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Abstract
The growing share of variable renewable energy increases themeteorological sensitivity of power
systems. This study investigates if large-scale weather regimes capture the influence ofmeteorological
variability on the European energy sector. For eachweather regime, the associated changes to
wintertime—mean and extreme—wind and solar power production, temperature-driven energy
demand and energy shortfall (residual load) are explored. Dayswith a blocked circulation pattern, i.e.
the ‘Scandinavian Blocking’ and ‘North AtlanticOscillation negative’ regimes, on average have lower
than normal renewable power production, higher than normal energy demand and therefore, higher
than normal energy shortfall. These average effects hide large variability of energy parameters within
eachweather regime. Though the risk of extreme high energy shortfall events increases in the two
blocked regimes (by a factor of 1.5 and 2.0, respectively), it is shown that such events occur in all
regimes. Extreme high energy shortfall events are the result of rare circulation types and smaller-scale
features, rather than extrememagnitudes of common large-scale circulation types. In fact, these events
resemble each othermore strongly than their respective weather regimemean pattern. For (sub-)
seasonal forecasting applications weather regimesmay be of use for the energy sector. At shorter lead
times or formore detailed system analyses, their ineffectiveness at characterising extreme events limits
their potential.

1. Introduction

To mitigate future climate change an energy transition
to low or zero-carbon energy sources is required (e.g.
Matthews et al 2009, Meinshausen et al 2009). For this
reason, inmany places the share of renewable wind and
solar power generation of total power generation is
increasing. This growing share of variable renewable
energy increases the sensitivity of power systems to
meteorological conditions and their variability. Wind
and solar electricity production, and also electricity
demandall dependon theweather and therefore exhibit
variability at hourly, daily, weekly, seasonal and annual

timescales (e.g.KavakAkpinar andAkpinar 2005, Pryor
et al 2006, Sinden 2007, Suri et al 2007, Bessec and
Fouquau 2008, Bloomfield et al 2016). It is paramount
to consider the spatial and temporal variations in energy
production and energy demand in the design and
operation of future power systems with a high share of
renewable sources (Armaroli and Balzani 2011, Zeyr-
inger et al 2018).

To guarantee a continuous and secure energy sup-
ply in a future highly-renewable power system, critical
situations require special attention. In Europe, large-
scale high pressure systems can lead to the unfortunate
combination of low wind and solar power production
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and high energy demand, resulting in extreme high
energy shortfall (Bloomfield et al 2018, Van der Wiel
et al 2019a). The flexibility requirements of a power
system are, in part, determined by such events (Huber
et al 2014). System adequacy analyses, e.g. the ability to
meet peak demand, taking into account the full range
of meteorological variability and power system char-
acteristics are thus essential to identify, and design for,
critical events (Armaroli and Balzani 2011).

To meet the societal need for information on the
dependence of energy production and energy demand
on weather and climate, an interdisciplinary scientific
discipline is developing rapidly: ‘energy meteorology’.
The meteorological community has contributed with
insights into the effects of interannual meteorological
variability on energy production and demand (Klink
2002, Pryor et al 2006, Davy and Troccoli 2012, Haupt
et al 2016, Kumler et al 2018), the influence of the
North Atlantic Oscillation (NAO, e.g. Pozo-Vázquez
et al 2004, Brayshaw et al 2011, Ely et al 2013, Jerez et al
2013, Curtis et al 2016, Zubiate et al 2017, Ravestein
et al 2018), expected changes due to further climate
change (Pryor and Barthelmie 2010, Hueging et al
2013, Jerez et al 2015b, Haupt et al 2016, Reyers et al
2016, Craig et al 2019), and the seasonal predictability
of energy-related variables (Clark et al 2017, Thornton
et al 2019). However, the relationship between
meteorology, energy impacts, and critical events is
complex and therefore needs tailored studies.

This study aims to investigate whether weather
regimes adequately represent the influence of meteor-
ological variations on the European energy sector.
Weather regimes are classifications of common atmo-
spheric circulation regimes (figure 1) and have proven
to be useful in weather forecasting and climate change
applications (e.g Reinhold 1987, Ferranti et al 2015,
Neal et al 2016, Matsueda and Palmer 2018). They
influence the weather at the surface (e.g. Trigo and
DaCamara 2000, Plaut and Simonnet 2001, Yiou and
Nogaj 2004, Santos et al 2005, Yiou et al 2008, Donat
et al 2010), hence influencing renewable power gen-
eration and electricity demand (Grams et al 2017,
Thornton et al 2017). Meteorological and energy fore-
casts are of value for the energy sector, that plans
operations and resource adequacy, and trade on elec-
tricity markets based in part on this information
(Pinson et al 2013). Specifically, this study answers two
questions: (i) what are the average impacts of the
weather regimes on energy variables? and (ii) are
energy extremes linked to a specific weather regime?
We quantify the day-to-day variability of energy vari-
ables and the risk of extreme or critical events in each
weather regime. Our focus is on the winter season, in
which the weather regimes (Sanchez-Gomez et al
2009, Lavaysse et al 2018) and the variability of total
wind and solar energy production and demand (Van
der Wiel et al 2019a, their figure 8) are most pro-
nounced. We take a compound system approach,

taking into account the combined effects of wind and
solar power production, and energy demand.

2.Methods

2.1.Meteorological data
We used the ERA5 reanalysis product (Copernicus
Climate Change Service 2017) to represent observed
historical meteorological conditions (Olauson 2018,
Urraca et al 2018, Ramon et al 2019). The full ERA5
record available at time of analysis was used,
1979–2018, providing 40 years of data. The analysis of
variability, in particular for the occurrence of extreme
events, is hindered by the limited length of the
observed record (Bloomfield et al 2016, Van der Wiel
et al 2019a). In the 40year ERA5 record just four 1-in-
10year extreme events can be sampled. We therefore
also used data from two large ensemble experiments
created using two Global Climate Models (GCMs):
EC-Earth (v2.3, Hazeleger et al 2012) and HadGEM2-
ES (Martin et al 2011). Each large ensemble experi-
ment contains 2000 years of simulated weather for
present-day conditions. This allows an analysis of how
200extreme events in each model dataset, with return
periods of 10 years and longer, are distributed over the
different weather regimes. Details on the large ensem-
ble GCM experimental setup are provided in Van der
Wiel et al (2019b) and Blackport and Screen (2019).
The GCMs reproduce the observed temporal occur-
rence, surface impacts and variability of/within
weather regimes (see supporting information, SI,
which is available online at stacks.iop.org/ERL/14/
094010/mmedia).

2.2.Weather regime classification
Each winter day (December, January, February (DJF))
in the ERA5 record was assigned to one of the four
North Atlantic weather regimes (Vautard 1990,
Michelangeli et al 1995) following the classification
method of Cassou (2008). Clustering was done based
on daily maps of anomalous 500 hPa geopotential
height (units: m) in the North Atlantic-European
region (90◦W-30◦E, 20◦-80◦N). The first fourteen
Empirical Orthogonal Functions (EOFs) patterns were
computed (Dawson 2016), which captured 89% of
total variance. The associated Principle Component
time series (PCs)were used as coordinates of a reduced
phase space. K-means clustering was then used to
compute four centroids, and to assign each daily map
to a centroid. The K-means algorithm aims to separate
the maps in groups of equal variance and minimises
the within-cluster sum of squares (Pedregosa et al
2011).

The clustering of GCM data was done in a slightly
modified manner. Instead of computing the EOF pat-
terns from the simulated daily maps itself, the EOF
patterns from ERA5 were used and fourteen pseudo-
PCswere computed for eachGCM. These pseudo-PCs
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were then used to assign each daily map to the cen-
triods as determined from ERA5 data. As expected the
spatial pattern of the resulting weather regimes is simi-
lar, the temporal occurrence of each regime was not
constrained and shows agreement between ERA5 and
the GCMs (SI figure S1). The modified method was
applied to ensure maximum spatial similarity of the
weather regimes between the ERA5 data and the GCM
data. Physically this is relevant because slight differ-
ences in the location of high/low pressure systems in a
regime can have larger impacts on the surface impacts,
and can therefore influence the weather regime-to-
energy relation of interest here.

2.3. Energymodel
To link the weather regimes to impacts relevant for the
energy sector, daily wind and solar power production
and electricity demand were calculated. The energy
model used to make these calculations is described
here in brief; for the full model description including
model equations we refer the reader to Van der Wiel
et al (2019a).

Spatial patterns of daily wind and solar power
potentials (units: %) were considered, a quantity that
depends only on the meteorological state, not on
installed wind turbine or solar cell capacity. Wind
power potential was calculated using a power curve
profile dependent on wind speeds (Jerez et al 2015a), a

hub-height of, respectively, 80 and 120 m for onshore
and offshore locations was assumed. Solar power
potential was calculated using incoming solar radia-
tion and a solar cell temperature-based performance
metric which depended on temperature, incoming
solar radiation and wind speed (TamizhMani et al
2003), solar panel tilt was neglected. For the calcul-
ation of total European power production (units:
TWh d−1), a projected spatial distribution of installed
capacity over fifteen western European countries7 was
assumed (VanderWiel et al 2019a).

Energy demand (units: TWh d−1) was computed
using a regression model calibrated using historical
demand data and a population-weighted European
mean temperature value (Van der Wiel et al 2019a).
The daily difference between energy demand and
renewable wind and solar energy production is refer-
red to as energy shortfall or residual load.

2.4. Analysis
For each of the weather regimes, the average meteor-
ological surface and energy impacts were determined
by means of composite analysis, i.e. the mean over all
days classified in the regime. Anomalies—departures

Figure 1. Four regimes of atmospheric circulation in theNorthAtlantic-European domain, (a)NAOpositive, (b)NAOnegative,
(c) Scandinavian Blocking, (d)Atlantic Ridge. Colours show the 500 hPa height anomaly (m), contour lines show the 500 hPa height
(m, interval 100 m) indicative of the direction offlow. The percentage values denote the percentage of total days categorised in each
regime. Figure based onERA5 data (DJF, 1979–2018).

7
Austria, Belgium, Denmark, France, Germany, Ireland, Italy,

Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland and theUnited Kingdom.
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from normal conditions—were computed by sub-
tracting a DJF-mean climatology. The length of the
ERA5 record allowed us to robustly compute the
composite mean patterns, the analysis and figures
in the main manuscript are therefore based on
ERA5 data. Equivalent figures for the GCM experi-
ments served as a validation of the simulated data
(SI figures S2, S3).

We further considered the variability of energy
variables within each weather regime. To do so, a sys-
tematic comparison of the four regimes to each other
and to the full sample, all winter days, wasmade. Since
sampling issues are of concern here, we show both the
ERA5 data and the GCM data in the mainmanuscript.
We considered extreme events of at least a 10year
return period, it was assumed there are four such
events in the 40year ERA5 record and 200 events in
each 2000year GCM experiment. Estimates of change
in the risk of occurrence of an extreme event were
based on the risk ratio (or probability ratio), a metric
commonly used in climate attribution studies:

= ( )RR
P

P
1WR

clim

with PWR the probability of an extreme event given a
weather regime, andPclim the probability of an extreme
event in the full sample. RR=1 indicates no change
in risk, RR>1 indicates increased risk of an extreme
event occurring given that weather regime, RR<1
indicates decreased risk given that weather regime.
Risk ratios noted in the text are averages of the
twoGCMs.

3. Results

3.1.Weather regimes and averagemeteorological
and energy impacts
Atmospheric circulation patterns for the four North
Atlantic weather regimes are shown in figure 1. Two
regimes resemble the positive and negative phase of
the NAO (Hurrell et al 2003): the ‘NAO positive’
regime (figure 1(a), 33% of days), characterised by an
anomalous low pressure system over Iceland and
higher than normal pressure in a band to the south,
and the ‘NAO negative’ regime (figure 1(b), 20% of
days), with anomalous high pressure over Greenland/
Iceland and lower than normal pressure to the south.
A third regime, ‘Scandinavian Blocking’ (figure 1(c),
28% of days), is characterised by anomalous high
pressure over Scandinavia and lower than normal
pressure to the south and west. Finally, the fourth
regime is distinguished by a positive pressure anomaly
over the North Atlantic and a negative anomaly over
Europe (figure 1(d), 20%ofdays), this regime is referred
to as ‘Atlantic Ridge’. These patterns match similar
classifications in earlier research (e.g. Vautard 1990,
Michelangeli et al 1995, Cassou 2008).

The anomalous position of pressure systems
enhance or disturb the typical zonal, west-to-east,

flow. Contour lines in figure 1 show the flow direction
at 500 hPa height. Days classified as NAO positive
typically have a stronger than normal zonal flow, in the
other regimes the normal zonal flow is weakened over
parts of the European continent.

For energy applications the impacts of the weather
regimes at the surface are relevant. The flow at 500 hPa
discussed above influences the progression of weather
systems over the continent, and therewith influences
surface variables such as the near-surface wind speed
and temperature. Figure 2 shows the typical surface
imprint of the four weather regimes on relevant
meteorological variables, while figure 3 shows the
effect on wind and solar power potentials. These
anomalies of power potential only lead to changes
in power production if wind turbines or solar cells
are installed in the region of surface impacts.
Sections 3.1.1–3.1.4 describe the mean spatial meteor-
ological and energy characteristics of each regime.

3.1.1. NAOpositive
The enhanced zonal flow during NAO positive days
leads to higher than normal 10 mwinds over theNorth
Sea, Denmark, Ireland, the Netherlands and the
United Kingdom (figure 2(a)). Westerly winds from
relatively warm ocean surfaces lead to higher than
normal 2 m temperatures in central and northern
Europe (figure 2(i)). Incoming solar radiation is close
to normal for the time of year (figure 2(e)).

These conditions lead to higher than normal wind
power potential in the North Sea area (figure 3(a)).
Over the southern North Sea, the United Kingdom
andDenmark the wind power potential is increased by
15%.Wind power potentials in theMediterranean Sea
are slightly lower than normal. There are no significant
changes in solar power potential (figure 3(e)).

3.1.2. NAOnegative
NAO negative days are characterised by an omega
block over Greenland and Iceland, leading to reduced
zonal flow over the northern half of the European
domain (figure 1(b)). As a result 10 m wind speeds are
lower than normal in the northern North Sea and
North Atlantic (figure 2(b)), and slightly higher than
normal in southern Europe. Incoming radiation is
lower than normal in southern Europe (figure 2(f)). It
is much colder than normal in northern Europe
(figure 2(j)). The wind power potential is higher than
normal over the Mediterranean Sea, Spain and west of
Spain, and lower than normal by 5%–20% over the
North Sea and North Atlantic (figure 3(b)). Solar
power potential is lower than normal in theMediterra-
nean (figure 3(f)).

3.1.3. Scandinavian blocking
The anomalous high pressure system over Scandinavia
(figure 1(c)) reduces the normal zonal flow during
Scandinavian Blocking events. 10 m wind speeds over
the North Sea, the Celtic Sea and the Bay of Biscay are
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lower than normal (figure 2(c)), incoming solar
radiation is higher than normal (figure 2(g)). Tem-
peratures over the European main land are lower than
normal, it is warmer than normal in the north of
Scandinavia (figure 2(k)). The spatial pattern of 10 m
wind speed anomalies in the Scandinavian Blocking
regime somewhat resemble an opposite of the anoma-
lies in theNAOpositive regime (r=−0.68).

The reduced wind speeds limit wind power poten-
tial over a large region from the western Atlantic up to
the Baltic Sea (figure 3(c)). Over the North Sea, the

United Kingdom and the English Channel wind power
potentials are lower by more than 20%. Solar power
potential is higher than normal, most notably over
France (figure 3(g)).

3.1.4. Atlantic ridge
The fourth regime has the weakest surface impacts for
the variables of interest to the energy sector. 10 mwind
speeds and 2 m temperatures are close to normal
(figures 2(d), (l)), incoming solar radiation is higher
than normal over the Iberian Peninsula (figure 2(h)).

Figure 2.Meanmeteorological surface impacts of the fourweather regimes. Colours show anomalies of (a)–(d) 10 mwind speed
(m s−1), (e)–(h) incoming solar radiation (W m−2), (i)–(l) 2 mair temperature (°C). Eachweather regime in a column, labelled at the
top, left to right: NAOpositive, NAOnegative, Scandinavian Blocking, Atlantic Ridge. Figure based on ERA5 data (DJF, 1979–2018).
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Wind power potential is slightly higher than normal
over the Mediterranean Sea and North Sea
(figure 3(d)), solar power potential is higher than
normal over the Iberian Peninsula (figure 3(h)).

3.2. Energy related variability withinweather
regimes
For the investigation of variability within a weather
regime, we reduce the spatial wind and solar power
potential data (as in figure 3) to European totals, which
results in time series for wind and solar power
production, energy demand and energy shortfall (see
section 2.3). On average, total wind and solar power
production is above normal in the NAO positive and
the Atlantic ridge regimes, and lower than normal in
the NAO negative and Scandinavian Blocking regimes
(figure 4(a)). Energy demand is below normal in NAO
positive, but above normal in the blocked regimes
(figure 4(b)). These results follow logically from the
typical spatial patterns of meteorological variables and
power potentials discussed in the previous section.

Absolute variability is larger for wind and solar
power production than for energy demand, with stan-
dard deviations of 1.1 and 0.3 TWh d−1, respectively.
Consequently energy shortfall more closely resembles

the wind and solar energy production response than
the energy demand response, in agreement with
Bloomfield et al (2016). However, lower than normal
production coincides with higher than normal
demand for days in NAO negative and Scandinavian
Blocking. Energy shortfall in those regimes is therefore
higher than normal (figure 4(c)), and also higher than
what would be estimated from wind and solar power
production alone. NAO positive days typically com-
bine above normal production with below normal
demand, leading to lower than normal energy short-
fall. In the Atlantic Ridge regime both production and
demand are higher than normal, the resulting energy
shortfall is close to being normal.

These average changes of the energy variables in
each weather regime hide the variability of these vari-
ables within a regime. Figures 4(d)–(f) (and SI figure S5
for GCM data) show the distribution of each energy
variable for all winter days and split by regime. The dis-
tribution of wind and solar power production is posi-
tively skewed, indicating a long tail for high production
values (Brayshaw et al 2011, Zubiate et al 2017). This
distribution changes for each weather regime: in the
Scandinavian Blocking regime the distribution shifts to
lower values with increased skewness; during NAO

Figure 3.As figure 2 but here formean power production impacts of the four weather regimes. Colours show anomalies of (a)–(d)
wind power potential (%), (e)–(h) solar power potential (%). Eachweather regime in a column, labelled at the top, left to right: NAO
positive, NAOnegative, Scandinavian Blocking, Atlantic Ridge. Figure based onERA5 data (DJF, 1979–2018).
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positive the distribution shifts to higher values and is no
longer skewed. The distribution of energy demand is
normal, with each weather regime leading to a shift in
the mean as discussed above. Energy shortfall is nega-
tively skewed in the full distribution. Also here the lar-
gest changes in the distribution are for NAO positive
(lower mean shortfall, no skewness) and Scandinavian
Blocking (highermean shortfall, increased skewness).

3.2.1. Extreme energy events
Next we investigate the change in risk of extreme
events for each weather regime. For this analysis we
rely on the GCM large ensemble experiments, as
noted in section 2.1. Increased risk of extreme low
wind and solar power production events is found for
the Scandinavian Blocking regime and for NAO
negative (RR=2.2 and 1.3, respectively, figure 4(g)).

Decreased risk is found for the NAO positive and
Atlantic Ridge regimes (RR=0.1 and 0.6, respec-
tively), though each GCM has some of the extreme
events occurring in these regimes. Increased risk of
extreme high energy demand is found for NAO
negative and Scandinavian Blocking (RR=2.3 and
1.4, respectively, figure 4(h)). During Atlantic Ridge
days there is a slight decrease of risk (RR=0.9).
None of the sampled extreme high demand events
occurred in the NAO positive regime, this does not
imply that extreme high demand events are impos-
sible in this regime, just very unlikely and not
sampled here.

The risk of an extreme high energy shortfall event
doubles during NAO negative days, and increases by
50% in Scandinavian Blocking days (RR=2.0 and
1.5, respectively, figure 4(i)). In the Atlantic Ridge

Figure 4. (a)–(c)Bar graphs showing the normalisedmean of energy production/demand/shortfall for eachweather regime relative
to all winter days (normalisedmean=0, normalised standard deviation=1) (nounits). (d)–(f)Distributions of European total
energy production/demand/shortfall for all winter days (black solid line) and split byweather regime (coloured dashed lines, colours
as in other panels) (TWh d−1). Grey shading denotes the threshold for the 1-in-10year extreme event. (g)–(i)Risk ratio of 1-in-
10year extreme event occurrence conditional on theweather regime for energy production/demand/shortfall (nounits). Black
vertical lines show the 95% confidence interval based on bootstrap resampling (N=10 000), a solid linewhen the change in risk is not
statistically significant, a dotted linewhen the change is statistically significant. Subfigures (d)–(f) based on ERA5 data (DJF,
1979–2018), other subfigures (a)–(c), (g)–(i) showERA5data in bold colours and large ensemble simulated data in lighter colours
(DJF, 2000 years).
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regime the GCMs disagree on the sign of the small
change of risk, on average there is no change in risk. In
NAO positive the chance of extreme high energy
shortfall is near zero, though in the GCM experiments
three events occurred in this regime in 4000simulated
years.

The limited length of the ERA-Interim record hin-
ders the ability to adequately sample extreme event
occurrence and estimate changes in risk. For extreme
low wind and solar energy production, the four sam-
pled events are evenly distributed over the Scandina-
vian Blocking andNAO negative regimes (figure 4(g)),
this is in agreement with the increases in risk com-
puted from the GCM data. This may lead to the false
conclusion that such events do not occur on NAO
positive or Atlantic Ridge days. The GCM experi-
ments, by means of improved sampling, show that
extreme low wind and solar energy production can
occur in all regimes. Similar effects of limited sampling
on the risk estimates are found for extreme high
energy demand events and extreme high energy short-
fall events (figures 4(h), (i)).

3.3.Meteorology of extremehigh energy shortfall
events
Wenext investigate themeteorological conditions that
cause the extreme high energy shortfall events
(figure 4(i)) in more detail, and compare these to the
typical patterns associated with the weather regimes
(section 3.1). The 500 hPa circulation for a selection of
simulated extreme shortfall events is shown infigure 5.
The resemblance between the event circulation and
the regime centroid varies from event to event. In
general, the large-scale pattern somewhatmatches that
of the regime centroid, higher pattern correlations are
found for NAO negative events than for those
classified in the other regimes. However, smaller-scale
synoptic features cannot be disregarded.

To test if the circulation during extreme events sys-
tematically resembles the regime centroids more/less
than the circulation during normal days in the regime,
we compare distributions of pattern correlations and
anomalymagnitudes between daily circulation patterns
and the regime centroids (SI figures S6, S7). Taking into
account all winter days, the pattern correlations vary
between−0.17 and 0.95with an average value of 0.48. A
similar calculation based only on extreme high energy
shortfall events results in a comparable distribution
(mean 0.53, range −0.02 to 0.88). Also for anomaly
magnitudes, compared by means of a projection onto
the regime centroid, the distribution for extreme events
is close to that of all winter days. Thus, within a regime,
the days of extremehigh energy shortfall are not distinct
in terms of atmospheric circulation. Extreme high
energy shortfall events are not caused by extreme ver-
sions of the atmospheric circulation associated with the
fourweather regimes.

Despite different circulation patterns at 500 hPa,
the events in figure 5 all lead to extreme high energy
shortfall. This is because the surface impacts of the
events are remarkably similar (figure 6). Each of the
events shown is characterised by lower than normal
winds over large parts of the continent and shallow
seas due to low surface pressure gradients. In most
events temperatures over the continent are lower than
normal. Though the exact pattern and the strength of
the anomalies of wind and temperature varies between
events, it is obvious that all meteorological states lead
to lower than normal wind power production and
higher than normal energy demand, when combined
resulting in extreme high energy shortfall.

There are no systematic differences between
weather regimes (columns in figure 6) if we consider
surface meteorological conditions of extreme energy
shortfall events. This is confirmed by an analysis of the
pattern correlation of surface anomaly patterns of sur-
face pressure, 10 m wind speed and 2 m temperature
of the extreme high energy shortfall events over Eur-
ope (figures 7(b)–(d)). These events are more similar
to each other (composite mean pattern shown in Van
der Wiel et al 2019a, their figure 9) than they are to
their associated regime mean pattern (as in figure 2).
For 500 hPa circulation over the North-Atlantic Eur-
opean region, the meteorological parameter which
formed the basis of the weather regime classification,
the similarity between the event and regime centroid,
and the event and the extreme event composite mean
is comparable (figure 7(a)).

4. Summary

North Atlantic-European weather regimes have signifi-
cant influence on meteorological surface conditions
relevant for the energy sector.On average, wind and solar
power production is above normal in the NAO positive
and Atlantic Ridge regimes, and below normal in the
Scandinavian Blocking and NAO negative regimes.
Energy demand is higher than normal in the Scandina-
vianBlocking,NAOnegative andAtlantic Ridge regimes.
The combination of low production and high demand
leads to higher than normal energy shortfall or residual
load in the Scandinavian Blocking and NAO negative
regimes. These results are in agreement with previous
studies which looked at the average impacts of the
NAO, the East Atlantic and the Scandinavian patterns,
and weather regimes on wind power generation (e.g.
Brayshaw et al 2011, Ely et al 2013, Grams et al 2017,
Zubiate et al 2017) and energy demand (Thornton et al
2019) separately. Similar results are obtained when
repeating the analysis using ERA-Interim data (Dee et al
2011).

However, these average effects hide large varia-
bility ofmeteorological conditions and energy impacts
within each weather regime. For each weather regime,
the changes to the full distribution of the three energy
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variables considered were analysed and used to quan-
tify the resulting change in the risk of extreme events.
For days classified as Scandinavian Blocking and NAO
negative, the risk of extreme lowwind and solar power
production and extreme high energy demand both
increases, resulting in an increase of risk of extreme
high energy shortfall (by a factor of 1.5 and 2.0, respec-
tively). Despite this preference for the blocked regimes
(as was characterised in Bloomfield et al 2018 and

Van der Wiel et al 2019a), extreme high energy short-
fall events occur in all four regimes. Finally, it is shown
that the meteorological surface conditions leading to
extreme shortfall events aremore similar to each other
than they are to their respective regime typical pattern.
Extreme high energy shortfall events are caused by rare
circulation types and smaller-scale synoptic features,
rather than by extreme magnitudes of common circu-
lation types (i.e. theweather regimes).

Figure 5.Atmospheric circulation pattern for the sixmost extreme high energy shortfall events in eachweather regime (one event for
NAOpositive regime due to lower sampling). Colours show the 500 hPa geopotential height anomaly [m] (note different scale from
figure 1), contour lines show the 500 hPa height (m, interval 100 m) indicative of direction offlow. Eachweather regime in a column,
labelled at the top, left to right: NAOpositive, NAOnegative, Scandinavian Blocking, Atlantic Ridge. Percentage values at the top
indicate the percentage of extreme events that fall in the regime, values to the right of eachmap show the pattern correlation coefficient
between the pattern shown and the regime centroid (SIfigure S1). Figure based on the EC-Earth large ensemble experiment.
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5. Conclusions

The aim of this study was to investigate whether
weather regimes, a frequently used metric to simplify
meteorological variability, capture the influence of
meteorological variability on the European energy
sector. Our analysis shows that some of the day-to-day
variability of energy variables can be explained by
weather regimes, and hence they can be informative
for the energy sector. For example, the probability of a
given regime can be computed from meteorological
forecasts at seasonal and sub-seasonal time scales,
from which expected energy anomalies or changes in
risk can be quantified. This extends NAO-based
seasonal predictability for the energy sector (Clark et al
2017, Thornton et al 2019).

However, the analysis also shows there is substantial
variability of energy variables within the weather
regimes. Extreme energy events are the result of rare cir-
culation types or smaller-scale features, not captured by
these large-scale weather regimes. There is thus a limit to
the precision of weather-regime based energy forecasts.
Therefore we would advise to use the exactmeteorology
for forecasts of energy variables at shorter lead times or
for, for example, systemadequacy analyses.

Further work to improve scientific understanding
of the link between weather and energy systems is
required. A logical step following this analysis would
be to try impact-centred or bottom-up analyses, in
which regimes are defined based on their impact
on energy variables rather than on the fraction of
circulation variance explained (meteorology-centred

Figure 6.Meteorological surface conditions for the events shown infigure 5. Purple/green colours show 10 mwind speed anomalies
(m s−1), blue/red colours show 2 mair temperature anomalies (°C) (note different scale fromfigure 2). Figure based on the EC-Earth
large ensemble experiment.
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or top-down). We hypothesise that such impact-based
circulation regimes would exhibit less variability
within regimes and would provide a better categorisa-
tion of extreme events. If such patterns can be shown
to be predictable using existing meteorological fore-
casting systems, this would likely improve the value for
the energy sector compared to forecasting based on
weather regimes as outlined above. From a meteor-
ological perspective, further improvements may be
possible when using smaller-scale synoptic-based Eur-
opean weather regimes (e.g. the 29 Großwetterlagen,
James 2007) or through unsupervised machine learn-
ing (e.g. as was done for Japan, Ohba et al 2016).
Finally, building on the present analysis, future work
may investigate how the persistence of these four
regimes influences the duration of high energy short-
fall events. Longer lasting events put greater stress on
energy systems (VanderWiel et al 2019a).
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