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Abstract: We introduce an approach of representing the dynamics of delays in railway systems
by Eulerian aggregation of individual train delays onto the railway’s network segments. The
approach lends itself naturally to the analysis of multi-scale spatio-temporal evolution of delays
— colloquially known as the spread of “oil-stain” on the network. To illustrate the potential
of this representation, we apply it to describe the dynamics on a national (also referred to as
the macro-) scale of the Dutch railways: specifically, we perform a principal component analysis
of the Euler-aggregated global delay data, identify two key principal components to define a
reduced phase-space, and discuss the delay evolution for the system as a moving point in this

phase-space on a few example days.
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1. INTRODUCTION

The simplest description of a railway system is in terms of
trains travelling on designated routes on a network follow-
ing a planned timetable, acting as a reference measure for
train operations. The real-time operations, however, devi-
ate from the timetable for a variety of reasons, leading to
delays. Delays can be viewed from different perspectives,
depending on the source, nature and impact. See Table 1,
where we denote causes of the propagation of delay on rail-
ways at different scales. Nevertheless, since delays are by
definition unwelcome, naturally, a large volume of existing
railways literature is devoted to the analysis and dynamics
of delays.

Micro-space | Meso-space Macro-space
Micro-time Single delay | First- Uncorrelated
train activ- | order delay | noise
ity propagation
Meso-time Short-term Delay propa- | Nation-
advection gation to sec- | wide delay
ondary trains | propagation
Macro-time Long-term Long- Nation-
advection term delay | wide large
signature disruptions

Table 1. Scales and nature of railway delays.

Given that delay is by definition induced by the trains
themselves, the existing literature is dominated by delay
models associated with individual trains; for example,
tracking the movement and stand-stills of individual trains
(Li et al., 2016; Kecman and Goverde, 2015a,b). This
approach, which is essentially the Lagrangian description
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(of delay dynamics) in physics parlance, has been quite
successful in determining the statistics of delay on a certain
route or train, leading to the enhancement of routes,
infrastructure and time tables (Trap et al., 2017; Schobel,
2012). Other examples of Lagrangian description of delay
are the treatment of the trains as agents (Gambardella
et al., 2002), or even neural-network prediction algorithms
(Oneto et al., 2018; Cerreto et al., 2018). A large volume
of simulation tools, too, focus on the agent-based railway
modelling approach, and thereby take the Lagrangian
approach to track delays (Middelkoop and Loeve, 2006;
Middelkoop et al., 2012). In the language of Tab. 1, all
of these studies can be classified as “micro-space scale”;
within this spatial scale, researchers have focused on
various temporal scales, e.g., local short-term delays have
been analysed by considering specific delay events and
the impact on the directly involved trains. Advection
processes (delays moving in space by travelling along with
a train) at micro-space scale have also been analysed while
considering longer time-scales.

The extension of the Lagrangian approach to analyse prop-
agation or spread of delays over the network at meso- and
macro-space scales is difficult because of the (prohibitive)
computational burden and the heterogeneity of interac-
tions among trains. Note that these scales are concerned
with interactions at a higher level, namely the spread of
delay from one train towards others (possibly in different
directions) that are not directly associated with the line
followed by the train in question. Indeed, the analysis of
interaction effects needs to involve multiple trains, since
these effects are not only highly dependent on the par-
ticular configuration of infrastructure and route-planning,
but are also dependent on crew-scheduling (e.g., involving
train-to-train crew transfers at large railway junctions).
In other words, these effects are strongly space- and time-
dependent. This provides us with the key indication that it
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would be more suitable to take a Eulerian approach —i.e.,
map the dynamic variables (for the case at hand, delays)
on a fixed spatial grid — such that one can describe their
time-evolution in space at larger length scales, rather than
train by train.

In Tab. 1 we have split the large(r) length scales into meso-
and macro-spaces. The former relates to processes that,
although affecting other lines than the spatial location of
the primary delay source, spread to regional scales (for
instance, problems in regions around a specific station,
or a specific track — while all trains that pass through
this region are being delayed because of it, and spreading
it across their lines), the delay generally “melts” further
away from the delay source. In contrast, macro-space
problems concern nation-wide disruptions, which generally
relate to longer time-scale problems.

2. EULERIAN AGGREGATION OF DELAY

We now describe the aggregation process of delays (defined
as the difference between the realised and the planned
times of each train activity) on the infrastructure network.
Delay is referred to as ‘pressure’ on the system, affecting
its functionality of the system (Monechi et al., 2018). Note
also that delay alone does not contain all information
on the system’s behaviour w.r.t. the timetable: e.g., on
severely disrupted days, a lot of train activities get can-
celled, meaning that train activities are removed from the
schedule, putting the delay contribution of those activities
to zero. This effect reduces the delay, while the severity of
the disruption could actually be worse.

The data we use for our analysis has been obtained from
the Dutch railway network (July 1st 2017 - June 30th
2018). The Dutch railways consist of 801 sensors in the
tracks (near passenger stations, but also in other parts
of the tracks) that keep record of all trains passing by,
while logging the planned and realised time. In the Dutch
railway system, not only the amount of delay is logged, but
also whether it concerns a departure, passing or arrival.
To make the data uniform over the entire network, at any
given time, we aggregate all logging activities on to the
segments (tracks between sensors, 1438 in total) that the
trains should be travelling on. To be specific, we aggregate
the departure and arrival activities respectively on the
segment that the designated train moves to and where it
comes from, in the following manner (see Fig. 1).

da """ ’dab db da

Fig. 1. Transformation of logged delay at nodes to segmen-
tal delay. Consider a train travelling from node A and
to node B, where delays d4 and dp are logged. Left:
departure logging at A, meaning that we ‘forward’
this logged delay in space towards segment AB. Right:
arrival logging at B, we aggregate this event also to
segment AB.

The logs are discrete events. To get a real-time progression
of delays on the network, we need to process the logs

to generate continuous time series data. At the logging
events (e.g., a departure event at node A in Fig. 1), both
the planned (¢,) and realised (¢,) times are recorded. At
the moment of logging, the delay carried by this train
is obviously t, — t,. But between t, and t,, the train is
already delayed and consequently affecting the segment,
although the train is yet to enter the segment. This leaves
us with two choices to deal with the delay: (a) keep the
delay with the train, i.e., keep it on the segment where
the train presently is, or (b) put the delay on the segment
where it is planned to be. We use the latter, since it more
accurately indicates the effect of the delay on the network:
e.g., when a train is an hour late at a given segment, it
already causes problems before it actually gets there (an
hour later than scheduled). Mathematically, we define the

delay contribution d(t) of train j on each segment i at
time ¢:

d(t) =11, (1)

for t, < t < t, (d}(t) = 0 otherwise), where ¢, and t,
are the planned and realised time of the train activity.
Intuitively, the above definition involves the build-up of
delay (one second per second) when a train should be
at the segment while it is late, and disappears from that
segment when the train exits it, giving rise to a sawtooth
pattern of the delay. (Note also that once the delay
disappears from a given segment, unless it happens to be
the last segment of service for that train, the delay simply
continues on the next segment.) Note that a segment can
have multiple tracks, so that multiple trains can travel on
the same segment at the same time. Moreover, multiple
trains can build up delay on the same track at the same
time, as they can build up delay on a segments without
being there (if they should have passed that track already).
We therefore compute the total delay d;(t) on segment ¢ at

time ¢, by summing d] over all trains j (both directions)
as

di(t) = Z dj(t) (2)

In this form, the equation for d;(t) contains a discontinuity
when t reaches t,.. This is unwanted, since for prediction
purposes, we need to treat the system as a continuous
dynamical system. We therefore use a Gaussian weighted
running window. This means that the aggregation is done
on a 5-second time resolution, which, for computational
reasons, is further reduced to l-minute time resolution
(although the results do not differ much as one can
intuitively already estimate from the definition of delay
in Eq. 1).

We illustrate the above procedure in Fig. 2. Panel (a)
shows the delay on the segment from station Utrecht
Vaartsche Rijn towards Utrecht Central Station on July
1st 2017. There are no planned train services in early
morning until shortly after 06:00 AM, for which we define
the delay to be zero. Indeed, as soon as trains start running
on this segment, sawtooth signatures start appearing - for
a delay of one minute this already happens. It is visible
that no delay buildup occurs at larger timescales on this
segment of the network. Note that there are only few
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Fig. 2. (a) Time series showing the aggregated delay on the
segment from station Utrecht Vaartsche Rijn towards
Utrecht Central Station on July 1st 2017. Panel (b)
shows a zoomed version (as depicted by the greyish
area in the upper panel) between 21:00 and 23:00,
wherein the sawtooth delay signatures are clearly
visible and several spikes are interpreted.

‘follow-up’ on large spikes, indicating that there is little
‘memory’ on this segment.

Panel (b) shows a zoomed-in version of panel (a), revealing
the sawtooth patterns. This indeed allows for the inter-
pretation of each sawtooth in terms of individual trains.
In black, we highlight small delay ‘bumps’ caused by a
domestic train line that is scheduled on this trajectory
every 30 minutes, travelling from Nijmegen to Den Helder.
The bumps are small because every time during this
period, trains from this line where only a few minutes
late. In contrast, the red-highlighted sawtooth reflects a
train that is about 20 minutes late, being the maximum
attained delay on this day for this segment. This was
caused by an international train that travelled from Basel
to Amsterdam.

2.1 Aggregated delay at the global scale

Once the delays have been accumulated per segment, they
can be pieced together to provide the ‘delay snapshot’
at the global (in this context, national) scale from the
Eulerian perspective. An example is shown in Fig. 3: at
every timestep, the system has a delay value at every point
in space. This allows for a fast evaluation of where delays
in the network are located.

Figure 3 serves as a classic illustration of how the (Eule-
rian) aggregation of delay on the network segments lends
itself naturally to propagation and spread of delays in time
(or, in colloquial terms, ‘spread of the oil-stain’): the chain
reaction of delayed trains spreading delays onto new trains
by means of incapacitating railway tracks and delaying
crew members. On February 3rd 2012, the Dutch railways
suffered a nation-wide railway disruption. Around 10:00
in the morning, small failures in the infrastructure led to
the delay of trains near Rotterdam and Amsterdam, which
quickly spread and amplified up to point that trains in the
whole country were strongly delayed. (The delays lasted
until the following day.)

Delay (min)

Fig. 3. Aggregated delays on the Dutch railway network, at
four different timestamps on February 3rd 2012. Thin
black lines depict the coastal and country borders of
the Netherlands. Figure adapted from Dekker et al.
(2018).

3. REDUCED PHASE-SPACE FOR DESCRIBING
DELAY EVOLUTION

The analysis of the 1438 time series of delay is burdensome
for computation and interpretation purposes. We therefore
reduce the dimension of the time series by applying prin-
cipal component analysis (PCA) (Pearson, 1901).

We have performed the PCA on the data for the ‘disrupted
days’ (as classified by ProRail) between July 1st 2017 -
June 30th 2018, revealing that, indeed, only a few of the
principal components (PCs) are relevant, as presented in
Fig. 4 (the results have been checked for robustness under
various time steps, time periods (seasons) and selections
of days based on severity, and are not discussed here
further). The explained variance for every PC in the year-
long dataset is shown in panel (a), revealing that the first
two PCs stand out in terms of the variances they carry.
Similarly, panel (b) shows the characteristic decay times
for the autocorrelation function of each PC, indicating
their persistence in time. The combination of the two
panels provides us with the cue that a two-dimensional
time-series, based on PC1 and PC2, is a minimalistic, and
yet optimal vehicle for describing the delay evolution in
global scale.

Stated differently, PC1 and PC2 can be used to define a
reduced (two-dimensional) phase-space, wherein the am-
plitudes of the principal components, as a function of time,
describe the evolution of the global delays. These ampli-
tudes are calculated by taking the dot product of the global
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Fig. 4. Variance explained (a) and timescale of autocorre-
lation decay rate (b) for the first ten principal com-
ponents.

delay snapshot (a 1438-dimensional vector) with PC1 and
PC2 (also 1438-dimensional vectors). In this way we can
track and monitor the railway system’s delay behaviour
in the (reduced) phase-space at all points in time (next
section). Since by definition there is no delay outside the
service hours, the system’s delay position starts and ends
at the origin (0,0) in this phase-space.

T T T T T T
—0.020 -0.015 —=0.010  —0.005 0.000 0.005 0.010 0.015 0.020
Coefficients

Fig. 5. The spatial maps of the PCl and PC2 (also
called empirical orthogonal functions or EOFs) for the
Dutch railway system, explaining respectively 13%
and 16% of the variance over a full year. A running
spatial average-smoothening is applied for visualisa-
tion reasons. Abbreviations refer to important passen-
ger stations: Amsterdam Central (Asd), Rotterdam
Central (Rtd), Utrecht Central (Ut), Arnhem (Ah),
Groningen (Gn), ’s-Hertogenbosch (Ht), Amersfoort
(Amf) and Almelo (Aml).

The PCs can be interpreted by considering their ‘spa-
tial maps’, also called Empirical Orthogonal Functions of
EQOFs, and are shown in Fig. 5. Both PCs contain large-
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magnitude coefficients (related to strong covariance) on
important international lines from Amsterdam towards
Belgium and Germany. All the elements of PC1 are posi-
tive, while PC2 has negative elements in the middle of the
Netherlands, i.e., between Amsterdam, Utrecht towards
Arnhem and Germany. For every point in the phase-space,
the coordinates are the amplitudes of these two PCs, and
they denote how much of the EOFs are present in a delay
snapshot; using these the evolution of the global delay
can be deduced back on the physical rail network. This
allows for the analysis of the macro-dynamics in a strongly
reduced space.

4. PHASE-SPACE DYNAMICS

Figure 6 shows four examples (days) of the system’s evo-
lution in this phase-space. The smaller sub-panels in the
top right corner of each sub-figure indicate the evolution
of the total (summed) delay on the entire network. Delays
in panels (a) and (b) are much weaker than in (c) and
(d). Every minute of any day is represented by a dot in
the phase-space. As the exact combination of the PCs can
be given, by inference from Fig. 5, as estimate of where
delay is occurring, the phase-spaces as in Fig. 6 provide a
temporal map of the dynamical evolution of the buildup,
peak moments and decay of delay of the particular days
shown. We can simultaneously plot a subpanel of the total
delay on these days, and color the dots with the same
total delay information, to get an idea of the severity of
each area in the phase-space. These plots can, for exam-
ple, be used to make predictions, or to filter statistically
significant trajectories in the phase-space.

The first panel (Figure 6a) shows a so-called ‘green’ day,
classified as a day on which the railway system in its
entirety suffered barely any delay, which is reflected in the
fact that the system stayed relatively close to the origin
in the phase space. Two (minor) events in the phase-space
evolution are however noticeable, coinciding with the small
delay maxima in the delay evolution subpanel. They are
highlighted in the figure (numbered I and II). Event I
occurred around 10:00 AM and involved a movement of
the system towards the upper-right side of the phase space,
indicating larger positive-PC1 and positive-PC2 values.
This area in the phase-space (PC1 positive and PC2
positive) can be interpreted by looking at the coefficients
in Fig. 5. It turns out that this area is related to delay
between Amsterdam, Rotterdam and towards Belgium.
The second event (II) relates to the movement of the
system towards the upper-left side of the phase-space. This
area can be attributed to delay in the center/east of the
Netherlands: between Amsterdam, Utrecht and towards
Germany (again by looking at the coefficients in Fig. 5).
Going back-and-forth from the phase-space to physical
space allows for the usage of these diagrams to analyse
railway dynamics in two dimensions.

Moving over to another example of a day’s dynamics in
the phase-space, Fig. 6(b) shows a more representative
‘average’ day. There is delay at multiple occasions, but
they are not exceptional. This results in the state being
kept roughly in the center of the phase-space.

In contrast, in Fig. 6(c) the system quickly moves away
from the origin. Apart from a relatively average episode
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6. Phase-spaces with amplitude of principal component 1 versus amplitude of principal component 2 for (a)

January 7th 2018, (b) January 8th 2018, (¢) January 3rd 2018, and (d) April 19th 2018. Dots refer to the position
of the system within the phase-space every minute. The dot colouring indicates the total delay. Subpanels show
the evolution of the total delay (summed across the whole network) throughout the day. Two events related to

somewhat stronger delays are denoted by I and II in panel (a). Abbreviations refer to the cities of Amsterdam
(Asd), Utrecht (Ut), Rotterdam (Rtd) and Arnhem (Ah).

between 10:00 and 16:00, the system attains high values
of delay, moving far away into both upper right and left
corners of the phase-space. The movements in the phase-
space are also fast, covering many different parts of the
phase-space, pointing to the fact that delays occurred
many locations on the network.

Another disrupted day is shown in Fig. 6(d). Here the
system’s movements remain in the positive-PC2 side,
reflecting delays in the southwest of the Netherlands,
around Amsterdam and Rotterdam.

5. CONCLUDING REMARKS

In this paper we have introduced the Eulerian perspective
of delays for railway systems. As an example, we have con-
sidered the macro-scale delays for the Dutch railway sys-
tem, and have identified a reduced two-dimensional phase-
space to capture the dynamics. We have further analysed
four example days using this framework, distinguishing the
more severely disrupted days from days that are calm in
terms of delay, and providing the corresponding real-space
interpretations of the delays in this reduced phase-space.

The principal components analysis provides statistically
robust covarying patterns that specifically allow the analy-
sis at larger spatial scales. However, this comes at the price
of less specific localization, as the PC-coordinate system
only gives a rough estimate of where the delay is situated.
To have more specific localization, one could focus on lines
or areas to apply the dimensional reduction to, rather than
to the whole country. It is also important to note that
not all delay variance is captured within only the first
two principal components (see Fig. 4). Nevertheless, the
proposed perspective of delay and dimensional reduction
potentially opens up the analysis of delay dynamics at
a multitude of length and time-scales. The phase-space
perspective can be used for diagnostic analysis of the past
(e.g., to identify parts in the phase-space that are prone to
delay amplification), and for predictions of how the system
will evolve.
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