((1.33n)nmmpoly(n,m)) time.

Keywords: algorithm, gonality, graph parameter

1 Introduction
The gonality of an algebraic curve X is the minimal degree of a non-constant morphism to the projective
line P1. Algorithms are known that, given equations for X , compute its gonality, see for example [13].
Based on analogies between algebraic curves and graphs, various analogues of gonality have been defined
in graph theory, see [2, 5, 6]. In this paper, we are concerned with the computation of the so-called
stable gonality sgon(G) of a multigraph G. Stable gonality is defined as the direct analogue of the above
geometric definition: sgon(G) is the minimal degree of a finite harmonic morphism of a refinement of G
to a tree. Here, a refinement of G is given by iteratively subdividing edges or adding leaves (see 2.1-2.6
infra). Our main result says:

Theorem A. There is an algorithm that, given a graph G, computes its stable gonality sgon(G) in time
O((1.33n)nmm poly(n,m)). Furthermore, deciding whether a graph has stable gonality at most a given
integer is in NP.

It is not immediately clear that stable gonality of a graph is computable, since its definition involves
three quantifiers over infinite sets. In this paper we bound the number of refinements, trees and morphisms
that we have to consider and give an algorithm to compute the stable gonality of a graph, which shows
that stable gonality is computable.

There are similar notions of gonality for tropical curves and graphs, see [1, 5]. Also, on algebraic
curves there is an equivalent definition of gonality, using linear systems of divisors. Another notion of
gonality for graphs, divisorial gonality, has been introduced using the analogue of linear systems [3, 2].

ISSN 1365–8050 c© 2019 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

80
1.

07
55

3v
4

 [
cs

.D
M

]
 6

 J
un

 2
01

9

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/4931

2 Ragnar Groot Koerkamp, Marieke van der Wegen

Interestingly, divisorial gonality turns out to be different from stable gonality, as shown in [5, Example 4]
and by an example of Luo in [1, Example 5.13].

Some results about the computational complexity of gonality for graphs are known. For example, both
notions of gonality for graphs are NP-hard to compute [10]. Deciding whether a graph has gonality 2, on
the other hand, can be done in quasilinear time for both notions of gonality [4]. An algorithm is known
that computes the divisorial gonality of a graph in O(nk poly(n,m)) time, where n is the number of
vertices, m the number of edges and k the divisorial gonality of the graph [7]. Hence computing the
divisorial gonality is in XP. On the other hand, it is not known whether stable or divisorial gonality can
be used for fixed parameter tractable algorithms: it would be interesting to see examples of problems that
are tractable on graphs of bounded gonality (either stable or divisorial gonality), but are not tractable on
graphs of bounded treewidth.

Computing stable gonality is relevant in the theory of diophantine equations. More specifically, if X
is a smooth projective curve defined over a global field K with stable reduction graph G at some non-
archimedean place, it is known that gon(X) ≥ sgon(G) [6, §4]. The following “uniform boundedness
result” follows: X has only finitely many points in the union of all field extensions ofK of degree at most
(sgon(G)− 1)/2 [6, §11].

This paper is structured as follows. In Section 2 we introduce the definition of stable gonality. We give
an algorithm to compute the stable gonality of a graph in Section 3, and in Section 4, 5 and 6 we prove that
this algorithm is correct. This work implies that the stable gonality problem belongs to the complexity
class NP, see Section 7.

2 Preliminaries
Stable gonality is a multigraph parameter, so in this paper, we consider multigraphs; whenever we write
graph, we mean finite undirected connected multigraph. A multigraphG consists of a set V (G) of vertices
and a multiset E(G) of edges. By Ev we denote the set of edges incident to a vertex v.

In this section, we will define stable gonality as in [6, Definition 3.6], using finite harmonic morphisms.

Definition 2.1. Let G and H be loopless graphs. A finite morphism is a map φ : G→ H , such that

• vertices are mapped to vertices: φ(v) ∈ V (H) for all v ∈ V (G),

• edges are preserved: φ(e) = φ(u)φ(v) ∈ E(H) for all e = uv ∈ E(G).

together with, for every edge e ∈ E(G), an index rφ(e) ∈ N.

Remark. Let e = uv be an edge. Notice that e is mapped to an edge connecting the images of its
endpoints: φ(e) = e′ with e′ = φ(u)φ(v). Moreover, this also means that there has to be such an edge e′,
and more specifically it holds that φ(u) 6= φ(v).

Definition 2.2. Let φ : G → H be a finite morphism. Let v ∈ V (G) be a vertex of G and e ∈ Eφ(v) an
edge in H . The index of v in the direction of e is∑

d∈Ev,φ(d)=e

rφ(d).

We write mφ,e(v) for this number.

Stable gonality is computable 3

We can think of these indices as follows: a vertex v has a certain weight, namely the sum of the indices
of the edges incident to v. The index in the direction of an edge e incident to φ(v) indicates how much
of this weight is send to the edge e. In order for a morphism to be harmonic, we want that every vertex
distributes its weight equally over all edges incident to φ(v).

Definition 2.3. A finite morphism φ : G→ H is harmonic if, for all v ∈ V (G) and for all e, e′ ∈ Eφ(v),∑
d∈Ev,φ(d)=e

rφ(d) =
∑

d′∈Ev,φ(d′)=e′

rφ(d
′).

In other words, φ is harmonic if for every vertex the index in each direction is the same. We call this
number the index of v and denote it by mφ(v).

A consequence of a finite morphism being harmonic is that the total weight that is mapped to each edge
is equal. We call this amount the degree of the finite harmonic morphism.

Definition 2.4. The degree of a finite harmonic morphism φ : G→ H is

deg(φ) =
∑

d∈φ−1(e)

rφ(d) =
∑

u∈φ−1(v)

mφ(u),

for any choice of e ∈ E(H) or v ∈ V (H). This number is independent of the choice [3, Lemma 2.4].

Definition 2.5. Let G be a graph. A refinement of G is a graph H that can be obtained by applying the
following operations finitely many times:

• add a new leaf, i.e. a vertex of degree 1;

• subdivide an edge, i.e. replace an edge by a vertex of degree 2.

We call a vertex of H\G from which there are two disjoint paths to vertices of G, internal added vertex,
we call the other vertices of H\G external added vertices.

Definition 2.6. Let G be a graph. The stable gonality of G is

sgon(G) = min{deg(φ) | φ : H → T a finite harmonic morphism,
H a refinement of G, and T a tree}.

Example 2.7. Consider the graph in Figure 1. We can map this graph to the path graph on five vertices as
follows: φ(v1) = p1, φ(v2) = p2, φ(v3) = φ(v4) = p3, φ(v5) = p4 and φ(v6) = p5, see Figure 1 for an
illustration. Give the edge v5v6 index 2, and all other edges index 1. This is a finite morphism.

We can check that φ is harmonic. Consider, for example, vertex v5. There are two edges incident to
φ(v5), namely p3p4 and p4p5. We can compute

mφ,p3p4(v5) =
∑

e∈Ev5 ,φ(e)=p3p4

rφ(e) = rφ(v3v5) + rφ(v4v5) = 2,

mφ,p4p5(v5) =
∑

e∈Ev5 ,φ(e)=p4p5

rφ(e) = rφ(v5v6) = 2.

We see that these sums are indeed equal, and mφ(v5) = 2. Analogously, we can check that mφ(v1) =
mφ(v2) = mφ(v6) = 2 and mφ(v3) = mφ(v4) = 1.

The degree of φ is
∑
v∈V (G),φ(v)=p4

mφ(v) = mφ(v5) = 2. So we conclude that sgon(G) ≤ 2.

4 Ragnar Groot Koerkamp, Marieke van der Wegen

v1 v2

v4

v3

v5 v6

2

p1 p2 p3 p4 p5

Fig. 1: The graph G of Example 2.7 and a finite harmonic morphism of degree 2.

u v u v v′

Fig. 2: The banana graph admits, after refining, a finite harmonic morphism of degree 2.

Example 2.8 ([6, Example 3.9]). The banana graph Bm is a graph with 2 vertices u and v and m ≥ 2
edges, see Figure 2. Let φ : Bm → T be a finite harmonic morphism to a tree T . It follows that φ(u) 6=
φ(v), otherwise the edges uv are not send to an edge φ(u)φ(v). It follows that all m edges are mapped to
the edge φ(u)φ(v), thus deg(φ) ≥ m.

By refining Bm first, we can obtain finite harmonic morphisms with lower degree. Consider the refine-
ment G′ where every edge is subdivided once. Let T be a tree with a vertex v′ and m leaves, see Figure
2. Let φ : G′ → T be the map such that φ(u) = φ(v) = v′ and all other vertices are mapped to a unique
leaf. Assign index 1 to every edge of G′. Now we see that φ is a finite harmonic morphism of degree 2.

Stable gonality is related to other graph parameters, like treewidth and the first Betti number. The first
Betti number of a graph equals m−n+1, where m is the number of edges and n the number of vertices.
Treewidth only depends on the underlying simple graph of a multigraph, but stable gonality distinguishes
multigraphs and their underlying simple graphs. The following inequalities hold for all graphs G with m
edges and n vertices: tw(G) ≤ sgon(G) ≤ bm−n+4

2 c [6, 8].
Lastly, we introduce notation for a part of a graph from a given vertex v in the direction of a given

vertex u.

Definition 2.9. LetG be a graph and u, v vertices. Let U be the connected component ofG−v containing
u. By Gv(u) we denote the induced subgraph on U ∪ {v}. By Guv we denote the graph (Gu(v))v(u).

Intuitively, Guv is the part of G ‘between’ u and v. See Figure 3 for an example.
We say we add Gv(u) to a vertex w in a graph H , when we add a copy of Gv(u) to H and identify v

with w.
We say we refine edge uv of a graph H as Gu′v′ , when we remove uv from H , add a copy of Gu′v′

and identify u with u′ and v with v′. This can be done with any graph G, but in the rest of the paper, when
we refine an edge as Gu′v′ , the graph G will always be a tree.

Stable gonality is computable 5

u v u v u v

Fig. 3: A graph G, the graph Gv(u) and the graph Guv

3 Algorithm overview
In this paper we will give an algorithm to compute the stable gonality of a graph. Notice that this is not
initially trivial: there are infinitely many refinements of a graph, there are infinitely many trees and there
are infinitely many finite harmonic morphisms, since there are infinitely many assignments of indices to
the edges. We bound the trees and maps that we have to consider; our algorithm enumerates all those trees
and maps.

The algorithm considers all tuples α = (T, f, r), where

• T is a tree with at most n = |V (G)| vertices,

• f : V (G)→ V (T) is a surjective map,

• r : E(G)→ [bm−n+4
2 c], where we denote [k] for the set {1, 2, 3, . . . , k}, is a map assigning indices

to the edges of G.

Given such a tuple, we construct a finite harmonic morphism φα from a refinement of G to a tree con-
structed from T by optionally adding at most m leaves. We compute the degree of φα, and output the
minimum degree over all tuples α. The remainder of this section covers the construction of φα and anal-
yses the runtime of the algorithm. The remainder of the paper proves that the assumptions made by the
algorithm are valid. Sections 4 and 5 show that it suffices to only consider trees T of size at most n and
indices rφ(e) at most b(m− n+ 4)/2c. Section 6 proves that there exists a finite harmonic morphism of
the form φα that attains the minimal degree sgon(G) indeed.

3.1 Construction of φα

We now explain how to construct a refinement H and a finite harmonic morphism φα from a tuple α =
(T, f, r).

First we set φ(v) = f(v) for every vertex v of G. For each edge uv ∈ E(G) with f(u) = f(v), we
add a vertex euv to uv. Besides, we add a leaf e′uv to f(u). We assign index 1 to those new edges and set
φ(euv) = e′uv . This is depicted in the second column of Figure 4. Write T ′ for the tree we constructed
from T by adding these leaves. Now, for every edge uv ∈ E(G) with f(u) 6= f(v), we refine uv as
T ′f(u)f(v). Assign index r(uv) to all those new edges and use the identity map to map this part of the
refinement to T ′f(u)f(v). This is the third column in the figure. In the last column, we ensure that our
map is harmonic: for every vertex v ∈ V (G), let e ∈ Ef(v) be the edge such that mφ,e(v) is maximal.
Now, for every edge e′ = f(v)u′ ∈ Ef(v) with mφ,e′(v) < mφ,e(v), we add T ′f(v)(u

′) to v, assign index

6 Ragnar Groot Koerkamp, Marieke van der Wegen

v

w

x

u y

v

w

evw

e′vw

u y

x

lx

Fig. 4: Consider the map where every vertex is mapped to the vertex of the tree below it. When both ends of an
edge are mapped to the same vertex, for example edge vw, we add a vertex evw and map it to a new vertex e′vw.
Then, we refine edges for which the ends are not mapped to the same vertex, like edge uy, as the part of the tree they
correspond with. Lastly, we add copies of part of the tree, like lx, to make sure the morphism is harmonic at every
vertex. In this example, all edges have index 1.

mφ,e(v) − mφ,e′(v) to these new edges and use the identity map to map this part of the refinement to
T ′f(v)(u

′).
Let Hα be the refinement constructed in this way, and set φα = φ. Now φα is a finite harmonic

morphism from Hα to T ′.

3.2 Runtime analysis
We now analyse the runtime of the algorithm. We first count the number of pairs (T, f) where T is a tree
and f is a surjective map from G to T .

By Cayley’s formula, there are kk−2 labelled trees of size k [12, Section 2.3.4.4]. The number of
unlabelled partitions of the n vertices of G into k non-empty sets is

{
n
k

}
, the Stirling number of the

second kind [12, Section 1.2.6]. By assigning one label to each set, we see that the number of surjective
maps to a fixed tree of size 1 ≤ k ≤ n is

{
n
k

}
indeed. Summing over all trees of size at most n, the total

number of pairs (T, f) is
n∑
k=1

kk−2
{
n

k

}
.

We will bound this quantity. When we first choose one vertex for each set, and then distribute the re-
maining n − k vertices amongst those sets, we overcount the number of unlabelled partitions. Hence,{
n
k

}
≤
(
n
k

)
kn−k. This implies

n∑
k=1

kk−2
{
n

k

}
≤

n∑
k=1

kk−2
(
n

k

)
kn−k ≤

n∑
k=1

kn
(
n

k

)
.

Stable gonality is computable 7

By Stirling’s approximation we have
(
n
k

)
≤ (nk)

k(n
n−k)

n−k [12, Section 1.2.6]. We infer that

n∑
k=1

kk−2
{
n

k

}
≤

n∑
k=1

kn · nn · k−k · (n− k)−(n−k) =
n∑
k=1

nn ·
(

k

n− k

)n−k
.

Now write x for k/n. We have (
k

n− k

)(n−k)/n

=

(
x

1− x

)1−x

.

Since this has a finite limit in both x → 0 and x → 1, we may consider the maximum on the x ∈ (0, 1)
interval. A calculation shows that this maximum is less than 1.33. Substituting this in the bound on∑n
k=1 k

k−2{n
k

}
yields

n∑
k=1

kk−2
{
n

k

}
≤

n∑
k=1

nn · 1.33n ≤ n · (1.33n)n ≤ (1.33n)n+1.

The number of functions r : E(G)→
[⌊
m−n+4

2

⌋]
assigning indices to the edges is

⌊
m−n+4

2

⌋m
.

When we are given a tuple α = (T, f, r), the construction of H and φα can be done in polynomial time
in n and m: we have to consider every edge once to refine it and we have to consider every vertex once to
make the map harmonic. The calculation of the degree can also be done in polynomial time, by picking
an edge e in the tree, and check for every edge of H whether it is mapped to e. It follows that the runtime
of our algorithm is bounded by

O

(
poly(n,m) · (1.33n)n

(
m− n+ 4

2

)m)
.

Remark. In practice, it can be useful to do some pre-processing first, although this does not change the
runtime in general. Before trying all tuples α, we can contract all vertices of degree one or two. The
graph obtained in this way is called a stable graph. It is known that this stable graph has the same stable
gonality as the graph we started with [6, Lemma 5.4].
Remark. A C++ implementation of this algorithm is made. Unfortunately, this algorithm is too time
consuming to use for graphs with more than 5 vertices. The implementation is available from the first
author upon request.

4 Bounding the size of the tree
In this section we will show that we only have to consider finite harmonic morphisms to trees with at most
|V (G)| internal (i.e. non leaf) vertices. In particular, we show that any finite harmonic morphism can be
transformed in such a way that every internal vertex of T is covered by at least one vertex of G.

Definition 4.1. Let a graphG, a refinementH ofG, a tree T , and a finite harmonic morphism φ : H → T
be given. A transformation of φ is a new finite harmonic morphism φ′ : H ′ → T ′ where H ′ is again a
refinement of G and T ′ a tree, such that deg(φ′) ≤ deg(φ).

8 Ragnar Groot Koerkamp, Marieke van der Wegen

v
u1

u2

2

2

v′

u′

v2
2

v′

Fig. 5: In the first case of the proof of Lemma 4.4, we contract vertex v to all its neighbours uj mapping to u′.

Remark. From here on H and H ′ will always be refinements of G while T and T ′ will always be trees.
The phrase let φ : H → T be given will implicitly assume this.

Definition 4.2. Let G be a graph with a refinement H . A vertex v ∈ V (H) is alien if it is not a vertex in
G. Let φ : H → T be a finite harmonic morphism. A vertex v′ ∈ V (T) is alien if all vertices in φ−1(v′)
are alien.

The main lemma of this section is that we can remove all internal alien vertices from T .

Lemma 4.3. Let φ : H → T be given. There exists a transformation φ′ : H ′ → T ′ such that T ′ has no
internal alien vertices.

To prove this we contract all internal alien vertices in T to a neighbour, while simultaneously contract-
ing all edges in the preimages of these edges. By G/e we denote the graph obtained by contracting edge
e in graph G.

Lemma 4.4. Let φ : H → T be given, and let v′ be an internal alien vertex of T with a neighbour u′.
There exists a transformation φ′ : H ′ → T/u′v′.

Proof: Let v1, . . . , vk be the vertices of H that are mapped to v′ and let u1, . . . , ul be the vertices that
are mapped to u′. We will construct a refinement H ′ of G as follows. Consider a vertex v := vi. Notice
that v is an alien vertex of H , so there are at most two edges vw1 and vw2 such that Hv(w1) and Hv(w2)
contain vertices of G.

Case 1: If there is at most one vertex uj neighbouring v such that Hv(uj) contains vertices of G, then
contract all edges vuh, and keep all indices. This process is shown in Figure 5.

Case 2: Now suppose that there are two vertices uj1 and uj2 that are neighbours of v such that Hv(uj1)
and Hv(uj2) contain vertices of G. Since v′ is internal, there is a neighbour x′ of v′ not equal to u′.
Contract v to all its neighbours that map to x′. Then, for each neighbour y of v that maps to a vertex
different from x′ and u′, remove the tree Gv(y) from H and add a copy of Tv′(φ(y)) to each of the uj .
We assign index rφ(vuj) to the trees that we just added to uj , while all other edges keep their current
index. This is demonstrated in Figure 6.

Stable gonality is computable 9

v

x1

x2

w1

w2

u1

u2

2

v′x′w′

u′

v

w1

w2

u1

u2

v′ = u′x′w′

Fig. 6: In the second case of the proof of Lemma 4.4, we contract vertex v to all its neighbours xi mapping to
x′ 6= u′. We also remove all other trees from v, and copy them to all uj .

Repeat this for all vertices vi. Write H ′ for the resulting graph.
In the construction of H ′, we never contract two vertices of G to the same vertex, so H ′ is a refinement

of G. Now consider the map φ′ : H ′ → T/u′v′ we constructed. This map is a finite harmonic morphism
with degree at most the degree of φ.

Proof Proof of Lemma 4.3: Repeatedly apply Lemma 4.4.

It follows that, for any given morphism φ : H → T , there is a transformation φ′ : H ′ → T ′ such that
φ′(V (G)) is a connected subtree of T with at most n vertices. So, for our algorithm it suffices to only
consider trees of size at most n and surjective maps to those trees.

5 Bounding the indices
Cornelissen et al. [6, Theorem 5.7] gave an upper bound on the stable gonality of a graph G:

sgon(G) ≤
⌊
m− n+ 4

2

⌋
.

From this it follows that all finite harmonic morphisms φ : H → T , from a refinement H of G to a tree T
with deg(φ) = sgon(G), assign index at most bm−n+4

2 c to the edges of H . Hence it is sufficient for our
algorithm to only consider functions r : E(G)→ [bm−n+4

2 c].

6 Reduction to φα
In this section, we will prove that our algorithm will find a finite harmonic morphism of minimal degree.
LetG be a graph. We know that there exists a refinementH ofG, a tree T and a finite harmonic morphism
φ of degree sgon(G). We will show that we can transform φ to a morphism φα for some tuple α. In all

10 Ragnar Groot Koerkamp, Marieke van der Wegen

lemmas we assume G to be the given graph, H a refinement, T a tree and φ : H → T a finite harmonic
morphism of degree sgon(G).

First, we will prove that, when two vertices u, v are mapped to the same vertex, we can refine the edges
uv by adding just one vertex. For ease of notation we give the following two graphs names: we write P3

for the path on three vertices and C2 for the cycle of length two.

Lemma 6.1. Let φ : H → T be given. Let uv ∈ E(G) be an edge such that φ(u) = φ(v). There exists a
transformation φ′ : H ′ → T ′ such that R′uv ∈ {P3, C2}, where R′uv is the refinement of uv in H ′.

Proof: Let Ruv be the refinement of the edge uv in H . Let x be the neighbour of u in Ruv and let y be
the neighbour of v. Replace Ruv by P3 when u 6= v, and by C2 when u = v. Write w for the new vertex.
Assign index 1 to the two new edges. If mφ(u) > 1, add a leaf w1 to u and assign index mφ(u) − 1 to
it. Do the same for v. For all vertices z ∈ φ−1(φ(v))\Ruv , add a leaf wz to z and assign index mφ(z) to
the edge zwz . Add a copy of Tφ(u)(φ(x)) to u and assign index rφ(ux) to all edges in this tree. Add a
copy of Tφ(v)(φ(y)) to v and assign index rφ(vy) to the edges. Write H ′ for this refinement of G. Add a
vertex w′ to φ(v) in T and write T ′ for this new tree. Let φ′ : H ′ → T ′ be the map that sends all vertices
of z ∈ V (H) to φ(z), that sends w,w1, w2 and all vertices wz to w′ and uses the identity map to send the
vertices of the trees we added. Notice that φ′ is a finite harmonic morphism with deg(φ′) ≤ deg(φ).

Second, we will prove that for two vertices u, v that are not mapped to the same vertex, we can refine
the edges uv as Tφ(u)φ(v).

Lemma 6.2. Let φ : H → T be given. Let uv ∈ E(G) be an edge such that φ(u) 6= φ(v). There exists a
transformation φ′ : H ′ → T such that R′uv = Tφ(u)φ(v), where R′uv is the refinement of uv in H ′.

Proof: Let Ruv be the refinement of the edge uv in H . Let x be the neighbour of u in Ruv and let y be
the neighbour of v. We distinguish three cases.

First suppose that φ(x) ∈ Tφ(u)φ(v) and φ(y) ∈ Tφ(u)φ(v). Replace Ruv by Tφ(u)φ(v) in H . Assign
index min{rφ(ux), rφ(vy)} to the new edges. Assume, without loss of generality, that rφ(ux) ≤ rφ(vy).
If rφ(ux) < rφ(vy), add a copy of the tree Tφ(u)(φ(x)) to u and assign index rφ(vy) − rφ(ux) to the
new edges. Write H ′ for this new refinement of G. Let φ′ : H ′ → T be the map that sends all vertices
of w ∈ V (H) to φ(w) and uses the identity map to send the new vertices to Tφ(u)φ(v) and Tφ(u)(φ(x)).
Notice that φ′ is a finite harmonic morphism with deg(φ′) ≤ deg(φ).

Now suppose that φ(x) /∈ Tφ(u)φ(v) and φ(y) /∈ Tφ(u)φ(v). Replace Ruv by Tφ(u)φ(v) in H . Assign
index 1 to the new edges. Add a copy of Tφ(u)(φ(x)) to u and assign index rφ(ux)+1 to its edges. For all
neighbours z of φ(u) such that z 6= φ(x) and z /∈ Tφ(u)φ(v), add a copy of Tφ(u)(z) to u and assign index
1 to the new edges. Do the same for vertex v. Write H ′ for this refinement of G. Let φ′ : H ′ → T be the
map that sends all vertices w ∈ V (H) to φ(w) and uses the identity map for all new vertices. Notice that
by the choice of the indices φ′ is a finite harmonic morphism with deg(φ′) ≤ deg(φ).

In the last case, suppose, without loss of generality, that φ(x) ∈ Tφ(u)φ(v) and φ(y) /∈ Tφ(u)φ(v).
Replace Ruv by Tφ(u)φ(v) in H . Assign index 1 to the new edges. Add a copy of Tφ(v)(φ(y)) to v and
assign index rφ(vy) + 1 to its edges. For all neighbours z of φ(v) such that z 6= φ(y) and z /∈ Tφ(u)φ(v),
add a copy of Tφ(v)(z) to v and assign index 1 to the new edges. If rφ(ux) > 1, add a copy of Tφ(u)(φ(x))
to u and assign index rφ(ux)− 1 to its edges. Write H ′ for this refinement of G. Let φ′ : H ′ → T be the
map that sends all vertices w ∈ V (H) to φ(w) and uses the identity map for all new vertices. Notice that
by the choice of the indices φ′ is a finite harmonic morphism with deg(φ′) ≤ deg(φ).

Stable gonality is computable 11

Lastly, we prove two lemmas that ensure that there are not more external added vertices than necessary.

Lemma 6.3. Let φ : H → T be given. Let v′ ∈ V (T) be a leaf such that all vertices v ∈ V (H) with
φ(v) = v′ are external added vertices. Define T ′ = T\{v′}. There exists a transformation φ′ : H ′ → T ′.

Proof: Remove all vertices that are mapped to v′ from H . If H becomes disconnected, remove all
connected components that do not contain a vertex of G. Since all removed vertices were external added
vertices, there is only one remaining component. Write H ′ for this graph. Define φ′ : H ′ → T ′ as the
restriction of φ to H ′. Notice that φ′ is a finite harmonic morphism, and deg(φ′) ≤ deg(φ).

Lemma 6.4. Let φ : H → T be given. Let v be a vertex of G and u′ a neighbour of φ(v). There exists a
transformation φ′ : H ′ → T such that v has at most one external added neighbour u such that φ′(u) = u′,
and moreover, Gv(u) = Tφ(v)(u

′).

Proof: Let u1, . . . , ul ∈ be the external added neighbours of v such that φ(ui) = u′. Remove all trees
Gv(ui) from G and add one copy of Tφ(v)(u′) to v. Assign index

∑l
i=1 rφ(vui) to all new edges. Notice

that φ′ is a finite harmonic morphism, and deg(φ′) ≤ deg(φ).

Lemma 6.5. Let G be a graph with sgon(G) = k. Then there is a refinement H of G, a tree T and a
finite harmonic morphism φ : H → T of degree k, that satisfy the following properties:

• T does not contain internal alien vertices.

• For every edge uv ∈ E(G) such that φ(u) = φ(v), it holds that Ruv ∈ {P3, C2}, where Ruv is the
refinement of uv in H; moreover, the two edges of Ruv have index 1.

• For every edge uv ∈ E(G) such that φ(u) 6= φ(v), it holds that Ruv = Tφ(u)φ(v), where Ruv is the
refinement of uv in H; moreover, every edge in Ruv is assigned the same index.

• For every vertex v′ ∈ V (T), let v1, . . . , vl be the vertices of H such that φ(vi) = v′, then, not all of
v1, . . . , vl are external added vertices.

• For every vertex v ∈ V (G) and for every neighbour u′ of φ(v), v has at most one external added
neighbour u such that φ′(u) = u′, and moreover, Gv(u) = Tφ(v)(u

′).

Proof: This follows from Lemmas 4.3, 6.1, 6.2, 6.3, and 6.4.

Now we are ready to prove that our algorithm will find a morphism of minimal degree.

Theorem 6.6. Let G be a graph with sgon(G) = k. There is a tuple α such that φα has degree k.

Proof: By Lemma 6.5 we know that there is a refinementH ofG, a tree T and a finite harmonic morphism
φ : H → T of degree k which satisfy the properties in Lemma 6.5. By Section 5, we know that all indices
are at most bm−n+4

2 c.
Define T ′ as the subtree of T that consists of the vertices φ(V (G)). Notice that by Section 4, T ′ is

connected and has at most n vertices. Define f : G → T ′ as φ restricted to V (G). Now let r(uv) be the
index that is assigned to every edge in Ruv . Let α be the tuple (T ′, f, r).

By the properties of φ and the construction of φα, it follows that φα = φ. Thus φα has degree sgon(G).

12 Ragnar Groot Koerkamp, Marieke van der Wegen

7 Stable gonality is in NP
In this section we consider the decision problem “stable gonality problem”: Given a graph G and an
integer k, does it hold that sgon(G) ≤ k?

Theorem 7.1. The stable gonality problem belongs to the class NP.

Proof: Let (G, k) be an instance of the stable gonality problem. By Theorem 6.6 we know that there is
a tuple α = (T, f, r) as in Section 3 such that φα has degree sgon(G). This tuple has polynomial size.
Given a tuple α, we can construct φα in polynomial time, and we can compute its degree in polynomial
time.

So for a yes-instance (G, k), there is a tuple α = (T, f, r) with polynomial size and deg(φα) ≤ k, and
we can check in polynomial time whether a tuple is a certificate for (G, k). For a no-instance no such
tuple exists.

8 NP-hard subproblem
As described in Section 3, for a given graph G our algorithm considers all tuples α = (T, f, r). The tree
T ′ that is constructed from this tuple and the vertices that will be internally added to G do not depend on
r. The question arises whether we can construct an r such that φ(T,f,r) has minimal degree when we are
already given the pair (T, f). This problem turns out to be NP-hard.

For the proof we will use a reduction from the three-dimensional matching problem: Let A,B,C be
finite, disjoint sets, let S ⊆ A × B × C and let k be a natural number. Does there exist a set M ⊆ S
with |M | ≥ k such that every element of A ∪ B ∪ C is contained in at most one tuple in M? We call
such a set M a matching. This problem is known to be NP-hard, even when restricted to cases where
|A| = |B| = |C| = k and for every element of A∪B ∪C there are at least two tuple in S containing this
element [11].

Theorem 8.1. Given a graph G, a pair (T, f) and an integer k. The following problem is NP-hard: Does
there exist a function r : E(G)→ [b(m− n+ 4)/2c] such that the morphism φ(T,f,r) has degree at most
k?

Proof: Let (A1, A2, A3, S, k) be an instance of the three-dimensional matching problem, where |A1| =
|A2| = |A3| = k and for every element of A1 ∪A2 ∪A3 there are at least two tuples in S containing this
element. Define A = A1 ∪A2 ∪A3.

Construct the following graphG. Add two vertices ua and va for every element a ∈ A and add a vertex
ws for every s ∈ S. Add an edge between ua and va for every a ∈ A. For every tuple s = {x, y, z} ∈ S,
we add edges vxws, vyws, vzws and edges uxvx, uyvy , and uzvz . See Figure 7 for an illustration.

Let T be the tree that consists of vertex w, vertices ui, vi for 1 ≤ i ≤ 3, and edges uivi and viw for
1 ≤ i ≤ 3. Define f : V (G)→ V (T) as follows:

f(x) =

w if x = ws for s ∈ S,
vi if x = va with a ∈ Ai,
ui if x = ua with a ∈ Ai.

Stable gonality is computable 13

va

vb vc

vd

vevf

ua

ub uc

ud

ueuf

wq wt

wswr

v1 v2

v3

u1 u2

u3

w

Fig. 7: An example of the graph G and tree T constructed in the proof of Theorem 8.1 for the sets A1 = {a, b},
A2 = {c, d}, A3 = {e, f} and S = {(a, c, e), (a, c, f), (b, d, e), (b, d, f)}.

Now (G,T, f, |S|+ k) is an instance of our problem. Notice that the degree of φ(T,f,r) will be at least
|S|+ k for any r, since at least |S|+ k edges map to each edge uivi. We will now prove that there is an r
such that φ(T,f,r) has degree |S|+ k if and only if there is a matching M ⊆ S with |M | ≥ k.

Given a perfect matching M ⊆ S, that is, a matching with |M | = k, we can find a φ of degree |S|+ k
by putting index 2 on all edges wmva with m ∈M and a ∈ m.

Now suppose that φ has degree |S| + k. This implies that each edge uava has index 1 and that there
are no externally added vertices mapped ui for all i. Given a vertex va. Either one of the edges vaws has
index 2, or va has an external added neighbour that is mapped to w. In the last case, there is an external
added vertex mapped to one of the vertices ui, which yields a contradiction. So, exactly one of the edges
vaws must have index 2; the others will have index 1. At each vertex ws, all three edges will have the
same index. This index must be either 1 or 2, since otherwise there will be an external added vertex that
is mapped to a vertex ui. This implies that there are exactly k vertices s ∈ S with index 2, while all other
vertices s have index 1. These k tuples (a1, a2, a3) will form a matching, and hence we can solve the
three-dimensional matching problem using the problem of finding an optimal r.

9 Conclusion
Stable gonality is defined using three infinite loops: there are infinitely many refinements of a graph, there
are infinitely many trees, and there are infinitely many finite harmonic morphisms from a refinement to
a tree. In this paper we bounded the refinements, trees and morphism which we have to consider. This
yields an algorithm to compute the stable gonality of a graph in O

(
poly(n,m) · (1.33n)n

(
m−n+4

2

)m)
time. From these bounds and the algorithm it also follows that the stable gonality problem is in NP.

Some interesting questions remain open. Firstly: is there a faster algorithm to compute the stable
gonality of a graph? Secondly, we do not know whether computing stable gonality is in XP or FPT, or
whether it is W[1]-hard. Thirdly, are there problems which are untractable with treewidth as parameter,
that are tractable with stable gonality as parameter? Lastly, is there a variant of Courcelle’s theorem [9,
Chapter 13] for graphs of bounded stable gonality?

14 Ragnar Groot Koerkamp, Marieke van der Wegen

References
[1] Omid Amini, Matthew Baker, Erwan Brugallé, and Joseph Rabinoff. Lifting harmonic morphisms

II: Tropical curves and metrized complexes. Algebra & Number Theory, 9(2):267–315, 2015. doi:
10.2140/ant.2015.9.267.

[2] Matthew Baker. Specialization of linear systems from curves to graphs. Algebra & Number Theory,
2(6):613–653, 2008. With an appendix by Brian Conrad. doi:10.2140/ant.2008.2.613.

[3] Matthew Baker and Serguei Norine. Riemann–Roch and Abel–Jacobi theory on a finite graph.
Advances in Mathematics, 215(2):766 – 788, 2007. doi:10.1016/j.aim.2007.04.012.

[4] Jelco M. Bodewes, Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Recog-
nizing hyperelliptic graphs in polynomial time. In Andreas Brandstädt, Ekkehard Köhler, and Klaus
Meer, editors, Graph-Theoretic Concepts in Computer Science, pages 52–64, 2018. (extended ab-
stract of arXiv:1706.05670).

[5] Lucia Caporaso. Gonality of algebraic curves and graphs. In Algebraic and Complex Geometry,
In Honour of Klaus Hulek’s 60th Birthday, volume 71 of Springer Proceedings in Mathematics &
Statistics, pages 77–108. Springer, 2014. doi:10.1007/978-3-319-05404-9.

[6] Gunther Cornelissen, Fumiharu Kato, and Janne Kool. A combinatorial Li–Yau inequality and
rational points on curves. Mathematische Annalen, 361(1):211–258, 2015. doi:10.1007/
s00208-014-1067-x.

[7] Josse van Dobben de Bruyn. Reduced divisors and gonality in finite graphs. Bachelor’s the-
sis, Leiden University, 2012. URL: https://www.universiteitleiden.nl/binaries/
content/assets/science/mi/scripties/bachvandobbendebruyn.pdf.

[8] Josse van Dobben de Bruyn and Dion Gijswijt. Treewidth is a lower bound on graph gonality.
Preprint, arXiv:1407.7055v2, 2014.

[9] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer,
2013. doi:10.1007/978-1-4471-5559-1 13.

[10] Dion Gijswijt, Harry Smit, and Marieke van der Wegen. Computing graph gonality is hard. To
appear (Extended version of arXiv:1504.06713), 2018.

[11] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller, James W.
Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations, pages 85–103.
Springer, 1972. doi:10.1007/978-1-4684-2001-2 9.

[12] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms.
Addison-Wesley Publishing Company, 1968.

[13] J. Schicho, F.-O. Schreyer, and M. Weimann. Computational aspects of gonal maps and radical
parametrization of curves. Applicable Algebra in Engineering, Communication and Computing,
24(5):313–341, 2013. doi:10.1007/s00200-013-0205-0.

http://dx.doi.org/10.2140/ant.2015.9.267
http://dx.doi.org/10.2140/ant.2015.9.267
http://dx.doi.org/10.2140/ant.2008.2.613
http://dx.doi.org/10.1016/j.aim.2007.04.012
http://dx.doi.org/10.1007/978-3-319-05404-9
http://dx.doi.org/10.1007/s00208-014-1067-x
http://dx.doi.org/10.1007/s00208-014-1067-x
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
http://dx.doi.org/10.1007/978-1-4471-5559-1_13
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/s00200-013-0205-0

	1 Introduction
	2 Preliminaries
	3 Algorithm overview
	3.1 Construction of
	3.2 Runtime analysis

	4 Bounding the size of the tree
	5 Bounding the indices
	6 Reduction to
	7 Stable gonality is in NP
	8 NP-hard subproblem
	9 Conclusion

