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a b s t r a c t

Atmospheric transport models and observations from monitoring networks are commonly used aids for
forecasting spatial distribution of contamination in case of a radiological incident. In this study, we
assessed the particle filter data-assimilation technique as a tool for ensemble forecasting the spread of
radioactivity. We used measurements from the ETEX-1 tracer experiment and model results from the
NPK-Puff atmospheric dispersion model. We showed that assimilation of observations improves the
ensemble forecast compared to runs without data assimilation. The improvement is most prominent for
nowcasting: the mean squared error was reduced by a factor of 7. For forecasting, the improvement of the
mean squared error resulting from assimilation of observations was found to dissipate within a few
hours. We ranked absolute model values and observations and calculated the mean squared error of the
ranked values. This measure of the correctness of the pattern of high and low values showed an
improvement for forecasting up to 48 h. We conclude that the particle filter is an effective tool in better
modeling the spread of radioactivity following a release.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In case of a nuclear release, accurate countermeasures like
sheltering, evacuation and iodine-prophylaxis can save lives. For
this, it is crucial to have reliable estimates for actual and future
spatial distributions of the contamination. One way to estimate the
dispersion of radioactive substances is to use atmospheric transport
models. Such models simulate the release, taking into account
wind, atmospheric conditions and radioactive decay. Alternatively,
one can use observations from amonitoring network: interpolation
gives the spatial distribution of a contamination. Although atmo-
spheric transport models include processes like advection, plume-
widening, plume-rise and dry- and wet deposition, their predictive
capability is limited by uncertainty in model input parameters.
These parameters can be dynamical (e.g. meteorology or release
properties) or statical (e.g. surface roughness, fixed parameteriza-
tion of dynamical effects). Observations are often scarce, sparse and
limited to only a subset of the relevant physical parameters. The
construction of optimal hind-, now- and forecasts requires inte-
gration of an atmospheric dispersion model and observations.
Netherlands Meteorological
etherlands.
mstra).
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Following Beven (2009), we distinguish three situations in
estimating dynamical and statical model input parameters with
varying availability of observations:

- No observations are available to steer the model. Only expert
judgment can be used to estimate the input parameters.

- Observations from historic events are available. We can use the
more formal and objective way of calibrating the input
parameters to the historic events. In earlier studies, a wide
range of calibration techniques has been applied to atmo-
spheric transport models, including gradient-descent (Kovalets
et al., 2009), neural networks (Pelliccioni and Tirabassi, 2006;
Pelliccioni et al., 2010) and genetic algorithms (Haupt et al.,
2009). As these calibrated parameters are valid for the
historic events, application outside the specific historic context
may be problematic.

- Observations of a release become available in (near) real-time.
The problem of a non-representative calibration on historic
events can be overcome, as observations are available for the
event that is being modeled. These real-time observations can
be assimilated into the model sequentially to improve the
model forecast.

In practice, expert judgment, calibration and data assimilation
will be used jointly to provide an optimal forecast. Expert judgment
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and calibration are used before an incidental release, to learn about
the values of (statical and dynamical) input parameters and their
possible consequences. In case of a subsequent actual release, data
assimilation can be used to refine the estimates. Several types of
data assimilation algorithms have been used for modeling the
spread of radioactive material. These include adjoint techniques
(Politis and Robertson, 2004), the extended Kalman filter (Rojas-
Palma et al., 2003) and the ensemble Kalman filter (Gering, 2007;
Zheng et al., 2009, 2010). The main drawback of Kalman filter
techniques is that they do not perform well for non-linear models
(Simon, 2006; van Leeuwen, 2009), such as atmospheric transport
models.

A popular data assimilation method well suited for non-linear
models is the particle filter (Risfic et al., 2004; Doucet et al.,
2001; Gordon et al., 1993). The particle filter has been used in
numerous applications outside atmospheric transport modeling
(Iba, 2001; Simon, 2006). The particle filter requires the user to
assign prior probability distributions to the most important input
parameters of the atmospheric transport model, either through
expert judgment or calibration. Drawing from these probability
distributions results in an ensemble of possible model realizations
or particles. When observations become available we compare all
model realizations to the observations. Particles that perform well
are cloned and model realizations that perform poorly are elimi-
nated. This is called resampling in particle filter jargon. Resampling
based on the quality of the model realizations is a numerical way of
solving Bayes’ theorem.

Apart from being suitable for non-linear models, the particle
filter has an second advantage that it does not change individual
model realizations. Changing individual model realizations as is
done by Kalman filter techniques may lead to violations of
conservation laws (Karssenberg et al., 2010; van Leeuwen, 2009).

The purpose of this study is to asses the performance of the
particle filter as a tool for ensemble forecasting and nowcasting in
atmospheric transport modeling. In the context of modeling the
spread of radioactivity in real-time, we define nowcasting as the
prediction at the time t at which data-assimilation occurs. By
forecasting we mean predictions that go beyond that time, e.g.
t þ 3 h, for which no observations are available yet. To asses the
performance of the particle filter we define the following research
questions:

- What is the performance of the particle filter compared to
Monte Carlo simulation when nowcasting?

- What is the performance of the particle filter compared to
Monte Carlo simulation when forecasting?

- What is the increase in performance during forecasting for
different lead times?

There is no real nuclear release for which both the source-term
and the concentrations and depositions in the affected area and all
relevant meteorological parameters are well estimated, docu-
mented and available. Since the nuclear aspect of the release does
not have the main focus in this study, we chose experiment-1 from
the European Tracer EXperiment, or ETEX (EUR 181-43 EN,1998), to
assess the performance of the particle filter. In this context we use
the passive tracer as a proxy for radiation levels. During ETEX,
a passive tracer was released into the atmosphere and a network of
168 stations recorded the concentration of the tracer in intervals of
3 h. ETEX is frequently used to validate atmospheric transport
models (Galmarini et al., 2004; Wendum, 1998). ETEX-1 comprises
a larger set of measurements than ETEX-2. This is the reason why
we selected ETEX-1.

For the atmospheric dispersion model we choose NPK-Puff (NPK
stands for ‘Nationaal Plan Kernongevallenbestrijding’, ‘National
Response Plan for Nuclear Emergencies’). This is the model used by
the Dutch emergency-response group for radiological incidents.
Characteristics of the model are given in Section 2.1.

Section 2 provides an introduction to relevant theory on the
atmospheric transportmodels and the particle filter. Section 3 deals
with implementing the particle filter for this particular case study.
Results, discussion and conclusions are presented in Sections 4e6
respectively.

2. Theoretical background

2.1. NPK-PUFF model

NPK-PUFF (Verver and De Leeuw, 1992) is a Lagrangian puff-
model. A continuous release is modeled by the release of
a discrete set of ellipsoidal clouds with Gaussian density distribu-
tion called “puffs” (Brandt et al., 2000). The puffs are advected in
timesteps of 10 min according to meteorological information (for
ETEX-1: HIRLAM with 6-hourly update and spatial resolution of
55 km). The growth of the puffs as a result of turbulent diffusion is
modeled with a stability-dependent growth-rate. Puffs that have
grown larger than the (horizontal and vertical) resolution of the
meteo-fields are cut into smaller puffs every N hours (typically
N ¼ 24). Dry deposition is modeled via a canopy-resistance model.
Wet deposition is taken linear in the precipitation rate up to a rain-
fall of 1 mm h�1. Above that level, the wet-deposition efficiency
follows 0.8-powerlaw. Sedimentation is not considered. For ETEX
sedimentation is irrelevant. For more detailed information on
Lagrangian puff-models we refer to Brandt et al. (2000), Verver and
De Leeuw (1992) and Wendum (1998).

2.2. Particle filter

The particle filter algorithm involves the following steps (Simon,
2006; van Leeuwen, 2009):

1. Draw n realizations of the input parameters, resulting in
n model realizations or particles.

2. For each model realization, run the atmospheric transport
model forward in time up to the next moment when obser-
vations are available, i.e. an assimilation moment. These model
realizations represent the prior distribution of tracer.

3. Calculate the probability or weight of each model realization
given the observations.

4. Resample the model realizations, where model realizations
with a high probability are cloned and model realizations with
a low probability are removed. Resampling of model realiza-
tions leads to the posterior distribution of input parameters
and results.

5. Repeat steps 2e4 until all observations have been assimilated.
6. Run all model realizations through the model from the last

assimilation moment to last timestep.

Steps 3e4 represent a numerical solution of Bayes’ theorem.We
now provide a short derivation of the weight function of the
particle filter from Bayes’ theorem. Bayes’ theorem is defined as
(Gordon et al., 1993):

PrðmijoÞ ¼ PrðojmiÞPrðmiÞPn
j¼1 Pr

�
o
��mj
�
Pr
�
mj
� (1)

where n is the number of model realizations, PrðojmiÞ is the prob-
ability of the observations given the model of model realization i,
Pr(mi) is the prior probability of model realization i (always equal to
1/n because of resampling), and PrðmijoÞ is the posterior probability
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orweight ofmodel realization i. PrðojmiÞ is also called the likelihood
of the observations given the model. The likelihood quantifies how
likely the observations are, given that model mi would be reality.

Assuming a Gaussian distribution for the observation error, the
likelihood used in the particle filter is defined as (Simon, 2006):

PrðojmiÞ ¼ exp

 
� ½o�mi�TR�1½o�mi�

2

!
(2)

where o is the observation vector, mi is the model outcome vector
and R the covariance matrix of the observation error. We assume
that observation error is independent, i.e. the off-diagonal elements
are zero. The diagonal elements contain the variance of the
observation error, s2o . Combining Eqs. (2) and (1) and remembering
that Pr(m) equals 1/n gives:

PrðmijoÞ ¼
1
n
PrðojmiÞ

1
n

Xn

j¼1
Pr
�
o
��mj
� ¼ PrðojmiÞPn

j¼1 Pr
�
o
��mj
�; (3)

Note that Eq. (3) ensures that the total posterior probability
equals 1.

In step 4 the particle filter resamples the model realizations to
obtain the posterior distribution of the tracer. In this study we used
Sequential Importance Resampling or SIR (Gordon et al., 1993). SIR
samples a new set of model realizations where the probability that
a model realization is resampled equals PrðmijoÞ.

3. Implementation of the particle filter

A number of choices had to be made in order to configure the
particle filter for our particular application. One of these is the
number of model realizations that are used. We set the number to
300 model realizations, as less model realizations tended to lead to
particle collapse and more model realizations increased the
computational effort of the particle filter toomuch. Particle collapse
refers to a situation when a small number of model realizations
receives a high weight, while other model realizations have
a weight close or equal to zero. This leads to an estimation of the
posterior probability that is insufficiently precise (Simon, 2006). In
the following sections we will discuss the ETEX tracer dataset and
the remaining choices in configuring the particle filter.

3.1. ETEX tracer experiment

ETEX1 is one of the few well-documented tracer experiments
that can be used for the validation of atmospheric dispersion
models. ETEX-1 started on October 23 1994 at 16:00 GTC. During
11 h and 50 min, 340 kg of a non-reactive tracer (PMCH, per-
fluoromethylcyclohexane) was released into the atmosphere on
a site near Rennes, located in northwestern France (Nodop et al.,
1998). A network of 168 stations across Europe monitored the
spread of the PMCH, recording the amount of PMCH above back-
ground levels in ngm�3. From18:00GTC onwards the average tracer
concentrationwas reported from themonitoring network every 3 h.

3.2. Key input parameters

To accurately describe the spread of radioactivity and its
uncertainty following a release, sensitivemodel parameters need to
be described by a probability density function (pdf). Choosing the
1 see http://rem.jrc.ec.europa.eu/etex/ for details.
key input parameters is a balance between a realistic representa-
tion of prior uncertainty and computational effort. Treating more
parameters stochastically requires more model realizations in
order to cover the entire parameter space sufficiently, thus
increasing computational effort. Treating too little parameters
stochastically will lead to an incomplete description of the release.
Based on our research and Eleveld et al. (2007) the following
parameters where found to be most sensitive in case of a radioac-
tive release: wind speed, wind direction, amount of released
material, types of radionuclides released, release height, vertical
and horizontal extent of the release, lateral growth of the puffs e

i.e. the width of the plume e, and the mixing layer height.
In our specific case study using ETEX-I, the characteristics of the

release where known. Therefore, the amount of released material,
the type of nuclides, and the release location and height where not
treated stochastically. In addition, we chose to keep mixing layer
equal to the standard NPK-PUFF description, i.e. without using
a stochastic representation. Two arguments support this approach.
First, mixing layer height influences wind speed and wind direc-
tion, but this is already taken into account directly by v and r.
Second, the sensitivity of the model to mixing height is low. The
range over which the mixing layer height can be varied within the
model would lead to onlyminor changes inmodeled concentration.
3.3. Stochastic representation of input parameters

We base the variation in wind speed and direction on
55 km � 55 km HIRLAM2 modeled wind vectors relevant for ETEX.
We scale the vectors (speed) and rotate them (direction):

Fðx; tÞ ¼ FvðtÞ$MðtÞ$fhirlamðx; tÞ (4)

MðtÞ ¼
�
cosðqðtÞÞ �sinðqðtÞÞ
sinðqðtÞÞ cosðqðtÞÞ

�
(5)

where x is location, t is time, F(x,t) is the randommatrix with wind
vectors after rotation and scaling, Fv(t) the scaling factor, M(t) the
rotation matrix, fhirlamðx; tÞ the matrix with original HIRLAM wind
vectors and q(t) a random variable for the rotation angle. Fv(t) is
a random variable with a uniform distribution between [1/fv, fv],
where fv is the maximum scaling factor. Based on our expert
judgment, we chose amaximum scaling factor equal to 3. The use of
this scaling factor causes each to have a different wind speed in the
range between three times as much as the original HIRLAM wind
fields and three times smaller. The rotation angle is a random
variable with a normal distribution Nð0; sdirÞ, with sdir equal to
20�. HIRLAMmodeled wind fields were available from 12:00 AM on
October 23 1994, and for every 6 h after that. For each model
realization we generate unique meteorological conditions by
drawing at each 6 h time step from Fv(t) and q(t) as we run the
model forward in time. Draws from Fv(t) and q(t) are constant in
space and uncorrelated in time.

We treat the lateral growth of the puffs stochastically by intro-
ducing Fg:

FgðtÞ ¼ Z þWðtÞ (6)

where Z is a random variable with a uniform distribution [1/fg,max,
fg,max], fg,max is the maximum scaling factor and W(t) is a random
variable with a uniform distribution [�0.05, 0.05]. For each model
realization a draw from Z is done at the start of the particle filter
run. Draws from W(t) are done independently at every time step.
2 see http://hirlam.org.

http://rem.jrc.ec.europa.eu/etex/
http://hirlam.org
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The noise introduced by W(t) is called roughening in particle filter
jargon (Simon, 2006). We use roughening to prevent particle
collapse. Themaximum scaling factor fg,max is equal to 3 based on an
expert judgment from our side.

By using a scaling factor for wind speed and lateral growth, the
variability in the realizations is depended on the reference used for
scaling. For example, the variability for high wind speeds is larger
than for low wind speeds. We chose for this approach because the
potential for error is largest when either wind speed or lateral
growth was large. The variability of the wind direction does not
depend on wind direction itself. We made this decision because
a comparison between observed wind direction and HIRLAM wind
direction did not show this trend.

3.4. Variance of ETEX observations

The variance of the ETEX observations ðs2oÞ plays an important
role in assessing the performance of a model realization. The
variance expresses how much we believe that differences between
observations and modeled values are significant. We defined an
error model for s2o using the following two assumptions. First, the
variance is proportional to the value of the observation. Second, The
variance does not only include the measurement error of the
observations. It also needs to include small scale variation. NPK-
PUFF models the spread of the tracer at a support size ranging in
the order of kilometers. Support refers to the area on which the
model results are calculated. Variation within this support,
however, is also captured by the observations. To accurately
determine the weight of a model realization using Eq. (2), small
scale variation should be treated as additional error:

s2o ¼ s2m þ s2short (7)

where s2m is the variance of the measurement error and s2short the
variance of the short range variation. The short range variation is
defined as the variation of observations within the support size of
NPK-PUFF, versus the mean value within the support:

s2short ¼ VAR
�
oobs � osupport

�
(8)

where oobs is an observationwithin the support with support mean
osupport. The support mean is the value estimated by NPK-PUFF. An
accurate estimate of s2short requires a large number of observations
within the support size of the model, with separation distances in
the order of hundreds of meters. In the ETEX monitoring network,
on average the closest monitoring station is 128 km away, with the
smallest separation distance between being 24 km. The lack of
empirical data to estimate s2short has led us to adopt the following
formulation of s2o:

s2o ¼ ða0 þ a1oÞ2 (9)

where a1 determines how fast the variance grows with the value of
the observation and a0 is the variance when the observation equals
zero. As a best guess we defined a0 ¼ 3 and a1 ¼10. Both a0 and a1
have units ng m�3. In addition we checked the sensitivity of the
particle filter, i.e. which model realizations get resampled, to the
settings of a0 and a1. Changing both parameters by 50%, both
positive and negative, did not have a significant impact on the
posterior distribution at assimilation moments. This implied that
the values we chose for a0 and a1 are quite robust.

3.5. Particle filter performance

To evaluate how the spatial extent of the ensemble results and
theobservationsmatched,wecalculated the exceedance probability
of a threshold of 0.1 ng m�3 tracer. This threshold is a low value and
thus roughly shows the areawhere any tracer has beenmodeled.We
obtained the exceedance probability for each gridcell by counting
the number of model realizations exceeding the threshold and
dividing by the number of model realizations, 300 in this case.

A naive way to quantify performance would be to use the mean
squared error, i.e. the mean squared difference of modeled and
observed values at observations locations. The main problem with
mean squared error is that a difference of 2 ng m�3 is considered
equally bad between 0.2 and 2.2, and between 10 and 12. To make
the error proportional with the value, we took the log transform of
the ETEX observations and the outcomes of NPK-PUFF. The mean
squared error for model realization j at timestep t ewhere one
timestep is 10 mine, MSEjt is given by:

MSEjt ¼ 1
N

XN
i¼1

�
logðoit þ 1Þ � log

�
mijt þ 1

��2 (10)

where oit is observation i at time t, i˛ð1.NÞ, N is the number of
observations and mijt is the model result i of model realization j at
time t. Note that we added 1 to both the observations and model
results to keep 0 ng m�3 in the dataset after the log transform.

We also included the Mean Error (ME) as a measure for
performance to detect bias in the results. Mean error for model
realization j and timestep t is defined as:

MEjt ¼ 1
N

XN
i¼1

�
logðoit þ 1Þ � log

�
mijt þ 1

��
(11)

The MSE was highly sensitive to outliers in the data. Conse-
quently, in addition to the ‘normal’ MSE (Eq. (10)), we transformed
the observations and model results into ranks before calculating
the MSE. This results in the Mean Ranked Squared Error (MRSE).
Ranking involves sorting the observations/model results from low
to high, where low values get low ranks and high values get high
ranks. When observations/model results are equal, all individuals
are assigned the mean of the ranks. The MRSE for model realization
j is defined by:

MRSEj ¼
1
N

XN
i¼1

h
orank;i �Mrank;ij

i2
(12)

where orank,i is the rank of observation i and Mrank,ij is the rank of
model result i of model realization j. The ranked MSE discards
actual values. It shows whether a model realization can reproduce
the pattern of high and low values in the observations, i.e. whether
high ranks in the observations coincide with high ranks in the
modeled values.

3.6. ETEX case study

The purpose of this study was to evaluate the performance of
the particle filter for nowcasting and forecasting. To meet this
purpose, we performed three ensemble runs, one Monte Carlo
simulation (MC) and two particle filter runs (PF1 and PF2). The MC
run uses no data assimilation and represents the situation predic-
tion that is made prior to the actual release, when observations of
tracer concentration are not yet available. All themodeled results in
the MC run are forecasts. PF1 and PF2 represent two runs during
the release, allowing the assimilation of tracer concentration to
improve the model results. PF1 shows the model run 11 h after the
release and is a run that assimilated observations at three assimi-
lation moments, i.e. t ¼ 5 h, t ¼ 8 h and t ¼ 11 h. The predictions at
these assimilation moments are nowcasts, predictions beyond
t ¼ 11 h are forecasts. PF2 represents the prediction that is made at



Fig. 1. Probability of exceeding 0.1 ng m�3. Columns represent three different scenarios and rows represent hours following release. Each panel in a row is either a nowcast or
a forecast. A nowcast means that at that time observations were assimilated to improve the model. For example, row number three shows a forecast at 0 h for MC, PF1 shows
a forecast at 11 h and PF2 shows a nowcast at 23 h. The þ is the release location, B are measurements below 0.1 ng m�3 and � are measurements above 0.1 ng m�3. The size of the
modeling area is about 800 � 800 km.
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a later moment after the release, at t ¼ 23 h. At this stage seven
assimilation moments have passed. As with PF1, nowcasting is at
assimilation moments, forecasting is beyond these moments.

To assess nowcasting and forecasting we compared the three
runs at the same timestep using the measures described in the
previous section, Section 3.5. MC acts as a baseline for both particle
filter runs. If the nowcast or forecast of the particle filter is better
than the forecast of MC at that timestep than the positive influence
of observations is still present. An important question in this
context is how long observations still improve the forecast
(þ3 h, þ12 h, etc) and when the positive influence of assimilating
observations has gone.

4. Results

Fig. 1 shows the first measure for particle filter performance we
treat, mapping exceedance probability of 0.1 ng m�3. The first row
shows the situation for MC, PF1 and PF2 5 h after the release. MC
shows a þ5 h forecast, both PF1 and PF2 show a nowcast. At t ¼ 5 h
the runs showroughly the samepattern. Table 1however shows that
the median MSE drops by a factor of 2 when assimilating observa-
tions. ThemedianMSE is defined as themedian of theMSE values of
all model realizations at a certain timestep. This drop indicates that
the nowcast of both particle filter runs outperforms MC.

The second row of Fig.1 shows aþ11 h forecast for MC and again
a nowcast for PF1 and PF2. The exceedance pattern for PF1 and PF2
is more clearly defined than that of MC, i.e. the area that can be
classified with high certainty, either very low or very high proba-
bility, becomes larger when nowcasting with the particle filter. This
is supported by the median MSE values in Table 1 at 11 h after the
release, which are seven times lower for PF1 and PF2 compared to
MC. Note that median MSE for PF1 and PF2 differ somewhat, which
is due to the random draw of model realizations for each run.

The third row in Fig. 1 shows the situation 23 h into the release.
MC shows aþ23 h forecast, PF1 aþ12 h forecast and PF2 a nowcast.
The patterns for MC and PF1 are roughly the same, the nowcast of
PF2 show a more clearly defined pattern. This is supported by the
median MSE in Table 1, where the values for MC and PF1 are
roughly the same and PF2 shows a drop with a factor 1.3.

Thefinal two rows showexceedance probability forecasts forMC
(þ35 andþ47 h), PF1 (þ24 andþ36 h) and PF2 (þ12 andþ24h). The
patterns for the three runs are approximately the same in these last
two rows. The median MSE for those time steps in Table 1 supports
this. The similarity of the patterns indicates that the positive
influence of assimilating observations for PF1 and PF2 has gone.

In general, the results from Table 1 and Fig. 1 show that now-
casting with the particle filter outperforms forecasting with MC by
a factor between 1.3 and 7. In addition, forecasting with the particle
Table 1
Median MSE, ME and MRSE for MC, PF1 and PF2 for a number of moments following
the release. Bold numbers indicate values associated with nowcasting, i.e. obser-
vations were assimilated at the moment for which values are shown. The other
numbers refer to forecasting.

Run Measure 5 h 11 h 23 h 35 h 47 h

MC MSE 0.134 0.421 0.108 0.089 0.087
PF1 MSE 0.086 0.063 0.113 0.103 0.094
PF2 MSE 0.086 0.048 0.089 0.102 0.092

MC ME 0.036 0.112 0.056 0.019 �0.045
PF1 ME L0.015 L0.019 0.032 0.003 �0.053
PF2 ME L0.026 L0.004 0.017 0.003 �0.054

MC MSE ranked 2443.786 3794.704 2069.124 2827.176 3798.509
PF1 MSE ranked 2362.762 2713.330 1748.561 2658.690 3340.814
PF2 MSE ranked 2383.116 2798.033 1563.132 2366.585 3181.164
filter also show an improvement, however the positive effect of
data assimilation is gone with a lead time of 12 h when looking at
the pattern of exceedance probability and the median MSE.

To take a close look at the modeled values, we plot observed
versus modeled values for one timestep (23 h after the release) in
Fig. 2. The MC run shows a forecast made at the start of the release,
23 h into the future, PF1 shows a forecast made at 11 h and PF2
shows a nowcast at 23 h Fig. 2 confirms the results for MSE in
Table 1 and Fig. 1 : nowcasting (PF2) reduces the error in contrast to
forecasting. Fig. 2 shows that the improvement of the MSE for the
particle filter mainly originates from a better representation of the
outliers in the region where ETEX-I measured less than 0.8 ng m�3.
We relate this to the fact that the weight function is most sensitive
in this area. For larger observed ETEX-I values, the allowed devia-
tion is larger because the variance of the ETEX-I observations scales
with the observed value. Another striking feature of Fig. 2 is that for
high values the median is underestimated byMC, PF1 and PF2. This
effect is stronger for PF2, which is a nowcast. We suspect that this is
caused by the sensitivity of the weight function for the lower
observed values. Those regions are optimized, causing the higher
observed regions to show a worse result.

Fig. 3 shows timeseries of mean squared error, mean error and
mean squared ranked error. Table 1 shows tabulated values for the
median MSE, ME and MSRE of the runs. The mean error in Fig. 3
shows that the bias of both PF1 and PF2 is lower than MC for the
majority of the run. The improvement is most prominent for
nowcasting (vertical lines in figure), with a reduction of ME with
a factor of up to 25 times of PF1 and PF2 in contrast to MC. In
addition, when forecasting with the particle filter, the ME is
reduced compared to the forecasts of MC with a factor of up to 9
times. The improvement in ME caused by data assimilation lasts for
a lead time of up to 24 h.

Fig. 3 shows that the MSE for PF1 and PF2 is better than that for
MC mainly for nowcasting. During nowcasting the improvement in
MSE can be up to 12 times.When forecasting with the particle filter,
MSE shows less improvement than ME. The maximum improve-
ment is 6 times, and the positive influence of data assimilation
disappears faster. The improvement in MSE lasts 3e9 h. The final
row in Fig. 3 shows the mean ranked squared error. The MSRE
indicates that the pattern of high and low values is more accurately
estimated by PF1 and PF2 than by MC throughout the entire run.
This is the case for both nowcasting with improvement of up to 1.5
times and with forecasting with an improvement of up to 1.4 times.
The positive influence of data assimilation persists throughout run.

5. Discussion

In this study we assessed the performance of the particle filter
relative to Monte Carlo simulation for modeling the spread of
a tracer. This paper clearly shows data assimilation works well in
improving the estimate of the distribution of the tracer. Conse-
quently, the particle filter is preferable to a Monte Carlo simulation
approach. In this assessment we discern two possible situations:
nowcasting and forecasting. During nowcasting, the particle filter
clearly outperforms Monte Carlo simulation. The increase in
performance is obvious from all differentmeasures used to quantify
the performance: the pattern in probability exceedance is more
clearly defined, the bias is lower, the mean squared error and the
mean squared ranked error are also lower. The second situation is
when using the particle filter tomake a forecast. During forecasting,
the particle filter also outperforms Monte Carlo simulation.
However, the performance gain is smaller, depending on the
measure used to quantify the performance.

How long the positive effect of data assimilation lasts for fore-
casting is determined by the speed at which the ensemble grows



Fig. 2. Measured vs modeled amounts of tracer (ng m�3) 23 h post release, both axes are log transformed. Boxplots represent the spread of the 300 model realization values for each
ETEX observation, the vertical line is 1:1 line. The box shows the 25th and the 75th quantile, the line is the median, dots show outliers.
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apart by the randomness introduced in wind speed and direction
and in lateral growth. In addition, it depends on the measure used
for assessing the quality of an ensemble run (MSE,ME,MSRE). The
positive effect on the bias lasts up to a lead time of 24 h. The bias, or
mean error, during forecasting is lower for the particle filter. The
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The exceedance probability plots in Fig. 1 indicate that forecasts of
the particle filter of 12 h do not show a much more clearly defined
pattern than the forecast of Monte Carlo simulation at the same
time. The results for the MSE in Fig. 3 show that the particle filter
outperforms Monte Carlo simulation up to a lead time of 9 h. The
difference between the mean squared error and mean squared
ranked error indicates that the particle filter is moderately
successful in improving the forecast when looking at the absolute
concentrations of tracer, but is highly successful in improving the
forecast when looking at the pattern of high and low values.

Note that we used all observations for data assimilation and for
calculating the quality of the particle filter runs. This leads to an
underestimation of the error made in the particle filter runs. An
alternative approach would be to split the ETEX-I dataset into
a training and validation set. However, splitting the dataset will
almost certainly lead to a bias between the two datasets which will
lead to an overestimation of the error (Brus et al., 2011). To support
this argument, we performed an additional particle filter runwhere
we randomly drew a 50% subset for data assimilation, the other 50%
where used for validation. The runwas, apart from the split sample,
equal to runPF2. Fig. 4a shows themean for both the assimilation set
and the validation set. The difference in mean shows the bias
between the two datasets. Fig. 4b shows the same measures for
quality as Fig. 3 for the split sample testrun. All measures show
a decreased performance of the split sample run in contrast to the
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normal run, up to the point where the particle filter runs perform
more poorly than the Monte Carlo run. This extreme decrease in
performance of the particle filter is not representative, but is caused
by the bias between the assimilation and the validation run (Fig. 4a).

In our viewanumberof improvements to ourmethodologywould
be worthwhile to investigate. First, the prior pdf’s for the key input
parameters are our expert judgment. Gathering stakeholders and
experts to make an expert judgment could improve the estimated
prior pdf’s. In addition, calibration of the model to other release
scenario’s could provide more information in regard to these priors.
Secondly, the description of the ETEX error variance is a best guess
from our side. Gathering more short range observations and
comparing those tomodel output could lead to a quantification of the
short variation, see Eq. (8). Thirdly, the meteorological data we used
was quite coarse, about 55 km � 55 km. Using more detailed wind
information onmorewind levels couldmake thematch between the
model and observations better (Davis and Dacre, 2009). Fourth,
auniformmixing layerheightwasassumedover the studyarea.Using
a spatially dynamic mixing layer height from a numerical weather
prediction model or from observations could improve the perfor-
mance of the model. Finally, it would be interesting to look at fuzzy
verification as an alternative approach for judging the quality of the
model realizations, see e.g. Ebert (2008) andAmodei andStein (2009).

In this study we used a basic particle filter with Sequential
Importance Resampling. We also tested Residual Resampling (Liu
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and Chen,1998), but we did not find a large difference in the results.
In addition, we are aware of the fact that in the area of particle
filtering, many types offilters and resampling schemes are available,
all with theirmerits. Examples include the regularized particle filter
(Musso et al., 2001), the Marginal Particle Filter (Klaas et al., 2005),
Stochastic Universal Sampling (Kitagawa, 1996) and the Auxiliary
Particle Filter (Pitt and Shephard, 1999). Many of these methods try
to increase the performance of the particle filter, whilst keeping the
number of particles the same or lower. This could alleviate the
biggest drawback of the particle filter, computational effort.

The performance of the particle filter compared to Monte Carlo
simulation was good for the amount of particles we used, 300.
There are several factors which could increase the number of
particles needed for good performance. First, more observations
would focus the prior pdf’s into a specific part of state space. The
number of particles needs to be increased to prevent that just a few
particles, that are in this specific part of state space, get the bulk of
the weight, i.e. particle collapse. A smaller variance of the obser-
vations error would have a similar effect. The observations become
more dominant in selecting a certain area of state space. Increasing
the number of parameters treated stochastically also creates a need
for more particles. More stochastic parameters means a larger state
space to cover, thus needing more particles.

At the start of the paper we referred to the context of this
research, ensemble dispersion modeling following nuclear acci-
dents. To take counter measures, forecasted areas where a certain
threshold is exceeded are required. In this context we believe that it
is vital to use an ensemble technique such as the particle filter
instead of one deterministic run of NPK-PUFF (Hiemstra et al.,
submitted for publication).

6. Conclusions

In this study we showed that the particle filter performs better
than a Monte Carlo simulation approach in nowcasting and fore-
casting the ETEX tracer dataset. Our results show that the
improvement of the particle filter compared to Monte Carlo
simulation is strongest for nowcasting. Nowcasting shows an
improvement in mean squared error between modeled values and
observations up to a factor of 25 times. When forecasting with the
particle filter, the improvement is somewhat less but still present.
The improvement of assimilating observations lasts up to a lead
time of 9 h for absolute values, looking at the mean squared error
between modeled values and observations. The mean error (bias)
shows an improvement with lead time of up to 24 h. Finally, the
mean squared ranked error shows that the pattern of high and low
values is improved by data assimilation with a lead time of more
than 36 h. Based on our study, we regard data assimilation with
a particle filter an effective method in modeling the spread of
radioactivity following an accidental release.
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