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Preface

This thesis is the result of four years of work performed at the Institute
for Theoretical Physics at Utrecht University under supervision of dr. Lars
Fritz, as well as on a long research visit to the Theory of Condensed Matter
group at Cambridge University under supervision of dr. Claudio Castelnovo.

It correspondingly consists of two independent parts: Chapter 1 gives
an introduction to, and outline of, the first part of this thesis on perturbed
Weyl semimetals. The results of our research on these systems are described
in Chapters 2 and 3. In Chapter 4 we introduce an extension of the spin
ice model and present the results of our calculations and simulations therein.
At the end of the thesis, the reader will find the bibliography, summaries in
English and Dutch and a C.V. of the author.

I wish the reader much joy and inspiration from reading this thesis.

Tycho Sikkenk
August 2019, Utrecht
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Distorted Weyl cones under
perturbation
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1 Introduction

This introductory chapter is based on unpublished work. Some
sections loosely follow derivations presented elsewhere, among
which most notably: Refs [1–3].

In the first decades of the 20th century, the field of physics found itself in
a state of great flux. As opposed to earlier statements, fundamental science
had turned out to be far from finished, and great advances were made in a
wide range of areas in rapid succesion. Quantum mechanics was invented to
describe the wavelike properties of matter at very small length scales. At the
other end of the scale, the nascent theory of relativity explained gravitation
as curvature of spacetime itself that is caused by very large massive bodies. It
long remained unclear how to reconcile these distinct theories at scales where
their domains of validity may be expected to overlap. A first breakthrough
was achieved by by P. A. M. Dirac in 1928 [4], proposing a linear differential
equation for the propagation of massive spin-1/2 fermions that combines the
relativistic equal footing of space and time with a positive definite quantum
mechanical wavefunction probability [5]. This Dirac equation reads

− (i γµ∂µ −m ) Ψ = 0, (1.1)

where ∂µ = (∂t,∇∇∇) and m is the mass of the fermion, which is symbolized
by four-spinor Ψ. We use natural units h̄ = c = 1 throughout, unless
otherwise indicated. The gamma matrices are defined through their Clifford
commutation algebra

{γµ, γν} = −2ηµν = −2 diag (−1,+1,+1,+1) , (1.2)

in terms of a mostly positive Minkowski metric. Remarkably, only one year
later in 1929, H. Weyl realized that the gamma matrices have a convenient
off-diagonal representation

γ0 =

(
0 σ0

σ0 0

)
, γγγ =

(
0 σσσ
−σσσ 0

)
, (1.3)
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by which the massless limit of Eq. (1.1) diagonalizes and so decomposes into
two independent sectors [6],

−i γµ∂µΨ = −i γ0

(
σ0∂0 − σσσ · ∇∇∇ 0

0 σ0∂0 + σσσ · ∇∇∇

)(
ψ(−)

ψ(+)

)
= 0, (1.4)

where σµ are the usual Pauli matrices and ψ(χ) are two-spinors that are
characterized by opposite chiralities χ = ±. Although Weyl particles are
theoretically permissible in the standard model, no fundamental particles
have so far been observed experimentally to obey the Weyl equations in
Eq. (1.4). In condensed matter however, they can be used to describe the
effective behavior of the chiral low energy excitiations close to the touch-
ing points in the band structure of so-called Weyl semimetals, where the
dispersion is approximately linear.

In section 1.1 of this introductory chapter we take a closer look at these
effective Weyl modes in condensed matter, providing a model setting and
examining some of the characteristics that have recently put them under
intense scrutiny. In section 1.2 we lay out the physics behind the pertur-
bations to which we aim to submit the Weyl fermion model. In section 1.3
we set up the theory of the renormalization group by which the general be-
havior of the Weyl model may be determined. In section 1.4 we relate our
model setting to the theory of quantum electrodynamics, with all the Ward
identities that entails.

In chapter 2 we subsequently submit the Weyl fermion model with a tilted
dispersion to perturbation by placing it within a disordered background. We
then derive the corresponding renormalization group flow using a momen-
tum shell cutoff scheme. In chapter 3 we expand on this setup by including
the possibility of anisotropies in the tilted dispersion and by also allowing
for Coulomb interactions between the Weyl excitations on top of the dis-
order. Regularizing by means of a double epsilon expansion leads to a set
of flow equations that is fully consistent with the symmetries of quantum
electrodynamics.

3



1 Introduction

1.1 Free Weyl fermions in condensed matter

We start our discussion from the momentum space representation of the
action of a free massless Dirac fermion,

SΨ[Ψ] =

∫
ω,q

Ψ†ω,qG
−1
0;Ψ(iω,q)Ψω,q

=
∑
χ=±

∫
ω,q

ψ
(χ),†
ω,q G−1

0,χ(iω,q)ψ
(χ)
ω,q =

∑
χ=±

Sψ[ψ(χ)]. (1.5)

Variation of this action with respect to conjugate field Ψ† will yield a version
of the Fourier transformed form of the massless Dirac equation Eq. (1.4).
The corresponding inverse Green function is given by

G−1
0;Ψ(iω,q) =

(
G−1

0,−(iω,q) 0

0 G−1
0,+(iω,q),

)
(1.6)

where the Weyl decompostion is explicitly observed. The constituent inverse
Green functions to the Weyl equations are given by

G−1
0,χ(iω,q) = iωσ0 −H0,χ = (iω − vtq‖)σ0 − vχ(q‖d + ηq⊥) · σσσ, (1.7)

where χ = ± encodes the chirality of the Weyl fermion. The energy eigen-
spectrum of these excitations fermion may be obtained by diagonalizing the
Hamiltonian H0,χ. As it is expressed completely in terms of Pauli matrices,
such is done straightforwardly by squaring the operator while taking account
of the constant shift. Alternatively, the energy levels also correspond directly
to the structure of the poles of the Green function Eq. (1.7). They are given
by

E0,s(q) = v
(
t q‖ + s

√
q2
‖ + η2q2

⊥

)
. (1.8)

where s = ±1 distinguishes the conduction and valence bands. This conical
dispersion is depicted in Fig. 1.1 for some indicative parameter values. It
is important to realize that these Weyl fermions are effective quasiparticles
describing the low-energy excitations close to touching points in the band
structure of selected materials called semimetals. As such they are not con-
strained by the requirement to preserve Lorentz symmetry, as a putative
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1.1 Free Weyl fermions in condensed matter

fundamental Weyl particle would. Although they are massless, they prop-
agate at the Fermi velocity v � c, several orders below the speed of light.
Furthermore, there can be distortions in the dispersion. The Fermi velocity
need not be isotropic in all directions, as parametrized by the variable η in
Eq. (1.8). The parameter t controls a permissible tilting of the Weyl cone,
changing the circular shape of the Fermi surface away from the nodal point
in upright position. In type-II Weyl semimetals with tilts t ≥ 1 electron
and hole pockets coexist in the Fermi surface, giving rise to some interesting
and peculiar phenomena [7]. Nevertheless we here restrict to type-I Weyl
fermions characterized by tilts 0 ≤ t < 1, whose Fermi surfaces are ellipsoidal
cuts of the dispersion cone.

(a) t = 0,
η = 0.

(b) t = 0.5,
η = 0.

(c) t = 0,
η = 1.5.

(d) t = 0.5,
η = 1.5.

Figure 1.1: Conical dispersion in Eq. (1.8) of a single Weyl mode for indicated pa-
rameter values.

Although it is not detectable in the conical dispersion Eq. (1.8) of a con-
densed matter Weyl fermion, their chiral nature is reflected in their peculiar
magnetic response. A vector potential A and the magnetic field B that is
its curl, which without loss of generality can be chosen as

A = −yB
2
x̂+

xB

2
ŷ, B =∇∇∇×A = Bẑ, (1.9)

may be included in the Weyl cone model by minimal substitution of the

5



1 Introduction

momenta q in the free Hamiltonian H0,χ by the gauge covariant momenta

Π = q + gA, [Πy,Πx] =
gB

2
([x, qx] + [y, qy]) = igB (1.10)

where g is the charge of the coupling between the Weyl fermion and the
magnetic field. Its components have commutation relations proportional
to the canonical comutator [x, q] = i that is the cornerstone of quantum
mechanics. Continuing the analogy, this setup permits ladder operators of
the same form as the prototypical quantum harmonic oscillator [8],

a =
Πx + iΠy√

2gB
, a† =

Πx − iΠy√
2gB

, [a, a†] = 1. (1.11)

Restricting for simplicity to the isotropic untilted case this results in the
magnetic Hamiltonian

H̊LL
χ = vχσσσ ·Π = vχσσσ · (q + gA) = vχ

(
qz Πx − iΠy

Πx + iΠy −qz

)
= vχ

(
qz

√
2gB a†√

2gB a −qz

)
. (1.12)

The eigenvalue equation for this magnetic Hamiltonian can be solved by the

Ansatz eigenstates ψ
(χ)
n = (|n〉, αn|n− 1〉)T where the |n〉 for n = 0, 1, 2, . . .

are ladder operator eigenfunctions and the αn are unknowns to be deter-
mined consistently. The corresponding energy spectrum consists of Landau
levels (LL) given by

E̊LL
n=0(qz, B) = vχ qz, E̊LL

n≥1,s(qz, B) = s v
√
q2
z + 2gBn (1.13)

where s = ±1 distinguishes the conduction and valence bands for Landau
levels indexed by n ≥ 1. The magnetic dispersion is depicted in Fig. 1.2
for both χ = ±. As a consequence of the chirality of the Weyl fermion the
lowest Landau level n = 0 is directional. An electric field E in the same
direction as B ‖ ẑ would then have the effect of respectively removing or
adding charge carriers from a negative respectively positive chirality fermion.
The density of modes within an individual cone is not preserved, seemingly
leading to the conclusion that the Weyl model violates the fundamental law
of conservation of electric charge. Because of this paradoxical behavior, this
phenomenon has become known as the chiral anomaly [9].
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1.1 Free Weyl fermions in condensed matter

(a) (b)

Figure 1.2: Landau level spectrum for a chiral Weyl fermion χ = ± under influence
of a magnetic field.

The anomalous response of a Weyl fermion to magnetic fields is intrinsi-
cally linked to its chirality, which ultimately stems from the singular topol-
ogy of the wavefunction at the nodal Weyl point. An eigenstate moving
adiabatically through the parameter space {R} can pick up a non-vanishing
Berry phase if the followed path is a closed contour C. This phase for the
eigenfunction |un(R)〉 is defined as

γn =

∮
C

dR · AAAn(R) =

∫
S

dS ·Ωn(R) =

∫
S

3∑
i,j,l=1

dSl εlijΩn;ij(R), (1.14)

where we have used Stokes theorem to rewrite the contour integral of the
Berry connectionAAAn as integral of its curl, the Berry curvature Ωn, over the
enclosed surface S. These quantities are given by

AAAn(R) = i
〈
un(R)

∣∣∣∇∇∇R

∣∣∣un(R)
〉
, Ωn(R) =∇∇∇R ×AAAn(R). (1.15)

The curvature is like the parameter space field arising from the vector po-
tential that is the connection, and the Berry phase is the flux of this field
through the surface. The more general Berry curvature two-form is the pure
antisymmetrization of the pseudovector [10], which allows for a significant
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1 Introduction

rewriting in terms of derivatives of the model’s Hamiltonian,

Ωn;ij(R) =
1

2

3∑
l=1

εijlΩn;l(R) = ∂RiAn,j(R)− (i↔ j)

= i
∑
n′ 6=n

〈
un(R)

∣∣∣∂RiH∣∣∣un′(R)
〉〈
un′(R)

∣∣∣∂RjH∣∣∣un(R)
〉
− c.c.

(En − En′)2 ,

(1.16)

where we have used that we can rewrite
〈
un(R)

∣∣∣∂RiH∣∣∣un′(R)
〉

= (En −

En′)
〈
∂Riun(R)

∣∣∣un′(R)
〉

. This shows that the curvature diverges at degen-

eracy points in R-parameter space where the energy bands come to overlap.
Consequently lines of the curvature field originate from or terminate at such
points [11].

For a class of chiral Hamiltonians Hχ = h0σ0 + χh · σσσ with χ = ±,
which also includes the tilted anisotropic Weyl Hamiltonian H0,χ defined by
Eq. (1.7), the Berry curvature is easily computed explicitly. They have only
two energy eigenstates |uχ,s〉 = |u−χ,−s〉 and |uχ,−s〉 = |u−χ,s〉 labelled by
s = ±, with energy levels split by |Es−E−s| = 2|h| = 2h. It is then straight-
forward to find matrix elements 〈uχ,s|∂hiHχ|uχ,−s〉 = χ〈uχ,s|σi|uχ,−s〉, so
that Eq. (1.16) for the Berry curvature tensor simplifies to

Ωχ,s;ij(h) =
i

4h2

(
〈uχ,s|σi|uχ,−s〉〈uχ,−s|σj |uχ,s〉 − c.c.

)
= − s

2h2

∣∣∣Im(〈u+,+|σi|u+,−〉〈u+,−|σj |u+,+〉
)∣∣∣ . (1.17)

Inserting the explicit form of the eigenstates then yields the Berry curvature
pseudovector components

Ωχ,s;l(h) =

3∑
i,j=1

εlijΩχ,s;ij(h) = − sχ

2h3
hl. (1.18)

At the Fermi level only the lower band s = − contributes and the curvature
takes the shape of a field emanating from a monopole with charge χ = ±
situated at the origin h = 0. Depending on the chirality, this touching point
in the dispersion is either a source or sink of Berry flux [11].

8



1.1 Free Weyl fermions in condensed matter

Since the Brillouin zone (BZ) in which the band structure of a crystal is
defined is a closed parameter space, the total charge of the curvature field
contained in it trivially vanishes. There is no boundary to escape to, so all
the field lines must be contained within the space itself [5]. As a consquence,
in a consistent model every monopole of the curvature field must be accom-
panied by a partner antimonopole with the converse chiral charge. The only
way to remove a Weyl nodal point from the spectrum is to let it merge with
its chiral partner into a Dirac point without chiral charge, after which a gap
can open. Since Weyl cones in material band structures are well-separated
in momentum space [12–15], such merging requires major perturbations
reconfiguring the model. The relative isolation of a Weyl node in the BZ
guarantees that the topological protection of a chiral Weyl node cannot be
broken in a realistic scenario. For stability purposes, it is then sufficient to
consider only a single Weyl node. For probing transport properties however
both nodes need to be incorporated. The apparent contradiction in the chiral
anomaly is an artefact of an incomplete model. When both Weyl fermions
in a chiral pair are included, imposing parallel magnetic and electric fields
simply pumps electric charge between the nodes [5].

While the Berry phase is dependent on the contour, or the surface en-
closed therein, for which it is computed, it is famously associated to various
phenomena that are independent of the followed path. The Chern number of
a surface S is proportional to the Berry phase produced by the penetrating
flux,

νn =
1

2π
γn =

1

2π

∫
S

dS ·Ωn(q). (1.19)

By construction, the Chern number calculates the imbalance of chiral charges
in the Fermi sea on either side of the momentum surface and is thus a quan-
tized integer. In the double Weyl fermion model this results in the picture
of Fig. 1.3 that slices the BZ by surfaces perpendicular to the momentum
vector separating the chiral partner monopoles. Such slices have a non-zero
Chern number ν− = 1 only when they segregate the charges of a pair [16].
As a result of the bulk-boundary correspondence this implies that in this re-
gion there must be topologically non-trivial border states dubbed Fermi arcs
connecting the projections of the nodes on the periodicity edges of the BZ
[12–15] that can lead to interesting non-local transport properties [17, 18].

9



1 Introduction

−

Figure 1.3: Three-dimensional Brillouin zone at the Fermi level containing two Weyl
nodes of opposite chirality χ = + (red) and χ = − (green). Bulk surfaces
separating the chiral partners have a non-zero Chern number ν− = 1,
and correspondingly there will be non-trivial Fermi arcs (blue dashed
lines) connecting the projections of the nodes on the BZ periodicity
edges [16].

So far, our treatment of effective Weyl fermions in the setting of condensed
matter band structures has been mostly theoretical. It is then instructive to
see how the above equations relate to the world of experiment by considering
how they impact the density of states (DoS), a quantity that can be probed
by for example Scanning Tunneling Microscopy (STM) measurements [19].
The DoS, a measure of the number of states available at some energy ω, is
obtained from the Green function of Eq. (1.7) as

ρ0,χ(ω) = − 1

π

∫
q

Im TrG0,χ(ω+,q)

= − 2

π
Im

∫
q

ω+ − vtq‖
(ω+ − vtq‖)2 − v2(q2

‖ + η2q2
⊥)
,

where ω+ = ω + i0+ in the sense that the limit to zero from above should
be taken on the imaginary part. Completing the square in the denominator,

10



1.1 Free Weyl fermions in condensed matter

shifting the parallel integration variable and keeping only even terms yields

ρ0,χ(ω) = − 2

π
ω

∫
q̃

Im
[
(ω+)2 − v2(1− t2)(η2q̃2

⊥ + (1− t2)q̃2
‖

]−1

=
ω

η2v3(1− t2)2

∫
q′

1

πq′

{
Im
[(
ω+ + q′

)−1 −
(
ω+ − q′

)−1
]}

,

where we have rescaled the parallel and perpendicular integration variables
to restore the isotropy of the integrand. Using now the usual theorem Im(x±
i0+)−1 = ∓πδ(x), we find

ρ0,χ(ω) = − ω

η2v3(1− t2)2

∫
q′

1

q′
{
δ(ω + q′)− δ(ω − q′)

}
=

ω

η2v3(1− t2)2

∫ +ω

−ω

dq′‖

2π

∫ ∞
0

dq′⊥
2π

δ(q′⊥ − q′⊥,(0)) (θ(ω)− θ(−ω))

=
ω2

2π2η2v3(1− t2)2
, (1.20)

where we have rewritten the delta function as δ(ω ∓ q) = δ(q⊥ − q⊥,(0))
θ(ω) q/q⊥ for the single real pole q⊥,(0). Note that in the limit t→ 1 the tilted
DoS becomes singular, indicating the onset of a type-I to type-II transition.
The form of the Density of States set out in Eq. (1.20) is essential because
it stipulates experimentally observable features that define a material as a
type-I Weyl semimetal. As a consequence of the presence of the characteristic
Weyl nodal point the DoS will vanish at the Fermi level ω = 0. Similarly,
the quadratic scaling with the energy away from the band touching point is
a direct consequence of the linearity of the dispersion Eq. (1.8). As we will
see in section 1.2, these properties make the DoS an appropriate choice of
order parameter to gauge if a phase transition out of the semimetallic regime
has occured.

11



1 Introduction

1.2 Perturbations to the free Weyl fermion model

1.2.1 Coulomb interactions

Coulomb’s law states that the electric field emanating from a stationary
point particle with charge Q located at the origin is given by

E(x) =
Q

4π x3
x. (1.21)

The total field produced by a collection of point charges Qi at positions xi
spread through space is a superpostion that can be rewritten as an integral
over the appropriate charge density,

E(x) =
1

4π

∑
i

Qi
(x− xi)

|x− xi|3
=

1

4π

∫
x′
%(x′)

(x− x′)

|x− x′|3
. (1.22)

Taking the divergence of this vector equation yields the differential form of
Gauss’ law,

∇∇∇ ·E(x) =
1

4π

∫
x′
%(x′)∇∇∇ · (x− x′)

|x− x′|3
=

∫
x′
%(x′) δ(|x− x′|) = %(x). (1.23)

Absent a time-dependent magnetic field producing a flux that integrates
to a electric field contribution, the curl of the electric field will vanish by
Faraday’s law of induction [20]. As a result the conservative field can be
written as the gradient of some scalar field Φ(x),

∇∇∇×E = ∂tB = 0, E(x) = −Qtot∇∇∇Φ(x), (1.24)

where we have separated the total charge Qtot =
∫
x ρ(x) from the potential

for normalization purposes. Combining Gauss’ law Eq. (1.23) and Faraday’s
law Eq. (1.24) gives the Poisson equation for electrostatics,

%(x) =∇∇∇ ·E(x) = −Qtot∇2Φ(x). (1.25)

It can straightforwardly be solved by means of Fourier transformation to
find the normalized potential produced by the charge density distribution,

Φ(x) =
1

4πQtot

∫
x′

%(x′)

|x− x′|
. (1.26)
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1.2 Perturbations to the free Weyl fermion model

In the case of a single point particle the charge density is peaked in a delta
function distribution, causing the potential to assume the form

%Cou(x) = Qδ(x), ΦCou(x) =
1

4π x
. (1.27)

Note that the force that is experienced by a test particle with charge Q′

when it is placed at position x inside the Coulomb potential is

FCou = Q′E = −QQ′∇∇∇ΦCou =
QQ′

4πx2
x̂, (1.28)

so that like charges repel whereas opposite charges attract. The momentum
space representation of the Coulomb potential is given by

ΦCou(q) =
1

4π

∫
x

e−iq·x

x
=

1

2
lim
r→∞

∫ r

0
dx

∫ +1

−1
duxe−iqx u

=
1

q2
lim
r→∞

∫ r

0
dx sinx =

1

q2
lim
r→∞

(1− cos r)→ 1

q2
. (1.29)

The improper integral of this Fourier transform formally fails to converge
because it oscillates infinitely wildly between 0 and +2/q2 as r →∞. There
are however more advanced definitions of the limit procedure that result in
a convergent value. In the Cesàro method, an infinite sum is defined as the
n → ∞ limit of the sequence of means of the first n partial sums of the
series [21]. Up to proportionality, the integral in derivation Eq. (1.29) is a
continuous version of Grandi’s series

∞∑
n=0

(−1)n =

{
= (+1− 1) + (+1− 1) + . . . = 0
= +1 + (−1 + 1) + (−1 + 1) + . . . = +1

→ 1

2
, (1.30)

with arithmic Cesàro mean 1/2. This regularizes the Fourier transform,
showing that the Coulomb potential in three dimensions falls off quadrati-
cally with momentum space distance. Scattering between small momentum
separated states will dominate.

The situation is different in the closely related Yukawa potential, in which
a mass term is included in the momentum space denominator. Fourier trans-

13



1 Introduction

formation yields

ΦYukawa(x) =

∫
q

ΦYukawa(q) eiq·x =

∫
q

1

q2 +m2
ϕ

eiq·x

=
1

4π2

∫ ∞
0

dq
q2

q2 +m2
ϕ

∫ +1

−1
du eiqx u

=
1

2π2

∫ ∞
0

dq
q2

q2 +m2
ϕ

sin(qx)

q x
=

1

4π2ix

∫ ∞
−∞

dq
q eiqx

q2 +m2
ϕ

=
1

4π

e−mϕx

x
, (1.31)

where we employed a radial parametrization of the integration variable and
we picked up the pole q = +imϕ in contour integration [1]. The massive
interactions based on the Yukawa potential approximately satisfy Coulomb’s
law Eq. (1.21) at small distances. However, they are exponentially surpressed
in their real space range. In momentum space the mass term causes conver-
gence of the potential as the distance approaches nill. Scattering processes
between states spread out over an extended momentum span are relevant.

Note that the Coulomb potential Eq. (1.27) can be obtained from the
Yukawa potential Eq. (1.31) by taking the massless limit, and so can be
seen as an infinite range Yukawa potential. A direct comparison between
the behavior of these two potentials can be found in Fig. 1.4.

(a) (b)

Figure 1.4: Comparison of the behavior of the massless Coulomb potential and
Yukawa potential with mass mϕ in both real space and momentum
space.

In quantum field theory, electromagnetic interactions between two equally
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1.2 Perturbations to the free Weyl fermion model

charged Dirac particles can be implemented in the action as the quartic term

g2

2

∫
∀(ωi,qi)

Ψ†ω1,q1
Ψω1−ω0,q1−q0 D0(ω0,q0) Ψ†ω2,q2

Ψω2+ω0,q2+q0

=
g2

2

∑
χ,χ′=±

∫
∀(ωi,qi,)

ψ
(χ),†
ω1,q1ψ

(χ)
ω1−ω0,q1−q0

D0(ω0,q0)ψ
(χ′),†
ω2,q2ψ

(χ′)
ω2+ω0,q2+q0

.

(1.32)

Under the Weyl decomposition it splits up into interactions between exci-
tations within the same Weyl cone for χ = χ′ plus interactions connecting
different cones for χ 6= χ′. Taking account of the two-fold external leg ex-
change symmetry and two-fold Weyl degeneracy this action yields the zeroth
order transition matrix element [1]

iT (ω,q;ω′,q′) ≈ 2ig2D0(ω − ω′,q− q′). (1.33)

We can then compare this result to the analogous quantum mechanical cal-
culation. The Born approximation assumes that the coupling ξ of a potential
Φ is weak compared to the typical free model energy level, so that the full
wavefunction |f〉 is well approximated by its free cousin |f0〉. For a trans-
lationally invariant potential, the elements of the transition matrix are then
given by [22]

〈f0
q′ |iT |f0

q〉 = 〈f0
q′ |i ξΦ|fq〉 ≈ i

∫
x,x′
〈f0

q′ |f0
x′〉〈f0

x′ |ςΦ|f0
x〉〈f0

x|f0
q〉

= iξ

∫
x

Φ(x)ei(q−q
′)·x = i ξΦ(|q− q′|). (1.34)

We observe that Eq. (1.32) reproduces the quantum mechanical expression
for the scattering of Weyl particles off a electromagnetic potential if we
identify the coupling g with the electric charge Q = Q′ and the function
D0(ω,q) in the transition matrix with the potential Φ.

In perturbation theory, corrections enter through the Dyson equation

D(ω,q) =
1

D−1
0 (ω,q)−Π(ω,q)

. (1.35)
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1 Introduction

A constant term Π(0,0) in the polarization enters the dressed internal line as
an effective mass term mϕ, meaning the potential it corresponds to becomes
of the Yukawa type. To lowest order the polarization is given by a simple
fermion loop, whose constant part is given by

Π(0,0) = −(ig)2

∫
ω,q

TrG0,χ(iω,q)2 = (ig)2

∫
ω,q

Tr ∂iωG0,χ(iω,q)

= (ig)2

∫
ω,q

∫
ω̃
∂iω

ρ0(ω̃,q)

−iω + ω̃
= (ig)2

∫
ω,q

∫
ω̃

ρ0(ω̃,q)

(−iω + ω̃)2

= (ig)2

∫
q

∫
ω̃
ρ0(ω̃,q)δ(ω̃) = −g2ρ0(0), (1.36)

where we have taken advantage of the identity

∂iω′G0,χ(iω − iω′,q− k) = −G0,χ(iω − iω′,q− k)2 (1.37)

regarding the frequency derivative of the Green function. The mass-inducing
part of the polarization is related to the density of states at Fermi level. In
this way, a finite DoS exponentially screens the range of the electromagnetic
interactions by inducing an effective mass in the Yukawa potential Eq. (1.31).
In a system of Weyl fermions the density of states vanishes at the nodal point
as per Eq. (1.20), so that the Coulomb interactions remain unscreened and
fall off rapidly as ∼ 1/q2 in momentum space. We thus work with

D0(ω,q) = ΦCou(q) =
1

q2
. (1.38)

Although in real materials various Weyl cones can be present in the band
structure, single cones sit relatively isolated in momentum space [23, 24].
States within the same cone can form arbitrarily close momentum pairs, and
processes connecting them form a significant perturbation to the free model.
On the other hand the unscreened Coulomb interaction between states in
different cones is heavily surpressed by their momentum separation and will
be less important.

While it is entirely possible to proceed with the interaction action term
Eq. (1.32), at higher order in perturbation theory it results in a large set
of diagrams to be evaluated. Instead, we perform a Hubbard-Stratonovich
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1.2 Perturbations to the free Weyl fermion model

transformation that brings the action into a more amenable form [2]. Since
it integrates to a constant in the partition function, we are free to add the
Gaussian action term

1

2

∫
ω,q

ϕ̃ω,qD0(ω,q)−1ϕ̃−q,−ω, (1.39)

ϕ̃ω,q = ϕω,q + ig

∫
ω′,q′

Ψ†ω′,q′Ψω,q′−qD0(ω,q).

This has the effect of decomposing the quartic action term of Eq. (1.32) into
a three-point interaction

SCou[Ψ, ϕ] = ig

∫
ω,ω′,q,q′

ϕω−ω′,q−q′ Ψ
†
ω,qΨω′,q′

= ig
∑
χ=±

∫
ω,ω′,q,q′

ϕω−ω′,q−q′ ψ
(χ),†
ω,q ψ

(χ)
ω′,q′ =

∑
χ=±

SCou[ψ(χ), ϕ]

(1.40)

plus a term describing the propagation of the intermediate force-carrying
bosonic field ϕ, a massless scalar photon,

Sϕ[ϕ] =
1

2

∫
ω,q

ϕω,qD
−1
0 (ω,q)ϕ−ω,−q, D0(ω,q) = q−2. (1.41)

Since Eq. (1.40) is a Dirac fermion bilinear it decomposes neatly into left-
handed and righthanded Weyl sectors. Breaking up the Coulomb interaction
into its fundamental building blocks prunes the number of perturbative cor-
rection diagrams to be calculated, which is particularly convenient at higher
order or in combination with other perturbations.

1.2.2 Disorder

A Dirac particle moving through a static disordered background has the
Hamiltonian H0,Ψ − ΓV (x). By Legendre transform this leads to addition
of the element

Γ

∫
x,τ

Ψ†x,τ V (x) Ψx,τ (1.42)
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1 Introduction

to the free action. The normalized real space potential V (x) can take the
shape of an arbitrary and irregular disorder landscape. Saliently it need
not be translationally invariant, which rhymes well with the heuristic mi-
croscopic picture in which it arises from randomly distributed impurities in
a lattice model. We are, however, interested more in the overall proper-
ties of disordered models than in the coincidental pecularities of a specific
realization. Thinking of V as a function whose statistics are contained in
the probability measure P [V ], we can average over the disorder potential by
performing the functional integral

〈. . . 〉dis =

∫
DV P [V ] (. . . ) (1.43)

Under the condition that various characteristic realizations of the potential
are relatively benign, this smooths out the disorder and restores translational
invariance. We assume here the disorder potential to be Gaussian distributed
over space,

P [V ] = exp

{
−1

2

∫
x
VxVx

}
. (1.44)

The choice of the correlation function that is associated with the disorder
field is often not critical to the physics of the problem [3, 25], and numerical
computations based on different correlation funtions show the same phe-
nomenology as our approach [26, 27]. We therefore consider calculationally
convenient white-noise disorder whose Gaussian variance is the short-ranged
delta function correlation,

〈Vx Vx′〉dis = δ(|x− x′|). (1.45)

In principle, the purpose of any physical theory is to make predictions
of the outcome of experiments. Theoretically, such observables O are ob-
tained by functional differentiation of the free energy (− lnZ) with respect
to an added source J that isolates correlation functions after completing
the square. In the context of a disordered background this procedure is ob-
fuscated by the desire to average over the potential realizations. It is not
obvious how we could perform the averaging functional integral over a log
of the partition function, while if the source differentiation is taken first an
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1.2 Perturbations to the free Weyl fermion model

obstructing denominator results [3]. A way out of this quandary is offered
by the replica trick, which rewrites the log as the sole surviving term of
the vanishing limit of the Taylor expansion of an exponential. For the ex-
pectation value of an observable over the disorder ensemble this works out
to

〈O〉dis = − δ

δJ
〈lnZV=0〉dis

∣∣∣∣
J=0

= − δ

δJ
lim
R→0

1

R

∞∑
r=1

〈
(R lnZV=0)

r

r!

〉
dis

∣∣∣∣∣
J=0

= − δ

δJ
lim
R→0

1

R

〈
eR lnZV=0 − 1

〉
dis

∣∣∣∣
J=0

= − δ

δJ
lim
R→0

1

R

〈
ZRV=0

〉
dis

∣∣∣∣
J=0

. (1.46)

In other words, the object of interest in this setting is not the base action of
the clean partition function

ZV=0 =

∫ ∏
Xi 6=V

DXi exp{−S[X,V = 0]} (1.47)

itself, but rather the combination of R of its copies and the disorder func-
tional. Because the exponent of the Gaussian measure Eq. (1.44) enters as
an free disorder action term

SV [V ] =
1

2

∫
q
Vq V−q, (1.48)

this defines a disorder-averaged partition function of the form

Z̄ = lim
R→0

1

R

〈
ZRV=0

〉
dis

= lim
R→0

1

R

∫ ∏
Xi 6=V

R∏
a=1

DX(a)
i exp

{
−

R∑
a=1

S[X(a), V = 0]

}

×
∫
DV exp

{
−

(
SV [V ] +

R∑
a=1

Sdis[ψ
(a), V ]

)}
. (1.49)

The term Eq. (1.42), formerly included in the free action, is reinterpreted as
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a three-point interaction between disorder and the fermion replicas

Sdis[Ψ
(a), V ] = Γ

∫
ω,q,q′

Vq−q′Ψ
(a),†
ω,q Ψ

(a)
ω,q′

= Γ
∑
χ=±

∫
ω,q,q′

Vq−q′ψ
(χ,a),†
ω,q ψ

(χ,a)
ω,q′ =

∑
χ=±

Sdis[ψ
(χ,a), V ].

(1.50)

Note that the field V itself does not obtain a replica index, essentially
because 〈ZRV=0〉dis 6= 〈ZV=0〉Rdis. Off-diagonal processes connecting different
replicas are possible in this framework. This is also seen explicitly after
doing the disorder averaging Gaussian integral, or implementing a field shift

Vq = Ṽq − Γ

R∑
a=1

∫
ω,q′

Ψ
(a),†
ω,q′+qΨ

(a)
ω,q′ (1.51)

in what amounts to a reverse Hubbard-Stratonovich transformation. This
impacts the disorder part of the action as

SV [V ] +

R∑
a=1

Sdis[Ψ
(a), V ]

= SV [Ṽ ]− Γ2

2

R∑
a,b=1

∫
ω1,ω2

∫
q,q1,q2

Ψ
(a),†
ω1,q1+qΨ

(a)
ω1,q1 Ψ

(b),†
ω2,q2−qΨ

(b)
ω2,q2

= SV [Ṽ ]− Γ2

2

∑
χ,χ′=±

R∑
a,b=1

∫
ω1,ω2

∫
q,q1,q2

ψ
(χ,a),†
ω1,q1+qψ

(χ,a)
ω1,q1 ψ

(χ′,b),†
ω2,q2−qψ

(χ′,b)
ω2,q2 ,

(1.52)

where Ṽ now only appears in the partition function as a Gaussian term
and is freely integrated out. This leaves an effective quartic interaction in
which the fermions can well belong to different replicas [3]. As a result all
diagrams that include a fermion loop connected solely by disorder lines have
a free internal replica index that is traced over, giving a factor of R that
causes them to vanish in the replica limit. Although it is more standard in
the literature to work with the quartic fermionic interaction Eq. (1.52), we
instead choose to leave the disorder field unintegrated and proceed with the
three-points interaction Eq. (1.50) plus disorder propagator term Eq. (1.48)
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1.2 Perturbations to the free Weyl fermion model

The effective quartic interaction term in Eq. (1.52) describes both scat-
tering within the same Weyl cone for χ = χ′ and processes connecting chiral
partner modes for χ 6= χ′. This includes backscattering effects between the
nodes, a fundamental prerequisite for Anderson localization and the implied
disorder-induced phase transition into an insulating state [28]. At the Fermi
level, however, there are no available states to backscatter into by virtue of
the conical dispersion, as testified by the vanishing DoS Eq. (1.20), so that
localization cannot occur in the free model.

Nevertheless, the semimetallic state is not entirely impervious to disorder.
In the non-crossing approximation, all diagrams contributing to the self-
energy can be obtained by inserting the full Green function under a single
disorder line. This leads to the self-consistent Born Approximation (SCBA)
of the isotropic self-energy,

Σ̊SCBA = Γ2

∫ ′
q

[
G̊−1

0,χ(0,q)− Σ̊SCBA
]−1

= Γ2

∫ ′
q

[ia σ0 − χ(v q− ibd) · σσσ]−1 = −Γ2

∫ ′
q′

iaσ0

a2 + v2q′2
, (1.53)

where we have used an ansatz form Σ̊SCBA = −ia σ0−ib χd ·σ. Notationally,
the prime on the integral indicates the resulting divergence is handled by
implementing a cutoff. This consistency equation always has the trivial
solution a = b = 0, but also admits a non-trivial solution a > 0, b = 0 in
case the disorder strength Γ exceeds some critical value Γc. As a result, the
perturbative density of states at Fermi level becomes

ρ̊SCBA
χ (0) = − 1

π
Im Tr

∫ ′
q

[
G̊−1

0,χ(0,q)− Σ̊SCBA
]−1

= − 1

πΓ2
Im Tr Σ̊SCBA

=
2

πΓ2
a

{
= 0 if 0 < Γ < Γc
> 0 if Γ > Γc.

(1.54)

Beyond the critical value Γc the disorder induces a phase transition from the
free semimetallic (SM) phase with a vanishing DoS into a diffusive metal-
lic (DM) phase with a finite DoS [25, 29, 30], see Fig. 1.5. It should be
mentioned that this view is currently challenged by the possibility that
rare regions in the potential defy the averaging procedure Eq. (1.43) and
lead to an exponentially small but finite DoS even in the SM region of the
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phase diagram [31]. Irrespective, at intermediate energy scales the physics
should still be controlled by the critical point and associated exponents of
the SM-DM phase transition. Once a finite DoS has opened at intermediate
disorder the system becomes susceptible to ordinary localization effects by
means of backscattering processes between different cones and will eventu-
ally transition into an Anderson insulating phase. Note that the required
finite DoS and prequisite backscattering between multiple cones both pre-
clude the metal-insulator transition to be studied in the framework of the
free Weyl model of Eq. (1.7).

Figure 1.5: One-dimensional phase diagram of the disordered Weyl semimetal.

Naturally, the introduction of distortions in the dispersion will have sig-
nificant rammifications for the isotropic picture sketched above. We confine
ourselves to Type-I Weyl cones, whose subcritical tilts preserve the point-
like Fermi surface. As follows from the free DoS in Eq. (1.20) tilts and
anisotropies change the number of states available away from the nodal
point, making the distorted system more or less susceptible to the effects
of disorder level broadening. Thus the critical point of the phase transition
between semimetal and diffusive metal, as characterized by the development
of a finite density of states, might be expected to shift under such band
structure distortions.

On a mathematical level, tilts lead to some interesting calculational com-
plications when combined with perturbative expansion of disorder. Strictly
speaking a tilt is a vectorial quantity, and besides its magnitude 0 ≤ t < 1
also implies a unit direction d will appear in the model that allows for new
combinations with the yet existing vectors such as d · qσ0 or d · σσσ. Now,
it is a commonly accepted tennet in modern physics that the Lagrangian
of a theory should contain all terms permissible by the imposed symme-
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1.2 Perturbations to the free Weyl fermion model

tries. Indeed, at first order in perturbation the self-energy contains a term
∼ t iω d ·σσσ not originally present in the original Green function in Eq. (1.7),
a sign the model is incomplete. Similar issues emerge in the first order vertex
correction. Terms capable of absorbing such corrections should be added to
the free model to correctly take into acount all contributions. With such
additions all possible combinations of vectors, Pauli matrices σµ and linear
frequency or momentum parameters are represented, completing the model
of linearly dispersing tilted Weyl fermions in three dimensions.

We take two subtly different approaches to introducing the requisite terms
into the model. In chapter 2 we manually add a new parameter at every
occurence of a perturbatively newly generated term. In contrast, in chapter
3 we employ a field transformation

ψ
(χ)
ω,q = λ̂1/2ψ

′(χ)
ω,q , λ̂ = σ0 − λχd · σσσ. (1.55)

to introduce a single parameter λ into the model that will prove sufficient
to manage all perturbatively generated terms by itself. This is possible
only on the realization that the appearance of these terms is associated to
perturbative changes to the quasiparticle weight of the fermionic excitations,
which will arise identically everywhere their fields are included.

Under transformation Eq. (1.55) the bare Green becomes

G′−1
0,χ (iω,q) = λ̂1/2G−1

0,χ(iω,q)λ̂1/2

= (iωλ̂− v′t′q‖)σ0 − v′χ(q‖d + η′q⊥) · σσσ. (1.56)

This propagator has the same flavor as the original, with parameters that
are related as

v′ = v (1− tλ), η′ = η

√
1− λ2

1− tλ
, t′ =

t− λ
1− tλ

, (1.57)

or alternatively,

v = v′
1 + t′λ

1− λ2
, η = η′

√
1− λ2

1 + t′λ
, t =

t′ + λ

1 + t′λ
. (1.58)

Note that the determinant of the transformed Green function is proportional
to the original, detG′0,χ = detG0,χ/det λ̂. Importantly this means that the
transformation has no bearing on the excitation energies of the Weyl fermion
modes so that it remains given by Eq. (1.8).
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1.3 Renormalization Group analysis

In this section we submit the disorder-averaged, Coulomb-interacting Weyl
fermion action developed in secs. 1.1-1.2 to Renormalization Group analysis.

For completeness and ease of access, we restate here the action terms
found in secs. 1.1-1.2. The full disorder averaged partition function is

Z̄(χ) = lim
R→0

1

R

R∏
a=1

Z(χ,a),

Z(χ,a) =

∫
Dψ′(χ,a)Dϕ(a)DV exp

{
−S[ψ′(χ,a), ϕ(a), V ]

}
, (1.59)

for a single chiral replica action

S[ψ′(χ,a), ϕ(a), V ] = S0[ψ′(χ,a), ϕ(a), V ] + Sint[ψ
′(χ,a), ϕ(a), V ], (1.60)

with a free part

S0[ψ′(χ,a), ϕ(a), V ] = Sψ[ψ′(χ,a)] + Sϕ[ϕ(a)] + SV [V ], (1.61)

and interaction terms

Sint[ψ
′(χ,a), ϕ(a), V ] = Sdis[ψ

′(χ,a), V ] + SCou[ψ′(χ,a), ϕ(a)]. (1.62)

The chirality of a Weyl component is conserved, so that there cannot be
terms that would cause it to flip. The action splits into two seperate sections,
each describing one of the chiral partners. Although interactions between
replicas are possible the replica index is similarly preserved. We can concen-
trate on a single replica copy as long as we remember to take the vanishing
R limit at the end of caclulation.

The free propagation of a chiral Weyl fermion is described by the action

Sψ[ψ′(χ,a)] =

∫
ω,q

ψ
′(χ,a),†
ω,q G′−1

0,χ (iω,q)ψ
′(χ,a)
ω,q . (1.63)

Note that this action includes the fermion field transformation Eq. (1.55),
which introduces the matrix λ̂ = σ0−λχd ·σσσ into the inverse Green function

G′−1
0,χ (iω,q) = (iωλ̂− v′t′q‖)σ0 − v′χ(q‖d + η′q⊥) · σσσ (1.64)
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1.3 Renormalization Group analysis

Figure 1.6: Weyl fermion propagator G′0,χ .

to be able to manage all perturbatively generated terms. Diagramatically,
the fermion Green function is represented as in Fig. 1.6.

Coulomb interactions are represented in the action by a term

SCou[ψ′(χ,a), ϕ(a)] = ig

∫
ω,ω′,q,q′

ϕ
(a)
ω−ω′,q−q′

(
ψ
′(χ,a),†
ω,q λ̂ ψ

′(χ,a)
ω′,q′

)
, (1.65)

where the propagation of the force-carrying photon is described by

Sϕ[ϕ(a)] =
1

2

∫
ω,q

ϕ
(a)
ω,qD

−1
0 (ω,q)ϕ

(a)
−ω,−q, D−1

0 (ω,q) = qd−1−ε̄, (1.66)

where ε̄ → 0 is a dimensional regulator that is introduced for technical
reasons. Retardation effects are neglected, resulting in an instantaneous
Coulomb interaction with a propagator that is constant in frequency or delta
function-like under Fourier transformation to a time domain. These action
terms are represented in Fig. 1.7a and Fig. 1.7b respectively.
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(a) (b)

Figure 1.7: Tree level three-points Coulomb interaction vertex of a Weyl fermion
and scalar photon, and photon propagator D0.

Averaged disorder comes in by means of the effective interaction term

Sdis[ψ
′(χ,a), V ] = Γ

∫
ω,q,q′

Vq−q′
(
ψ
′(χ,a),†
ω,q λ̂ ψ

′(χ,a)
ω,q′

)
,

where we maintain the dynamic disorder field, whose propagation is con-
tained in

SV [V ] =
1

2

∫
q
VqV−q,
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in the action instead of integrating it out. We consider quenched disorder
with a potential that is constant in time, resulting in a delta function form in
the frequency domain. This reflects elastic disorder scattering processes, in
which energy is conserved. These action terms are represented in Fig. 1.8a
and Fig. 1.8b respectively.
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(a) (b)

Figure 1.8: Tree level three-points disorder interaction vertex of a Weyl fermion and
disorder field and the trivial disorder propagator.

1.3.1 Subdivision of field manifold

The most fundamental part of any renormalization group approach is the
first step, in which the integration manifold of the fields Xi present in the
action is divided into two sets on either side of some arbitrarily set scale,

Xi = Xi,< +Xi,> ∀i. (1.67)

Generally the lesser and greater fields will be coupled in the action, so that
high energy processes influence the low energy physics displayed by the sys-
tem. This mechanism becomes transparent upon integrating out the greater
fields Xi,> of the action [2],

Z =

∫
DXe−S[X] =

∫
DX<DX> e

−S[X<,X>]

=

∫
DX< e

−S0[X<]

∫
DX> e

−S0[X>] e−Sint[X<+X>]

=

∫
DX< e

−S0[X<]Z0;>

〈
e−Sint[X<+X>]

〉
0;>

=

∫
DX< e

−Seff[X<]. (1.68)
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Here we have denoted the normalized high energy expectation value of an
operator A as

〈A〉0;> = Z−1
0;>

∫
DX> e

−S0[X>]A, Z0;> =

∫
DX> e

−S0[X>]. (1.69)

Anticipating results, we defined Seff[X<] as the effective action for the lesser
fields at the set scale as the outcome of the greater field integration [2]. It
results from the expectation value of the exponential of the interacting term
Sint that mixes the fields of the two subsets. Expanding in the small cou-
plings of this term, in casu the Coulomb interaction strength g and disorder
parameter Γ, yields

〈
e−Sint

〉
0;>

=

〈
1 +

∞∑
n=1

(−1)n

n!
Snint

〉
0;>

= 1 +

∞∑
n=1

(−1)n

n!
〈Snint〉0;>

≡ exp

{
−
∞∑
n=1

(−1)n−1

n!
κn

}
, (1.70)

where the cumulants κn will be polynomials of the first n non-central mo-
ments 〈Snint〉0;> whose expressions will feed back into the effective action Seff

of the lesser fields. Taking the m-th source derivative on both sides of the
last equality above shows they are related by the recursive formula [32]

κn = 〈Snint〉0;> −
n−1∑
m=1

(
n− 1

m− 1

)
κm

〈
Sn−mint

〉
0;>

. (1.71)

It is an exercise in substitution to show that the first few cumulants κn of
the expansion are given explicitly by

κ1 = 〈Sint〉0;> ,

κ2 =
〈
S2

int

〉
0;>
− 〈Sint〉20;> ,

κ3 =
〈
S3

int

〉
0;>
− 3 〈Sint〉0;>

〈
S2

int

〉
0;>

+ 2 〈Sint〉30;> . (1.72)

Note that these cumulant expressions can also be obtained by re-exponentiating
the upper line of Eq. (1.70) and Taylor expanding the resultant logarithm.
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1.3.2 Free scaling and power counting

Suppose first that there are no correlations between fields at different energy
scales, Sint = Sint[X<] + Sint[X>], and the effective theory of the lesser
fields is unaffected by greater field integration. By Eq. (1.69) higher field
expectation values reduce to just the lesser field operator and so the effective
action is nothing more than the regular action,〈

e−Sint[X<]e−Sint[X>]
〉

0;>
∼ e−Sint[X<], Seff[X<] = S[X<]. (1.73)

Notably, this trivially holds true for the non-interacting case where Sint = 0,
at zeroth order in the expansion Eq. (1.70) . The only dependence of the
model’s fields Xi and parameters yi on the mass scale µ is contained in
their respective scaling dimensions [Xi] and [yi]. These may be determined
by insisting that the model action remains invariant under an anisotropic
spacetime rescaling

ω → µ+z ω, q→ µ+1 q (1.74)

that brings out explicitly the dimensionality of the integration variables.
Here, the dynamical exponent z determines the effective dispersion relation
between frequency and momentum that may come to deviate from unity
under renormalization [3]. Under these transformations, the components of
the free action change as

Sψ[ψ′]→
∫
ω,q

µ+(d+z)µ+2[ψω,q]ψ†ω,q

[
µ+ziω(σ0 − µ+[λ]λχd · σσσ)

− µ+1µ+[v]v
(
µ+[t] t q‖σ0 + χ(q‖d + µ+[η]η q⊥) · σσσ

)]
ψω,q,

Sϕ[ϕ]→ 1

2

∫
ω,q

µ+(d+z)µ+(d−1−ε̄)µ+2[ϕω,q]ϕω,q q
d−1−ε̄ ϕ−ω,−q,

SV [V ]→ 1

2

∫
q
µ+dµ+2[Vq]VqV−q.

This yields a system of equations that can be solved in sequence. The
dimensionalities of the fields can be obtained from the parameterless leading
operator term. This shows that

[ψω,q] = −1

2
(d+ 2z), [ϕω,q] = −1

2
(2d+ z − 1− ε̄), [Vq] = −d

2
.

(1.75)
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Knowing the field dimensions it is straightforward to find that the free sector
parameters should have scaling dimensions

[v] = −(d+ 1 + z + 2[ψω,q]) = z − 1,

[t] = [η] = [λ] = −(d+ 1 + z + 2[ψω,q] + [v]) = 0. (1.76)

Progressing to first order in perturbation in Eq. (1.70) gives

〈Sint[X< +X>]〉0;> = Sint[X<] + . . . . (1.77)

The resulting term Sint[X<] is just the interacting part Eq. (1.62) of the lesser
field action, graphically represented as tree level vertices without internal
lines. This is a restatement of the obvious fact that at tree level the only
connected diagrams that contribute are the unadorned interaction vertices
themselves. Two tadpole diagrams, fermion loops with a single external
Coulomb or disorder line, deliver a contribution to the vacuum expectation
value of the lesser fields. Picking the fields appropriately gaurantees that
these terms will vanish, and accordingly we here neglect them.

Thus at first order the only scale dependence of the couplings is contained
in their mass dimension. Making it explicit to counteract the anisotropic
rescaling procedure Eq. (1.74) yields

SCou[ψ′, ϕ]→ ig µ+[g]

∫
ω,ω′q,q′

µ+(2d+2z)µ+[ϕω,q]µ+2[ψω,q]ϕω−ω′,q−q′(
ψ′†ω,q (σ0 − µ+[λ]λχd · σσσ)ψ′ω′,q′

)
,

Sdis[ψ
′, V ]→ Γµ+[Γ]

∫
ω,ω′q,q′

µ+(2d+z)µ+[Vq]µ+2[ψω,q]Vq−q′(
ψ′†ω,q (σ0 − µ+[λ]λχd · σσσ)ψ′ω,q′

)
.

Including the field zeroth order scaling Eq. (1.75), invariance of the inter-
acting action is achieved by coupling scaling dimensions

[g] = −(2d+ 2z + [ϕω,q] + 2[ψω,q]) =
1

2
(z − 1− ε̄),

[Γ] = −(2d+ z + [Vq] + 2[ψω,q]) = z − d

2
. (1.78)
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Nominally we are interested in Weyl fermions in a (d + 1)-dimensional
spacetime where d = 3. The free model is characterized by the ordinary val-
ues ε̄ = 0 and z = 1, to which the Coulomb interactions presents a marginal
perturbation whose scaling is determined fully by interaction effects. Dif-
ferently disorder is irrelevant in the renormalization group sense, implying
scaling towards the clean model until perturbative interaction contributions
start to dominate.

1.3.3 Interaction scaling

Higher orders in the perturbative expansion Eq. (1.70) of the interaction
couplings can change the effective dimensionality of the parameters and thus
efffect their scaling behavior under flow of the renormalization scale µ. The
terms that so arise have a more convenient pictorial interpretation in terms
of Feynman diagrams, with higher orders characterized by progessively more
intersecting vertices. External lines in these diagrams correspond to lesser
fields. Internal lines, whose frequencies and momenta are integrated over,
represent two-points expectation values of the greater fields that translate
into the corresponding Green functions by a source differentation mecha-
nism.

In the recursive relation of Eq. (1.71) the first term on the right-hand
side produces all the diagrams conceivable at some order through Wick’s
theorem. The second term then substracts from these certain classes of
graphs that can be constructed from previous orders. By this mechanism
all disconnected diagrams, those graphs that factorize into several disjoint
subgraphs, are cancelled from the expansion. Contributions can come only
from the connected diagrams, in which all Green functions and vertices form
a single linked cluster [3].

At higher order we can distinguish two classes of diagrams that contribute
to the renormalized two-points function. One-particle irreducible (1PI) dia-
grams are graphs with an internal structure of lines, by which they do not
decompose into two valid subgraphs when a single internal line is cut. Other
diagrams are simple repeats of 1PI units, connected by internal lines. The
full contribution to the two-points function can then be written as a geo-
metric series of an increasing 1PI insertions on the respective propagator
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line,

+ + + . . .

=

∞∑
n=0

)
(
Σ′G′0,χ

)n
Σ′ =

(
1− Σ′G′0,χ

)−1
Σ′,

+ + + . . .

=
∞∑
n=0

) (ΠD0)n Π = (1−ΠD0)−1 Π. (1.79)

Loops similarly arise in two different ways in the vertex corrections at higher
order. Amputated diagrams have loops only internally in an 1PI core, to
which only unadorned external lines connect. On the other hand there will
arise diagrams that are manifestly not 1PI due to loops on individual external
legs. Sequences of such loops are similarly resummed as the two points
function,

+ + + . . .

=

∞∑
n=0

(
Σ′G′0,χ

)n
=
(
1− Σ′G′0,χ

)−1
,

+ + + . . .

=
∞∑
n=0

(ΠD0)n = (1−ΠD0)−1 . (1.80)

By this token these geometric factors appear everywhere where a lesser field
is included, and so they amount to an overall factor that can be freely incor-
porated by a global rescaling of the fields. Dividing the fields by the respec-
tive higher-point external line factor results in the conclusion that significant
deviations from the bare propagator form arising due to perturbations are
given by the Dyson equations

G′−1
χ = G′−1

0,χ − Σ′, D−1 = D−1
0 −Π. (1.81)

We thus conclude that we efficiently incorporate all perturbative contri-
butions by considering all possible Feynman diagrams that are simply con-
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nected and one-particle irreducible. As a general rule this includes higher-
point vertex function diagrams not originally present in the action. For-
tunately these will be progessively more RG irrelevant the more external
legs are attached, and are therefore safely neglected [3]. Similarly disre-
garded is a zoo of further tadpole-style diagrams, which will only produce
inconsequential shifts in the vacuum expectation value of the fields.

Even orders in the expansion will consist of terms contributing to the
renormalization of the free propagation action terms Eq. (1.61) of the lesser
fields. The first such significant corrections to the free model are the 1PI
connected diagrams listed in Fig. 1.9 arising at one loop order, correspond-
ing to second order in the expansion Eq. (1.70). Further graphs include a
disorder polarization contribution with a free replica index on its fermion
loop, which vanishes in the replica limit R → 0. Another fermion loop,
interpolating between a Coulomb external line and a disorder external line,
will prove to be irrelevant.

(a) Σ′dis(iω,k) (b) Σ′Cou(iω,k) (c) Π(iω,k)

Figure 1.9: 1PI self-energy corrections to the fermion Green function G′0 and polar-
ization contributing to renormalization of photon propagator D0.

Corrections to the three-points Coulomb and disorder vertices come in at
odd orders in the expansion Eq. (1.70). Contributions to the vertex couplings
come purely from those diagrams whose legs have been amputated, and have
loops only internally in an 1PI core [1]. The first such significant corrections
to the interaction part of the action are the amputated vertex diagrams listed
in Figs. 1.10-1.11, arising at one loop order or third order in the perturbative
expansion. Similar to the two-point case there is also a further mixed fermion
loop graph, interpolating between an internal disorder line and an external
Coulomb line, which is irrelevant to the RG.
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(a) (b)

Figure 1.10: Vertex corrections to the Coulomb coupling g.

(a) (b) (c)

Figure 1.11: Vertex corrections to disorder coupling Γ.

1.3.4 Renormalization group schemes

In this Subsection we discuss two renormalization group schemes that are
common to the literature. In essence, these schemes are prescriptions that
instruct how to manage the nominally divergent integrals, pictororially rep-
resented as Feyman diagrams, that arise from the expansion of interaction
terms perturbing a free model.

Wilsonian Momentum Shell RG

The Wilsonian approach to renormalization relies on a procedure that changes
the initial action in such a way that it may be compensated for by a redefini-
tion of the model parameters [33, 34]. First, greater fields X> are integrated
out of the action S[X] with a hard cutoff Λ to regulate the emerging diver-
gencies. This also changes the domain of integration in the action, which
is counteracted by a rescaling of the integration variables. Containing the
same operator terms as the original the resultant action is self-similar, albeit
with parameter coefficients transfigured by their dimensionality as well as by
the diagrammatic contributions stemming from the greater field integration
[2].
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First of all, the subdivision of the field manifold set out in Eq. (1.67) is
formalized as

Xi,< = Xi,<(ω,q | 0 < q < bΛ),

Xi,> = Xi,>(ω,q | bΛ < q < Λ), (1.82)

where b < 1 is a dimensionless parameter. Functional integration of the
higher fields out of the partition function results in the set of Feyman di-
agrams set out in Subsec. 1.3.3, that now encode regularized integrations
within a cylindrical momentum shell between bΛ and original cutoff Λ. For-
mally this parametrization [35], which we indicate by a prime on the integral,
is taken to be∫ ′

q
. . . =

∫ π

−π

dφ

2π

∫ ∞
−∞

dq‖

2π

∫ Λ

µ=bΛ

dq⊥
2π

q⊥ . . .

≈ Λ

(2π)2

∫ π

−π

dφ

2π

∫ ∞
−∞

dq‖ . . .

∣∣∣∣
q⊥=Λ

∫ Λ

µ=bΛ
dq⊥

=
Λ2(1− b)

(2π)2

∫ π

−π

dφ

2π

∫ ∞
−∞

dq‖ . . .

∣∣∣∣
q⊥=Λ

≈ Λ2l

(2π)2

∫ π

−π

dφ

2π

∫ ∞
−∞

dq‖ . . .

∣∣∣∣
q⊥=Λ

. (1.83)

Assuming here that the momentum interval is a thin shell of infinitesimal
width l = ln b−1 � 1, the integrand may be well approximated by the
constant radius Λ. The 1PI self-energy diagrams contribute to the free ac-
tion via the Dyson equation (1.81), while the amputated vertex diagrams
offer corrections to the interacting part of the action. In general the expres-
sions proceeding from the evaluation of the diagrams will contain terms with
higher powers of frequency or momentum, which will be irrelevant in the RG
sense and may be neglected.

After integrating out the greater fields the action that remains is defined
in terms of the lesser fields Xi,< with momenta limited to lowered cutoff
bΛ = e−lΛ. Scaling of the integration variables

ω → b+zω = e−zlω, q→ b+1q = e−lq (1.84)
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brings the cutoff back to its original value. We should then also rescale the
fields to put them back up to the original scale,

Xi,< → b+[Xi]Z−1
Xi
Xi,< = e−[Xi]lZ−1

Xi
Xi,<. (1.85)

Here, the field renormalization factors Z−1
Xi

are chosen in such a way that
they eliminate the self-energy contributions to the leading operator terms in
the free action. Finally, we define new scale-dependent parameters

yi(l) = b−[yi]Zyi yi = e+[yi]lZyi yi (1.86)

by identifying them with the remaining terms. The parameter renormaliza-
tion factors then Zyi absorb the selected pictorial contributions of the ap-
propriate operator terms, discounted by the appropriate field factors. The
action has now regained its original form, albeit with different parameters
that have come to depend on the result of the integration. Combining the
greater field integration with rescaling of parameters and fields amounts to
performing a transformation of the action. Repeating this operation is akin
to following a trajectory of flow in the associated parameter space [1]. This
results in a set of differential equations, the (ultraviolet) β functions,

βyi = −bdyi(l)

db
=

dyi(l)

dl
=

d

dl

(
e+[yi]lZyiyi

)
= yi(l)

(
[yi] + Z−1

yi

dZyi
dl

)
≈ yi(l)

(
[yi] +

d(Zyi − 1)

dl

)
(1.87)

that describe how the parameters of the model flow as the momentum cutoff
is decreased. Note that such corresponds to increasing the shell thickness l,
and that their differential equations carry the opposite sign.

Although the Wilsonian renormalization group provides an intuitive pic-
ture to understand the scaling of parameters with the change of energy scale,
it has several drawbacks. Most saliently among these is its tendency to arti-
ficially break the gauge symmetries of the model under consideration. The
hard cutoff Λ imposed on the integrals in the cylindrical momentum shell
scheme Eq. (1.83) disallows the rescaling of the integration variable that is
instrumental to the development of the requisite Ward identities [1]. The
current set-up was consequently found sufficient for the disorder-only Weyl
fermion problem treated in chapter 2, but proved ill-suited when electro-
magnetic interactions are added as in chapter 3.
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Counterterm RG and Dimensional Regularization

Rather than looking at the theory as a general concept with a self-similar
structure, the counterterm approach to the renormalization group postulat-
est that a renormalizable effective model exists at a certain renormalization
scale and studies how the Green functions, ultimately related to observables,
change with its variation. By the way of Eq. (1.68), any such renormalized
model requires divergences coming from degrees of freedom at higher scales
to be neutralized and incorporated. This is done by the introduction of
counterterms into the model, which are treated as further perturbations in
their own right. The counterterms may then be chosen such that they ex-
actly cancel the divergent contributions at the renormalization scale, keeping
the renormalized parameters finite. Small variations of the renormalization
scale lead to changes in the fields and parameters that should be counter-
acted by adjustments to the counterterms, as summarized in the Callan-
Symanzik equation for the Green functions of the theory. We can finally use
this relation to find the β functions of the parameters in an order by order
approximation.

Anticipating the emergence of divergent terms in a pertubative expansion
of the action we employ multiplicative renormalization constants as

yi,B = Zyi yi, Zyi = 1 + δyi ,

Xi,B = ZXi Xi, ZXi = 1 + δXi , (1.88)

to change from bare to renormalized fields and parameters. Here, the δyi
and δXi are counterterms that should be interpreted as further perturba-
tions to the model that will result in additional diagrams beyond those in
Figs. 1.9-1.11. We treat the divergent integrals that arise in the calculation
of these diagrams by analytical continuation of the number of dimensions
to non-integer values [36]. Expanding around the disorder marginal dimen-
sion as d = 2 + ε captures corresponding infinities as poles ∼ Ωε/ε with Ω
symbolizing the external energy scale at which the diagram is computed.
At the end of all calculations, the limit ε → 1 should be taken in order for
results to apply to three dimensional Weyl fermions. Note that the Coulomb
interaction is defined as Fourier transform of the potential 1/x and so con-
stitutes a marginal perturbation indendent of number of spatial dimensions.
Divergences arising from perturbation in its coupling cannot be accounted
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for by the same dimensional expansion as disorder. We therefore imple-
ment a dimensional regulator ε̄ on its propagator as qd−1−ε̄ as set out in
Eq. (1.66), which similarly captures the corresponding infinities. At the end
of all calculations, taking the the limit ε̄ → 0 is sufficient to return us to
the three-dimensional case. It is noteworthy to remark here that this di-
mensional regularization scheme is known to respect the gauge invariance
characteristic of electrodynamic theories [1].

If a physical theory is to describe reality, it should be possible to express
it in terms of a finite limit set of renormalized parameters at some renor-
malization scale µ. This imposes renormalization conditions on all n-point
functions, which specify how the counterterms should be chosen so that their
diagrams exactly cancel the regular diagrams. In essence, setting the coun-
terterms to balance out divergent contributions defines a theory at a given
scale.

For the counterterm framework set out by Eq. (1.88) the chosen renor-
malization scale is essentially aribitrary from a technical point of view. It
is important only in making experimentally verifiable quantitative predici-
tions, but has little bearing on general qualitative aspects with which we are
concerned here. We might equally well have picked another renormalization
scale without impacting the calculations, although the counterterms would
also need to be numerically different in compensation. For small shifts of the
renormalization scale and corresponding changes of the fields and parameters

µ→ µ+ ∆µ, yi → yi + ∆yi, Xi → (1 + ∆Xi)Xi, (1.89)

the adjustment of a fully connected and amputated {nXj}-points Green func-
tion is determined by the field rescaling,

G({nXj }) →
∏
j

(1 + ∆Xj)
nXjG({nXj }) ≈

1 +
∑
j

nXj∆Xj

G({nXj }).

(1.90)

For a generic renormalized Green function G({nXj }) = G({nXj }) (µ; {yi}), de-
fined at scale µ and depending on the parameters in the set {yi}, this trans-
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formation yields the equation

dG({nXj }) =
dG({nXj })

dµ
∆µ+

∑
i

dG({nXj })

dyi
∆yi =

∑
j

nXj ∆Xj G({nXj }).

(1.91)

Multiplying through by µ/∆µ leads to the Callan-Symanzik (CS) equation
[37, 38]µ d

dµ
−
∑
i

βyi
d

dyi
+
∑
j

nXj γXj

G({nXj }) (µ; {yi}) = 0. (1.92)

Note that in the case of a Weyl fermion model this is a matrix equation in
2× 2 Pauli space, and so contains several scalar relations. The CS equation
describe how a shifts of the renormalization scale µ is compensated for by
changes in the parameters encapsulated in the (ultraviolet) flow equation

βyi ≡ −
µ

∆µ
∆yi = − µ

∆µ

(
(µ+ ∆µ)−[yi]Z−1

yi (µ+ ∆µ)

µ−[yi]Z−1
yi (µ)

− 1

)
yi(µ)

= yi

(
[yi] +

µ

Zyi

d

dµ
Zyi

)
, (1.93)

plus modifications to the field strength captured by

γXi ≡ −
µ

∆µ
δXi = − µ

∆µ

(
Z−1
Xi

(µ+ ∆µ)

Z−1
Xi

(µ)
− 1

)
=

µ

ZXi

d

dµ
ZXi . (1.94)

In our set-up, we then find to one loop order that the universal functions
reduce to

βyi = yi

(
[yi] + µ

d

dµ
δyi

)
, γXi = µ

d

dµ
δXi . (1.95)

Note that this agrees with the exact relation Eq. (1.93) above to leading
order. The functions βyi and γXi do not depend on any renormalization
scale but are expressed completely in terms of the renormalized parameters
and their scaling dimensions. They contain important information on the
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stability of the model at various renormalization scales. If the function βyi
is negative, the parameter yi will exponentionally decrease upon lowering
the renormalization scale. At lower scales then, such parameters might as
well be excluded from an efficient description of the system. In contrast,
positive values of βyi > 0 indicate that the flow is towards larger parameter
values that will come to dominate the theory when going to lower renor-
malization scales. Only if the function vanishes, βyi = 0, the parameter
value is independent of the scale at which the system is investigated. If this
holds for all parameters the model is at a fixed point, where it is completely
scale-invariant. This means that all model dependent physics can be scaled
away, and only universal behavior remains. These traits are determined by
a set of model-independent exponents that sort all fixed points into a lim-
ited number of universality classes. Importantly, included in the exponents
is information on the orientation of the flow around the point. Tuning the
parameters of a system at a fixed scale to take it across a repulsive fixed
point abruptly changes the flow directionality, associating it with a different
attractive fixed point at which it displays wildly different behavior. This is
the hallmark of a phase transition.
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1.4 Quantum Electrodynamics in the non-relativistic
limit

In this section we investigate more closely how the model we study in the
following chapters is derived from quantum electrodynamics (QED), and is
thus subject to all the symmetries and identities particular to that theory.
We start from the familiar massless Dirac Lagrangian

LΨ = −ic Ψ̄ [γµ∂µ] Ψ = −iΨ†
[
∂t + c γ0γγγ · ∇∇∇

]
Ψ

= cΨ†
[
q0 + γ0γγγ · q

]
Ψ, (1.96)

where we have reinstated the speed of light c and have defined the mo-
mentum operator as qµ = −i∂µ = −i(∂t/c,∇∇∇). Variation with respect to
the conjugate field Ψ̄ leads to the massless Dirac equation, introduced in
Eq. (1.1), as equation of motion. The Lagrangian appropriate to quantum
electrodynamics, the relativistic field theory describing the way fermionic
matter interacts with light, is given by

LQED = LΨ|δµ→Dµ + LA, (1.97)

and is traditionally obtained by submitting the Dirac Lagrangian Eq. (1.96)
to the minimal substitution procedure

∂µ → Dµ = ∂µ +
iQ

c
(Aµ +Bµ). (1.98)

This results in a term

LΨ|δµ→Dµ = −ic Ψ̄ [γµDµ] Ψ

= Ψ†
[
−i∂t +Q(A0 +B0) + γ0γγγ · (−ic∇∇∇+Q(A + B))

]
Ψ

= Ψ†
[
iω +Q(A0 +B0) + γ0γγγ · (cq +Q(A + B))

]
Ψ. (1.99)

Here Aµ is the four-potential of the electromagnetic field, whose free propa-
gation is contained in the Lagrangian

LA = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ. (1.100)
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1.4 Quantum Electrodynamics in the non-relativistic limit

The coupling of the four-potential and the fermion is determined by the
charge Q of the model under the U(1) local gauge transformation

Ψ→ eiθΨ, Aµ → Aµ −
c

Q
∂µθ, θ = θ(xµ). (1.101)

A field Bµ introduced by an external source couples identically to the fermion
field, while its kinetics are outside the model. QED is well-known to con-
tain certain rules that protect the form of the minimal coupling between
derivative and gauge field in Eq. (1.98) even in perturbation theory [1]. Its
Ward identities, resulting from the gauge invariance of the model, establish
relations between different classes of diagrams that then conspire to ensure
non-renormalization of group charge Q.

Unlike the fundamental particles described by the Dirac equation in QED,
Linearly-dispersing Dirac and Weyl fermions encountered in material band
strucutures in condensed matter settings are non-relativistic and propagate
at Fermi velocity v much lower than c. The bosons mediating the electro-
magnetic interaction however are no different, and by defintion move at the
speed of light. This leaves the minimal substitution mechanism of Eq. (1.98)
unchanged, resulting in the non-relativistic Lagrangian

LNR
QED = LNR

Ψ

∣∣
δµ→Dµ + LNR

A , (1.102)

The fermionic term becomes

LNR
Ψ

∣∣
δµ→Dµ = −iΨ† [cD0 + vγ ·D] Ψ

= Ψ†
[
−i∂t +Q(A0 +B0) + γ0γγγ ·

(
−iv∇∇∇+

v

c
Q(A + B)

)]
Ψ

≈ Ψ†
[
−i∂t +Q(A0 +B0)− iv γ0γγγ · ∇∇∇

]
Ψ

= Ψ†
[
iω +Q(A0 +B0) + v γ0γγγ · q

]
Ψ (1.103)

where we have kept only terms at zeroth order in an expansion of v/c� 1.
Taking the same non-relativistic approximation on the four-potential term

41



1 Introduction

in the Lagrangian yields

LNR
A = −1

4
FµνF

µν = −1

4

(
2F0iF

0i + FijF
ij
)

= − v2

2c2

(
∂t
v

A

)2

+
1

2
(∇∇∇A0)2 − v

c
(∇∇∇A0) ·

(
∂t
v

A

)
− 1

4
FijF

ij

≈ 1

2
(∇∇∇A0)2 = −1

2
q2A0, (1.104)

where we have left out also the decoupled purely spatial term. Identifying
the charge as Q = g, the temporal electromagnetic field as A0 = iϕ and
the temporal external field with the disorder field, which we are free to
rescale so that B0 = ΓV/Q, these terms exactly lead to the untilted and
isotropic limit of the overall action of Eq. (1.60) before applying the replica
trick to treat the disorder average. We may thus expect our theory to be
subject to a custom set of Ward identities that ensure that the remaining
gauge symmetry is preserved, and anticipate the non-renormalization of the
couplings.

Indeed, explicit calculation of the fermion loop integral in the dimensional
regularization scheme set out in Subsubsec. 1.3.4 shows that it is entirely reg-
ular, or subleading in the dimensional regulator. Thus none of the diagrams
including it, whether they be vertex corrections or part of the self-energy,
contribute to the renormalization group flow. Constructing the remaining
diagrams then amounts to an exercise in finding all one-particle irreducible
ways of connecting the appropriate number of vertices on a single continuous
fermion line at a given order in the perturbation expansion. This is true for
both self-energy type diagrams and vertex corrections. As such, it follows
that any vertex diagram can be obtained straightforwardly by inserting the
corresponding external vertex into an internal fermion line of the appropriate
self-energy diagram. By the Green function relation

∂iω′G
′
0,χ(iω − iω′,q− k) = −G′0,χ(iω − iω′,q− k) λ̂ G′0,χ(iω − iω′,q− k)

(1.105)

we see that such an operation corresponds to taking the derivative with
respect to the external frequency in mathematical terms. This argument
continues to hold good also when the inclusion of a tilt in the dispersion
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1.4 Quantum Electrodynamics in the non-relativistic limit

necessitates the introduction of an additional parameter in the fermion Green
function by means of the field transformation Eq. (1.55) as it implies the
relation changes into Eq. (1.105), mirroring the emergence of the matrix
factor λ̂ in both the fermion-bilinear vertex functions. We thus have Ward
identities relating self-energy and vertex class contributions,

<latexit sha1_base64="ESBHOawUBzh2fZauENGlv6OiGYU="></latexit><latexit sha1_base64="ESBHOawUBzh2fZauENGlv6OiGYU="></latexit><latexit sha1_base64="ESBHOawUBzh2fZauENGlv6OiGYU="></latexit><latexit sha1_base64="ESBHOawUBzh2fZauENGlv6OiGYU=">AAADG3icbZLNjtMwEMed8LWEry7c4GJRrbRIVeWsQMul0opqJY4L2nYrtVXlOJPEquNEtlOpRDnwIJy5wjNwQ1w58Ai8BU4aKN3dkSz98/tPxp6xg1xwbQj55bg3bt66fWfvrnfv/oOHjzr7j8c6KxSDEctEpiYB1SC4hJHhRsAkV0DTQMBFsBzW/sUKlOaZPDfrHOYpjSWPOKPGosW+8/RgfPr+/HSyGIZDbxZAzGUZpVHEBVRlBGsZK5onlYfx1tygQ5+Q3vGrF9aypsUCIlNyv8ePqn9M8TgxZeZviS2qUrt3VaeuyHXGiuzUKEOqE9AN/7/SqgyBZaqvE5rDgHHFBPQ2yB5fQDiwTghhD7d5/AMMfGISzpZ1saYpkOG2Je/vZ9P+otMlfdIEvir8VnRRG2eLzu9ZmLEiBWmYoFpPfZKbeUmV4fZolefNCg05ZUsaQzPbNK/wDp1aKWkKel42d1vhA0tCHGXKLmlwQ3fq0FTrdRrYzJSaRF/2anidNy1M9HpecpkXBiTbbBQVApsM1w8Fh1wBM2JtBWWK2xYwS6iizNjn5NnZ+JcncVWMj/q+1e9edk/etFPaQ8/Qc3SIfHSMTtBbdIZGiDkfnc/OF+er+8n95n53f2xSXaf95wnaCffnHy3i+B8=</latexit>

= −Γ ∂iω′ ( ) ,
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= −(ig) ∂iω′ ( ) ,

(1.106)

where the shaded areas represent the sum of all 1PI subdiagrams that can
be used to connect the external legs and the derivative is understood to
be taken with respect to the external frequency and applying the product
rule. Due to the relations Eq. (3.43) vertex corrections will be exactly can-
celled by the counterterms for the fermion field and the field transformation
parameter from the self-energy corrections. As predicted, this leads to non-
renormalization of the couplings Γ and g.
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2 Disordered tilted Weyl cones

Up to minor notational and cosmetic alterations, this chap-
ter is an integral reproduction of: Tycho S. Sikkenk and Lars
Fritz, “Disorder in tilted Weyl semimetals from a renormaliza-
tion group perspective”, Phys. Rev. B 96, 155121 (2017) [39].
For this work TSS performed all calculations, discussed the re-
sults and prepared the manuscript for publication.

2.1 Introduction

In condensed matter theory, the Dirac equation describes the behavior of
low energy quasiparticles near the touching points of two degenerate bands
in the three dimensional dispersion of a class of materials known as Dirac
semimetals (DSMs). These Dirac nodes are topologically protected by time
reversal and inversion symmetry and cannot be removed without opening
a gap in the spectrum. In Weyl semimetals (WSMs), at least one of these
symmetries is broken and the Dirac nodal points disassociate into two Weyl
nodes that are separated in momentum space. There is a non-zero flux of
Berry curvature between the nodes that enriches them with an opposite
monopole charge, or chirality, by Gauss’ law. Band structure calculations
predicted WSMs in several material families [23, 40] and Weyl fermion
states have been discovered experimentally in materials such as TaAs, NbAs,
TaP and NbP [12–15, 24, 41, 42]. Because of the unique features of their
nodes, WSMs can exhibit a range of fascinating properties not observed in
graphene, DSMs or other topological semimetallic systems. On their surface
they harbor open Fermi surfaces connecting the node projections, implying
novel contributions to various transport properties [18, 43]. Such surface
arcs have also been observed in angle-resolved photoemission spectroscopy
(ARPES) experiments on these systems.

The topological properties of these systems also lead to a remarkable ro-
bustness against weak perturbations, including disorder from dilute impuri-
ties [44, 45], since the Weyl nodes can only be annihilated by joining pairs of
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opposite chirality [16]. This has important consequences for the properties
under disorder, most notably of which is Anderson localization [28, 46]. For
three dimensional metals it is well established that generically a mobility
edge separating localized states from extended states develops as a function
of disorder. The associated phase transition connects the diffusive metal
(DM) with states above the mobility edge to the Anderson insulator on the
other side. In Weyl systems the situation can be different in two ways: (i)
A single Weyl node, very similarly to the surface Dirac fermion of a three
dimensional strong topological insulator, cannot be localized by disorder be-
cause no backscattering can occur [47]. In reality, however, every Weyl
node in a Weyl semimetal must be accompanied by its chiral partner, which
then allows for backscattering through processes connecting the two cones.
If the disorder is sufficiently long-range backscattering can be suppressed by
the distance between the nodes in reciprocal space [25]. Indeed, intercone
scattering has typically been found to have a much smaller amplitude than
intracone scattering in realistic samples [48]. In the following we concentrate
on a single Weyl node, assuming intercone processes are negligible compared
to scattering within the cone. (ii) For a single Weyl node it was pointed out
that there can be an additional phase at weak disorder that is semimetallic
(SM) [26, 29, 30, 45, 49–51]. This point of view is currently challenged by
numerical simulations which indicate the presence of rare regions [31]. How-
ever, for intermediate energy scales the critical point between the semimetal
and diffusive metal should still control the physics, which is the point of view
taken in this paper.

More recently, it was appreciated that Weyl cones in condensed matter
systems, in contrast to fundamental Weyl fermions, do not have to be per-
fectly isotropic. The Femi velocity may take unequal values in different di-
rections. Such anisotropy is common in Weyl semimetals and has significant
consequences for various observable quantities [52, 53]. Alternatively, the
Weyl spectrum may continuously be tilted away from its upright position.
Recently, it was first predicted [7, 54] and later experimentally confirmed
[14, 55–58] that the conical dispersion can even be tilted over. These systems,
commonly referred to as type-II Weyl semimetals, develop a Fermi surface
in which electron and hole pockets coexist with the Weyl touching points.
This leaves clear signatures in their thermodynamic and transport proper-
ties, e.g. magnetic breakdown at nodal energy, unusual magneto-respsonse
and the emergence of an intrinsic anomalous Hall effect [58–60]. Since nodal

45



2 Disordered tilted Weyl cones

quasiparticles can scatter resonantly to electron or hole surfaces, inclusion
of disorder leads to considerably more complicated situations.

In contrast, subcritical tilts qualitatively preserve the structure of the
pointlike Fermi surface. Nevertheless, they can have a definite influence on
the transport properties of type-I Weyl cones. For instance, the conductance
and Fano factor show strongly anisotropic responses upon increasing tilt
[53]. Tilted Weyl cones support an increased amount of states at energies
away from the nodal point and so enhance the effects of level broadening
under disorder.

In this paper we investigate the interplay of finite subcritical tilts and
potential disorder within the framework of the renormalization group. Our
findings confirm earlier conclusions based on numerical methods and self-
consistent Born approximation (SCBA) analysis [27], and additionally pro-
vide new analytic insights to describe disordered tilted Weyl cones.

The remainder of this chapter is organized as follows: Sec. 3.2 introduces
the model. In Sec. 2.3 we study this model using an RG approach and discuss
the resulting flow. Our main results consist of a set of analytical equations
describing the scaling of the density of states when taking disorder effects
into account. We show also that finite tilts lower the disorder strength
of the SM-DM phase transition. Disorder generically renders the system
anisotropic and furthermore increases the observable tilt, thereby enhancing
the density of states. We finish with a conclusion in Sec. 3.6.

2.2 Model Setting

The starting point of our investigations is given by a single tilted Weyl cone
described by the Bloch Hamiltonian

H0,χ(q) = v (t σ0 d + χσσσ) · q (2.1)

where σ0 is the identity matrix and {σx, σy, σz} are the standard Pauli ma-
trices. The Fermi velocity is given by v, while t denotes the strength of a
tilt along the direction of unit vector d, (|d| = 1). The chirality of the cone
is set by χ = ±1. The eigenspectrum of Eq. (3.1) reads

E0,s(q; t) = v (td · q + s k) = v
(
tq‖ + s

√
q2
‖ + q2

⊥

)
, (2.2)
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where s = ±1 distinguishes electron and hole bands. We furthermore intro-
duce a momentum parametrization where q‖ is oriented in the direction of
d while q⊥ is a radial coordinate in the perpendicular plane. Upon increas-
ing t the band structure progressively tilts over until the cone acquires one
dispersionless direction at t = 1 thereby effectively becoming metallic (in
principle higher order in momentum terms have to be included to stabilize
the theory). Concentrating on values 0 < t < 1 the density of states (DoS)
behaves according to

ρ0,χ(ω; t) =
ω2

2π2v3(1− t2)2
(2.3)

which becomes singular for t→ 1, consistent with the system going into the
metallic phase.

We consider quenched scalar chemical potential disorder obeying a Gaus-
sian white-noise distribution with zero mean [25, 35, 61],

〈V (x)〉 = 0 , 〈V (x)V (x′)〉 = Γ2 δ3(x− x′) . (2.4)

We are interested in average properties of the disordered system. There-
fore, we promote the disorder potential to a field that is integrated over
corresponding to an averaged partition function

Z(χ) =

∫
Dψ(χ)DV exp

{
−S[ψ(χ), V ]

}
, (2.5)

S = S0 + SV + Sdis,Γ + Sdis,Γ̄ . (2.6)

We have also rescaled V by Γ in both the disorder coupling term and the
Gaussian weight introduced during the averaging procedure to obtain the
expressions

SV =
1

2

∫
x
V 2(x) , (2.7)

Sdis,Γ = Γ

∫
x

dτ V (x)
(
ψ(χ),†σ0ψ

(χ)
)
. (2.8)

Philosophically, our procedure is equivalent to replicating the system and in-
tegrating out disorder, which leads to a retarded interaction in replica space.
In contrast, we integrate out disorder only at every order in perturbation
theory instead of exactly which provides us with technical advantages.
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The combination of tilt and disorder (Eq. (2.6), Eq. (2.7), and Eq. (2.8))
is not closed under one-loop RG transformation. The self-energy generates
a marginal term ∼ iω χd · σσσ that is not present in the original action and
should therefore be added by hand. We stress that this term is manifestly
unphysical and cannot appear in a Hamiltonian due to its association with
frequency iω. Rather, it is connected to the quasiparticle weight attributed
to the exitations of the system. After Fourier transformation we obtain the
adapted tree level Weyl fermion action

S0 =

∫
x,τ

ψ(χ),† [(σ0 − χλd · σσσ) ∂τ + iv(t σ0 d + χσσσ) · ∇∇∇]ψ(χ). (2.9)

Further analysis shows that there is also an additional vertex that is gener-
ated under the renormalization group transformation. As a result we add a
second type of disorder vertex:

Sdis,Γ̄ = Γ̄

∫
x,τ

V (x)
(
ψ(χ),†(−χd · σσσ)ψ(χ)

)
, (2.10)

which obeys the same distribution function as the original vertex. The al-
tered free fermion Green function G0,χ(iω,q)−1 = (iω− vtd ·q)σ0−χ(v q +
iωλd) · σσσ that results from Eq. (2.9) has excitations at modified energy-
momentum pairs. The poles of the inverse propagator, determined from
det[G0,χ] = 0, yield the dispersion

E0,s(q; t, λ) =
v

1− λ2

[
(t+ λ)q‖ + s

√
q2
‖(1 + tλ)2 + q2

⊥(1− λ2)
]
. (2.11)

We plot the excitation spectrum of Eq. (2.11) in Fig. 2.1 for some charac-
teristic parameter values. Comparison with Eq. (3.2) teaches that the effect
of λ on the dispersion is twofold:

(1). It introduces anisotropy into the system, inducing respective effective
Fermi velocities

veff
‖ = v

1 + tλ

1− λ2
veff
⊥ = v

1√
1− λ2

, (2.12)

parallel and perpendicular to the orientation of the tilt.
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(2). It introduces an effective tilt,

teff =
t+ λ

1 + tλ
. (2.13)

The presence of finite anomalous tilt λ is also felt by other physical quantities
such as the density of states,

ρ0,χ(ω; t, λ) = − 1

π

∫
q

Im Tr G0,χ(ω + i0+,q)

=
ω2(1 + tλ)2

2π2v3(1− t2)2
∼ ω2

2π2veff
‖ (veff

⊥ )2(1− (teff)2)2
. (2.14)

Although increasing the anomalous tilt above unity implies tipping over the
conical dispersion per Eq. (2.13), a vanishing quasiparticle weight ensures
that Eq. (2.14) remains completely regular for all values of λ.

(a) v = 1, t = λ = 0.

(b) v = 1, t = 0.5, λ = 0.

(c) v = 1, t = λ = 0.5.

Figure 2.1: Modified Weyl cone dispersion E0,s(q, t, λ) for (a) the untitled case, (b)
ordinary tilt and (c) modified tilting.
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2.3 Renormalization Group Analysis

The action Eq. (2.6) remains invariant under anisotropic space-time rescal-
ing τ → ezlτ , x → elx for dimensionalities [ψ] = [V ] = d/2 for the fermion
and boson field, [v] = z − 1 for the Fermi velocity and [Γ] = [Γ̄] = z − d/2
for the disorder couplings. The remaining parameters are scale-invariant ir-
respective of the number of spatial dimensions, [t] = [λ] = 0. The dimension
number d and dynamical exponent z are model-dependent quantities. For
three-dimensional Weyl semimetals (d = 3, z = 1) both disorder vertices
are irrelevant at tree level. This opens up the possibility of the existence of
a nontrivial quantum critical point separating a semimetallic weak disorder
phase from the diffusive metal phase, as was extensively discussed in the
untilted case [29, 30, 49, 50].

We now analyze the flow of the parameters by means of a one-loop ex-
pansion in both disorder couplings (note that within our scheme we treat
λ non-perturbatively). Contributing diagrams are listed in Figs. 3.7)-2.3,
where dotted vertices denote factors ∼ Γ deriving from Eq. (2.8) and squared
vertices indicate factors ∼ Γ̄ coming from Eq. (2.10). We calculate these by
integrating out the Fourier modes within the shell e−lΛ < k⊥ < Λ and
−∞ < q‖ < ∞ [35]. This cylindrical momentum-shell scheme is indicated
by a prime ′ on the relevant integrals. Here we restrict ourselves to leading
order expressions.

(a) (b) (c)

Figure 2.2: Diagrams contributing to the self-energy correction Σ to the modified
naked Green function G0,χ.

The one-loop contributions to the self-energy are shown in Fig. 3.7. These
diagrams are related by straightforward manipulation of external vertices.
Introducing dimensionless couplings

γ2 =
Γ2Λ

4πv2(1− t2)1/2
, γ̄2 =

Γ̄2Λ

4πv2(1− t2)1/2
, (2.15)
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the diagram of Fig. 2.2a yields

Fig. 2.2a = Γ2

∫ ′
q

G0,χ(iω,q)

' −iω γ2

(
1 + tλ

1− t2

)
(σ0 − t χd · σσσ) l. (2.16)

Since (−χd · σσσ)2 = σ0 the diagram in Fig. 2.2b differs only by a change in
coupling constant,

Fig. 2.2b =

(
Γ̄

Γ

)2

(−χd · σσσ) [Fig. 2.2a ] (−χd · σσσ)

' −iω γ̄2

(
1 + tλ

1− t2

)
(σ0 − t χd · σσσ) l. (2.17)

The diagram in Fig. 2.2c has a modified matrix structure,

Fig. 2.2c = 2

(
Γ̄

Γ

)
(−χd · σσσ) [Fig. 2.2a ]

' −2iω γ γ̄

(
1 + tλ

1− t2

)
(tσ0 − χd · σσσ) l, (2.18)

where we have also taken into account a symmetry factor of two that stems
from the freedom to interchange the order of the vertex types. The dressed
fermion propagator is then determined from the Dyson equation,

Gχ(iω,q)−1 = G0,χ(iω,q)−1 − Σ(iω,q)

=

[
iω

(
1 +

1 + tλ

1− t2
(
(γ2 + γ̄2) + 2tγγ̄

)
l

)
+ vtd · q

]
σ0

+ χσσσ ·
[
vq− iωd

(
λ+

1 + tλ

1− t2
(
t(γ2 + γ̄2) + 2γγ̄

)
l

)]
.

(2.19)

We similarly calculate the renormalization of the disorder couplings. At
one loop order there are two contributing groups of diagrams, each of which
has three representatives that are related by manipulation of external ver-
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Vertex corrections to disorder couplings Γ, Γ̄.

tices. For the first group, Figs. 2.3a-2.3c, we have

Fig. 2.3a = Γ3

∫ ′
q
G0,χ(0,q)2

' Γ γ2

(
1

1− t2

)
(σ0 − t χd · σσσ) l, (2.20)

and

Fig. 2.3b =

(
Γ̄

Γ

)2

(−χd · σσσ) [Fig. 2.3a ] (−χd · σσσ)

' Γ γ̄2

(
1

1− t2

)
(σ0 − t χd · σσσ) l, (2.21)

and

Fig. 2.3c = 2

(
Γ̄

Γ

)
(−χd · σσσ) [Fig. 2.3a ]

' 2Γ γ γ̄

(
1

1− t2

)
(t σ0 − χd · σσσ) l, (2.22)

where we have again accounted for a symmetry factor of two for the last
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diagram. The diagrams of the second group, 2.3d-2.3f, are given by

Fig. 2.3d = Γ̄3

∫ ′
q

(−χd · σσσ) (G0,χ(0,q)(−χd · σσσ))2

' Γ̄ γ̄2

(
t

1− t2

)
(σ0 − t χd · σσσ) l, (2.23)

and

Fig. 2.3e =

(
Γ

Γ̄

)2

(−χd · σσσ) [Fig.( 2.3d ] (−χd · σσσ)

' Γ̄ γ2

(
t

1− t2

)
(σ0 − t χd · σσσ) l, (2.24)

and

Fig. 2.3f = 2

(
Γ

Γ̄

)
(−χd · σσσ) [Fig. 2.3d ]

' 2Γ̄ γ γ̄

(
t

1− t2

)
(t σ0 − χd · σσσ) l. (2.25)

With point like disorder, Eq. (2.4), the self-energy is independent of ex-
ternal momentum, meaning there is no direct renormalization of the Fermi
velocity; it is just given by the inverse fermion field rescaling [61, 62]. The
flow of the dimensionless disorder couplings is due to vertex corrections only.
Including the bare scaling dimensions of the parameters we find leading-order
β-functions

βv = −1 + tλ

1− t2
(
(γ2 + γ̄2) + 2tγγ̄

)
v, (2.26)

βγ = −γ
2

+
γ + tγ̄

1− t2
(
(γ2 + γ̄2) + 2tγγ̄

)
, (2.27)

βγ̄ = − γ̄
2

+
γ + tγ̄

1− t2
(
t(γ2 + γ̄2) + 2γγ̄

)
, (2.28)

βλ =
1 + tλ

1− t2
(
(t− λ)(γ2 + γ̄2) + 2(1− tλ)γγ̄

)
, (2.29)

where βyi = dyi/dl with yi = v, γ, γ̄, λ.
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(b) t = 0.25.

Figure 2.4: Flow for disorder couplings γ, γ̄ and SCBA elliptic critcal disorder line,
in orange (see Appendix 2.5) in (a) the untilted case, t = 0 and (b)
the tilted case, t = 0.25. Red dots: disorder fixed points. Blue dots:
phase transition points. Purple dot: untilted phase transition fixed
point (γ, γ̄)[φt=0] = (1/

√
2, 0).

2.3.1 Discussion of the RG equations

Under rescaling the model’s parameters will flow away from their initial
values, which are indicated here by subscript 0. Note that the starting values
of the generated parameters are λ0 = γ̄0 = 0. There are multiple parameter
combinations for which β-functions (2.26)-(2.29) vanish simultaneously and
the flow terminates. These fixed points are indicated by subscript asterisk
∗. A first observation is that the tilt parameter t is unaffected by the flow
meaning there is no renormalization of the tilt within our renormalization
scheme. As a consequence, the equations (2.27)-(2.28) for the dimensionless
couplings γ and γ̄ form a closed subset, producing a purely two-dimensional
flow that is shown in Fig. 2.4.

Disorder flow: In general, there are three distinct fixed points that can
be reached when initiating the flow at γ̄0 = 0. First of all, there is the
attractive weak-coupling fixed point (γ, γ̄)[∗,SM] = (0, 0) which is associated
with semimetallic behavior, called SM. Completely oppositely sit the attrac-
tive symmetry-related strong-disorder fixed points (γ, γ̄)[∗,DM] = ±(∞,∞),
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where the disorder strengths diverge. More interestingly, there are also the
symmetry-related intermediate coupling fixed points

(γ, γ̄)[∗,φt] = ±1

2

(√
1− t
1 + t

,

√
1− t
1 + t

)
, (2.30)

that are attractive in two out of four directions and repulsive in the oth-
ers. These fixed points will move towards the origin on the line γ = γ̄ as t
is increased, eventually merging with the weak-disorder fixed point [∗,SM]
for t = 1. The flow of the conventional untilted case t = 0 is presented in
Fig. 2.4a. The disorder β-functions reduce to βγ = γ(γ2 + γ̄2) − γ/2 and
βγ̄ = 2γ̄γ2 − γ̄/2, meaning γ̄ is never generated and the flow remains ef-
fectively one-dimensional if the flow is initiated from γ̄0. This means that
the intermediate fixed point [∗, φt=0] is never accessed in the untilted model.
It however allows for an unstable fixed point at (γ, γ̄)[φt=0] = (0, 1/

√
2) at

which a transition from the weak-disorder into the strong-disorder regime
occurs [25, 61, 62]. For finite tilts t > 0, the flow in Fig. 2.4b is fundamen-
tally different. It holds on the horizontal axis γ̄ = 0 that βγ̄ = tγ3/(1− t2).
Some γ̄ is spontaneously generated in any disordered tilted Weyl system,
which destabalizes the untilted fixed point. In return, the intermediate fixed
point [∗, φt] in Eq. (2.30) is now accesible to flow. It is reached only exactly
from the phase transition point [φt] at (γ, γ̄)[φt] = (γ[φt], 0). We stress that
[φt] is not an fixed point of the theory for finite tilts, but merely the point for
γ̄ = 0 where the flow changes end point. To the left of [φt] on the horizontal
axis the flow is towards weak disorder, whereas flow emanating form the
right is directed towards strong disorder. Comparing Fig. 2.4a and Fig. 2.4b
supports the observation [27] that including a finite tilt reduces the phase
transition disorder strength, γ[φt] ≤ γ[φt=0] . We substantiate this conclusion
in Fig. 2.5, which directly graphs the dependency of the phase transition
disorder strength on the tilt. Note that we have here used Eq. (2.15) to
convert back to the original disorder strength Γ. Fig. 2.5 also contains a line
which is obtained from a fully analytical solution of the self-consistent Born
approximation (SCBA) which is presented in Appendix 2.5 and is consistent
with an earlier analysis [27].

Concentrating on flow emanating from γ̄0 = 0, the asymptotic relation of
the disorder couplings is surmised by γ̄∗ = γ∗ regardless of the side of the
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RG Num. Int.

RG approx.

SCBA
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Figure 2.5: Dependence of the phase transition disorder strength Γ[φ] on the ordi-
nary tilt t. The SCBA (in orange, see Appendix 2.5) consistently over-
estimates the disorder required for the WSM-DM transition, whereas
the boundary of the approximate weak-disorder parallelogram (in blue)
leads to a lower estimate.

transition we study. We can then investigate the terminal behavior of the
other parameters by restricting to the line γ̄ = γ.
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(a) t = γ̄ = 0.
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(b) t = 0.25, γ = γ̄.

Figure 2.6: Streamplot of anomalous tilting versus disorder for the appropriate ter-
minal relations of γ and γ̄. The flow predicts that λ will find a terminal
value 0 ≤ λ∗ ≤ 1.

Anomalous tilt flow: Insertion of the terminal relation γ̄ = γ into Eq. (2.29)
yields the simplified λ-flow equation βλ = 2γ2(1−λ)(1 + tλ)/(1− t) valid on
this line. Depending on the original tilt there are now two distinct scenarios
that can be realized in a disordered system, also summarized in Fig. 2.6:
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(1). for t = 0 we have that βλ = −2λγ2, so that initial value λ0 = 0 means
that λ will never be generated.

(2). for t > 0 the anomalous tilt increases from λ0 = 0 until reaching a
fixed point with 0 < λ[∗,SM] < 1 inside the weak-disorder region and
λ[∗,DM] = 1 outside of it.

In general the final anomalous tilt λ∗ after following the flow is a mono-
tonically increasing function both of tilt t and disorder strength γ0. λ will
spontaneously acquire a finite value for any tilt 0 < t < 1, even within
the weak-disorder region. By Eq. (2.13) it follows that disorder indirectly
increases the observable tilt in the system that is reached after concluding
the disorder flow, although a final value teff

∗ = 1 is never reached. This re-
stricted growing behavior is depicted in Fig. 2.7. Earlier results [27] based
on a more limited SCBA are qualitatively the same, but fail to pick up on
the noticeable uptick in teff

[∗,SM] close to phase transition disorder strength.
On the level of observables like the renormalized DoS, the transition from
type-I to type-II Weyl cone is concealed by the disorder-induced WSM-DM
transition.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
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0.4

0.6

0.8

1.0

Figure 2.7: Terminal observable tilt at the weak disorder fixed point teff
[∗,SM] reached

as a function of disorder strength Γ for selected value of original tilt t.

Velocity flow: Similarly, entering γ̄ = γ into Eq. (2.26) yields the velocity
flow equation βv = −2vγ2(1 + tλ)/(1− t) valid on this line. Note that, since
we have verified that 0 < λ∗ ≤ 1, it holds that βv cannot be positive. Thus,
v decreases until reaching a fixed point with a lower but finite Fermi velocity
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2 Disordered tilted Weyl cones

0 < v[∗,SM] < v0 inside the weak-disorder region and v[∗,DM] = 0 outside of
it.

Note that the complete set of β-functions Eqs. (2.26)-(2.29) can be nu-
merically integrated directly to study the behavior of the model under flow
for a given set of initial parameter values. One might check that doing so
confirms the analytical considerations above and substantiates the derived
conclusions.

2.3.2 Interpretation and Discussion

The β-functions Eqs. (2.26)-(2.29) that result from RG treatment of disorder
in the (anomalously) tilted Weyl cone produce a flow that can be divided into
two qualitatively different regions separated by a quantum phase transition.
In the weak-disorder region the flow of γ and γ̄ is directed towards the origin.
Under sufficient rescalings to smaller energy scales the system reaches the
clean limit, albeit with lower but finite Fermi velocity v[∗,SM] and at the price
of acquiring a finite anomalous contribution 0 < λ[∗,SM] < 1 to the tilt. It
will thus preserve its semimetallic properties, such as a density of states that
continues to vanish at the Weyl point and grow quadratically away from it
along the lines of Eq. (2.14).

This behavior changes as the strength of the disorder in the model nears
the phase transition point [φt]. There, disorder flow is directed towards
the intermediate fixed point [∗, φt] of Eq. (2.30), at which the velocity and
anomalous tilt have β-functions

βv| [∗,φt] = −v(1 + tλ)

2(1 + t)
, βλ| [∗,φt] =

(1− λ)(1 + tλ)

2(1 + t)

that show that their flow terminates for v[∗,φt] = 0 and λ[∗,φt] = 1. However,
as mentioned before this does not imply that the system becomes metallic.
The residual scaling of v and λ at the disorder fixed point [∗, φt] is borne out
also in the DoS. By virtue of its flowing parameters, at this point it obtains
flow equation βρ|[∗,φt] = ρ. Integration of this equation at cutoff scales that
have become comparable to the chemical potential show that the disordered
DoS will develop an additional inverse power of ω at criticality. Although
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the system remains semimetallic, its DoS is enhanced to scale linearly,

ρ|
[∗,φt]

(ω) ∼ ω

(1− t2)2v3
0

. (2.31)

It is worth noting that this yields critical exponents that are indistinguish-
able from those of the disordered untilted cone [30, 35, 62], but has sub-
stantially different prefactors.

On the other side of the transition sits a phase with entirely different
characteristics. In the strong-disorder region both γ and γ̄ undergo diver-
gent flow signaling a breakdown of perturbation theory. Such problems
can be circumvented by other methods such as the self-consistent Born ap-
proximation (SCBA) that we apply in Appendix 2.5: as an ansatz one
supplements the Green function with some imaginary self-energy, which in-
troduces a new length scale into the model with which to compare the cutoff.
One then studies the conditions for which this self-energy is self-consistently
allowed to take on non-zero values. Because finite imaginary self-energies
must necessarily give a non-vanishing contribution to the density of states,
i.e. ρ(0) > 0, this by definition can only take place in the strong-disorder
region. The finite density of states observed even at the energy of the Weyl
point shows that the strong-disorder phase is metallic in nature.

For generic three-dimensional models under disorder effects it is commonly
accepted that there is a mobility edge separating localized states from ex-
tended states. The associated phase transition connects the diffusive metal
with states above the mobility edge to the Anderson insulator on the other
side [28, 46]. However, the model currently studied here contains only a
single isolated Weyl cone and thus precludes the coherent backscattering
thought to be a necessary precondition for Anderson localization. Such pro-
cesses can be included by connecting two copies of the single Weyl fermion
model with opposite chirality via off-diagonal intercone-scattering. The re-
sulting Dirac-type model, with a four-dimensional matrix structure that al-
lows for the spontaneous generation of yet more unexpected terms, will be
the subject of a forthcoming paper. Another outstanding question relates
to the stability of the disorder-induced WSM-DM transition to interactions.
Coulomb-type interactions tend to renormalize the tilt towards zero and
cause the model to flow towards the untilted limit at low energies [63], thus
competing with the disorder-mediated effects studied here.
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2.4 Conclusion

Within this paper we studied disorder in a model of a single tilted Weyl cone
of type-I starting from a weak coupling perspective. We find a complicated
multiparameter phase diagram which however still harbors a quantum criti-
cal point between a semimetallic and a diffusive metallic phase. We find that,
like in the untilted case, as the system approaches critical disorder strength,
the scaling of the density of states is enhanced to grow linearly with energy.
We furthermore show within a renormalizaiton group approach that finite
tilt quickens the disorder-induced semimetal-metal transition, see Fig. 2.5,
and that disorder renormalizes the observable tilt to increase, see. Fig. 2.7,
consistent with earlier work on this subject [27]. Future directions of research
are to verify our findings numerically using the kernel polynomial method
and also investigate the robustness under the addition of another cone. It is
also interesting to contrast the increased tilt found in the disordered system
from a recent finding in interacting Weyl systems where Coulomb interaction
was shown to decrease tilt [63]. Therefore, one should expect an interesting
interplay between the two.
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2.5 Appendix: Self-Consistent Born Approximation
(SCBA)

Besides the RG analysis of the main body we also studied the disorder-
induced semimetal-diffusive metal (SM-DM) transition in tilted Weyl cones
by means of a self-consistent Born approximation (SCBA). Implementing
the ansatz ΣSCBA = iα σ0 − i χ β d ·σσσ means that the self-energy acquires a
finite imaginary part for α, β > 0, which is directly related to the emergence
of a finite DoS even at the nodal point across the transition [25, 27, 30]. We
can then look for such solutions self-consistently and express the conditions
for their emergence in terms of the critical disorder couplings.

Inspired by the result of the RG equations we calculate the self-energy
with a more generic disorder term ΥΓ,Γ̄ = (Γσ0 ∓ Γ̄ d · σσσ) that is added
to the non-interacting model corresponding to Eq. (3.1). This yields the
self-consistency equation

ΣSCBA =

∫ ′
q

ΥΓ,Γ̄

[
G0,χ(0,q)−1 − ΣSCBA

]−1
ΥΓ,Γ̄

= i
((

(γ2 + γ̄2) + 2tγγ̄
)
σ0 − χd · σσσ

(
t(γ2 + γ̄2) + 2γγ̄

))
× (1− t2)−1 (α+ tβ) f(α+ tβ),

where f is a complicated function of α + tβ. Due to the ansatz matrix
structure of the self-energy, this is solved only by a constant ratio

ρ =
β

α
=
t(γ2 + γ̄2) + 2γγ̄

(γ2 + γ̄2) + 2tγγ̄
. (2.32)

Defining α̃2 = (1 + tρ)2α2, we then find a scalar equation for this remaining
unknown:

α̃ = α̃∆Γ,Γ̄f (α̃) , (2.33)

where ∆Γ,Γ̄ = (1 + tρ)/(1− t2)((γ2 + γ̄2) + 2tγγ̄) is a suitably defined com-
posite coupling. We can now determine the qualitative solutions to the self-
consistency equation for α̃ by contrasting the LHS and RHS of Eq. (2.33),
see Fig. 2.8. Indeed, we find that for ∆Γ,Γ̄ ≤ 1 the equation is solved only
by trivially setting α̃ = 0, whereas ∆Γ,Γ̄ > 1 opens up the possibility of a
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finite self-energy. Thus, we find an exact critical disorder line in coupling
space that is determined by the relation

(1− t2) = (1 + t2)(γ2 + γ̄2) + 4tγγ̄ . (2.34)

This equation describes an elliptic critical disorder line that coincides ex-
actly with all the non-trivial disorder fixed points, see Fig. 2.4b, as long as
we take into account a known factor of two difference between SCBA and
renormalisation group results [27, 53]. From the same picture, we can de-
duce that SCBA analysis slightly overestimates the critical disorder strength
γtc, with the terminal direction of the flow switching only between the blue
and yellow point on the positive branch of the γ̄ = 0 axis.

We extract the critical disorder strength as a function of tilt t at which the
system transitions from semimetal to diffusive metal from the SCBA ellipse
defined by Eq. (2.34). Setting γ̄ = 0 we find that it is given by

2(1 + t2)(γtφ)2 = (1− t2), (2.35)

where again we have accounted for a factor of 2. This exact relation is to be
compared with the results gathered from RG analysis, see Fig. 2.5. Scaling
back to original coupling Γ, this graph reproduces the results from Ref.[27]
up to normalization.
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Figure 2.8: (a)-(c): Comparison of α̃ and α̃∆Γ,Γ̄ f(α̃) for the indicated composite-
couplings ∆.
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3 Disorder and interactions in anisotropic
tilted Weyl cones

Up to minor notational and cosmetic alterations, this chapter
is an integral reproduction of: Tycho S. Sikkenk and Lars Fritz,
“Interplay of disorder and interactions in a system of subcritically
tilted and anisotropic three-dimensional Weyl fermions”. Phys.
Rev. B 100, 085121 (2019) [64].
For this work TSS performed all calculations, discussed the re-
sults and prepared the manuscript for publication.

3.1 Introduction

In electronic systems with band touching points the effective low energy the-
ory can often be expressed in terms of linearly dispersing Dirac fermions. Of
these Dirac systems the two-dimensional material graphene, isolated only in
2004 [65], is the most prominent representative. In the three-dimensional
Weyl subclass the massless Dirac fermions dissociate into pairs of Weyl
fermions that can separate in momentum space [66]. Band structure cal-
culations predict such excitations in several material families [23, 56], and
they have been shown to exist in materials such as TaAs, NbAs, TaP and
NbP [12–15, 24, 41, 42] in experiment.

Weyl fermions exhibit interesting physical properties, such as the chiral
anomaly and surface Fermi arcs, that have put them into the focus of intense
research interest [17, 18, 42, 67–70]. In the absence of perturbations, Weyl
systems are semimetals with a Density of States (DoS) that vanishes at the
Weyl point. The corresponding nodes in the spectrum are sources and sinks
of Berry curvature, and their resultant opposite topological charges imply
that no gap can be opened in the spectrum without merging chiral partner
modes. This makes the semimetallic (SM) phase remarkably robust to weak
perturbations.

Disorder constitues an irrelevant perturbation to the three-dimesional
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Weyl semimetal in the renormalization group (RG) sense. Consequently,
the system was subjected to perturbation theory based methods that showed
that the SM phase prevails up to a critical disorder strength [25, 29, 71].
Beyond this critical strength it enters a diffusive metallic (DM) phase char-
acterized by a finite Density of States at the Weyl point. This view is
challenged by numerical results that call into question the existence of the
SM phase on the basis of rare regions leading to an exponentially small but
finite DoS at Fermi level [31]. More recent analytical works, however, insist
on the stability of the SM phase and absence of these rare regions [72].
Irrespective of the final resolution of this matter for intermediate energy
scales the critical point between SM and DM phases should still control the
physics, validating perturbative approaches. Even at high degrees of dis-
order Anderson localization cannot occur in a model of a single Weyl cone
due to the absence of available backscattering states. In realistic models
comprising multiple pairs of chiral Weyl pairs backscattering processes con-
necting different cones are allowed, but they are supressed by the intercone
distance in reciprocal space [25].

Furthermore, Coulomb interactions are a marginal perturbation in any
number of dimensions. Due to the vanishing free Density of States at the
Fermi level in Weyl semimetals they are left unscreened [73]. These long-
ranged interactions decay quadratically in momentum space so that pro-
cesses connecting well-separated Weyl nodes are surpressed. It is worth
emphasizing that such interactions constitute but a particular version of
quantum electrodynamics, whose central tennet is the preservation of the
invariance under the U(1) local gauge transformation. The coupling of the
Weyl fermions with the photon mediating the Coulomb interactions should
then be subject to Ward identities [1, 74].

In Weyl semimetal materials the Fermi velocity of the cone is much lower
than the speed of light c. Consequently, Coulomb interactions are instanta-
neous on the time scale of the fermions and retardation effects are neglible
[75]. Furthermore, unlike in particle physics, the effective Weyl fermions
need not be Lorentz invariant. This allows for various distortions in the
conical dispersion of condensed matter Weyl semimetals. Anisotropies are a
common occurence in the Weyl spectrum and have several observable effects
[53]. Tilts also appear frequently and have been predicted [53, 76, 77] and
experimentally found [78] to produce clear signatures in various properties.
In type-II Weyl cones the dispersion is tilted over, so that hole and particle

64



3.2 Model Setting

pockets emerge in the Fermi surface besides the Weyl nodes by which the
DoS develops a finite value [7]. We here restrict to the subcritical tilts in
type-I Weyl cones, which preserve the point-like nature of the Fermi surface.
Within this model the effects of the tilt derive from increasing the number
of states available at a given finite energy.

In this paper, we present a renormalization group analysis of the inter-
play of disorder and interactions at Fermi level in three-dimensional Weyl
fermions with a tilted and anisotropic dispersion. Including both disor-
der and electromagnetic perturbations stabilizes the SM phase in untilted
isotropic cones [61]. Whereas the degree of tilting is increased by disorder
[39], Coulomb interaction tends to decrease it [63]. Coulomb interactions
cause flow towards restoration of the isotropy of the Weyl dispersion, while
disorder effects magnify the anisotropy between different momentum direc-
tions. The goal of this study is then to investigate the combined effect of
these competing tendencies and the possible existence of new fixed points.

The two main results of this study are: (I) despite competing tendencies
to lowest loop order there is no new fixed point and like in the untilted
case the SM phase is stabilized by the interplay of disorder and Coulomb
interaction. (II) Using a field transformation to capture all RG generated
terms we find a Ward identity by which this result holds to all orders in
perturbation theory.

The main body of the paper is organized as follows. Sec. 3.2 introduces
the model and especially discusses the need for a field transformation to
capture all terms generated under RG transformation. Sec. 3.3 presents the
flow equations resulting from a lowest loop order expansion. Sec. 3.4 follows
with a discussion of the flow equations. We first treat various limiting cases
analytically in Subsecs. 3.4.1-3.4.5 before numerically considering the full
RG flow of the general theory in Subsec. 3.4.6. In Sec. 3.5 we establish a
Ward identity of the model and discuss its implications for calculations at
any order in perturbation theory. We finish with a conclusion in Sec. 3.6.

3.2 Model Setting

In this section we present our model and set it up for RG treatment. While
we have relegated the technical details of the diagrammatic calculations to
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appendix 3.7, they eventually result in the set flow equations presented in
Sec. 3.3.

As argued in the introduction, the separation of Weyl cones in momen-
tum space both represses processes that merge nodes of opposite topological
charge, without which a gap cannot open in the dispersion, and subdues
intercone disorder scattering and Coulomb interactions. We thus reason-
ably start from the generalized Bloch Hamiltonian of a single isolated Weyl
fermion in d+ 1 dimensions,

H0,χ(q) = v
[
t q‖σ0 + χ

(
q‖d + η q⊥

)
· σσσ
]
, (3.1)

where the dot product implies summation over d spatial dimensions. The
Weyl matrices σµ are 2m−1 dimensional, where m = floor [(d+ 1)/2], and
satisfy the anticommuting Clifford algebra {σµ, σν} = δµν for µ, ν = 0, 1, . . . , d.
Here, σ0 may be interpreted as the 2m−1 dimensional identity matrix. Note
that in the case that d = 3 the Weyl matrices reduce to the commonly known
Pauli matrices. We have furthermore introduced a momentum parametriza-
tion where component q‖ = d · q is oriented along the unit vector d while
q⊥ = q− q‖d is a radial projection onto the (d− 1) dimensional perpendic-
ular plane. The chirality of the Weyl node is determined by χ = ±1. The
Hamiltonian of Eq. (3.1) results in a dispersion given by

E0,s(q) = v
(
tq‖ + s

√
q2
‖ + η2q2

⊥

)
, (3.2)

where s = ±1 distinguishes the conduction and valence bands. The Fermi
velocity is given by v, while η controls the possible development of anisotropy
between the parallel and perpendicular momentum directions. The param-
eter t tilts the Weyl cone in the direction of d. Increasing t causes the band
structure to tilt over until the fermion becomes dispersionless as t→ 1. This
breakdown of the SM phase is also apparent in the divergence at overtilting
of the DoS

ρ0,χ(ω) = − 1

π

∫
q

Im Tr G0,χ(ω + i0+,q) ∼ ω2

v3η2(1− t2)2
, (3.3)

where we have used the propagator corresponding to the Weyl Hamiltonian
of Eq. (3.1),

G−1
0,χ = iω σ0 −H0,χ (3.4)

= (iω − vt q‖)σ0 − vχ(q‖d + ηq⊥) · σσσ.
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3.2 Model Setting

In the remainder of this work, we concentrate on type-I Weyl cones with
subcritical tilts 0 ≤ t < 1.

We are interested in the behavior of Weyl fermions in a disordered back-
ground that is described by a quenched potential landscape V (x) obeying a
Gaussian white-noise distribution with

〈V (x)〉 = 0, 〈V (x)V (x′)〉 ∼ δ(|x− x′|). (3.5)

We average over the random potential using the replica trick, so preserving
generic disorder properties [3, 79]. This entails taking many copies of the
theory, promoting the various disorder distributions to a collective field V
that is integrated over in the partition function with Gaussian weight

SV =
1

2

∫
q
Vq V−q, (3.6)

and finally taking the number of replicas to zero in the limit. Suppressing
the summed over replica indices, this results in a free fermion action

Sψ =

∫
ω,q

ψ†ω,qG
−1
0,χψω,q. (3.7)

We couple the external disorder field to the density of the Weyl fermions
according to

Sdis = Γ

∫
q,q′,ω

Vq−q′
(
ψ†q,ω σ0 ψq′,ω

)
. (3.8)

Note that this approach is equivalent but technically differs from the more
standard way of treating the disorder in which the field V is integrated out
explicitly, resulting in a four-fermion interaction term.

The Weyl fermions are furthermore coupled amongst each other by means
of long-range Coulomb interactions. This is represented as

SCou = ig

∫
q,q′,ω,ω′

ϕq−q′,ω−ω′
(
ψ†q,ω σ0 ψq′,ω′

)
, (3.9)

where the fermions are interacting by means of a scalar gauge photon, whose
free propagation is given by

Sϕ =
1

2

∫
ω,q

ϕω,qD
−1
0 ϕ−ω,−q. (3.10)
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3 Disorder and interactions in anisotropic tilted Weyl cones

In Weyl semimetals the Fermi velocity is typically much smaller than the
speed of light, v′ � c, so that retardation effects in the Coulomb interaction
can be safely neglected [75]. As a consequence, the bare photon propagator
is taken to be

D−1
0 = qd−1−ε̄ =

(
q2
‖ + q2

⊥

)(d−1−ε̄)/2
, (3.11)

where ε̄ → 0 is a dimensional regulator that is introduced for technical
reasons.

In real materials the dispersion can feature many different pairs of Weyl
cones at comparable energies [13, 23]. In the above we have implicitly ne-
glected the disorder scattering between different cones as it is surpressed by
their momentum space distance [25, 48]. The intercone Coulomb interac-
tion, in three dimensions decaying as ∼ 1/q2, is similarly subdued by the
cone separation and is thus also omitted [63].

As was noted previously, perturbing the bare system Sψ by disorder action
Sdis generates a new term ∼ t iω d · σσσ in the self-energy contribution once
a finite tilt t > 0 is included [39]. This was also observed recently in the
context of two dimensional Dirac fermions perturbed by various types of
disorder [80, 81]. In those works this issue was resolved by adding the
term to the bare Green function by hand and treating it as a bona fide,
stand-alone parameter of the theory. We here propose a different scheme to
manage such terms, in which we absorb the anomalous contributions in a
redefinition of the fermion field. This will have ramifications for both the
bare parameters and the couplings of the theory we consider.

We transform the fermion field according to

ψω,q = λ̂1/2 ψ′ω,q, λ̂ = σ0 − λχd · σσσ. (3.12)

This transformation matrix equals the identity at the beginning of our RG
procedure and only perturbatively obtains a non-trivial structure. Under
influence of this shift the free fermion action of Eq. (3.7) becomes

S′ψ =

∫
ω,q

ψ′†ω,qG
′−1
0,χψ

′
ω,q (3.13)
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3.2 Model Setting

with a modified (inverse) Green function

G′−1
0,χ = λ̂1/2G−1

0,χλ̂
1/2 (3.14)

= (iωλ̂− v′t′q‖)σ0 − v′χ
(
q‖d + η′q⊥

)
· σσσ.

This propagator has the same flavor as the original, with parameters that
are related as

v′ = v (1− tλ), η′ = η

√
1− λ2

1− tλ
, t′ =

t− λ
1− tλ

, (3.15)

or alternatively,

v = v′
1 + t′λ

1− λ2
, η = η′

√
1− λ2

1 + t′λ
, t =

t′ + λ

1 + t′λ
. (3.16)

Unlike in Eq. (3.4), however, in the transformed propagator Eq. (3.14) the
frequency iω is supplemented with the matrix structure of the transformation
that can absorb the contributions deriving from the disorder-induced self-
energy. Since detG′0,χ = detG0,χ/ det λ̂, the poles of the Green function
remain unchanged under transformation Eq. (3.12) and the energy spectrum
remains given by Eq. (3.2). Rather, the newly generated parameter λ acts
on the level of the quasiparticle weight attributed to the excitations of the
system.

The field transformation also impacts the coupling terms of the action,
Eqs. (3.8)-(3.9). They become

S′dis =

∫
ω,q,q′

Vq−q′ψ
′†
ω,q

(
Γ λ̂
)
ψ′ω,q′ , (3.17)

S′Cou =

∫
ω,ω′,q,q′

ϕω−ω′,q−q′ ψ
′†
ω,q

(
ig λ̂

)
ψ′ω′,q′ . (3.18)

As the above equations show, one of the merits of the transformation pro-
cedure Eq. (3.12) is that minimal coupling between frequency iω on the one
hand and gauge field ϕ and external field V on the other hand is respected
by construction. The same parameter λ is now present not only in the Green
function Eq. (3.14) but also in both interacting parts of the action. We will
find that it will obtain identical renormalizations in each of these sections.

69



3 Disorder and interactions in anisotropic tilted Weyl cones

3.3 RG equations

We study the action

S′0 = S′ψ + SV + Sϕ, S′int = S′dis + S′Cou, (3.19)

in the framework of RG based on renormalized perturbation theory. Coun-
terterms are introduced as yi,0 = Zyi yi(µ), where Zyi = 1 + δyi . Under
anisotropic space-time rescaling

ω → µ+zω, q→ µ+1q, (3.20)

the parameters and fields change as yi(µ)→ µ+[yi] yi(µ), where [yi] denotes
dimensionality. We determine the scaling dimensions of the fields from S′0 to
be [ψω,q] = −(d + 2z)/2 for the fermion field, [Vq] = −d/2 for the disorder
field, [ϕω,q] = −(2d + z − 1 − ε̄)/2 for the photon field and [v] = z − 1 for
the Fermi velocity. The other parameters are scale-invariant, i.e., [t] = [λ] =
[η] = 0.

The disorder coupling has dimension [Γ] = z−d/2 meaning for a free Weyl
theory (z = 1) it is marginal in d = 2 and irrelevant in d = 3. The Coulomb
interaction mediated by the photons has scaling dimension [g] = (z−1−ε̄)/2,
where ε̄ → 0 in the end. In that case Coulomb interactions are marginal
irrespective of the number of spatial dimensions. In the following we perform
a double ε-expansion around the marginal dimension, d = 2 and ε̄ = 0 by
working in d = 2 + ε. We keep ε and ε̄ finite throughout the calculation and
take ε→ 1, corresponding to three dimensions, and ε̄→ 0 in the end. Such
dimensional regularization is known to respect gauge invariance [1].

We perform a one loop expansion in Γ and Coulomb interaction strength
g. Within our scheme the tilt t, anisotropy η and the generated parameter λ
are treated non-perturbatively. This results in the set of diagrams presented
in appendix 3.7. The required counterterms and derived flow equations are
set out in appendix 3.8. In appendix 3.9 they are translated back to β
functions of the original model parameters appearing in the dispersion by
using Eq. (3.15).

We express the flow in terms of dimensionless couplings

α =
Ωd µ

ε̄

4(2π)d v
g2, γ2 =

Ωd µ
ε

(2π)d v2
Γ2, (3.21)
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3.4 Discussion of the RG equations

with Ωd the d-dimensional solid angle. The primary set of four coupled
ultraviolet flow equations is then given by

βt = t

{
1

η
√

1− t2
γ2 − αF η‖

}
, (3.22)

βη = −η
{

t2

η(1− t2)3/2
γ2 + α

(
F η‖ − F

η
⊥

)}
, (3.23)

βα = α

{
−ε̄+

1

η
√

1− t2
γ2 − αF η‖

}
, (3.24)

βγ = γ

{
− ε

2
+

1

η
√

1− t2
γ2 − αF η‖

}
, (3.25)

where βyi = −dyi/d lnµ for parameters yi. We stress that the limits ε̄→ 0,
ε→ 1 should be taken in the end. We have furthermore defined two functions
that depend solely on the anisotropy η,

F η‖ =
4η
[
EllipticE(1− η−2)− EllipticK(1− η−2)

]
π(1− η2)

, (3.26)

F η⊥ = −
4
[
EllipticE(1− η2)− EllipticK(1− η2)

]
π(1− η2)

. (3.27)

When isotropy is restored, η = 1, these functions return F η=1
‖ = F η=1

⊥ = 1.

Apart from the coupled set Eqs. (3.22)-(3.25), the behavior of the remain-
ing parameters obey

βv = v

{
z − 1− 1

η
√

1− t2
γ2 + αF η‖

}
, (3.28)

βλ = t
1− λ2

η(1− t2)3/2
γ2. (3.29)

Note from the last equation that the spontaneous generation of a finite value
transformation parameter λ is conditional on the simultaneous presence of
non-zero tilt and disorder.

3.4 Discussion of the RG equations

The β functions in Eqs. (3.22)-(3.25) form a closed set that describes the scale
dependence of the general theory of a tilted and anisotropic Weyl semimetal
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3 Disorder and interactions in anisotropic tilted Weyl cones

under influence of disorder and interactions. In the following we indicate
the initial parameters by a subscript zero in keeping with previously used
terminology [39]. We stress that the field transformation Eq. (3.12) is
necessary only to account for perturbatively generated terms, so that we
strictly have λ0 = 0 initially.

There are multiple parameter combinations for which the primary β func-
tions vanish simultaneously. These fixed points are indicated by subscript
asterisk. The corresponding values for the secondary parameters v and λ
can then be obtained from their flow equations by substitution. The fixed
points are characterized by a set of exponents that control the critical physics
in their vicinity. The correlation length ξ scales as ξ ∼ δ−ν , where δ cor-
responds to a linearization of the most relevant operator around the fixed
point and ν is the correlation length exponent (CLE). For finite ν > 0 the
correlation length diverges when δ → 0 on approach to the fixed point, a
critical indication the system is undergoing a phase transition. Technically,
ν is the inverse of the most repulsive eigenvalue of the linearized RG trans-
formation matrix Mij = ∂βyi/∂yj |∗ at the fixed point. Since the parameter
transformations Eq. (3.16) can become singular the CLE is best derived from
the flow equations of the parameters presented in appendix 3.8. Another ex-
ponent is straightforwardly found from Eq. (3.135). At a fixed point v is
scale-invariant, requiring a dynamical scaling exponent (DSE)

z = 1 +

[
1

η
√

1− t2
γ2 − αF η‖

]
∗
. (3.30)

This is highly significant as the DoS of the three-dimensional Weyl cone
model scales with the energy away form the band touching point as

ρ(ω) ∼ |ω|(3−z)/z (3.31)

in the SM phase, including close to the phase transition into the DM [82].
Both disorder and Coulomb interactions modify the DSE away from unity
and could then lead to perturbative corrections to the square scaling of the
free DoS in Eq. (3.3).

In order to interpret the flow produced by the RG equations it is instruc-
tive to first consider some of the limiting cases.
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3.4 Discussion of the RG equations

3.4.1 Untilted, disordered case

Firstly we investigate the untilted non-interacting model as in Refs. [25, 62],
corresponding to initial values λ0 = t0 = α0 = 0. All the primary flow
equations reduce to zero, except for the disorder β function

βγ = γ

{
− ε

2
+

1

η0
γ2

}
. (3.32)

Note that the presence of fermion anisotropy η is trivial only affecting the
flow as a numerical factor and therefore omitted in our discussion. The
disorder flow is typified by two distinct fixed points. First of all, there is
the trivial attractive fixed point at γ∗ = 0. Here we find that ν = 0 and
z = 1, reflecting the irrelevance of the disorder perturbation. This fixed
point is associated with the clean SM phase asymptotically described by
the bare action Eq. (3.7), in which the DoS scales quadratically with the
energy. Secondly there is a non-trivial fixed point at intermediate disorder
γ∗ =

√
η0ε/2. It is repulsive, separating the weakly disordered SM phase

from the strongly disordered DM phase at critical value γ0,c = γ∗. This SM-
DM phase transition is characterized by a correlation length diverging with
exponent ν. For the dynamical critical exponent we find from Eq. (3.30)
that z = 3/2. Close to the critical point the Density of States is enhanced
by strong disorder effects, scaling linearly away from the nodal point before
becoming finite in the DM phase.

3.4.2 Untilted, interacting case

Alternatively we reflect on the basic model of an untitled Weyl cone with
Coulomb interactions. Its purely isotropic limit was first studied in Ref. [83],
and we here include the possibility of anisotropy in the Weyl fermion dis-
persion. We set out from the clean, untilted limit t0 = γ0 = 0. The primary
β functions (3.22)-(3.25) reduce to

βη = −ηα
(
F η‖ − F

η
⊥

)
, βα = −α

{
ε̄+ αF η‖

}
, (3.33)

and the others vanishing. The two-dimensional flow described by these equa-
tions is presented in streamplot Fig.3.1. It is invariably directed towards the
trivial non-interacting fixed point α∗ = 0 where also the isotropy is restored,
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Figure 3.1: Streamplot of the flow deriving from equations (3.33) of the untilted but
anisotropic and interacting model. Trivial fixed point in blue.

η∗ = 1. The corresponding critical exponents are ν = 0 and z = 1, reflecting
the irrelevance of Coulomb interaction. The DoS receives logarithmic correc-
tions that decrease it with compared to its free quadratic scaling behavior.

3.4.3 Untilted, disordered, interacting case
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Figure 3.2: Streamplot of the flow corresponding to the isotropic limit η0 = 1 of
equations (3.36) for the untilted model perturbed by disorder and in-
teractions. Trivial fixed point in blue, numerical approximation of the
phase boundary γ0,c between SM and DM in red.

Perturbing the free Weyl fermion model with both disorder and Coulomb
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3.4 Discussion of the RG equations

interactions, the setup studied in Refs. [61, 84] without anisotropy, means
interplay effects might appear. The primary β functions are

βη = −η α
(
F η‖ − F

η
⊥

)
, (3.34)

βα = α

{
−ε̄+

1

η
γ2 − αF η‖

}
, (3.35)

βγ = γ

{
− ε

2
+

1

η
γ2 − αF η‖

}
. (3.36)

which produce the two-dimensional flow depicted in Fig. 3.2 in the isotropic
case η0 = 1. Due to the different scaling dimensions of the perturbations
these equations cannot simultaneously vanish at finite disorder and Coulomb
interaction and there are no new fixed points. The anisotropy of the model
influences the flow quantitatively but does not fundamentally change its
topology as there is no competition in its β function. Within the SM region
all flow is directed towards the previously encountered trivial point α∗ = 0,
γ∗ = 0 and η∗ = 1 with exponents ν = 0 and z = 1 at which the model is
asymptotically free, clean and isotropic. In the disorder-only limit there is
also the non-trivial fixed point for α∗ = α0 = 0 and γ∗ =

√
η∗ε/2 with η∗ =

η0 that governs the phase transition into the DM state. It is perturbatively
destabilized by the Coulomb interaction, extending into a phase boundary
that expands the SM region towards higher disorder along which CLE is
unchanged at ν = 1 [61].

3.4.4 Tilted disordered case

We next introduce a tilt into the model of a Weyl fermion perturbed by
disorder, as studied before in Ref. [39]. The β functions of interest reduce
to

βt = t
1

η
√

1− t2
γ2, βη = −η t2

η′(1− t2)3/2
γ2,

βγ = γ

{
− ε

2
+

1

η
√

1− t2
γ2

}
. (3.37)

By virtue of the identity βη/η = −tβt/(1 − t2) the ratio η2/(1 − t2) =
η2

0/(1− t20) is constant under renormalization group flow. Consequently the
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Figure 3.3: Streamplot of the flow deriving from equations (3.37) of the tilted disor-
dered model. Line of trivial fixed points at 0 ≥ t∗ < 1 in blue, numerical
approximation of the phase boundary γ0,c between SM and DM in red.

flow corresponding to this set of three differential equations can summarized
in the two-dimensional streamplot Fig. 3.3. The tilt shifts the boundary
between semimetallic and diffusive metallic phases to lower critical disorder,
see Fig. 3.4. Within the SM region, the flow is directed towards a line of
clean fixed points at zero disorder γ∗ = 0 and finite tilts t0 < t∗ < 1 and
anisotropies 0 < η∗ < η0. Note that this corresponds to values 0 < λ∗ < 1
for which the transformation Eq. (3.12) remains well-behaved. This fixed
line inherits its exponents ν = 0 and z = 1 from the trivial untilted and
clean fixed point. The renormalized cone progessively tips over as the initial
disorder approaches the critical value, see Fig. 3.5a. Similarly, the final
anisotropy at the disorder-free line of fixed points decreases after flowing
from more disordered points, going to zero towards the phase boundary, see
Fig. 3.5b. The untilted nontrivial fixed point at γ∗ =

√
η0ε/2 with exponents

z = 3/2 and ν = 1 is destabilized by the inclusion of a tilt term in favor of
a new fixed point along the phase boundary at γ∗ = (1− t2∗)1/4

√
η∗ε/2 with

η∗ → 0 and t∗ → 1. This new fixed point is however again characterized by
critical exponents z = 3/2 and ν = 1.

3.4.5 Tilted interacting case

Alternatively there is the case of the tilted Weyl fermion perturbed by
Coulomb interactions, whose isotropic case was studied in Ref. [63]. The
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Figure 3.4: The critical initial disorder strength γ0,c of the SM-DM phase transition
for α0 = 0 diminishes as initial tilt t0 increases.
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(a) t∗ as function of a parame-
ter combination proportional
to γ0 for arbitrary η0.
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(b) η∗ as function of a parame-
ter combination proportional
to γ0 for t0 = 1/2.

Figure 3.5: Change of final tilt and anisotropy at the fixed line γ∗ = 0 as a function
of the initial parameters of the tilted disordered model.

set of β functions becomes

βt = −tαF η‖ , (3.38)

βη = −ηα
(
F η‖ − F

η
⊥

)
, (3.39)

βα = −α
{
ε̄+ αF η‖

}
. (3.40)

The flow of the anisotropy and Coulomb interaction strength is independent
of the tilt, and was previously depicted in the streamplot Fig. 3.1. The
interactions will inevitably renormalize the tilt downwards, asymptotically
restoring the isotropy of the Weyl cone. All flow is towards the untilted,
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3 Disorder and interactions in anisotropic tilted Weyl cones

isotropic and non-interacting fixed point at t∗ = 0, η∗ = 1 and α∗ = 0 with
exponents ν = 0 and z = 1.

3.4.6 Full treatment: tilted, disordered and interacting case

(a) Front view. (b) Side view.

Figure 3.6: The critical initial disorder strength γ0,c of the SM-DM phase transition
as a function of initial tilt t0 and anisotropy η0 for fixed ratio α/t =
α0/t0 = 1.

We finally consider the full set of flow equations for the tilted anisotropic
Weyl fermion under perturbation from disorder and Coulomb interactions,
Eqs. (3.22)-(3.25). These perturbations have competing effects, which play
out in both the bare parameters and the couplings themselves. Since Coulomb
interaction is marginal on tree level it holds that βt/t = βα/α meaning the
ratio α/t = α0/t0 remains invariant under the RG transformation. A three-
dimensional set of equations is then sufficient to capture the flow,

βt = t

{
1

η
√

1− t2
γ2 − tα0

t0
F η‖

}
,

βη = −η
{

t2

η′(1− t2)3/2
γ2 + t

α0

t0

(
F η‖ − F

η
⊥

)}
,

βγ = γ

{
− ε

2
+

1

η
√

1− t2
γ2 − tα0

t0
F η‖

}
. (3.41)

We numerically integrate these equations to study the SM-DM phase tran-
sition. Usefully we can use the spectator β function for λ, Eq. (3.136), to
determine the value of the phase transition line as it only vanishes at λ∗ = 1
for finite tilt and disorder. This procedure yields a two-dimensional phase
boundary, depicted in Fig. 3.6, of the critical initial disorder γ0,c versus
initial tilt t′0 and anisotropy η0. In its vicinity the physics of the model
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is controlled by the isotropic, untilted disordered but non-interacting fixed
point with exponents ν = 1 and z ≈ 3/2. In the DM phase, for larger
initial disorder content γ0 > γ0,c, the flow is directed towards strong disor-
der and ever larger Coulomb interactions. Within SM region γ0 < γ0,c all
flow is towards the trivial fixed point with ν = 0 and z = 1, corresponding
to the clean, free model. Due to the mismatch of the zeroth order scaling
dimensions of the perturbations, ε̄ < ε, the Coulomb interactions scale out
much more slowly at small couplings. As such, in the SM phase the Weyl
cone is asymptotically upright and isotropic. The fixed line at γ∗ = 0 with
finite t∗ > 0 and η∗ 6= 1 encountered in the non-interacting case α0 = 0 is
destabilized when Coulomb interactions are included.

3.5 Ward Identities and charge non-renormalization

From Eqs. (3.24)-(3.25) it is clear that the disorder and Coulomb interaction
cannot have a fixed point at which these couplings are both finite. Although
their first order corrections are identical, as the zeroth order scaling dimen-
sions ε̄ → 0, ε → 1 differ simultaneous satisfaction of these equations is
impossible.

We have found that this statement can be generalized, and that it so
continues to hold to any order in perturbation theory. It is also independent
of the presence of tilts and anisotropies in the dispersion. Disorder and
Coulomb interaction couple in a very similar manner and have analogous
perturbative expansions with diagrams of the same form. The polarization
bubble, Fig. 3.7c, is regular using our d = 2 + ε dimensional regularization
scheme. Therefore all diagrams that include it are subleading and can be
neglected. In other words, neither the photon nor the disorder propagator
obtains any renormalization at any order in perturbation theory. At a given
order p, corrections come from all (one-particle irreducible) permutations of
2p vertices inserted on a single continuous fermion line. As such, all diagrams
responsible for vertex renormalization can be exhaustively generated from
self energy diagrams renormalizing the fermion propagator by introducing
the suitable external vertex at all possible internal positions on the fermion
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3 Disorder and interactions in anisotropic tilted Weyl cones

line [74]. Using the identity

∂iω′G
′
0,χ(iω − iω′,k− q)

= −G′0,χ(iω − iω′,k− q) λ̂ G′0,χ(iω − iω′,k− q), (3.42)

this might diagrammatically be depicted as

<latexit sha1_base64="ESBHOawUBzh2fZauENGlv6OiGYU="></latexit><latexit sha1_base64="ESBHOawUBzh2fZauENGlv6OiGYU="></latexit><latexit sha1_base64="ESBHOawUBzh2fZauENGlv6OiGYU="></latexit><latexit sha1_base64="ESBHOawUBzh2fZauENGlv6OiGYU=">AAADG3icbZLNjtMwEMed8LWEry7c4GJRrbRIVeWsQMul0opqJY4L2nYrtVXlOJPEquNEtlOpRDnwIJy5wjNwQ1w58Ai8BU4aKN3dkSz98/tPxp6xg1xwbQj55bg3bt66fWfvrnfv/oOHjzr7j8c6KxSDEctEpiYB1SC4hJHhRsAkV0DTQMBFsBzW/sUKlOaZPDfrHOYpjSWPOKPGosW+8/RgfPr+/HSyGIZDbxZAzGUZpVHEBVRlBGsZK5onlYfx1tygQ5+Q3vGrF9aypsUCIlNyv8ePqn9M8TgxZeZviS2qUrt3VaeuyHXGiuzUKEOqE9AN/7/SqgyBZaqvE5rDgHHFBPQ2yB5fQDiwTghhD7d5/AMMfGISzpZ1saYpkOG2Je/vZ9P+otMlfdIEvir8VnRRG2eLzu9ZmLEiBWmYoFpPfZKbeUmV4fZolefNCg05ZUsaQzPbNK/wDp1aKWkKel42d1vhA0tCHGXKLmlwQ3fq0FTrdRrYzJSaRF/2anidNy1M9HpecpkXBiTbbBQVApsM1w8Fh1wBM2JtBWWK2xYwS6iizNjn5NnZ+JcncVWMj/q+1e9edk/etFPaQ8/Qc3SIfHSMTtBbdIZGiDkfnc/OF+er+8n95n53f2xSXaf95wnaCffnHy3i+B8=</latexit>

= −Γ ∂iω′ ( ) ,

<latexit sha1_base64="tyJuYLc8MUrgpGwB9KrtpzglDtw="></latexit><latexit sha1_base64="tyJuYLc8MUrgpGwB9KrtpzglDtw="></latexit><latexit sha1_base64="tyJuYLc8MUrgpGwB9KrtpzglDtw="></latexit><latexit sha1_base64="tyJuYLc8MUrgpGwB9KrtpzglDtw="></latexit>

= −(ig) ∂iω′ ( ) , (3.43)

where the shaded areas represent the sum of all (one-particle irreducible)
subdiagrams that can be used to connect the external legs and the deriva-
tive is understood to be taken with respect to the external frequency and
applying the product rule. Note that the equality is only strictly valid for
vanishing external frequency and momentum on the non-fermion third leg
in the vertex diagram. However, contributions for finite inputs are irrele-
vant and may thus be disregarded for RG purposes. Due to the relations
Eq. (3.43) vertex corrections will be exactly cancelled by the counterterms
δψ′ for the fermion field and δλ for the field transformation parameter by the
counter terms ∼ iω from the self-energy corrections. We then have identi-
cally vanishing counterterms δΓ = δg = 0. Such charge non-renormalization
has been observed before in the 2d context of graphene by Ref. [85]. A con-
sequence δγ = δα = −δv, at all orders in perturbation. The β functions of
the dimensionless couplings can thus only differ in the tree level scaling di-
mensions ε̄→ 0, ε→ 1, and a intermediate fixed point at finite disorder and
Coulomb interaction cannot exist up to any order in perturbation theory.

In more general terms the non-renormalization of Γ and g can be identified
as Ward identity deriving from the gauge invariance of the model. At its core
it is but a particular manifestation of quantum electrodynamics, of which
such symmetries are a defining characteristic. The Lagrangian contains a
term of the form

ψ′†ω,q
[
iω δ(ω − ω′)δ(q− q′) + ig ϕω−ω′,q−q′

+ Γ δ(ω − ω′)Vq−q′
]
λ̂ ψ′ω′,q′ , (3.44)

which can be obtained from the free Green function in Eq. (3.14) by a min-
imal coupling procedure. Here the disorder field V acts as an external field,
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which should ordinarily couple to the fermion fields with equal charge g
as the (scalar) gauge field ϕω,q mediating the electromagnetic interactions.
This term would then be protected during renormalization flow by Ward
identities, i.e., gauge invariance, to all orders in perturbation theory, guar-
anteeing that δΓ = δg = 0. However as the zeroth order scaling of δ(ω)Vq
does not match that of counterpart ϕω,q, relative compensation between the
dimensions of the couplings Γ and g is necessary. It is thus that the β func-
tions of γ and α can only ever differ by the tree level scaling dimensions
up to all orders in perturbation theory. Note furthermore that this argu-
ment applies to all type-I Weyl fermions including the untilted case [61],
irrespective of possible tilts or anisotropies in their dispersion, as the λ̂ field
transformation preserves minimal coupling by construction.

3.6 Conclusion

Within this paper we studied type-I Weyl fermions including anisotropies
and tilt and their physics if exposed to disorder and Coulomb interactions
from an RG perspective. On a technical level, we find that a new term is
generated under renormalization group flow, which we incorporate by means
of the field transformation λ̂ of Eq. (3.12). This transformation respects the
minimal coupling between frequency iω on the one hand and gauge field ϕ
and external field V on the other hand. It also has ramifications on the other
parameters of the model, as set out in Eq. (3.15).

Without tilts or anisotropies, disorder and Coulomb perturbations result
in β functions that are the same except for the tree level scaling dimensions.
Besides the attractive trivial fixed point, with exponents ν = 0 and z = 1
there is only the repulsive non-interacting fixed point at finite disorder. It
governs the SM-DM phase transition with critical exponents ν = 1 and
z = 3/2. There cannot be an intermediate fixed point at both finite disorder
and finite Coulomb interaction [61].

Including a tilt and anisotropies does not lead to new terms in the cou-
pling β functions, but only modifies them. It does not change the qualitative
behavior and no new intermediate fixed point develops. Numerical integra-
tion shows that there is still a critical disorder value at which the system
transitions from a weakly interacting and weakly disordered phase into a
DM phase at strong interactions. It is a function of the initial values of the
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3 Disorder and interactions in anisotropic tilted Weyl cones

parameters of the model, decreasing as a function of the tilt and anisotropy
but increasing with the Coulomb interation.

Within the SM phase the flow is directed towards smaller couplings. Since
Coulomb interaction is marginal it eventually dominates disorder pertur-
bation which is irrelevant. Therefore, in the SM region, the flow is di-
rected towards the attractive trivial fixed point at which the cone is upright
and isotropic [63]. The attractive line of fixed points at which the tilt and
anisotropy reach finite values to which the flow is directed in the tilted disor-
dered model is particular to the complete absence of Coulomb interactions.
When this is included it is immediately destabilized in favor of the trivial
fixed point.

Importantly, we have found that these findings hold to all orders in per-
turbation theory, as the relation between frequency iω, gauge field φ and
external disorder field V corresponds to a minimal coupling which is pro-
tected by a Ward identity. Including a tilt does not change this as the field
transformation Eq. (3.12) uniformly affects the terms in Eq.(3.44). As a
result, there cannot be any renormalization of the coupling parameters. The
β functions of the disorder and Coulomb interactions only differ because of
their different scaling dimensions. This implies that an intermediate fixed
point at which both couplings are finite cannot exist. There is only the dis-
order driven phase transition into the DM phase from the SM phase, where
Coulomb effects will dominate due to the due to the fact that they are less
irrelevant.
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3.7 Appendix: Perturbative analysis

Under anisotropic space-time rescaling ω → µ+zω, q → µ+1q the parame-
ters and fields change as yi → µ+[yi]yi. Going beyond tree level in pertur-
bation theory in the interactions of Eq. (3.19) will result in diagrammatic
divergences that are to be cancelled by the inclusion of counterterms as
Zyi = 1 + δyi . The divergences arising from the disorder perturbation are
captured by regularization of the number of spatial dimensions d = 2 + ε
[62]. Because the Coulomb interaction offers a marginal perturbation to
the tree-level Weyl fermion indepedent of d, an additional expansion in ε̄
appearing the power of its propagator is required to absorb the resulting
divergences.

Contributing diagrams are listed in Figs.(3.7)-(3.9). We have adhered to
the convention to represent the fermion propagator G0,χ as arrowed line, the
photon propagator D0 as wavy line and propagation of the disorder field
by a dashed line. Vertices indicated by Γλ̂ derive from the disorder part
Eq. (3.17) of the interacting action. Vertices indicated by igλ̂ come from the
Coulomb part Eq. (3.18). Note here that all those graphs that have some
dependence on the number of field replicas will vanish in the replica limit.
Practically, this implies diagrams with a fermion loop connected purely by
disorder legs can be safely neglected.

The derivation of these diagrammatic divergences is presented below. In
calculating their divergences, we have often employed the generalized Feyn-
man trick

A−nB−r =
Γ[n+ r]

Γ[n]Γ[r]

∫ ∞
0

du
un−1

(uA+B)n+r (3.45)

to handle the different powers of the denominators of the Weyl fermion and
Coulomb boson propagators. Notationally, it has proved useful to define
dimensionless couplings

γ′2 =
Ωd µ

ε

(2π)d v′2
Γ2, α′ =

Ωd µ
ε̄

4(2π)d v′
g2, (3.46)

to shorten commonly occuring expressions.
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3 Disorder and interactions in anisotropic tilted Weyl cones

(a) Σ′dis(iω,k) (b) Σ′Cou(iω,k) (c) Π(iω,k)

Figure 3.7: Self-energy corrections to the fermion Green function G′0,χ and polar-
ization contributing to renormalization of photon propagator D0.

We first investigate the diagrams in Fig.(3.7), which will cause the renor-
malization of the parameters of the bare actions. The self-energy deriving
from the disorder interaction yields

Fig.(3.7a) = Σ′dis(iω,k)

= Γ2

∫
q
λ̂ G′0,χ(iω,q) λ̂

= −1

2
Γ

[
1− d

2

]
iω γ′2

1 + t′λ

η′(1− t′2)3/2
λ̂(σ0 − t′χd · σσσ)λ̂

=

(
1

ε

)
iω γ′2

1 + t′λ

η′(1− t′2)3/2

[(
(1 + λ2) + 2t′λ

)
σ0

−
(
t′(1 + λ2) + 2λ

)
χd · σσσ

]
+O(ε0). (3.47)

On the other hand, the Coulomb self-energy reads

Fig.(3.7b) = Σ′Cou(iω,k)

= (ig)2

∫
ω′,q

λ̂ G′0,χ(iω − iω′,k− q) λ̂D0(iω′,q)

= −2 Γ
[
− ε̄

2

]
v′ α′ λ̂

[
−F η‖

k‖

1− λ2
(λσ0 + χd · σσσ)

− η′

1 + t′λ
F η⊥χk⊥ · σσσ

]
λ̂

=

(
1

ε̄

)
v′ α′

[
F η‖ k‖(λσ0 − χd · σσσ)

− η′
1− λ2

1 + t′λ
F η⊥χk⊥ · σσσ

]
+O(ε̄0), (3.48)

84



3.7 Appendix: Perturbative analysis

where F η‖ and F η⊥ are functions of the anisotropy parameter η,

F η‖ =
2

π

∫ ∞
0

du u(ε̄−1)/2(1 + u)−3/2(1 + η′2u)(1−d)/2

(
k2
‖ + η2k2

⊥

)−ε̄/2( k2
‖

1 + u
+

η2k2
⊥

1 + η2u

)ε̄/2
, (3.49)

F η⊥ =
2

π

∫ ∞
0

du u(ε̄−1)/2(1 + u)−1/2(1 + η′2u)−(1+d)/2

(
k2
‖ + η2k2

⊥

)−ε̄/2( k2
‖

1 + u
+

η2k2
⊥

1 + η2u

)ε̄/2
. (3.50)

Note that these functions are not divergent under ε̄ → 0. At zeroth order
in ε̄, the integrals in Eqs. (3.49)-(3.50) can be done explicitly and functions
reduce to the definitions given in Eqs. (3.97)-(3.98) of the main body. For
the polarisation we find the expression

Fig.(3.7c) = Π(iω,k)

= −(ig)2

∫
ω′,q

Tr
[
λ̂ G′0,χ(iω′,q) λ̂ G′0,χ(iω′ + iω,q + k)

]
= −2m−dα′

(
d− 1

d

)
Γ

[
d− 1

2

]
Γ

[
3− d

2

]
1− λ2

1 + t′λ
(v′η′)1−dµd−3k′2

= O(ε0). (3.51)

(a) (b) (c)

Figure 3.8: Vertex corrections to disorder coupling Γ.
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Then there are the diagrams in Fig.(3.8), which will renormalize the disor-
der interaction strength Γ. The disorder-only leading order correction yields

Fig.(3.8a) = Γ3

∫
q

[
λ̂ G′0,χ(iω,q)

]2
λ̂

= Γ

[
1− d

2

]
d− 1

2
Γγ′2

1 + t′λ

η′(1− t′2)3/2
λ̂(σ0 − t′χd · σσσ)λ̂

= −
(

1

ε

)
Γ γ′2

1 + t′λ

η′(1− t′2)3/2

[(
(1 + λ2) + 2t′λ

)
σ0

−
(
t′(1 + λ2) + 2λ

)
χd · σσσ

]
+O(ε0), (3.52)

whereas the mixed disorder-Coulomb diagram results in

Fig.(3.8b) = Γ(ig)2

∫
ω′,q

D0(iω′,q)
[
λ̂ G′0,χ(iω − iω′,k− q)

]2
λ̂ = 0.

(3.53)

Another perturbative contribution to the disorder vertex comes from the
fermion loop diagram

Fig.(3.8c) = −(ig)2Γλ̂

∫
ω′,q

D0(iω,k)

Tr
[
λ̂ G′0,χ(iω′,q) λ̂ G′0,χ(iω′ + iω,q + k)

]
= −2m−dα′

(
d− 1

d

)
Γλ̂

[
d− 1

2

]
Γ

[
3− d

2

]
1− λ2

1 + t′λ
(v′η′)1−dµd−3

= O(ε0). (3.54)

Lastly there are the diagrams in Fig.(3.9), which source the renormaliza-
tion of the Coulomb interaction strength g. The purely Coulombic diagram
vanishes identically,

Fig.(3.9a)

= (ig)3

∫
ω′,q

D0(iω′,q)
[
λ̂ G′0,χ(iω − iω′,k− q)

]2
λ̂

= 0, (3.55)
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(a) (b)

Figure 3.9: Vertex corrections to the Coulomb coupling g.

in a restatement of gauge invariance. The mixed diagram however results in
a finite contribution of the form

Fig.(3.9b) = (ig)Γ2

∫
ω′,q

δ(ω − ω′)
[
λ̂ G′0,χ(iω′,q)

]2
λ̂

= Γ

[
1− d

2

]
d− 1

2
(ig)γ′2

1 + t′λ

η′(1− t′2)3/2
λ̂(σ0 − t′χd · σσσ)λ̂

= −
(

1

ε

)
(ig) γ′2

1 + t′λ

η′(1− t′2)3/2

[(
(1 + λ2) + 2t′λ

)
σ0

−
(
t′(1 + λ2) + 2λ

)
χd · σσσ

]
+O(ε0). (3.56)

Note that we might furthermore consider a pututative diagram in which
an internal disorder line interpolates between an external Coulomb line and
vertex point by means of an intermediate fermion loop. This however will
have a momentum dependent result that is irrelevant in the RG sense and
is therefore neglected.

3.8 Appendix: Counterterms and β functions

We now include counterterms to cancel the divergences in the diagrams of
the perturbative expansion in the couplings. The renormalized self energy
becomes

Σ′R(iω,q) = Σ′dis(iω,q) + Σ′Cou(iω,q)

−
{(

2δψ′iω − (2δψ′ + δv′ + δt′)v
′t′q‖

)
σ0

− χ
(
(2δψ′ + δv′)v

′q‖d
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+ (2δψ′ + δv′ + δη′)v
′η′q⊥ + (2δψ′ + δλ)iωλd

)
· σσσ
}

= iωσ0

{(
1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2

(
(1 + λ2) + 2t′λ

)
− 2δψ′

}
− v′t′q‖σ0

{
−
(

1

ε̄

)
α′
λ

t′
F η‖ −

(
2δψ′ + δv′ + δt′

)}
− v′χq‖d · σσσ

{(
1

ε̄

)
α′F η‖ −

(
2δψ′ + δv′

)}
− v′η′χq⊥ · σσσ

{(
1

ε̄

)
α′

1− λ2

1 + t′λ
F η⊥ −

(
2δψ′ + δv′ + δη′

)}
− iωλχd · σσσ

{(
1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2

(
t′(1 + λ2) + 2λ

)
−
(
2δψ′ + δλ

)}
= 0. (3.57)

Because the polarization diagram is regular under our renormalization
scheme the photon field counterterm vanishes along the lines of

ΠR(iω,q) = Π(iω,q)− 2δϕq
2 = 0. (3.58)

The renormalization deriving form the vertex correction diagrams can be
counteracted as

= Figs.(3.8)

+
{(

2δψ′ + δΓ

)
Γσ0 −

(
2δψ′ + δΓ + δλ

)
Γλχd · σσσ

}
= Γσ0

{
−
(

1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2

(
(1 + λ2) + 2t′λ)

)
+
(
2δψ′ + δΓ

)}
− Γλχd · σσσ

{
−
(

1

ε

)
γ′2

(1 + t′λ)
(
t′(1 + λ2) + 2λ

)
η′(1− t′2)3/2

+
(
2δψ′ + δΓ + δλ

)}
= 0. (3.59)
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and

= Figs.(3.9)

+
{(

2δψ′ + δϕ + δg
)
igσ0

−
(
2δψ′ + δϕ + δg + δλ

)
igλχd · σσσ

}
= igσ0

{
−
(

1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2

(
(1 + λ2) + 2t′λ)

)
+
(
2δψ′ + δϕ + δg

)}
− igλχd · σσσ

{
−
(

1

ε

)
γ′2

(1 + t′λ)
(
t′(1 + λ2) + 2λ

)
η′(1− t′2)3/2

+
(
2δψ′ + δϕ + δg + δλ

)}
= 0. (3.60)

Consequently, for the fields of the theory we find counterterms

2δψ′ =

(
1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2

(
(1 + λ2) + 2t′λ)

)
, (3.61)

δϕ = 0, (3.62)

with which we also derive the terms neede to nullify the diagrammatic con-
tributions to the tree level parameters,

δv′ =

(
1

ε̄

)
α′F η‖ − 2δψ′

=

(
1

ε̄

)
α′F η‖ −

(
1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2

(
(1 + λ2) + 2t′λ)

)
(3.63)

δt′ = −
(

1

ε̄

)
α′
λ

t′
F η‖ − 2δψ′ − δv′ ,

= −
(

1

ε̄

)
α′
(
λ

t′
+ 1

)
F η‖ , (3.64)

δη′ =

(
1

ε̄

)
α′

1− λ2

1 + t′λ
F η⊥ − 2δψ′ − δv′

= −
(

1

ε̄

)
α′
(
F η‖ −

1− λ2

1 + t′λ
F η⊥

)
. (3.65)
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Because of gauge invariance the field counterterms will be exactly suffi-
cient to cancel the divergences coming from the vertex diagrams so that the
coupling strenghts are not renormalized and their counterterms vanish.

δg =

(
1

ε

)
γ′2

1 + t′λ

η(1− t′2)3/2

(
(1 + λ2) + 2t′λ)

)
− 2δψ′ − δφ

= 0, (3.66)

δΓ =

(
1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2

(
(1 + λ2) + 2t′λ)

)
− 2δψ′

= 0. (3.67)

Note that because δφ = δg = δΓ = 0, we also find consistently from the
renormalization of the self energy and both the interaction vertices that

δλ =

(
1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2

(
t′(1 + λ2) + 2λ)

)
− 2δψ′

=

(
1

ε

)
γ′2

1 + t′λ

η′(1− t′2)3/2
(t′ + λ)(1− λ2). (3.68)

These counterterms lead to the flow equations

βv′ = v′

{
z − 1 + α′F η‖ − γ

′2 (1 + t′λ)
(
(1 + λ2) + 2t′λ

)
η′(1− t′2)3/2

}
, (3.69)

βt′ = −α′
(
t′ + λ

)
F η‖ , (3.70)

βλ = γ′2
(1 + t′λ)(t′ + λ)

η′(1− t′2)3/2
(1− λ2), (3.71)

βη′ = −η′α′
(
F η‖ − F

η
⊥

)
, (3.72)

βα′ = α′

{
−ε̄− α′F η‖ + γ′2

(1 + t′λ)
(
(1 + λ2) + 2t′λ

)
η′(1− t′2)3/2

}
, (3.73)

βγ′ = γ′

{
− ε

2
− α′F η‖ + γ′2

(1 + t′λ)
(
(1 + λ2) + 2t′λ

)
η′(1− t′2)3/2

}
. (3.74)
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3.9 Appendix: Re-expressing the flow equations

We could proceed to analyze the set of equations presented in the previous
section of the appendix, finding the flow’s fixed points and then examining
afterwards what these look like in terms of the original parameters of the
theory by using Eq. (3.16),

v = v′
1 + t′λ

1− λ2
, η = η′

√
1− λ2

1 + t′λ
, t =

t′ + λ

1 + t′λ
.

We take an alternative strategy in which we use this equation to directly
translate back the β functions into the language of the original model pa-
rameters as we have found this to significantly simplify their structure. The
flow equations become

βv′ = v′
{
z − 1− γ′2 (1 + tλ)(1− tλ)2

η(1− t2)3/2
+ α′F η‖

}
, (3.75)

βt′ = −t1− λ
2

1− tλ
α′F η‖ , (3.76)

βλ = t
(1− λ2)(1− tλ)2

η(1− t2)3/2
γ′2, (3.77)

βη′ = −η′α′
(
F η‖ − (1− tλ)F η⊥

)
, (3.78)

βα′ = α′
{
−ε̄+ γ′2

(1 + tλ)(1− tλ)2

η(1− t2)3/2
− α′F η‖

}
, (3.79)

βγ′ = γ′
{
− ε

2
+ γ′2

(1 + tλ)(1− tλ)2

η(1− t2)3/2
− α′F η‖

}
. (3.80)

The β functions for the original Fermi velocity v, fermion anisotropy η and
tilt t are straightforward combinations of the above through redefinitions
Eq. (3.16). This yields

βv = v

{
βv′

v′
+

λ

1 + t′λ
βt′ +

t′ + 2λ+ t′λ2

(1 + t′λ)(1− λ2)
βλ

}
= v

{
βv′

v′
+
λ(1− tλ)

1− λ2
βt′ +

t+ λ

1− λ2
βλ

}
= v

{
z − 1− (1− tλ)2

η(1− t2)1/2
γ′2 + (1− tλ)α′F η‖

}
, (3.81)
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and

βt = t

{
1− λ2

(t′ + λ)(1 + t′λ)
βt′ +

1− t′2

(t′ + λ)(1 + t′λ)
βλ

}
= t

{
(1− tλ)2

t(1− λ2)
βt′ +

1− t2

t(1− λ2)
βλ

}
= −t

{
(1− tλ)α′F η‖ −

(1− tλ)2

η(1− t2)1/2
γ′2
}
, (3.82)

and

βη = η

{
βη′

η′
− λ

1 + t′λ
βt′ −

t′ + λ

(1 + t′λ)(1− λ2)
βλ

}
= η

{
βη′

η′
− λ(1− tλ)

1− λ2
βt′ −

t

1− λ2
βλ

}
= −η

{
(1− tλ)

(
F η‖ − F

η
⊥

)
α′ + t

(1− tλ)2

η(1− t2)3/2
γ′2
}
. (3.83)

We can simplify further with by redefining the couplings to those set out
in Eq. (3.134) of the main body,

γ2 =
Ωd µ

ε

(2π)d v2
Γ2, α =

Ωd µ
ε̄

4(2π)d v
g2.

In terms of these, we find

βv = v

{
z − 1− 1

η
√

1− t2
γ2 + αF η‖

}
, (3.84)

βt = −t
{
αF η‖ −

1

η
√

1− t2
γ2

}
, (3.85)

βη = −η
{
α
(
F η‖ − F

η
⊥

)
+

t2

η(1− t2)3/2
γ2

}
, (3.86)

βλ = t
1− λ2

η(1− t2)3/2
γ2. (3.87)

The flow of the redefined couplings themselves is determined by the equations

βα = α

(
βα′

α′
+
βv′

v′
− βv

v

)
= α

{
−ε̄+

1

η
√

1− t2
γ2 − αF η‖

}
, (3.88)
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βγ = γ

(
βγ′

γ′
+
βv′

v′
− βv

v

)
= γ

{
− ε

2
+

1

η
√

1− t2
γ2 − αF η‖

}
. (3.89)

Taken together these form the set of four coupled equations Eqs. (3.22)-(3.25)
and two further decoupled equations Eqs. (3.135)-(3.136).

3.10 Appendix: Alternative momentum shell scheme

Applying the perturbative momentum shell scheme set out in subsubsection
1.3.4 to the disordered interacting action leads to several complications that
make it hard to draw definite conclusions. Imposing the cylindrical cutoff
Λ on the perpendicular momentum direction implies fixing the energy scale,
implicitly breaking gauge invariance [1]. Nevertheless it is instructive to see
how these difficulties arise and what kind of flow equations they give rise to.

The model we consider is given by Eq. (3.19), with some important mod-
ifications. The number of spatial dimension is fixed to d = 3. The bare
photon propagator is taken to be

D−1
0 = q2

‖ + ζ2q2
⊥, (3.90)

where we have allowed for the possibility of anisotropy entering the photonic
dispersion. The disorder scattering amplitude is dependent on the angle

θ = θq = arctan(ηq⊥/
√

1− t2q‖) (3.91)

that is a function of the disorder boson’s momentum q. We can then Fourier
decompose the disorder strength as

Γθ =

∞∑
m=−∞

Γ(2m)e2iθm, (3.92)

where the angular momentum modes Γ(2m) may be independently renormal-
ized. As before, a field transformation Eq. (3.12) is performed to introduce
a parameter λ to take into account quasiparticle density renormalization
effects.
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Contributing diagrams are those listed in Figs.(3.7)-(3.9). We first calcu-
late the expressions corresponding to the diagrams in Fig.(3.7), which will be
the primary cause of renormalization of the parameters of the bare actions.
The self-energy deriving from the disorder interaction yields

Fig.(3.7a) = Σ′dis(iω,k)

=

∫
ω′

∫ ′
q

Γ2
θq−k

λ̂G′0,χ(iω′,q)λ̂δ(ω − ω′) ≈
∫ ′
q

Γ2
θq λ̂G

′
0,χ(iω,q)λ̂

≈ −
{

1 + t′λ

η′(1− t′2)3/2

(
A′(0)σ0 −B′(0)χd · σσσ

)
+

t′ + λ

η′(1− t′2)3/2

(
B′(2)σ0 −A′(2)χd · σσσ

)}
iω l, (3.93)

where we have used dimensionless couplings

γ′(2m) =
Γ(2m)

√
Λ

2
√
π v′

, α′ =
g2

4π2v′
. (3.94)

Also, A′(2m) and B′(2m) are modes of convolutions of the disorder strength
as defined by

A′(2m) =
(
(1 + λ2) + 2t′λ

) (
γ′ ∗ γ′

)(2m)
(3.95)

B′(2m) =
(
t′(1 + λ2) + 2λ

) (
γ′ ∗ γ′

)(2m)
.

On the other hand, the Coulomb self-energy reads

Fig.(3.7b) = Σ′Cou(iω,k) (3.96)

= (ig)2

∫
ω′

∫ ′
q
λ̂G′0,χ(iω,q)λ̂D0(iω − iω′,k− q)

≈ −v′ α
′

ζ2

[
F x̃‖ k‖(λσ0 − χd · σσσ)− η′

2
χ

1− λ2

1 + t′λ
F x̃⊥k⊥ · σσσ

]
l,

where we have defined two functions

F x̃‖ =

(
1

1− x̃2
− x̃2arctanh

√
1− x̃2

(1− x̃2)3/2

)
, (3.97)

F x̃⊥ = −

(
1

1− x̃2
− (2− x̃2)arctanh

√
1− x̃2

(1− x̃2)3/2

)
(3.98)
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that depend on the ratio x̃2 = η2/ζ2. If the anisotropies in boson and fermion
sectors equilibrate then x̃ = 1 and these functions simplify to F x̃=1

‖ = 2/3

and F x̃=1
⊥ = 4/3. For the polarisation we find the expression

Fig.(3.7c) = Π(0,k)

= −(ig)2

∫
ω

∫ ′
q

Tr
[
λ̂ G′0,χ(iω,q) λ̂ G′0,χ(iω,q + k)

]
≈ −1

3

α′

η′2
(1 + t′λ)

[
k2
‖ +

η′2(1− λ2)

(1 + t′λ)2
k2
⊥

]
l. (3.99)

Then there are the diagrams in Fig.(3.8), which will renormalize the dis-
order interaction strength Γθ. Their contributions can be absorbed by in
a mode by mode expansion in angle θ. The disorder-only leading order
correction yields

Fig.(3.8a) = Γθk

∫ ′
q

Γ2
θq

[
λ̂ G′0,χ(iω,q)

]2
λ̂

≈
∑
m

e2iθkmΓ(2m)

{
1 + t′λ

η′(1− t′2)3/2

[
A′(0)σ0 −B′(0)χd · σσσ

]
+

t′ + λ

η′(1− t′2)3/2

[
B′(2)σ0 −A′(2)χd · σσσ

]}
l, (3.100)

whereas the mixed disorder-Coulomb diagram results in

Fig.(3.8b) = Γθk(ig)2

∫
ω

∫ ′
q

(
λ̂ G′0,χ(iω,q)

)2
λ̂D0(ω,q)

= 0. (3.101)

Another perturbative contribution to the disorder vertex comes from the
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fermion loop diagram

Fig.(3.8c) = −Γθk(ig)2λ̂

∫
ω′

∫ ′
q
D0(iω,k)

Tr
[
λ̂ G′0,χ(iω′,q) λ̂ G′0,χ(iω′,q + k)

]
≈ −1

3

α′

η′2
(1− t′2)

∑
m

e2iθkm

[
1 + t′λ

1− t′2
(Γ ∗ fx‖ )

+
1− λ2

1 + t′λ
(Γ ∗ fx⊥)

](2m)

(σ0 − λχd · σσσ) l, (3.102)

where we have also defined the Fourier decomposition modes of two functions
that contain the angle dependence,

(fx‖ )(2m) =

∫ π

−π

dθ

2π
e2iθm 1

1 + tan2(θ)/x2
, (3.103)

(fx⊥)(2m) =

∫ π

−π

dθ

2π
e2iθm tan2(θ)

1 + tan2(θ)/x2
, (3.104)

They depend on a variant of the anisotropy ratio parameter, x2 = x̃2/(1−t2).

Lastly there are the diagrams in Fig.(3.9), which source the renormaliza-
tion of the Coulomb interaction strength g. The purely Coulombic diagram
vanishes identically,

Fig.(3.9a) = (ig)3

∫
ω

∫ ′
q

[
λ̂ G′0,χ(iω,q)

]2
λ̂D0(iω,q)

= 0, (3.105)

in a restatement of gauge invariance. The mixed diagram however results in
a finite contribution of the form

Fig.(3.9b) = ig

∫ ′
q

Γ2
θq

[
λ̂ G′0,χ(iω,q)

]2
λ̂

≈ ig
{

1 + t′λ

η′(1− t′2)3/2

[
A′(0)σ0 −B′(0)χd · σσσ

]
+

t′ + λ

η′(1− t′2)3/2

[
B′(2)σ0 −A′(2)χd · σσσ

]}
l. (3.106)
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Note that we might furthermore consider a pututative diagram in which an
internal disorder line interpolates between external Coulomb line and cor-
responding vertex by means of an intermediate fermion loop. This however
will have a momentum dependent result that is irrelevant in the RG sense
and is therefore neglected.

We then collect all the diagrammatic contributions, so they may be ab-
sorbed by renormalization constants that will be introduced as ψ′ → Z−1

ψ′ ψ
′,

ϕ → Z−1
ϕ ϕ, v′ → Z−1

v′ v
′, t′ → Z−1

t′ t
′, λ → Z−1

λ λ, η′ → Z−1
η′ η

′, ζ2 → Z−1
ζ2 ζ

2,

Γ(2m) → Z−1
Γ(2m)Γ

(2m), g → Z−1
g g.

First of all, we may use Dyson equation to determine how to pick the
constants appearing in the free fermion and boson actions. For convience,
we here reproduce the (inverse) free fermion Green function Eq. (3.14),

G′0,χ(iω,k)−1 = iω (σ0 − λχd · σσσ)− v′
[
k‖(t

′σ0 + χd · σσσ) + η′χk⊥ · σσσ
]
.

By Dyson equation, we then have that

G′χ(iω,k)−1 = G′0,χ(iω,k)−1 − Σ′dis(iω,k)− Σ′Cou(iω,k)

= iω

{
1 +

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]
l

}
σ0

− iωλ

{
1 +

[
(1 + t′λ)B′(0)

η′(1− t′2)3/2
+

(t′ + λ)A′(2)

η′(1− t′2)3/2

]
l

λ

}
d · σσσ

− v′t′k‖
{

1− α′

ζ2

λ

t′
F x̃‖ l

}
σ0 − v′k‖

{
1 +

α′

ζ2
F x̃‖ l

}
χd · σσσ

− v′η′
{

1 +
1

2

α′

ζ2

1− λ2

1 + t′λ
F x̃⊥l

}
χk⊥ · σσσ

= iωZ2
ψ′ σ0 − iωλZ2

ψ′Zλ χd · σσσ − v′t′ Z2
ψ′Zv′Zt′ k‖σ0

− v′ Z2
ψ′Zv′ χk‖d · σσσ − v′η′ Z2

ψ′Zv′Zη′ χk⊥ · σσσ (3.107)

We should thus pick the renormalization constants of the free fermionic
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theory parameters as

Z2
ψ′ = 1 +

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]
l, (3.108)

Zλ = Z−2
ψ′

{
1 +

[
(1 + t′λ)B′(0)

η′(1− t′2)3/2
+

(t′ + λ)A′(2)

η′(1− t′2)3/2

]
l

λ

}
, (3.109)

Zv′ = Z−2
ψ′

{
1 +

α′

ζ2
F x̃‖ l

}
, (3.110)

Zt′ = Z−2
ψ′ Z

−1
v′

{
1− α′

ζ2

λ

t′
F x̃‖ l

}
, (3.111)

Zη′ = Z−2
ψ′ Z

−1
v′

{
1 +

1

2

α′

ζ2

1− λ2

1 + t′λ
F x̃⊥l

}
. (3.112)

Proceeding similarly for the bosonic free action, we have the (inverse) prop-
agator of Eq. (3.90)

D0(iω,k)−1 = k2
‖ + ζ2k2

⊥,

and we see by Dyson equation that

D(iω,k)−1 = D0(iω,k)−1 −Π(0,k)

=

{
1 +

1

3

α′

η′2
(1 + t′λ)l

}
k2
‖ + ζ2

{
1 +

1

3

α′

ζ2

1− λ2

1 + t′λ
l

}
k2
⊥

= Z2
ϕ k

2
‖ + ζ2 Z2

ϕZζ2 k2
⊥. (3.113)

In order to preserve scale-invariance, we learn that we should pick the renor-
malization coefficients for the free bosonic parameters as

Zϕ = 1 +
1

6

α′

η′2
(1 + t′λ)l, (3.114)

Zζ2 = Z−1
ϕ

{
1 +

1

3

α′

ζ2

1− λ2

1 + t′λ
l

}
. (3.115)

We next progress to the interacting part of the action. Under changes of
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the cutoff scale the disorder term transforms as

=

<latexit sha1_base64="swFuH/kS2LKmDvqUtNqJbhjARXY="></latexit><latexit sha1_base64="swFuH/kS2LKmDvqUtNqJbhjARXY="></latexit><latexit sha1_base64="swFuH/kS2LKmDvqUtNqJbhjARXY="></latexit><latexit sha1_base64="swFuH/kS2LKmDvqUtNqJbhjARXY="></latexit>

+ Figs.(3.8)

=
∑
m

e2iθkmΓ(2m)

[{
1− 1

3

α′

η2

1

γ(2m)
(1− t′2)

[
1 + t′λ

1− t′2
(γ′ ∗ fx‖ ) +

1− λ2

1 + t′λ
(γ′ ∗ fx⊥)

](2m)

l

+

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]
l

}
σ0

− λ
{

1− 1

3

α′

η′2
1

γ′(2m)
(1− t′2)[

1 + t′λ

1− t′2
(γ′ ∗ fx‖ ) +

1− λ2

1 + t′λ
(γ′ ∗ fx⊥)

](2m)

l

+

[
(1 + t′λ)B′(0)

η′(1− t′2)3/2
+

(t′ + λ)A′(2)

η′(1− t′2)3/2

]
l

λ

}
χd · σσσ

]
=
∑
m

e2iθkmZ2
ψ′ZΓ(2m)Γ(2m) (σ0 − Zλλχd · σσσ) . (3.116)

In order to remain invariant, we should have

ZΓ(2m) = Z−2
ψ′

{
1− 1

3

α′

η′2
1

γ′(2m)
(1− t′2)[

1 + t′λ

1− t′2
(γ′ ∗ fx‖ ) +

1− λ2

1 + t′λ
(γ′ ∗ fx⊥)

](2m)

l

+

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]
l

}
, (3.117)

99



3 Disorder and interactions in anisotropic tilted Weyl cones

Zλ = Z−2
ψ′ Z

−1
Γ(2m)

{
1− 1

3

α′

η′2
1

γ′(2m)
(1− t′2)[

1 + t′λ

1− t′2
(γ′ ∗ fx‖ ) +

1− λ2

1 + t′λ
(γ′ ∗ fx⊥)

](2m)

l

+

[
(1 + t′λ)B′(0)

η′(1− t′2)3/2
+

(t′ + λ)A′(2)

η(1− t′2)3/2

]
l

λ

}
, (3.118)

The Coulomb part of the interacting action instead transforms as

=

<latexit sha1_base64="A0jQisq9/DcEEKeAvi4YhllMPM4="></latexit><latexit sha1_base64="A0jQisq9/DcEEKeAvi4YhllMPM4="></latexit><latexit sha1_base64="A0jQisq9/DcEEKeAvi4YhllMPM4="></latexit><latexit sha1_base64="A0jQisq9/DcEEKeAvi4YhllMPM4="></latexit>

+ Figs.(3.9)

= ig

{
1 +

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]
l

}
σ0

− igλ

{
1 +

[
(1 + t′λ)B′(0)

η′(1− t′2)3/2
+

(t′ + λ)A′(2)

η′(1− t′2)3/2

]
l

λ

}
χd · σσσ

= igZgZϕZ
2
ψ′ (σ0 − Zλλχd · σσσ) . (3.119)

Thus, to remain invariant under changes of the cutoff scale, we should have

Zg = Z−2
ψ′ Z

−1
ϕ

{
1 +

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]
l

}
, (3.120)

Zλ = Z−2
ψ′ Z

−1
ϕ Z−1

g

{
1 +

[
(1 + t′λ)B′(0)

η′(1− t′2)3/2
+

(t′ + λ)A′(2)

η′(1− t′2)3/2

]
l

λ

}
, (3.121)

Note that the expressions Eq. (3.109), Eq. (3.118) and Eq. (3.121), which
arrive at the renormalization of λ in three very different ways, coincide beau-
tifully. Minding also the zeroth order scaling dimensions the flow equations
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for the free theory parameters are

βv′ = v′

{
z − 1 +

α′

ζ2
F x̃‖ −

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]}
, (3.122)

βt′ = −α
′

ζ2
(t′ + λ)F x̃‖ , (3.123)

βλ =

[
1 + t′λ

η′(1− t′2)3/2
(B − λA)(0) +

t′ + λ

η′(1− t′2)3/2
(A− λB)(2)

]
, (3.124)

βη′ = −η′ α
′

ζ2

(
F x̃‖ −

1

2

1− λ2

1 + t′λ
F x̃⊥

)
, (3.125)

βζ2 = −α′ 1
3

(1 + t′λ)

(
ζ2

η′2
− 1− λ2

(1 + t′λ)2

)
. (3.126)

To be consistent we should look at the flow of the dimensionless couplings
Eq. (3.94). Their equations are straightforward combinations

βα′ = α′
(

2
βg
g
− βv′

v′

)
= −α

′2

ζ2

(
1

3

ζ2

η′2
(1 + t′λ) + F x̃‖

)
+ α′

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]
, (3.127)

βγ′(2m) = γ′(2m)

(
βΓ(2m)

Γ(2m)
− βv′

v′

)
,

= −1

2
γ′(2m) − α′

ζ2
F x̃‖ γ

′(2m)

+

[
(1 + t′λ)A′(0)

η′(1− t′2)3/2
+

(t′ + λ)B′(2)

η′(1− t′2)3/2

]
γ′(2m)

− α′

η′2
1

3
(1− t′2)

[
1 + t′λ

1− t′2
(γ′ ∗ fx‖ ) +

1− λ2

1 + t′λ
(γ′ ∗ fx⊥)

](2m)

. (3.128)

We can then use Eq. (3.16) to directly translate back the β functions into
the language of the original model parameters.
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This results in a primary set of five coupled flow equations

βη = −η α
ζ2

(
F x̃‖ −

1

2
F x̃⊥

)
− η t2

η(1− t2)3/2

[
(γ ∗ γ)(0) + (γ ∗ γ)(2)

]
,

(3.129)

βζ2 = −α1

3

(
ζ2

η2
− 1

)
, (3.130)

βt = −t α
ζ2
F x̃‖ +

t

η(1− t2)3/2

[
(γ ∗ γ)(0) + (γ ∗ γ)(2)

]
, (3.131)

βγ(2m) = −1

2
γ(2m) − α

ζ2
F x̃‖ γ

(2m) +
(γ ∗ γ)(0)

η(1− t2)1/2
γ(2m)

− α

η2

1

3

[
(γ ∗ fx‖ ) + (1− t2)(γ ∗ fx⊥)

](2m)
, (3.132)

βα = −α
2

ζ2
F x̃‖ + α

(γ ∗ γ)(0)

η(1− t2)1/2
− α2

η2

1

3
. (3.133)

where βyi = dyi/dl for parameters yi and ∗ denotes the convolution opera-
tion. Note also that we have used dimensionless couplings

γ(2m) =
Γ(2m)

√
Λ

2
√
π v

, α =
g2

4π2v
, (3.134)

that are more amenable to RG analysis. All anisotropic effects enter a single
predetermined ratio only. We can capture the flow of the anisotropy in both
the bosonic and the fermionic sector in the parameter x̃2 = η2/ζ2.

Once the flow of the model is determined through the coupled set Eqs. (3.129)-
(3.133), the behavior of the remaining parameters can be investigated by
means of the decoupled secondary equations

βv = v

{
z − 1 +

α

ζ2
F x̃‖ −

(γ ∗ γ)(0)

η(1− t2)1/2

}
, (3.135)

βλ = t
1− λ2

η(1− t2)3/2

[
(γ ∗ γ)(0) + (γ ∗ γ)(2)

]
. (3.136)
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Monopole stabilization in
interpenetrating pyrochlore lattices
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4 Monopole stabilization in interpenetrating
pyrochlore lattices

This chapter is based on unpublished work performed during a research
visit to the Theory of Condensed Matter (TCM) Group at the University of
Cambridge, UK, under supervision of dr. Claudio Castelnovo.

4.1 Introduction

In 1935, L. Pauling realized that the relative orientation of the molecules in
water precludes full ordering even if all thermal fluctuations are frozen out
at absolute zero [86]. Within a molecule of H2O the atoms are tied together
by strong covalent bonds, developing an angle between the hydrogen protons
that give the unit a charge polarity. This results in a preferential orientation
of the positive hydrogen legs towards the negative oxygen center, forming
dipolar bonds that are relatively weaker in strength. When the water is
fully frozen out, every oxygen mediates two of these intermolecular bonds
and is thus surrounded by its own two hydrogen protons nearby and two
hydrogen protons that are farther away. The number of configurations that
obey this ground state rule grows exponentially with the size of the system,
corresponding to an extensive residual entropy at zero temperature. These
predictions were proven correct by measurements of the specific heat, which
is defined as the change in entropy with temperature [87].

Some twenty years later P. W. Anderson detected a remarkable similarity
of this model of water ice and the Ising antiferromagnet on the pyrochlore
lattice [88]. This is a network of corner-sharing tetrahedra, on which the
spins’ binary degree of freedom emulates the two different proximities of
hydrogen atoms to an oxygen atom in water ice. The interactions of the spins
play out along edges of the triangular sides of the tetrahedra, by which they
cannot all be satisfied simultaneously. Such frustration leads to a ground
state with a large degree of degeneracy, which has a characteristic two spins
pointing in and two spins pointing out of every tetrahedron. In reference
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to the analogy with water ice this ground state rule has become known as
the spin ice rule [89]. Several materials have since been found to realize
the spin ice model on the pyrochlore lattice through the presence of strong
anisotropies that reduce the spins to antiferromagnetically coupled binary
degrees of freedom [90, 91].

Interest in these spin ice compounds surged when it was realized that
the ice rule can be understood as a divergence free condition of an effec-
tive field of the magnetization. Under the two-in two-out rule there is as
much of this field entering a tetrahedron as there is exiting, coming to a
net zero flux. A flip of a spin can then be interpreted as the creation of
a monopole-antimonopole pair in the two tetrahedra it resides on, which
generates a non-zero flux between them [92]. Recently, it was found that
a non-uniform magnetic field, on every site locally directed away from or
towards the tetrahedron’s center of gravity, can function as a chemical po-
tential for the monopole degrees of freedom of spin ice. Such a field may
effectively be imposed by interactions with a secondary, dual pyrochlore lat-
tice, whose Heisenberg spins collectively point into or out of the tetrahedra
due to the effects of Dzyaloshinksy-Moriya interactions [93].

In comparison to the scale of the anisotropy driven ordering occuring in
the pure spin ice model the pinning of the Heisenberg spins on the dual py-
rochlore lattice is considerably softer [94]. As such, there is scope for com-
petition with the interaction that couples the two interpenetrating lattices.
Depending on the configuration of the Ising-like spins in the tetrahedra of the
strongly anisotropic pyrochlore this interlattice coupling come to prefer a de-
viation from the all-in all-out setting induced by the Dzyaloshinksy-Moriya
interactions on the dual lattice. Conversely, such a small angle deviation in
the Heisenberg spin all-in or all-out ordering generates a perpendicular com-
ponent to the local magnetic field that could lead to transitions in Ising-like
spin ground state manifold.

The remainder of this chapter is constituted as follows. In section 4.2 we
introduce the pyrochlore lattice and look at the famous spin ice model that
describes the spins ordering in it in various material compounds. In section
4.3 we introduce another, interpenetrating pyrochlore lattice, whose collec-
tively co-ordering Heisenberg spins result in an effective local magnetic field
on top of the spin ice model. In section 4.4 we then study the effects of a
small angle deviation from the co-ordering of these secondary spins. In sec-
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4 Monopole stabilization in interpenetrating pyrochlore lattices

tion 4.5 we investigate which configurations will be maximally influenced by
the deviation on some finite plaquettes, which we match to results obtained
by Monte Carlo simulation in section 4.6. We finish with a conclusion in
section 4.7. Lastly, in a short appendix 4.8 we present the coordinates for
some important vectors in two convenient reference frames that may be used
to check most calculations presented in the other sections explicitly.

4.2 Pyrochlore lattices and the spin ice model

The pyrochlore lattice is a structure that has played an outsized role in
modern condensed matter physics. It is a network of alternatingly inverted
tetrahedra α+ and α− that are connected at the corners, see Fig. 4.1a. In
certain compounds that crystallize in this lattice structure, such as Ho2Ti2O7

(HTO) and Dy2Ti2O7 (DTO), strong anisotropy restricts the spins to align
with or against their local trigonal direction [91, 95]. We indicate the unit
axis corresponding to such a direction at one of the four inequivalent sites i
in some tetrahedron α± by û±i = ±ûi, see Fig. 4.2a. Note that unit vectors
ûi are directed exactly away from the center of positive tetrahedra α+ but
towards the center of negative tetrahedra α−. Under such conditions the
magnetic moment σσσα±i

at α±i may then be expressed as σσσα±i
= σα±i

û±i =

σαi ûi. The remaining degree of freedom lies in the Ising-like variable σαi ∈
{+1,−1}, which determines whether the spin points out of/into the plus
tetrahedron α+ and into/out of the minus tetrahedron α−. Due to the high
degree of symmetry in the geometry of a tetrahedron the local axes add up
to zero. Furthermore, any two of them are at the same angle so that their
dot product is constant,

∑
i

ûi = û1 + û2 + û3 + û4 = 0, ûi · ûj =

{
1 for i = j,
−1

3 for i 6= j.

(4.1)

Due to these anisotropies the Hamiltonian with ferromagnetic (FM) near-
est neighbor coupling J > 0, for which degeneracies would not be expected
in general, that describes the spin interactions in these substances is recast
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4.2 Pyrochlore lattices and the spin ice model

(a) Pyrochlore lattice [96]. (b) Interpenetrating pyrochlore lat-
tices [97].

Figure 4.1: The pyrochlore lattice is a network of corner-sharing tetrahedra that
leaves room for meshing of two copies.

as

Hspin ice = −J
∑
〈αi,βj〉

σσσαi · σσσβj = −J
∑
〈αi,βj〉

σαiσβj ûi · ûj

= −Jeff
∑
〈αi,βj〉

σαiσβj = −1

2
Jeff

∑
α

∑
i,j 6=i

σαiσαj , (4.2)

where we have found an effective coupling Jeff = −J/3 < 0 between the
Ising-like degrees of freedom. The resulting antiferromagnetic (AFM) inter-
action is highly frustrated due to the triangular composition of the tetrahe-
dral unit cell. Ground states are characterized by the spin ice rule∑

i

σαi = σα1 + σα2 + σα3 + σα4 = 0 ∀α, (4.3)

which states that every ground state tetrahedron must have two inwards-
pointing spins and two outwards-pointing spins. This rule is not sufficient to
eliminate all degeneracies even at zero temperature [89]. Most saliently, exci-
tations above these ground states can be interpreted as monopole-animonopole
pairs of an effective magnetic field, see Fig. 4.3. Such excitations have re-
mained unobserved as fundamental particles, but are allowed by Maxwell’s
equations [92]. We define the monopole charge residing in some tetrahedron
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4 Monopole stabilization in interpenetrating pyrochlore lattices

(a) Local trigonal axes ûi of the four
vertices of a tetrahedron.

(b) Symmetry-allowed DMI vectors
Dij on the tetrahedron.

Figure 4.2: Local trigonal axes ûi and DMI vectors Dij in a plus tetrahedron in the
pyrochlore lattice, portrayed in the edge-up reference frame set up in
appendix subsec. 4.8.1.

α± as

Qα± =
1

2

∑
i

σα±i
= ±1

2

∑
i

σαi (4.4)

in order to measure spin flips out of the 2-in-2-out (2i2o) ground state man-
ifold defined by the spin ice rule. In terms of these charges the Hamiltonian
becomes

Hspin ice = −1

2
Jeff

∑
α

∑
i,j 6=i

σαiσαj = −1

2
Jeff

∑
α

(∑
i

σαi

)2

−
∑
i

σ2
αi


= −2Jeff

∑
±,α±

(Q2
α± − 1). (4.5)

In confirmation of the spin ice rule, this transformation shows that the disor-
dered two-in two-out (2i2o) manifold, with all tetrahedra holding a vanishing
charge Qα± = 0 and contributing 2Jeff < 0 to the energy, is most advan-
tageous. Higher in the hierarchy sit the disordered one-in three-out (1i3o)
and three-in one out (3i1o) states, which have respective charge Qα± = ±1
and Qα± = ∓1 and a vanishing energy per tetrahedron. The ordered all-out
(Ao) and all-in (Ai) states, in which spins collectively co-align or contra-align
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4.2 Pyrochlore lattices and the spin ice model

with their local direction, have the highest energy −6Jeff > 0 and a charge
of Qα± = ±2 and Qα± = ∓2 per tetrahedron.

Figure 4.3: Flipping the shared spin on the two charge neutral trehedra α+ and α−

on the left-hand side that obey the spin ice rule creates the monopole-
antimonopole pair excitation with charge Qα± = ±1 per tetrahedron on
the right-hand side [98].

Unlike in the pyrochlore titinates mentioned above, in the iridates R2Ir2O7

both the rare-earth ions R and the iridium ions are magnetic and crystallize
on interpenetrating pyrochlore lattices, see Fig. 4.1b. Whereas the physics
of the rare-earth sublattice is highly specific to the atomic species investi-
gated, the behavior of the iridium spins is more uniform [99]. Their mutual
coupling is antiferromagnetic in nature, JIr < 0, and due to their relatively
isoptropic crystal neighborhood their orientations are unconstrained. Writ-
ing Sai for a spin-1/2 vector degree of freedom on site i in a tetrahedron
labelled a, the iridium sublattice exchange Hamiltonian can be rewritten as

Hex.
Ir = −JIr

∑
〈ai,bj〉

Sai · Sbj = −JIr

2

∑
a

∑
i,j 6=i

Sai · Saj

= −JIr

2

∑
a

(∑
i

Sai

)2

− 4

 . (4.6)

Hence, the iridium interaction energy is minimized for configurations where
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4 Monopole stabilization in interpenetrating pyrochlore lattices

the sum of spins on every tetrahedron a vanishes, or∑
i

Sai = Sa1 + Sa2 + Sa3 + Sa4 = 0. (4.7)

Since the tetrahedra in the pyrochlore lattice are corner-sharing, this con-
dition leaves a large number of degenerate ground states and an absence of
long-range order in the model [100]. Single spin updates cannot be used to
connect different states in the manifold, because a change at some site most
be compensated for by manipulating at least one spin in both the plus as
the minus tetrahedra it sits on. Updates in which two spins in a tetrahedron
are redirected must take the form of a rotation in the plane perpendicular
to their sum, guaranteeing continued compliance with the vanishing sum
rule in Eq. (4.7). Ground states can then be connected by concatenating
this procedure into closed trajectories. In this way any ground state can be
continuously deformed into another without leaving the manifold [101].

Another effect derives from the fact that iridium is a relatively heavy
element, and is therefore less affected by anisotropy. This opens the ground
to further effects such as Dzyaloshinsky-Moriya (DM) interactions, which
can no longer safely be neglected. The DM interactions that can play out
in a system are confined by the symmetries of the lattice. On the iridium
pyrochlore sublattice these restrictions are sufficient to uniquely establish the
allowed axes of the scalar triple product of this interaction, see Fig. 4.2b,
which can be decomposed into the familiar local axes as

Dij =
3

2
√

2
(ûi × ûj). (4.8)

The only degree of freedom remaining in the DM interaction is then captured
in a sign. For DIr > 0 we speak of direct DM interactions, whereas DIr < 0
corresponds to indirect interactions [102]. Indirect interactions will lead
to a mere reduction in the number of ground states, while direct-type DM
breaks down the ground state manifold to the Ao and Ai states in which the
Heisenberg spins are softly pinned to their local axes.

In some pyrochlore iridates, notably Ho2Ir2O7 (HIO) and Dy2Ir2O7 (DIO),
the rare-earth ions interact ferromagnetically and are restricted by strong
local easy axis anisotropy along the trigonal direction of their tetragonal
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4.3 Iridium sublattice collective co-ordering

sites. The total model we study is then comprised of the spin ice Hamil-
tonian Eq. (4.2) on the rare-earth sublattice, antiferromagnetically coupled
Heisenberg spins with DM interactions on the iridium sites and an exchange
interaction coupling the two sublattices,

H = −Jeff
R

∑
〈αi,βj〉

σαiσβj − JIr

∑
〈ai,bj〉

Sai · Sbj

−Dir

∑
〈ai,bj〉

Dij · (Sai × Sbj )− JIr−R
∑
〈ai,αj〉

Sai · σσσαj . (4.9)

Clearly there is scope for competition between the energy scales set by the
different coupling constants. Most of all we are interested in the behavior of
the system as a function of the coupling JIr-R between the iridium and rare-
earth, which has the potential to change the physics of one or both of the
two sublattices. In practice, the energy hierarchy is topped by the iridium
couplings, where the AFM exchange is at least an order of magnitude larger
than the positive DM interactions [102].

Since the lattice structure does not change much between them and the
rare-earth rare-earth interactions are mediated by the oxygen atoms, it is
reasonable to assume that the neareast neighbor exchange coupling as well
as the nearest neighbor dipolar interaction should be approximately equal in
the iridates and the titinates [93]. The latter compounds have been studied
extensively in the nearest-neighbor spin ice setting, and consequentially the
values of their interaction strengths are well known. We present these in
Table 4.1. We have also extracted the values for the iridium couplings
mentioned in the literature for the iridates, and summarized them in Table
4.2.

4.3 Iridium sublattice collective co-ordering

Motivated by the hierarchy of realistic parameter values listed in Tables
4.1-4.2, our primary interest in the iridium sublattice is as arena for the
dominant energy scale set by the interaction strength JIr. In the case of
Ho2Ir2O7 the direct DM interaction is similarly larger than the interactions
relevant to the dysprosium sites, which will result in breaking of the symme-
tries between the states in the manifold that minimize the AFM Heisenberg
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4 Monopole stabilization in interpenetrating pyrochlore lattices

Jeff
R literature value measurement technique

HTO −1.8K [103] MC fitting to neutron scattering mea-
surements

DTO −1.1K [104] MC fitting to height and temperature
of specific heat peak

HIO −1.4K [93] MC fitting to diffraction measure-
ments of Ho3+ magnetic moment

DIO ...K ? ...

Table 4.1: Effective nearest neighbor interaction strengths in pyrochlore holmium
and dysprosium titanite and iridate, as found in the literature.

literature value measurement technique

DIr ∼ 50K [94] MC fitting to specific heat ordering
transition at TMIT = 134K (DIO) and
TMIT = 141K (HIO)

JIr ∼ −500K [102] JIr an order of magnitude larger than
DIr

JIr−R 4.9 − 6.3K (HIO)
[93]

fitting of CEF calculation to diffrac-
tion measurements of Ho3+ magnetic
moment at high T
& MC fitting of scattering function to
diffraction difference between T = 1.5
and 200K

...K ? (DIO) ...

Table 4.2: Iridium interaction strengths in pyrochlore iridates HIO and DIO in the
literature.

exchange [93]. The two possible iridium ground states that remain are or-
dered, with their spins collectively aligning with or against the local trigonal
axes. This may be modelled as Sa±i

=⇒ S±û±i = Sûi for all ai, with

S = {+1,−1} for the spins in Ao or Ai arrangement the only remaining de-
gree of freedom. Hence, the Hamiltonian for the inter-sublattice interaction
between dysprosium spins αj and their six neighboring iridium spins ai7αj
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4.3 Iridium sublattice collective co-ordering

reduces as

HIr-Dy = −JIr-Dy

∑
〈ai,αj〉

Sai · σσσαj = −1

2
JIr-Dy

∑
α,j

σσσαj ·
∑
ai7αj

Sai

Ir Ao/Ai
=⇒ −SJIr-Dy

∑
α,j

σσσαj ·
∑
i 6=j

ûi = SJIr-Dy

∑
α,j

σσσαj · ûj

= −1

2

∑
α,j

hloc
j · σσσαj = −1

2
hloc

∑
α,j

σαj . (4.10)

where we have used Eq. (4.1) to rewrite the sum of trigonal axes. With
the iridium spins locked in uniform direction, the intersublattice coupling
can be described in terms of local fields hloc

j = hlocûj of uniform strength

hloc = −2SJIr-Dy that are directed along or against the axis ûj of the dys-
prosium site αj they act on, see Fig. 4.4 [93]. Note that a plus/minus
dysprosium tetrahedron α± is surrounded by minus/plus iridium tetrahedra
a∓. With a ferromagnetic intersublattice coupling JIr-Dy > 0, Ao/Ai iridium
arrangement generates local fields favoring inwards/outwards directed cen-
tral dysprosium spins, while antiferromagnetic JIr-Dy < 0 means that Ao/Ai
ordering of the iridium spins produces fields against/along the local trigonal
directions on the dysprosium sublattice.

Figure 4.4: Single dysprosium tetrahedron (red) and surrounding iridium sites (pur-
ple), with spins in Ao state. The intersublattice coupling then generates
a local magnetic field hloc

j (white arrowheads) acting on every dyspro-
sium site αj [93].

We can rewrite the total effective Hamiltonian affecting the dysprosium
sublattice at energy scales well below the Ao or Ai ordering of the iridium
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moments in terms of the charges defined in Eq. (4.4) as

Heff
Dy = Hspin ice

Dy +HIr-Dy

Ir Ao/Ai
=⇒ −1

2
Jeff

Dy

∑
α

∑
i,j 6=i

σαiσαj −
1

2
hloc

∑
α

∑
j

σαj

= −
∑
±,α±

[
2Jeff

Dy(Q2
α± − 1)± hlocQα±

]
=
∑
±,α±

εQα± . (4.11)

The corresponding energies εQα± = −
[
2Jeff

Dy(Q2
α± − 1)± hlocQα±

]
per tetra-

hedron, also plotted in Fig. 4.5, are then given by

εQα±=0 = +2Jeff
Dy,

εQα±=∓1 = −hloc, εQα±=±1 = +hloc,

εQα±=∓2 = −6Jeff
Dy − 2hloc, εQα±=±2 = −6Jeff

Dy + 2hloc. (4.12)

-8 -6 -4 -2 0 2 4 6 8
-10

-5

0

5

10

15

20

25

Figure 4.5: Energies per tetrahedron εQ±
α

of Eq. (4.12), in units of |Jeff
Dy| as a function

of the reduced local field strength hloc
∗ = hloc/|Jeff

Dy|.

In this language, it is readily seen that the local fields generated by the
iridium sublattice act as a chemical potential for charges [93]. Their in-
clusion explicitly breaks the symmetry between plus tetrahedra and minus
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4.3 Iridium sublattice collective co-ordering

tetrahedra α± that is present in ordinary pyrochlore spin ice systems. A
positive hloc favors the production of positive charges on positive tetrahedra
and of negative charges on negative tetrahedra, while for negative-valued
fields the opposite holds true. Since the system is in this way invariant un-
der inversion hloc, we focus on positive values of the reduced field strength
hloc
∗ = hloc/|Jeff

Dy|. There are then three distinct charge phases, clearly sepa-
rated by boundaries at energies ε0 = ε±1 and ε±1 = ε±2 [93]:

• 0 ≤ hloc
∗ ≤ 2: weak local fields are insufficient to push the system away

from the spin ice ground state. Here, all tetrahedra have a vanishing
charge Qα± = 0, corresponding to canonical 2i2o ordering.

• 2 ≤ hloc
∗ ≤ 6: for intermediate values the competition between the

local fields and the dysprosium coupling leads the system to stabilize
the monopole excitations by lowering their energy with respect ot the
spin ice ground state. This results in a disordered manifold of 1i3o or
3i1o of tetrahedra that are characterized by a charge Qα± = ±1.

• hloc
∗ > 6: as the dominant energy scale the field strength causes the

dysprosium sublattice to order into the unique ground state formed by
Ao/Ai tetrahedra, with charge Qα± = ±2.

In order to quantify the degree to which the system is removed from these
states we define the average charge operator

Q̄ =
1

Ntet

∣∣∣∣∣∑
α

Qα

∣∣∣∣∣ =
1

2Ntet

∣∣∣∣∣∣
∑
α,i

σαi

∣∣∣∣∣∣ , (4.13)

where Ntet is the total number of tetrahedra in the pyrochlore lattice. As
long as Q̄ does not coincide with the absolute value of the allowed integer
values for the charges Qα± , the system remains removed from full charge
ordering.

We can furthermore use the polarization operator Π to gauge spin subor-
dering within the different charge manifolds. These manifolds are defined by
the condition that every tetrahedron holds a specific charge, a condition that
is in general not sufficiently constraining to absolutely avoid degeneracies.

115



4 Monopole stabilization in interpenetrating pyrochlore lattices

Instead there remains a large amount of freedom in the absolute spatial ori-
entation of the spins in a tetrahedron with a given charge, which has drastic
effects on the polarization. It is defined as

Π =
1

Ntet

∣∣∣∣∣∣
∑
α,i

σσσαi

∣∣∣∣∣∣ =
1

Ntet

∣∣∣∣∣∣
∑
α,i

σαi ûi

∣∣∣∣∣∣ . (4.14)

The orientation of the spins on a tetrahedron is not uniquely specified by the
charge it holds, and without secondary selection mechanisms will generally
be random. Even after charge ordering, the polarization will thus generally
vanish in the thermodynamic limit. On the other hand in states with order-
ing wavefector q = 0 for which all the spins on equivalent sites are directed
similarly, the polarization will reach the theoretical maxima

Π|Qα|=2 =
1

4

∣∣∣∣∣∣
∑
j

ûj

∣∣∣∣∣∣ = 0, (4.15)

Πq=0
|Qα|=1 =

1

4

∣∣∣∣∣∣
∑
j 6=i

ûj − ûi

∣∣∣∣∣∣ =
1

2
|ûi| =

1

2
, (4.16)

Πq=0
|Qα|=0 =

1

4

∣∣(ûi + ûmod(i+1,4))− (ûmod(i+2,4) + ûmod(i+3,4))
∣∣ =

1√
3
. (4.17)

4.4 Small angle deviation

(a) Iridium site ai and its six iridium
nearest neighbors a±j with j 6= i.

(b) Iridium site ai and its six sur-
rounding dysprosium sites αj7ai.

Figure 4.6: The nearest surrounding sites of an iridium site ai.

116



4.4 Small angle deviation

In the previous section we have laid out the behavior of the system of
interpenetrating iridium and dysprosium pyrochlore lattices on the assump-
tion that the interactions in the former are far dominant over those in the
latter, and at lower energy scales we may project into the corresponding
iridium ground state manifold to probe the physics playing out on the dys-
prosium sites. In contrast, we will here consider possible deviations in the
iridium collective ordering into the Ao or Ai state due to competition be-
tween the DM interaction and the dysprosium couplings when these are of
similar order.

Focusing on interactions within the iridium sublattice, the single-site Hamil-
tonian is simply

HIr,ai = −JIrSai ·
∑
±

∑
j 6=i

Sa±j
−DIr

∑
±

∑
j 6=i

Dij · (Sai × Sa±j
)

= −Sai ·
∑
±

∑
j 6=i

(
JIr Sa±j

+
3

2
√

2
DIr

[
ûi(Sa±j

· ûj)− ûj(Sa±j · ûi)
])

= −Sai · HHHai , (4.18)

whereHHHai can be interpreted as an effective field generated by the six nearest
neighbors a±j with j 6= i that is acting on the central spin ai, see Fig. 4.6a.
Assuming that the iridium sublattice is ordered in the Ao or Ai state, so
Sa±j

= S ûj for all the sites j in the thetrahedra a±, yields

HHHai
Ir Ao/Ai

=⇒ 2S
∑
j 6=i

(
JIr ûj +

3

2
√

2
DIr [ûi(ûj · ûj)− ûj(ûj · ûi)]

)
= −2S

(
JIr − 2

√
2DIr

)
ûi = −Jeff

Ir Sai , (4.19)

by Eq. (4.1). Of course, this result may be checked explicitly in a particular
reference frame, for example by means of Eqs. (4.37)-(4.38). Keeping in mind
that the exchange interactions are AFM, JIr < 0, and the DM interactions
are direct, DIr > 0, we see that Jeff

Ir = 2(JIr − 2
√

2DIr) < 0 and thus that
the effective field points precisely along the central spin.

We are now interested in the effect on this energy of a deviation by a small
angle θ � 1, indicated by a prime, away from the ordering along the local
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direction,

Sai → S′ai = r̂ sin θ + Sai cos θ ≈ θ r̂ +

(
1− θ2

2

)
Sai . (4.20)

With this result we find the dot product Sai · S′ai = 1− θ2/2, indepedent of
the polar coordinate r̂ ⊥ Sai in the plane perpendicular to the unperturbed
spin. Hence, we have that

HIr,ai

Ir Ao’/Ai′

=⇒ EIr,ai(θ) = −S′ai · HHHai = Jeff
Ir S′ai · Sai

≈ 2
(
JIr − 2

√
2DIr

)(
1− θ2

2

)
= Eθ=0

Ir,ai −
1

2
Jeff

Ir θ
2, (4.21)

with Eθ=0
Ir,ai

= Jeff
Ir = 2(JIr − 2

√
2DIr) < 0.

The inter-sublattice interaction between a single iridium spin at site i
in the tetrahedron a and its six surrounding dysprosium spins αj7ai, see
Fig. 4.6b, is of the form

HIr-Dy,ai = −JIr-DySai ·
∑
αj7ai

σσσαj = −JIr-DySai · ηηηai

= −JIr-DySai ·
(
ηηη‖,ai + ηηη⊥,ai

)
, (4.22)

where we have split up the effective field ηηηαi generated by the dysprosium
moments into components parallel ηηη‖,ai ‖ Sai and perpendicular ηηη⊥,ai ⊥ Sai
to the iridium spin that sits in it. We have accordingly defined

ηηηai =
∑
αj7ai

σσσαj , ηηη‖,ai = η‖,aiSai , ηηη⊥,ai = ηηηai − ηηη‖,ai , (4.23)

which implies that the parallel component is given by

η‖,ai = Sai · ηηηai = Sai ·
∑
αj7ai

σσσαj = S
∑
αj7ai

σαj ûi · ûj = −S
3

∑
αj7ai

σαj .

(4.24)

As a result, we find that the parallel field acting on an iridium site is di-
rected along the original spin if it is surrounded by dysprosium spins that
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in majority have the opposite relation to their local axis. For example, if
the iridium sublattice orders in Ai fashion (S = −1) and all the dysprosium
spins neighboring the site ai follow their axes ûj so that σαj = +1 for all
αj7ai, we find a positive parallel component η‖,ai = +2 that is directed
along Sai .

The local trigonal axis of an iridium site is orthogonal to the plane con-
taining the hexagon of nearest dysprosium spins. Again assuming iridium
Ao or Ai ordering, we can then similarly investigate the effect of the small
wiggle Sai → S′ai on the inter-sublattice interaction. We find

HIr-Dy,ai

Ir Ao’/Ai′

=⇒ EIr-Dy,ai(θ) = −JIr-DyS′ai · ηηηai

≈ −JIr-Dy

(
θ r̂ +

(
1− θ2

2

)
Sai

)
· (η‖,aiSai + ηηη⊥,ai)

= Eθ=0
Ir-Dy,ai − JIr-Dy

(
r̂ · ηηη⊥,ai θ −

1

2
η‖,aiθ

2

)
, (4.25)

where Eθ=0
Ir-Dy,ai

= −JIr-Dyη‖,ai is the energy corresponding to an unperturbed
spin that was treated in Sec. 4.3 [93]. Indeed, extending this contribution
over the entire lattice we can cast it into the form of a sum over the dyspro-
sium spins only,

HIr-Dy
Ir Ao/Ai

=⇒ 1

2

∑
a,i

Eθ=0
Ir-Dy,ai = −1

2
JIr-Dy

∑
a,i

η‖,ai

= SJIr-Dy

∑
α,j

σαj = −1

2
hloc

∑
α,j

σαj (4.26)

for hloc = −2SJIr-Dy, so that we recuperate the result previously obtained
in Eq. (4.10).

Putting together Eq. (4.21) and Eq. (4.25), the total effective Hamiltonian
acting on a single iridium spin at a small angle deviation from the Ao or Ai
state is

Heff
Ir,ai = HIr,ai +HIr-Dy,ai

Ir Ao’/Ai′

=⇒ Eeff
Ir,ai(θ) = EIr,ai(θ) + EIr-Dy,ai(θ)

= Eeff,θ=0
Ir,ai

− JIr-Dy r̂ · ηηη⊥,aiθ −
1

2

(
Jeff

Ir − JIr-Dyη‖,ai

)
θ2, (4.27)
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where Eeff,θ=0
Ir,ai

= Eθ=0
Ir,ai

+ Eθ=0
Ir-Dy,ai

= Jeff
Ir − JIr-Dyη‖,ai . We minimize the

energy function Eeff
Ir,ai

(θ) with respect to θ. The critical point satisfies

∂θE
eff
Ir,ai

(θ)|θ=θ0 = 0, with the minimizing angle given by

θ0 = −
JIr-Dy r̂ · ηηη⊥,ai
Jeff

Ir − JIr-Dyη‖,ai
. (4.28)

Since it holds that ∂2
θE

eff
Ir,ai

(θ)|θ=θ0 = −Jeff
Ir − JIr-Dyη‖,ai > 0, this is indeed a

minimum of the energy. By back substitution we find that at this minimal
point the energy function becomes

Eeff
Ir,ai(θ0) = Eeff,θ=0

Ir,ai
+

J2
Ir-Dy

(
r̂ · ηηη⊥,ai

)2
2
(
Jeff

Ir − JIr-Dyη‖,ai
)

= −JIr-Dyη‖,ai + J⊥Ir-Dyη
2
⊥,ai + const. (4.29)

At first approximation we assume that iridium perturbations are mutually
independent, ignoring the possibility of correlations between the different
deviations of pairs of spins. We are then at liberty to choose r̂ to be co-
directional with the perpendicular field, r̂ ‖ ηηη⊥,ai , in order to minimize the
(negative) energy contribution. Furthermore, we can ignore the constant
contribution deriving from the unperturbed Ao / Ai iridium state. Assuming
that |Jeff

Ir | � |JIr-Dy|, the fraction in the perpendicular coupling simplifies,

J⊥Ir-Dy =
J2

Ir-Dy

2
(
Jeff

Ir − JIr-Dyη‖,ai
) ≈ J2

Ir-Dy

2Jeff
Ir

< 0. (4.30)

Note that the limit of perpendicular effective coupling to zero, J⊥Ir-Dy → 0,
represents the static model in which the iridium spins are entirely locked
into Ao or Ai position and thus contribute only by the effect of their col-
lective parallel effective local magnetic field component on the dysprosium
sublattice [93]. The perturbative effect of a small angle deviation is entirely
encapsulated in the perpendicular field, whose squared contribution can be
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4.4 Small angle deviation

rewritten in terms of sums of different Ising pairings on the hexagon,

η2
⊥,ai = η2

ai − η
2
‖,ai =

 ∑
αj7ai

σσσαj

2

−

 ∑
αj7ai

σσσαj · Sai

2

=
8

9

12 + 2
∑

(αj↔βj)7ai

σαjσβj

−
∑

〈αj ,βk〉7ai

σαjσβk −
∑

〈〈αj ,βk〉〉7ai

σαjσβk

 . (4.31)

Here, (αj ↔ βj)7ai implies pairings of dysprosium spins on opposite ends of
the hexagon centered on iridium site ai. Similarly, the notations 〈αj , βk〉7ai
and 〈〈αj , βk〉〉7ai mean nearest neighbor and next nearest neighbor pairings
on the same hexagon. It is then apparent that the energy is lowered by
maximizing the perpendicular field. To this end, spins on opposite sites
of a hexagon should point in the same direction. On the other hand, in
pairings of adjacent and next-nearest neighboring spins one moment should
be directed into and the other out of their tetrahedra.

What we have found now is the optimal approximated contribution to
the overall energy of a single iridium spin that is slightly skewed away from
its unperturbed Ao or Ai direction. We then extend Eq. (4.29) to hold
equally for a larger number of iridium sites in the interpenetrated pyrochlore
lattice, even though the correlations between two tilted iridium spins will
lead to additional terms of order θ and θ2 neglected here that will depend on
polar coordinate r̂ of the symmetry breaking. This effect will compete with
the simple-minded assumption of codirectionality with the perpendicular
effective dysprosium field, r̂||ηηη⊥,ai . However, the current assumption should
hold reasonably well at least in the regime of a low density of deviating
iridium spins.

The assumptions made in this section are especially fruitful for Monte
Carlo simulation, since they cast the irididium contributions to the energy
into the form of a potential independent of their spin state that is a small
optimal angle θ0 � 1 away from collective local direction ordering. We have
thus effectively projected them out of our model description, leaving us with
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4 Monopole stabilization in interpenetrating pyrochlore lattices

a simulation that is Ising-type. A flip of a dysprosium spin on the site αi
causes an energy difference

∆EDy(∆σαi) = −Jeff
Dy ∆σαi

∑
±

∑
j 6=i

σαj (4.32)

in the spin ice-like contribution of the pure dysprosium model that is un-
affected by the small angle θ0 deviation of the iridium spins. Differently,
substituting Eq. (4.24) and Eq. (4.31) into Eq. (4.29) we find that the irid-
ium potential difference on one of the six neighboring sites aj caused by a
dysprosium spin flip on site αi is given by

∆Eeff
Ir,aj (θ0; ∆σαi) = −JIr-Dy∆η‖,aj + J⊥Ir-Dy∆η2

⊥,aj

=

−1

6
hloc +

8

9
J⊥Ir-Dy

2
∑

(βi→αi)7aj

σβi

−
∑

(βk∼αi)7aj

σβk −
∑

(βk∼∼αi)7aj

σβk

 ∆σαi , (4.33)

where (βi → αi)7aj implies that we target the site βi opposite of αi on
hexagon aj and (βk ∼ αi)7aj and (βk ∼∼ αi)7aj respectively indicate sums
over the nearest and next nearest neighbors of αi on aj . We have taken
the liberty of rewriting the parallel term in terms of the iridium-induced
local field strength on a dysprosium atom by virtue of their duality in the
unperturbed case θ = 0, a restatement of Eq. (4.26).

4.5 Exact maximization of η2
⊥ on finite lattice

segments

In order to put our simulations on a sounder theoretical footing we have in-
vestigated the configurations within some specific manifolds that maximize
the overall value of the perpendicular magnetic field on various finite lattice
segments by a brute-force computerized approach. For each of the 2N con-
figurations permissible on a plaquette of N dysprosium Ising-like spins we
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calculate the quantities

η‖ =
1

2

∑
a,j

η‖,aj , η2
⊥ =

1

2

∑
a,j

(
η2
⊥,aj

)
, (4.34)

where we sum over all the hexagonal dysprosium plaquettes or, equivalently,
their central iridium sites aj .

4.5.1 hexagon plaquette

First of all, we look at the elementary hexagon formed by the six dyspro-
sium sites αj7ai contributing to the field acting on a iridium site ai, see
Fig. 4.6b. Modulo a global spin flip and rotations of the hexagon there are
eight inequivalent configurations to consider. These are classified according
to their contribution to η‖ and η2

⊥ in Table 4.3.

η‖ = 0 η‖ = 2/3 η‖ = 4/3 η‖ = 2

η2
⊥ = 0 (+ + + - - -), - - (+ + + + + +)

(+ - + - + -)

η2
⊥ = 32/9 - (+ + + + - -), (+ + + + + -) -

(+ + + - + -)

η2
⊥ = 96/9 (+ + - + - -) - - -

η2
⊥ = 128/9 - (+ + - + + -) - -

Table 4.3: Parallel magnetic field and perpendicular magnetic field squared induced
by different configurations, denoted by their values of Ising variable σαj
for all the six sites αj on the hexagon.

We provided analytical formulas for the parallel and perpendicular fields
on a surrounding hexagon in Eq. (4.24) and Eq. (4.31). Since opposite sites
on the hexagon have coinciding local trigonal directions, the spins inhabiting
them should point in the same direction to result in a postive contribution
to η2

⊥. Furthermore, due to the tetrahedron’s high symmetry the sum of
any three distinct local axes is antiparallel to the fourth, see Eq. (4.1). This
engenders an effective preference for a spin to surround itself by pairs of spins
pointing in the opposite direction if the aim is to increase the perpendicular
field.

From Table 4.3 it is clear that the symmetric 2o1i2o1i-loop around the
hexagon, shown in Fig. 4.7, is the configuration that is most effective at
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4 Monopole stabilization in interpenetrating pyrochlore lattices

using the described rules to maximize the perpendicular field. It is as well
suited as the runner-up 2o1i1o2i-loop to benefitting from the second and
third variable terms in Eq. (4.31), which both have no spins surrounded by
pairs pointing in the same direction but do have two locations where spins
are positioned in between pairs pointing in the opposite direction. However,
all of the spins in the 2o1i2o1i formation point in the same direction as their
opposite number, maximising the first variable term of Eq. (4.31), which is
different for the 2o1i1o2i-loop.

+1

-1

+1

+1

+1

-1

Figure 4.7: The symmetric 2o1i2o1i-loop has the highest contribution to the per-
pendicular field η2

⊥ of the configurations permissible on a hexagon.

4.5.2 supertetrahedron plaquette

We then extend this analysis to the supertetrahedron formed by a single
iridium tetrahedron and its dysprosium neighbors. This plaquette has an
overall ground state that is a straightforward tiling of the optimal symmetric
2o1i2o1i-loop on each of its four constituent hexagons, see Fig. 4.8a. As such,
its perpendicular contribution is given by η2

⊥ = 4 ·128/9 = 512/9. The entire
pyrochlore lattice may be covered by a simple repitition of this fundamental
supertetrahedron configuration, leading to a unique 2i2o state that preserves
the original translation symmetry. This is the q = 0 charge 0 state.

Including only tetrahedra with charge ∓1 or ±1 rules out lattice coverings
composed of the optimal supertetrahedron configuration, as that setup would
necessarily contain both 3i1o and 1i3o tehtrahedra. Allowing only tetrahedra
of the same type, with charge ±1 we find that the configuration in Fig. (4.8b)
is preferred. Besides three optimal hexagons it also contains a single loop
with a vanishing perpendicular contribution, resulting in η2

⊥ = 3 · 128/9 +
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1 · 0 = 128/3. This spin configuration is trivially extended, giving a strong
hint that this might be the fundamental spin unit of the lowest energy state
of the submanifold on the infinite lattice.

-1

+1

+1

-1

-1 -1

-1
-1

+1

+1

+1

+1

(a) Configuration maximizing η2
⊥.

-1

+1

+1

-1

-1

+1

+1

+1

+1
+1

+1 +1

(b) Configuration in the restricted
charge ±1 manifold.

Figure 4.8: Supertetrahedron plaquette configurations maximizing η2
⊥.

4.5.3 Triangle of supertetrahedra

Lastly we have looked at a structure consisting of three supertetrahedra in
a triangular arrangement. Unconditional seeding of spins indeed finds that
the simple periodic extension of the supertetrahedron optimal spin structure,
containing only optimal hexagons, is preferred, with η2

⊥ = 12·128/9 = 512/3.

Restricting to the manifold of tetrahedra with charges ∓1 or ±1, we find
that on this plaquette can exist coverings with a cumulative perpendicu-
lar magnetic field squared of η2

⊥ = 1408/9, an example of which can be
found in Fig. 4.9a. Again, these structures are highly aperiodic and how
they could be extended to cover the entire lattice is unclear. One feature
that all the optimal spin structures on this plaquette share is that the spins
on one of the central dysprosium triangular plane, e.g. those at the lower
tips of the top layer of the dysprosium tetrahedra, are all directed similarly.
This can be explained by realizing that every tetrahedron in the manifold
has at least a single spin of both sign. By Eq. (4.31) it is then advanta-
geous to place all such spins on equivalent sites within their tetrahedron
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4 Monopole stabilization in interpenetrating pyrochlore lattices

so that spins at opposite hexagonal ends have the same direction. The re-
maining three spins of each tetrahedron then order to cover their kagome
plane with the optimal 2o1i2o1i-loop hexagons, while the spins of the tetra-
hedra of the lower kagome plane adapt to optimize the hexagons connecting
the layers. This mechanism is not sufficiently constraining to be insensi-
tive to finite-size effects. Indeed, covering the infinite lattice according to
these rules results in the spin substructure Fig. 4.9b of three optimal and
one zero-contribution hexagon per iridium tetrahedron, which yields a lower
perpendicular field value η2

⊥ = 3 · 128/3 = 128. Respecting the original
pyrochlore translation symmetry, this long-range ordered spin structure is
known as the q = 0 charge ±1 state. In further support of its putative status
as lowest energy state of the submanifold on the extended lattice, we find
that its commensurate substructure is also the lowest energy configuration
on our finite plaquette if we demand that only charge ±1 tetrahedra are
included.

-1 -1

-1

-1

-1-1

-1 -1-1

-1

+1
+1

+1
+1

+1

+1

+1+1

+1

+1 +1

+1

+1 +1

+1

+1

+1

+1

-1

-1

(a) Optimal configuration.
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-1

-1

-1-1

-1 -1-1

-1

+1
+1

+1
+1

+1

+1

+1+1

+1

+1 +1

+1

+1 +1

+1

+1

+1

+1

-1

+1

(b) Optimal configuration in the re-
stricted charge ±1 manifold.

Figure 4.9: Configurations on the triangle of supertetrahedra that maximize η2
⊥.

4.6 Small angle deviation effective Monte Carlo:
results

We wish to understand how a small-angle deviation from the Ao or Ai state,
characterized by Sai = Sûi for all ai with S ∈ {+1,−1}, on the iridium
sublattice affects the ordering of the dysprosium Ising-like spins. To this
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4.6 Small angle deviation effective Monte Carlo: results

end we subject the common spin ice model Eq. (4.2) on the dysprosium
sublattice, supplemented with the effects of the inter-sublattice interaction,
to Monte Carlo simulation. Acceptances of attempted moves are determined
by the Metropolis algorithm. The relevant Boltzmann weight for a flip of
the dysprosium spin at site αi depends on the total energy difference

∆Eeff
Dy(∆σαi) = ∆EDy(∆σαi) +

∑
aj7αi

∆Eeff
Ir,aj (θ0; ∆σαi)

= −

hloc +

(
Jeff

Dy +
16

9
J⊥Ir-Dy

)∑
±

∑
j 6=i

σα±j

+
8

9
J⊥Ir-Dy

 ∑
βj 6=i∼∼αi

σβj − 2
∑

βi∼∼∼αi

σβi

 ∆σαi ,

(4.35)

from Eq. (4.32) and Eq. (4.33). For the reader’s convenience, we repeat here
the definitions of the couplings that appear:

Jeff
Dy = −

JDy

3
, J⊥Ir-Dy ≈

J2
Ir-Dy

2Jeff
Ir

=
J2

Ir-Dy

2(JIr − 2
√

2DIr)
,

hloc = −2SJIr-Dy, hloc
∗ =

hloc

|Jeff
Dy|

= −6S
JIr-Dy

|JDy|
.

Simulations were performed at fundamental parameter values

JDy = 4.5K, DIr = 50K, JIr = −10DIr = −500K, (4.36)

along the lines indicated in [93], at different intersublattice couplings JIr-Dy >
0. With the choice S = −1, all generated local fields acting on the dyspro-
sium sites are positive, hloc > 0, and favor the Ao state with all spins pointing
out of plus tetrahedra. For J⊥Ir-Dy we start with the natural value resulting
from the small-angle expansion definition, and then multiply it by a factor
0, 10, 100 or 1000 to magnify its effects. We present our results in a series
of plots that depict the behavior of a series of instructive observables that
give us insight into the physics playing out in the interpenetrated pyrochlore
lattice upon lowering the temperature. Among these are the energy per spin,
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4 Monopole stabilization in interpenetrating pyrochlore lattices

heat capacity CV = 〈E〉2 − 〈E2〉/kBT
2 and average charge and polarization

as defined in Eqs. (4.13)-(4.14). In the energy plots we have also shown
some reference lines that correspond to the ordered Qα± = 0 (dotted line)
and q = 0 ordered charge Qα± = ±1 (continuous line) states preferred by
the perpendicular coupling.

It is important to remark that it has has proved difficult to completely
prevent the effects of spin freezing in our simulations. Irrespective of the
parameter set taken, at some (low) temperature the spins lock into posi-
tion and computationally expensive non-local update mechanisms would be
needed to preserve predictive power. We have attempted to circumvent such
complications by tracking the number of accepted manipulations per spin.
Judging from the the way it falls off at lower temperatures, for all param-
eter values the data is relatively trustworthy at least for significantly lower
temperatures than those at which the interesting physics play out.

4.6.1 hloc
∗ = 2 — boundary of J⊥Ir-Dy = 0 charge 0 and charge ±1

selection regimes

First of all we aim to study the boundary of the charge 0 and charge
±1 selection regimes that exist for J⊥Ir-Dy = 0 at dimensionless local field

strength hloc
∗ = 2, corresponding to intersublattice coupling JIr-Dy = 1.5K

for parameter values Eq. (4.36) that give a natural perpendicular coupling
J⊥Ir-Dy ≈ −0.001 with optimal deviation angle θ0 ≈ 0.002η⊥,ai of the iridium
spin at ai. For low perpendicular couplings there is excellent agreement with
Lefrancois (black continuous line) [93] in the charge average plot. For higher
values of J⊥Ir-Dy we start finding that the energy starts coinciding with the

2o2i dotted line, and the polarization goes towards the 1/
√

3 ≈ 0.57 value
predicted for the ordered q = 0 state in Eq. (4.15). The seemingly discontin-
uous behavior of the energy, polarization and charge average is accompanied
by very sharp peaks in the heat capacity.

4.6.2 hloc
∗ = 6 — boundary of J⊥Ir-Dy = 0 charge ±1 and charge ±2

selection regimes

We then turn our attention to the boundary of the charge ±1 and charge
±2 selection regimes that exist for J⊥Ir-Dy = 0 at dimensionless local field
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Figure 4.10: Computed observable curves for hloc
∗ = 2.

strength hloc
∗ = 6, corresponding to intersublattice coupling JIr-Dy = 9K

for parameter values Eq. (4.36). For low perpendicular couplings there is
excellent agreement with Lefrancois [93] in the charge average plot (black
continuous line). Notably, even at natural value (red line, J⊥Ir-Dy ≈ −0.008
with a deviation angle θ0 ≈ 0.014η⊥,ai ) there is significant deviation at low
T . This is due to a large preference of the perpendicular coupling for the
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Qα± = ±1 state over the Qα± = ±2 state as ultimately deriving from Table
4.3, which leads to a lower charge average. Except for the largest values of
J⊥Ir-Dy, the ordered 3o1i manifold is thus preferred, and energies tend to the
predicted continuous reference lines. In particular the system selects the q =
0 charge ±1 state, with a theoretical polarization of 1/2 = 0.5 that is indeed
tended to. For the largest value (pink lines) the perpendicular coupling
becomes the dominant energy scale of in the system, leading again to the
selection of the 2i2o state with vanishing average charge and a polarization
of 1/

√
3 ≈ 0.57. Again, all ordering transitions seem to be first order phase

transitions judging by the discontinuities in the energy, polarization and
charge average and the sharpness of the corresponding heat capacity peaks.

4.6.3 hloc
∗ = 4.5 — deep inside J⊥Ir-Dy = 0 charge ±1 selection

regime

Finally, we have run simulations for JIr-Dy = 6.75K, corresponding to hloc
∗ =

4.5, deep inside the the regime where the highly degenerate charge ±1 man-
ifold has the lowest energy for J⊥Ir-Dy = 0. It is worth noting that Lefrancois
predicts such values to accurately describe the interactions in holmium iri-
date Ho2Ir2O7, see Table 4.2 [93]. This gives a corresponding natural per-
pendicular coupling of Jeff

Ir-Dy ≈ −0.005 for a deviation angle θ0 ≈ 0.011η⊥,ai
of the iridium spin at ai. Significant deviations from purely parallel fields
start developing when the perpendicular coupling is ten times increased
(green line), for which the charge average Q̄ no longer shows an overshoot
but instead monotonically increases to the expected value of 1 that corre-
sponds to the 3o1i manifold. For intermediate values the q = 0 ordered
3o1i state is selected, as we can see from the polarization data that tends
to the corresponding 1/2 = 0.5 continuous black line. For the largest value
(pink lines) the perpendicular coupling becomes the dominant energy scale
of in the system, leading again to the selection of the 2i2o state with vanish-
ing average charge and a polarization of 1/

√
3 ≈ 0.57. Again, all ordering

transitions seem to be first order phase transitions judging by the disconti-
nuities in the energy, polarization and charge average and the sharpness of
the corresponding heat capacity peaks.
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Figure 4.11: Computed observable curves for hloc
∗ = 6.

4.7 Conclusion

In this chapter we have introduced an extension of the famous spin ice model
that is proposed to describe the behavior of compounds of iridium and rare-
earth magnetic atoms, such as Dy2Ir2O7. In these crystals, a local magnetic
field acts as a chemical potential for the monopole excitations of the canon-
ical spin ice model on the dysprosium pyrochlore lattice and can so stabilize
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Figure 4.12: Computed observable curves for hloc
∗ = 4.5.

ground states with a non-zero monopole charge. This non-uniform field re-
sults from a coupling of the Ising-like spins to the Heisenberg spins of the
interpenetrating pyrochlore lattice populated by the iridium atoms, which
are induced to collectively co-order into the all-out all-in position by the
presence of sizeable Dzyaloshinksy-Moriya interactions. The pinning on this
lattice is significantly softer than the anisotropy-mediated reduction of sym-

132



4.7 Conclusion

metry to effective Ising spins in spin ice, opening the ground to competition
effects.

We have found an analytical expression for the change in energy result-
ing from a small angle deviation from the iridium all-in all-out ordering,
Eq. (4.27). Minimizing this energy we find the optimal angle of Eq. (4.28),
which feeds back into the energy to express it purely as a function of of the
parallel and perpendicular components of an effective field produced by the
six dysprosium spins surrounding an iridium site as defined in Eq. (4.23).
If this energy change turns negative it becomes advantageous to the system
to adopt the proposed small angle deviation. This would require a large
perpendicular component and a small parallel component of the dysprosium
generated field.

We have investigated the optimal dysprosium configurations on various
finite plaquettes of different sizes in section 4.5, wich suggest that a uni-
form, translationally invariant covering of identical tetrahedra containing a
zero charge is preferrred. Furthermore, restricting to the submanifold with
charge ±1 or ∓1 tetrahedra the largest perpendicular fields are achieved by
the translationally invariant covering of tetrahedra with the same unimod-
ular charge. In section 4.6 we have displayed the results of Monte Carlo
simulation of this small angle deviation setup, which confirm thes expecta-
tions. Unfortunately, the natural value of the interaction strength mediating
the perpendicular field term is found to be small in the case of Dy2Ir2O7

and so does not lead to significant changes to the physics of this compound.
A slight exception can be made at the boundary values of different selec-
tion regimes, where the perpendicular component can be sufficient to tip
the system over into the preferred translationally invariant zero charge state
or runner up translationally invariant unit charge covering. There is the
possibility of larger perpendicular field interaction strengths in other ma-
terials, which we have investigated by artificially inflating the value in our
simulations. If an additional reinforcement mechnism can be found it might
induce an interesting phase transition into the preferred uniform vanishing
charge state, which seems likely to be of first order by the discontinuities it
produces in observable plots.
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4.8 Appendix: reference frames

4.8.1 Edge-up reference frame

In the edge-up reference frame one of the plus tetrahedra of in the pyrochlore
lattice is put on its side, so that its edges coincide with the diagonals of the
faces of a cube. The unit vectors of the local trigonal directions, see Fig. 4.2a,
can then be parametrized as

û1 =
1√
3

(+1,−1,−1)T , û2 =
1√
3

(−1,−1,+1)T ,

û3 =
1√
3

(+1,+1,+1)T , û4 =
1√
3

(−1,+1,−1)T . (4.37)

In the edge-up frame, the non-vanishing vector elements of the matrix con-
taining the Dzyaloshinsky-Moriya axes, see Fig. 4.2b, are parametrized as

D12 = −D21 =
1√
2

(−1, 0,−1)T , D13 = −D31 =
1√
2

(0,−1,+1)T ,

D14 = −D41 =
1√
2

(+1,+1, 0)T , D23 = −D32 =
1√
2

(−1,+1, 0)T ,

D24 = −D42 =
1√
2

(0,−1,−1)T , D34 = −D43 =
1√
2

(−1, 0,+1)T .

(4.38)

4.8.2 face-up reference frame

Another useful frame of reference is the face-up reference frame, in which
tetrahedra have one trigonal axis aligned with the z direction. The local
trigonal unit vectors then take the parametrization

û1 = (0, 0,−1)T , û2 =

(
−
√

2

9
,

√
2

3
,
1

3

)T
,

û3 =

(√
8

9
, 0,

1

3

)T
, û4 =

(
−
√

2

9
,−
√

2

3
,
1

3

)T
. (4.39)
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Summary

The subdiscipline of physics modernly known as condensed matter theory
concerns itself with describing the properties of systems composed of a large
number of atoms. Such collections tend to develop behavior that is more
than the sum of that of its constituents. Such synergic, or emergent, effects
are a familiar occurrence in everyday life through thermodynamics: the tem-
perature of an object is a statistical average of the total kinetic energy, and
so is poorly defined for a single molecule. Similarly, the collective ordering
of the magnetic moments of different atoms gives rise to the phenomenon of
magnetism in its various guises.

Distorted Weyl cones under perturbation

(a) Diamond lattice. (b) Graphite lattice. (c) Graphene lattice.

Figure 1: The lattice structure of some common carbon allotropes [105]

One of the major accomplishments of physics in the last century was the
development of a theory for understanding metals. The atoms of solid ma-
terials are arranged in periodic structures known as crystals, which dictates
to a large extent what physical properties they have. For example, a dia-
mond in a ring and the graphite of the lead in a pencil are both pure carbon
allotropes, meaning they are completely composed of C-atoms. However,
due to their different lattice structures, see Fig. 1, the two substances are
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still substantially different. In a crystallic structure, the orbits of the atoms’
electrons come to overlap in space. This is in contradiction with the exclu-
sion principle, a statistical law that states that matter particles, or fermions,
cannot share the same quantum number. As a consequence, the atomic or-
bitals split into a set of near-continuous bands with different energies. This
band structure details the allowed relation between the momenta of the elec-
trons in the material and their energies. Some of these structures have large
gaps between the bands where electron states are not permitted, see Fig. 2a.
This means the energy cost of bringing the electrons in motion, causing an
electric current to flow, is insurmountably large. Such materials will be insu-
lators. Metals on the other hand have no such gaps in their band structures,
see Fig. 2b, by virtue of which they tend to be good conductors of electric-
ity. Semiconductors have band structures that are in between an insulating
and conducting form, with a small gap separating two bands, see Fig. 2c.
This means they can relatively easily be doped with additional electrons
or electron-holes, inserting supernumerary charge carriers into the system.
Joining these two types of doped semiconductors creates a heterostructure
that acts as an electronic diode, in which electricity can flow in one direction
but not the other. In a transistor this property forms the basis of the 0s and
1s that provide the bits for the memories of our modern computers.

E
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y

(a) Insulator. (b) Metal. (c) Semiconduc-
tor.

(d) Semimetal.

Figure 2: Different types of band structures encountered in condensed matter sys-
tems.
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In some materials, the band structure has some special regions where it
resembles two inverted cones connected only at a nodal point at their tips,
see Fig. 2d. It is possible then to bring the electrons in motion by paying a
given slight energy cost, but mostly not as many of them as in the case of a
metal. These materials, aptly called semimetals, then do conduct electricity,
but mostly less well than a proper conductor. A commonly known material
with such a band touching point and linear dispersion is graphene. Famously,
it is only a single atomic layer thick, with its carbon atoms arranging on a
purely two dimensional lattice shaped like a honeycomb, see Fig. 1c. By
virtue of its exceptional mechanical strength and extraordinary electronic
properties, discoverers Geim and Novoselov were awarded the Nobel prize
just five years after first isolating it in 2004.

In Weyl semimetals the Fermi velocity associated with the approximately
linear dispersion of the excitations near the band touching point is much
smaller than the fundamental speed of light in vacuum c. Consequently
their conical spectrum is not bound by Lorentz symmetry and can develop
tilts and anisotropies, as has been found in real-life materials such as WTe2.
Furthermore, perturbations like disorder and Coulomb interactions can ob-
fuscate and complicate the picture that emerges from the free, fully symmet-
ric Weyl fermion model. We have investigated how the interplay of these
disturbances impacts the scaling behavior of observables depending on the
Density of States, which nominally vanishes at the free theory nodal point.

Monopole stabilization in interpenetrating pyrochlore lattices

Besides more well-known concepts as mass and charge, all fundamental par-
ticles have a property called spin. The spin of a particle is an intrinsic part
of its total angular momentum. Unlike more conventional orbital angular
momentum, however, it has no counterpart in classical mechanics and is
therefore said to be a purely quantum quantity. In the classic Stern-Gerlach
experiment, first performed in 1922, a magnetic field deflects the particles
in a beam according to their spins, producing a set of discrete points on the
detector screen. This shows that we can think of spinful particles as tiny
bar magnets of various strengths. In this way spin leads to magnetic inter-
actions between atoms. These can be ferromagnetic, favoring spins to point
in the same direction, or antiferromagnetic, by which spins preferentially
anti-align.
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In some lattice structures of crystalline solids, the geometry is incompati-
ble with the demands imposed by the interactions between the atoms spins.
For example, on triangular setups antiferromagnetic couplings between Ising
spins, which have only two possible states, cannot all be simultaneously sat-
isfied, See Fig. 3a. This phenomenon is known as frustration. There are
multiple ways to place the spins in a way that optimizes the interactions
and come to a lowest energy state, see Fig. 3b. We say the ground state of
the Ising triangular model with frustrated interactions is degenerate.

?
(a) The third spin on the trian-

gle does not have a preferred
direction.

(b) The lowest states of the spins on the tri-
angle, up to rotation.

Figure 3: Frustration of antiferromagnetically interacting Ising spins on a triangle.

A more complex structure in which frustration appears is the pyrochlore
lattice, see Fig. 4.1a. It is composed of corner-sharing tetrahedra that make
it impossible to satisfy all the antiferromagnetic interactions between the
Ising-like spins. In such spin ice models the lowest energy states obey the
spin ice rule: every ground state tetrahedron must have two spins pointing
inwards and two spins pointing outwards. This can be interpreted as a
divergence-free condition of an effective field, with as many of the field lines
leaving the tetrahedron as are entering it. Excitations above this extensively
degenerate ground state manifold then obtain an interpretation as pairs of
sources and sinks of this field. These monopoles are detectable in for example
neutron scattering experiments and influence the low-temperature transport
behavior of spin ice materials. We have investigated perturbations to a
particular set-up in which two of these pyrochlore lattices interpenetrate
and their spins interact, resulting in an effective chemical potential for the
monopoles that can stabilize them.
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Samenvatting

De subdiscipline van de fysica die tegenwoordig bekend staat als theorie van
de gecondenseerde materie houdt zich bezig met het beschrijven van de eigen-
schappen van systemen die uit een groot aantal atomen bestaan. Dergelijke
collecties hebben de neiging om gedrag te ontwikkelen dat meer is dan de
som van dat van de samenstellende delen. Zulke synergie, of emergentie, is
in het dagelijks leven bekend door de thermodynamica: de temperatuur van
een object is een statistisch gemiddelde van de totale kinetische energie en
is dus slecht gedefinieerd voor een enkel molecuul. Evenzo leidt de collec-
tieve ordening van de magnetische momenten van verschillende atomen tot
de verschillende verschijningsvormen van magnetisme.

Vervormde Weyl-kegels onder verstoring

Een van de belangrijkste prestaties van de natuurkunde in de vorige eeuw is
de ontwikkeling van een theorie die ons in staat stelt het gedrag van metalen
te begrijpen. De atomen van vaste materialen zijn gerangschikt in periodieke
structuren die bekend staan als kristallen. Dit bepaalt in hoge mate welke fy-
sische eigenschappen ze hebben. Een diamant in een ring en het grafiet in het
lood van een potlood zijn bijvoorbeeld pure koolstofallotropen, wat betekent
dat ze volledig zijn samengesteld uit C-atomen. Vanwege hun verschillende
roosterstructuren, zie Fig. 1, zijn het echter nog steeds substantieel verschil-
lende stoffen. In een kristalstructuur overlappen de banen van de elektro-
nen rond de atomen elkaar in de ruimte. Dit is in tegenspraak met het
uitsluitingsprincipe, een statistische wet die bepaalt dat materiedeeltjes, of
fermionen, niet hetzelfde kwantumgetal kunnen hebben. Als gevolg hiervan
splitsen de atomaire orbitalen zich in een reeks van bijna-continue banden
met verschillende energieën. Deze bandstructuur specificeert de toegestane
relatie tussen de snelheid van de elektronen in het materiaal en hun en-
ergieën. Sommige van deze structuren hebben grote openingen tussen de
banden waar elektronentoestanden niet zijn toegestaan, zie Fig. 2a. Dit
betekent dat de energiekosten om een elektron te versnellen, en zo een elek-
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trische stroom te laten vloeien, onoverkomelijk groot is. Dergelijke materi-
alen zijn isolatoren. Metalen daarentegen hebben niet zulke openingen in
hun bandstructuren, zie Fig. 2b, waardoor ze niet zulke goede geleiders van
elektriciteit zijn. Halfgeleiders hebben bandstructuren die zich tussen een
isolerende en geleidende vorm bevinden, met een kleine opening tussen twee
banden, zie Fig. 2c. Dit betekent dat het relatief eenvoudig is om extra elek-
tronen of elektron-gaten toe te voegen, waardoor overtollige ladingsdragers
in het systeem worden gëıntroduceerd. Het samenvoegen van deze twee
soorten halfgeleiders creëert een heterostructuur die werkt als een elektron-
ische diode, waarin elektriciteit in de ene richting kan stromen maar niet in
de andere. In een transistor ligt deze eigenschap aan de basis van de nullen
en enen die de bits voor de geheugens van onze moderne computers vormen.

In sommige materialen heeft de bandstructuur enkele speciale gebieden
waar ze lijkt op twee omgekeerde kegels die slecht op één punt aan hun
uiteinden zijn verbonden, zie Fig. 2d. Het is dan mogelijk om de elektronen
in beweging te brengen door een kleine energiekoste te betalen, maar meestal
niet zoveel van hen als in het geval van een metaal. Deze materialen, toepas-
selijk semimetalen genoemd, geleiden dan elektriciteit, maar meestal minder
goed dan een normaal metaal. Een bekend materiaal met een dergelijk ban-
daanrakingspunt en lineaire dispersie is grafeen. In dit materiaal zijn alle
koolstofatomen gerangschikt op een tweedimensionaal rooster in de vorm
van een honingraat, zie Fig. 1c, wat het extreem dun maakt. Op grond
van zijn uitzonderlijke mechanische sterkte en buitengewone elektronische
eigenschappen ontvingen ontdekkers Geim en Novoselov slechts vijf jaar na
de eerste isolatie in 2004 de Nobelprijs.

In Weyl-semimetalen is de Fermi-snelheid geassocieerd met de ongeveer
lineaire dispersie van de excitaties nabij het contactpunt van de banden veel
kleiner dan de fundamentele lichtsnelheid in het vacuüm c. Omdat hun conis-
che spectrum niet gebonden is aan Lorentz-symmetrie kunnen zich kantelin-
gen en anisotropieën ontwikkelen, zoals is gevonden in bijvoorbeeld WTe2.
Bovendien kunnen verstoringen zoals atomische wanorde en Coulombinter-
acties het beeld dat geschetst wordt door het vrije, volledig symmetrische
Weyl fermion-model bëınvloeden. Wij hebben onderzocht hoe het schaalge-
drag van experimenteel observeerbare toestanddichtheid, die verdwijnt op
het bandaanrakingspunt van het vrije model, wordt beënvloed door het
samenspel van deze vervormingen en verstoringen.
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Monopoolstabilisatie in interpenetrerende pyrochloreroosters

Naast bekendere concepten als massa en lading hebben alle fundamentele
deeltjes een eigenschap genaamd spin. De spin van een deeltje is een in-
trinsiek onderdeel van zijn totale hoekmomentum. In tegenstelling tot het
conventionelere orbitaal hoekmomentum heeft het echter geen tegenhanger
in de klassieke mechanica en wordt daarom gezien als een pure kwantumg-
rootheid. In het bekende Stern-Gerlach-experiment, dat voor het eerst werd
uitgevoerd in 1922, buigt een magnetisch veld de deeltjes in een straal af
naar gelang hun spins, wat resulteert in een reeks discrete punten op het
detectiescherm. Dit laat zien dat we spindeeltjes kunnen beschouwen als
kleine staafmagneetjes van verschillende sterktes. Op deze manier leidt spin
tot magnetische interacties tussen atomen. Deze kunnen ferromagnetisch
zijn, zodat spins het liefst in dezelfde richting wijzen, of antiferromagnetisch,
waardoor spins bij voorkeur de andere kant op gericht zijn.

In sommige roosterstructuren van kristallijne vaste stoffen is de geometrie
onverenigbaar met voorkeursrichtingen van de interacties tussen de spins
van de atomen. Op driehoekige opstellingen kunnen antiferromagnetische
koppelingen tussen Ising-spins, die slechts twee mogelijke toestanden hebben,
niet allemaal tegelijkertijd worden voldaan, zie Fig. 3a. Dit fenomeen staat
bekend als frustratie. Er zijn meerdere manieren om de spins zo te plaatsen
dat de interacties geoptimaliseerd worden en tot een laagste energiestatus
te komen, zie Fig. 3b. We zeggen dat de grondtoestand van het model met
gefrustreerde interacties degeneratief is.

Een complexere structuur waarin frustratie een rol speelt is het pyrochloor-
rooster, zie Fig. 4.1a. Het is samengesteld uit tetraëders die verbonden
zijn aan de hoekpunten, waardoor het onmogelijk is om alle antiferromag-
netische interacties tussen de Ising-achtige spins te bevredigen. In dergeli-
jke spin-ijsmodellen houden de laagste energietoestanden zich aan de spin-
ijsregel: elke tetraëder in grondtoestand moet twee spins hebben die naar
binnen wijzen en twee die naar buiten wijzen. Dit kan worden genterpre-
teerd als een divergentie-vrije conditie voor een effectief veld, waarvan net
zoveel veldlijnen de tetraëder verlaten als dat er binnenkomen. Excitaties
vanuit deze extensief degeneratieve grondtoestand zijn dan op te vatten als
paren van bronnen en putten van dit veld. Deze monopolen zijn detecteer-
baar in bijvoorbeeld neutronenverstrooiingsexperimenten en bëınvloeden het
transportgedrag van spin-ijsmaterialen bij lage temperaturen. Wij hebben
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onderzocht hoe een opstelling waarin twee van deze pyrochloorroosters on-
derling doordringen en hun spins interacteren, resulterend in een effectief
chemisch potentieel voor de monopolen dat ze kan stabiliseren, reageert op
verstoringen.
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