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A B S T R A C T

Irrigation infrastructure development for smallholder farmers in developing countries increasingly gains at-
tention in the light of domestic food security and poverty alleviation. However, these complex landscapes with
small cultivated plots pose a challenge with regard to mapping and monitoring irrigated agriculture. This study
presents an object-based approach to map irrigated agriculture in an area in the Central Rift Valley in Ethiopia
using SPOT6 imagery. The study is a proof-of-concept that the use of shape, texture, neighbour and location
information next to spectral information is beneficial for the classification of irrigated agriculture. The under-
lying assumption is that the application of irrigation has a positive effect on crop growth throughout the field,
following the field's borders, which is detectable in an object-based approach. The type of agricultural system
was also mapped, distinguishing smallholder farming and modern large-scale agriculture. Irrigated agriculture
was mapped with an overall accuracy of 94% and a kappa coefficient of 0.85. Producer's and user's accuracies
were on average 90.6% and 84.2% respectively. The distinction between smallholder farming and large-scale
agriculture was identified with an overall accuracy of 95% and a kappa coefficient of 0.88. The classifications
were performed at the field level, since the segmentation was able to adequately delineate individual fields. The
additional use of object features proved essential for the identification of cropland plots, irrigation period and
type of agricultural system. This method is independent of expert knowledge on crop phenology and absolute
spectral values. The proposed method is useful for the assessment of spatio-temporal dynamics of irrigated
(smallholder) agriculture in complex landscapes and yields a basis for land and water managers on agricultural
water use.

1. Introduction

Agriculture is currently responsible for about 70% of world's
freshwater withdrawals (WWAP, 2012). Agricultural water consump-
tion will continue to rise as global population growth projections reveal
an increase in food demand of 70% by 2050 (Bruinsma, 2009). Irrigated
crop yield is approximately 2.7 times higher than rainfed crop yield,
hence irrigation will play an increasingly important role in food pro-
duction and food security (WWAP, 2012). Global irrigation-equipped
area increased from 170 million ha in 1970 to 304 million ha in 2008
(Bruinsma, 2009). For the developing world opportunities are not fully
exploited, e.g. only about 20% of Africa's total irrigation potential is
currently utilized (WWAP, 2012).

Irrigation is the controlled application of water to land to enable or
to enhance crop growth in the absence of sufficient or timely rainfall

(USGS, 2016a). Irrigation results in a different crop phenology as
compared to purely rainfed agriculture leading to different spatio-
temporal vegetation distributions (Thenkabail et al., 2005). In the
landscape, irrigated agriculture can be recognized by more active and
more productive vegetation than can be supported by the direct sur-
roundings. Especially in (semi-)arid regions, at locations where the
same crops are cultivated with and without irrigation, an irrigated crop
can readily be distinguished from non-irrigated crops by pronounced
differences in greenness and biomass (Thiruvengadachari, 1981). Be-
sides, a general landscape characteristic of agriculture is that crops are
distributed in fields and that crop management (irrigation) is applied to
entire fields (field level). Irrigated fields are often part of a larger irri-
gated area (irrigation scheme) and not scattered across the landscape.
Furthermore, the irrigated areas are located in the vicinity of water
(resources) such as rivers, pumps, ponds, reservoirs or lakes.
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Characteristic for agriculture in developing countries are the highly
complex landscapes (Ozdogan et al., 2010). The small agricultural
fields are dominantly cultivated by smallholder farmers, i.e. the tradi-
tional farming system producing crops mainly for domestic purposes
(Abate et al., 2000). Often multiple crop types are grown either by
intercropping or by mixed cropping. Planting schedules fluctuate with
the seasons and often follow the timing of the rainy seasons. Small-
holder irrigated agriculture mainly uses surface water as groundwater
pumps are expensive. Irrigation water is applied to crops mostly by
furrow or flood irrigation in the absence of mechanical techniques
(USGS, 2016b).

International development policy focuses on smallholder agriculture
to improve food security at the domestic level by adopting smallholder
irrigation development as the main strategy (IAC, 2004; World Bank,
2008; Tschirley, 2011; Burney and Naylor, 2012). Accurate information
on the extent of irrigation is essential for the assessment of the impact of
irrigation on catchment hydrology (Beilicci and Beilicci, 2016), for the
management of water resources for food security (Vorosmarty and
Sahagain, 2000; Droogers and Aerts, 2005) and also for the assessment
and evaluation of national investments in irrigation infrastructure
(FAO, 2011). Efforts to identify smallholder irrigation (potential) in the
developing world (e.g. You et al., 2011; Xie et al., 2014) are often too
coarse for the complex agricultural landscape (Beekman et al., 2014).
Previous irrigation studies mainly focus on areas with established irri-
gation infrastructure, thereby excluding irrigation from other sources
such as river and stream diversions or farm dams, characteristic for the
developing world (Abuzar et al., 2015). Consequently, the area under
smallholder irrigation is often underestimated (Beekman et al., 2014).

Over the last decades, remote sensing has developed as an advanced
tool in monitoring irrigated lands for a variety of climatic settings
(Ozdogan et al., 2010). Single-date imagery acquired during the peak of
the growing season (semi-arid regions) can hold sufficient information
for the classification of irrigated lands (Thiruvengadachari, 1981), al-
though multi-temporal imagery is preferred as it covers the different
phenology stages of the crops (Thenkabail et al., 2005; Ozdogan et al.,
2010). In many irrigation assessment studies the Normalized Difference
Vegetation Index (NDVI) is used to describe vegetation phenology, and
expert knowledge is used to identify irrigated croplands (e.g. Ambika
et al., 2016; Siddiqui et al., 2016; Meier et al., 2018). Hence, irrigation-
mapping methods are often site-specific and not easily transferable to
other regions and climates (Ozdogan et al., 2010). In complex land-
scapes with multiple irrigation periods and multiple crop types with
different planting schedules, the relation between NDVI and irrigation
is not straightforward (Ozdogan et al., 2010). The lack of accessible
data further complicates the identification of irrigated agriculture in
developing countries.

Land-use and land-cover (LULC) information (including irrigated
agriculture) is traditionally derived using pixel-based image analysis
(PBIA). For smallholder agriculture very-high-resolution (VHR) ima-
gery offers the ideal resolution, but PBIA is less suitable for this re-
solution as the within-class spectral variability is high and spectral
confusion common (Blaschke et al., 2014). A suitable approach for VHR
imagery is Geographic Object-Based Image Analysis (GEOBIA). It uses
object information on colour, tone, texture, pattern, shape, shadow,
context and size (i.e. structural parameters) to classify the images and is
superior to a PBIA approach using only spectral information (Blaschke
et al., 2014). The use of objects is promising for irrigation mapping in
data-poor complex landscapes (Ozdogan et al., 2010). Generally, the
application of irrigation is at the field level and has a positive effect on
the crop throughout the field following the field's borders. Therefore,
the additional use of structural parameters in a GEOBIA approach adds
information for the discrimination of irrigated agriculture compared to
a purely spectral PBIA workflow. GEOBIA has been applied for small-
holder cropland mapping (Wickama et al., 2015; Lebourgeois et al.,
2017) and to map the spatial distribution of crops within irrigation
systems (Conrad et al., 2010; Peña et al., 2014). However, GEOBIA

applications for the purpose of mapping irrigated agriculture itself, i.e.
to map the distribution of fields with apparent access to irrigation in-
frastructure are not reported in literature.

This study focuses on the proof-of-concept of mapping irrigated
agriculture at the field level in a complex landscape in Ethiopia using a
GEOBIA approach. The case-study area encompasses both traditional
smallholder agriculture as well as a modern large-scale irrigation scheme.
For this reason, also a GEOBIA mapping approach was conducted to
discriminate between these two types of agricultural systems. GEOBIA is
thought to be an appropriate approach as spectral properties of vegetation
are not unique for different (management) types and scales of the agri-
cultural system, and additional information on structural parameters is
required. The main objectives of this study were: (1) to evaluate an ob-
ject-based field-level approach to map the spatio-temporal distribution of
irrigated agriculture, (2) to evaluate GEOBIA for the discrimination of
traditional smallholder and modern large-scale agriculture.

2. Study site, data and methods

2.1. Data collection and preparation

2.1.1. Site description
The study area (669 km2) is located in the Awash River basin, Rift

Valley Ethiopia, 130 km east of the capital Addis Ababa (Fig. 1). The area
experiences a semi-arid climate with a mean annual rainfall of 543mm,
of which on average 70% is lost by evapotranspiration (Taddese et al.,
2010). There are two distinct seasons: (1) the wet season running from
May to August, and (2) the dry season, in which irrigation is pre-
dominantly applied, starting in September/October and ending with the
first rains in March. Irrigation developments in Ethiopia mostly occur in
the Awash River basin, which serves more than five million farmers
(Dejen, 2014). This study covered two irrigation schemes (Fig. 1): (1) the
Metahara irrigation scheme, a modern large-scale agricultural system
with a field size in the order of 10-15 ha, which was started in 1965 by
the Dutch company Handels Vereniging Amsterdam and currently en-
compasses 11,500 ha of sugarcane, and (2) the Golgota irrigation
scheme, which has a size of 600 ha and is managed by the community
serving smallholder farmers (Dejen, 2014). The water source for both
irrigation schemes is the Awash River. Average landholder size is 1.2 ha
per farmer in the Golgota scheme, and furrow irrigation, i.e. leading
water by gravity through parallel channels along the field length, is most
commonly practiced here. The Metahara scheme consists of a network of
earthen open canals where water is diverted from two inlets from the
Awash River and distributed via secondary and tertiary channels. The
major crops in the Golgota scheme are onion, tomato, maize and cab-
bage. The length of the cropping cycles for the crops in the study area is
between 75 days and 720 days (FAO, 2010).

2.1.2. SPOT6 imagery
Three SPOT6 images were obtained for the dry season of

2013–2014: 8 November 2013 (November or Nov), 4 December 2013
(December or Dec) and 1 February 2014 (February or Feb). These
images were selected based on availability in the SPOT database.
SPOT6 imagery has a spatial resolution of 6m (pan-band 1.5 m) and has
four spectral bands, namely blue (450-520 nm), green (530-590 nm),
red (625-695 nm) and near-infrared (NIR) (760-890 nm). These images
were pansharpened using the Gram-Smith pansharpening algorithm
(cubic convolution), which was followed by a conversion to Top-Of-
Atmosphere reflectance. The NDVI was calculated for each of the three
images. The focus of this study was to capture crop changes at the field
level, i.e. to delineate similarities in spatio-temporal spectral behaviour
associated with the application of irrigation. For this purpose two NDVI
change maps were derived by subtracting the NDVI values of the image
acquisition moment from the values in the next moment; NDVI
December-November (period 1 or p1) and NDVI February–December
(period 2 or p2).
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2.2. Image segmentation

An essential step in the GEOBIA approach is a successful image
segmentation representing the desired scene objects, which are in this
study the individual fields (Fig. 2). The segmentation is driven by a
heterogeneity threshold (scale parameter), which is composed of a
spectral and a shape component and can be determined by the user
(Benz et al., 2004). This study assumed that generally the application of
irrigation is at the field level and has a positive effect on the crop
throughout the field. Therefore, objects are created on the basis of si-
milarities in vegetation behaviour (NDVI change), and the segmenta-
tion involved a change-based grouping of pixels dominantly driven by
the two NDVI-change maps. The three static NDVI maps (Nov, Dec, Feb)
were added to the segmentation (lower weight: 25% each), which is
desired to obtain an adequate delineation of all individual fields as it
can occur that some fields show no change. Multi-resolution segmen-
tation (Baatz and Schäpe, 2000) followed by a spectral-difference
merge was applied to obtain objects of different sizes, i.e. modern large-
scale agricultural fields and traditional smallholder agricultural plots.
This segmentation was executed in eCognition® Developer (Trimble,
2017) and the parameters were visually optimized with a focus on the
smallholder agricultural fields. For the multi-resolution segmentation a
heterogeneity threshold of 150, a shape of 0.9, and a compactness of 0.5
was used. This was followed by a spectral difference merge where the
maximum spectral difference was set at 50.

2.3. Image classification

2.3.1. Training and validation data
Visual interpretation of imagery is by far the most accurate, but also

the most time-consuming approach as compared to (semi-)automated
classification algorithms (Ozdogan et al., 2010). Especially for very
high-resolution (VHR) imagery it is appropriate to perform a visual
validation of the classification result (Blaschke et al., 2014). In this

study 3000 objects were randomly selected to create a training and
validation set for the classification. These objects were thematically
labeled by visual interpretation as: (1) cropland irrigated in period 1
and period 2 (447 objects), (2) cropland irrigated in period 1 (189
objects), (3) cropland irrigated in period 2 (189 objects), (4) non-irri-
gated cropland (320 objects), (5) other LULC (1491 objects). Cropland
irrigated in period 1 and/or period 2 is here defined as an observed
greening of the vegetation or the presence of a consistent high vege-
tation cover in these periods. Duration and timing of irrigation is un-
known. The cropland objects were also labeled for type of agriculture,
either traditional smallholder (596 objects) or modern large-scale
agriculture (549 objects). The material for this visual interpretation
comprised the three pan-sharpened SPOT6 satellite images in a false-
colour setting highlighting vegetation, a layer stack of the three NDVI
images, which showed the temporal behaviour of vegetation, and an-
cillary information from World Imagery (ArcMap) and Google Maps
(ESRI, 2017; Google Maps, 2017). If multiple land-cover types were
present, the dominant land cover (> 75%) was chosen to label the
object. Three situations could occur to discard an object: either its class
could not be identified (0.3%), it did not contain a dominant land cover
(8.9%) or land cover was obscured by clouds (2.9%). LULC and irri-
gation period could be identified for 88% of the objects. The final da-
taset comprised 2636 objects, which were equally split per class in
training (1316 objects) and validation (1320 objects).

2.3.2. Object-based image classification using the Random-Forest classifier
For the classification, 17 spectral variables, 8 shape variables, 22

texture variables, 8 neighbour variables and 2 location variables (x and
y coordinate) were derived for each object (57 variables in total,
Appendix A). The Random Forest algorithm was used for the classifi-
cation, which is a statistical classifier (Breiman, 2001). This machine
learning algorithm uses multiple decision trees to create a statistical
model based on sample training information and uses a majority vote
for the prediction (Liaw and Wiener, 2002). Random Forests are

Fig. 1. A: Study area outline showing the Metahara irrigation scheme in the north-east and the Golgota irrigation scheme in the south-west on a SPOT6 image (RGB:
NIR, red, green). B: Subset of the study area (RGB: NIR, red, green) highlighting the difference between modern large-scale agriculture (corners north-east and south-
west) and traditional smallholder agriculture in the center of the image.
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increasingly used in land-cover classifications of multi-spectral and
hyper-spectral satellite imagery (Rodriguez-Galiano et al., 2012). The
advantage of a Random Forest over other classifiers is that it easily
handles different data types and does not require a statistically normal
distribution of the dataset. Another advantage is that the Random
Forest algorithm computes variable importance showing which vari-
ables are considered important for discriminating LULC classes
(Rodriguez-Galiano et al., 2012). This importance is expressed by the
Mean Decrease in Accuracy, defined as the drop in accuracy when
leaving out the variable (Breiman, 2001). The Random Forests in this
study were created using the ‘randomForest’ package available in the R
software environment (Liaw and Wiener, 2002; R Development Core
Team, 2017). The Random Forests were created using the 1316 training
objects and their 57 independent variables. Irrigated agriculture was
mapped using a two-step classification. Firstly, a Random Forest was
created to classify the objects as either cropland or other LULC. Sec-
ondly, the objects classified as cropland were assigned to the different
irrigation periods by a second Random Forest. Additionally, a Random
Forest was built to allocate cropland objects into traditional small-
holder or modern large-scale agriculture. The final output consisted of
two maps, one showing the spatial distribution of irrigated agriculture
with the period of irrigation and the other showing the spatial dis-
tribution of smallholder and large-scale agriculture.

2.3.3. Validation and performance of the classifications
Confusion matrices were computed for the classifications using the

validation set (remaining 1320 objects). Overall accuracy, producer's
accuracy, user's accuracy and the kappa coefficient were calculated.
These classification parameters range between 0% (no match) to 100%
(complete match) and are widely used to evaluate land-use classifica-
tion performances in remote sensing (Lillesand et al., 2008). Accuracy
results were expressed in hectares (i.e. corrected for object size).

3. Results

3.1. Delineation of landscape objects

The segmentation resulted in 42,469 objects with a mean object size
of 1.6 ha. Oversegmentation occurred in the modern large-scale fields,
i.e. multiple objects arose within larger fields (Fig. 3A and B), because
the segmentation parameter set was optimized to maintain the per-field
characteristics of smallholder agriculture (Fig. 3C). The segmentation
results show that delineation on the basis of NDVI and NDVI change
produces objects that generally follow field borders (Fig. 3). In the drier
areas, the field borders of traditional smallholder agriculture show the
lowest contrast with their surroundings, and objects do not always
follow field borders.

Fig. 2. Flow diagram of the GEOBIA approach of mapping irrigated agriculture and type of agriculture.
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3.2. Classification of irrigated agriculture

Irrigated agriculture was mapped using a GEOBIA classification
approach (Fig. 4). Overall accuracy and the kappa coefficient are 94%
and 0.85 respectively (Table 1). GEOBIA shows high user's accuracies
for every class with an average of 90.6% (range is 84–95%). The pro-
ducer's accuracies are lower; on average 84.2% (range is 62–98%).
141 km2 was mapped to have received irrigation water in either or both
the first and second period as opposed to 52 km2 of cropland, which
received no irrigation in this time frame. Confusion is strongest be-
tween non-irrigated cropland and other LULC. Confusion is also present
between other LULC and irrigated cropland p1 & p2. Objects of over-
segmented fields were generally classified as a single class, hence,
GEOBIA was able to identify irrigated agriculture at field level.

3.3. Mapping traditional smallholder and modern large-scale agriculture
using GEOBIA

In this classification, 120 km2 was classified as modern large-scale
agriculture and 70 km2 as traditional smallholder agriculture (Fig. 5).
The overall accuracy and kappa coefficient are 95% and 0.88 respec-
tively with high accuracy values for both types of agriculture (Table 2).
Modern large-scale agriculture mostly consists of irrigated cropland p1
& p2 (Table 3). It also has a much higher classified area in irrigated
cropland p1 compared to traditional smallholder agriculture. The types
of agriculture have a more equal distribution for irrigated cropland p2.
Traditional smallholder agriculture mostly consists of non-irrigated
cropland. Generally, modern large-scale agriculture can be found in two
distinct clumped areas (northeast and southwest) close to the Awash
River. Traditional smallholder agriculture does not necessarily

Fig. 3. Illustrations of the segmentation results on a SPOT6 image (RGB: NIR, red, green). A: Modern large-scale agriculture. B: Combination of traditional small-
holder and modern large-scale agriculture agriculture. C: Traditional smallholder agriculture.

Fig. 4. A: Classification of irrigated agriculture using GEOBIA and B: Subset of this classification for a close-up illustration.
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concentrate alongside the Awash River, since most of its mapped area is
non-irrigated cropland. The mean object size of modern large-scale
agriculture is 2.7 times the size of the mean object size of traditional

smallholder agriculture. Note that this is not equal to the average dif-
ference in field size as fields can consist of multiple objects as a result of
the segmentation.

As expected, irrigation leads to high or increased NDVI values, while
the values decrease when irrigation is absent (Fig. 6). Irrigated cropland
p1 and irrigated cropland p2 show an increase in NDVI for their re-
spective periods. Continuously irrigated crops show a slight decrease in
NDVI in the second period, however, the NDVI is continously high and
shows little variation over time. The non-irrigated cropland class is
characterized by a decrease in NDVI over time. The other LULC class
shows a less sharp decline in NDVI over time, which can be expected
because healthy natural vegetation is also incorporated in other LULC.
For non-irrigated cropland, the difference between modern large-scale
agriculture (steep decline) and traditional smallholder agriculture
(gentle decline) is pronounced. This gentle decline for traditional
smallholder agriculture is probably related to reduced soil–water
availability for the growing crop or weeds covering the field after
harvest. In modern large-scale agriculture, the crop often has been
harvested and the field is plowed showing bare soil or mulch.

Table 1
Confusion matrix (in hectares) and accuracy for the GEOBIA classification of irrigated agriculture. Abbreviations: irr. cl. is irrigated cropland, acc. is accuracy, coef. is
coefficient.

Confusion matrix Observed

Predicted Irr. cl. p1 & p2 Irr. cl. p1 Irr. cl. p2 Non-Irr. cl. Other LULC User's acc. (%) Mean object size
(m2)

Total mapped
area (km2)

Irr. cl. p1 & p2 296 2 2 0 17 94 12878 96
Irr. cl. p1 0 53 0 2 3 92 8062 24
Irr. cl. p2 7 0 56 0 1 88 6383 21
Non-Irr. cl. 0 12 1 145 15 84 9651 52
Other LULC 17 4 2 88 2312 95 20721 486

Producer's acc. (%) 92 76 93 62 98
Overall acc. (%) 94
Kappa coef. 0.85

Fig. 5. Classification of traditional smallholder agriculture and modern large-
scale agriculture using a GEOBIA approach.

Table 2
Confusion matrix (in hectares) and accuracy for the GEOBIA classification of type of agricultural system; traditional smallholder and modern large-scale agriculture.
Abbreviations: acc. is accuracy, coef. is coefficient.

Confusion matrix Observed

Predicted Traditional smallholder agriculture Modern large-scale agriculture User's acc. (%)

Traditional smallholder agriculture 354 12 97
Modern large-scale agriculture 19 189 91

Producer's acc. (%) 95 94
Overall acc. (%) 95
Kappa coef. 0.88

Table 3
Mapped area and mean object size per (irrigated) agricultural class for tradi-
tional smallholder and modern large-scale agriculture. Abbreviations: irr. cl. is
irrigated cropland.

Class Type Mapped area
(km2)

Mean object size
(m2)

Irr. cl. p1 & p2 Traditional 6 4623
Modern 89 14,780

Irr. cl. p1 Traditional 8 4478
Modern 15 14,083

Irr. cl. p2 Traditional 12 4554
Modern 9 13,299

Non-Irr. cl. Traditional 44 8946
Modern 7 18,269
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3.4. Variable importance in the Random-Forest classifications

The Random Forest used 57 variables, which vary in importance for
the classification process (Table 4 and Appendix B). The discrimination
between cropland and other LULC is driven by a mix of spectral, shape
and texture variables. Classification of the period of irrigation relies
heavily on spectral variables and to a lesser extent on neighbour vari-
ables. The NDVI change appears to be important for the identification
of cropland as well as determining the period of irrigation. The iden-
tification of the type of agriculture relies heavily on texture, shape and
location, i.e. object features describing non-spectral characteristics
allow for the distinction of type of agricultural system.

4. Discussion

GEOBIA studies successfully identified agricultural cropland area in
smallholder-dominated complex landscapes (Wickama et al., 2015;
Lebourgeois et al., 2017; McCarty et al., 2017; Neigh et al., 2018). This
study expands on that by identifying irrigated agriculture using a
GEOBIA approach as irrigated croplands have characteristic informa-
tion contained in shape, texture, neighbour and location variables in
addition to spectral behaviour. The results show that shape and texture
information were essential for the identification of croplands. Spectral
information was then dominantly used to identify the period of irri-
gation.

Ideally, the optimal parameter setting is the setting where over- and
undersegmentation are balanced (Möller et al., 2007). It was not pos-
sible to delineate both the traditional smallholder and modern large-
scale fields exactly at their field borders. Oversegmentation generally
occurred in the larger fields, which allowed for the mapping of within-

field variation. However, these fields were generally classified as a
single class per field. Confusion occurred between other LULC and non-
irrigated cropland. A large part of the other LULC in the area is rela-
tively bare with sparse vegetation, which is spectrally similar to non-
irrigated crops. The confusion between other LULC and irrigated
cropland p1 & p2 is a result of the spectral similarities between a
constantly irrigated cropland plot and continuously green natural ve-
getation. The segmentation of the images into objects using NDVI and
NDVI-change information and subsequent classification showed that
changes in crops occurred at field level. This illustrates that by means of
the segmentation using NDVI and NVDI change, GEOBIA is able to
grasp irrigated agriculture at its management level, which is important
as policy and management is developed and applied at the field level.
Overall, high accuracy statistics were achieved following this proce-
dure, which illustrates its potential for monitoring the spatio-temporal
patterns of irrigation scheduling for agriculture in these complex
landscapes.

Agricultural policy makers focus on the identification of existing
smallholder irrigation (potential), which is often clouded by the mis-
conception that smallholder irrigation does not exist and should be
developed (Beekman et al., 2014). GEOBIA proved to be able to dis-
tinguish the smallholder fields and to determine whether they are ir-
rigated, thus have access to water resources. A combination of shape,
texture, location and spectral variables was necessary to make that
distinction. Interestingly, the area of an object (size of the field) is not
the single-most important variable for the discrimination of type of
agriculture, which might be related to the oversegmentation of the
modern large-scale fields. Location in the landscape is another im-
portant variable as the different agricultural types tend to cluster in the
landscape rather than appear scattered across the landscape. Texture is

Fig. 6. NDVI over time per class. On the Y-axis average NDVI derived from the objects. Abbreviations: M is modern large-scale agriculture, T is traditional small-
holder agriculture, t1 is Nov, t2 is Dec, t3 is Feb.

Table 4
Top 10 variable importance, ranging from 1 (most important) to 10 (less important). They are categorized by type of variable: spectral (★), shape (◁), texture (⊖),
neighbour (•), location (∘). Abbreviations: ch. is change, GLCM is gray-level co-occurrence matrix (Haralick et al., 1973), corr. is correlation, con. is contrast, DN is
difference to neighbours, ang. is angular second momentum, ent. is entropy, hom. is homogeneity. For complete overview of variable importance in the Random
Forests and associated importance values see Appendix B.

Importance Cropland – other LULC Irrigation period Modern or traditional agriculture

1. ★ Mean NDVI ch. p1 ★ Mean NDVI Feb ⊖ GLCM ang. NDVI ch. p2
2. ◁ Shape index ★ Mean NDVI ch. p2 ⊖ GLCM ent. NDVI ch. p2
3. ◁ Border index ★ Mean NDVI Dec ∘ X-location
4. ★ Mean NDVI ch. p2 ★ Mean red Feb ⊖ GLCM ent. NDVI ch. p1
5. ★ Mean NDVI Feb ★ Mean NDVI ch. p2 ⊖ GLCM ang. NDVI ch. p1
6. ⊖ GLCM corr. NDVI ch. p2 ★ Mean NIR Dec ◁ Border length
7. ★ Mean NDVI Dec ★ Mean blue 1 Feb ⊖ GLCM hom. NDVI ch. p2
8. ⊖ GLCM corr. NDVI ch. p1 • Mean DN NDVI ch. p2 ★ Mean red Feb
9. ★ Mean red Feb ★ Mean red Dec ★ Mean blue Feb
10. ⊖ GLCM con. NDVI ch. p2 ★ Mean NIR Feb ◁ Area
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the most important variable, which is likely related to the intercropping
or mixed cropping systems in smallholder agriculture versus the
monocropping system generally in place in modern large-scale agri-
culture. Although, these differences in management are also reflected in
spectral variables, they are insufficient for the distinction of smallholder
versus modern large-scale agriculture. The identification of smallholder
agriculture is useful for monitoring the benefits or failures of irrigation
investments. In general, irrigation schemes administered by smallholder
farms in Ethiopia are poorly managed, and irrigation water is used in-
efficiently due to a lack of understanding of on-farm water management
(Derib et al., 2011; Van Halsema et al., 2011). Over-irrigation is a
commonly occurring phenomenon, which leads to conflicts in water-
stressed areas downstream (Haileslassie et al., 2016). The GEOBIA ap-
proach presented here illustrates that the where and when of irrigation
in both modern large-scale and smallholder agricultural areas can be
identified and monitored at the field level.

This study showed high potential of a GEOBIA approach to map ir-
rigated agriculture in a complex landscape in Ethiopia. The environ-
mental settings of many other (irrigated) agricultural areas in the world
show similar complexity and are a challenge for remote-sensing appli-
cations (Asgarian et al., 2016; Jin et al., 2016). Irrigation mapping
methods are not easily transferable to other locations and climates,
because the spectral signatures of irrigated agriculture differ and are not
necessarily unique (Ozdogan et al., 2010). In general, the effect of ir-
rigation on a field has a positive impact on crop growth, showing a
change throughout the field. Also, irrigated fields are generally in the
vicinity of other irrigated fields. This GEOBIA approach shows that the
combination of spectral and structural parameters yields valuable in-
formation to map irrigated agriculture. The signature, expressed in
spectral change, shape, texture, neighbour and location variables, is
characteristic for irrigated agriculture, and hence the transferability of
the method to other regions is more straightforward compared to a
classification only on pixel-based spectral behavior. This study does not
require ground truth acquired in the field, as the training and validation
data can be created from the imagery, which makes the method easily
portable to other remote regions. This is especially valuable for data-
poor regions in the developing world, where policy makers and water
managers are frustrated by the absence of information on actual

irrigation-water applications (Droogers et al., 2010). Also, future de-
velopments in publicly-available remote sensing products (e.g. Sentinel-
2) are promising for these regions. The mean object size for smallholder
croplands in this study is equivalent to 46 Sentinel-2 pixels as opposed
to 5 Landsat pixels, which also makes ground-truthing from this finer
imagery more appealing. The 5-day revisit time of Sentinel-2 also en-
hances the ability to capture the temporal dynamics of irrigated agri-
culture, which as shown in this study, varies considerably. The spatio-
temporal resolution will increasingly match the complexity of the
landscapes in these settings enabling the continuous monitoring of
smallholder irrigated agriculture.

5. Conclusions

This study presents a GEOBIA approach in mapping irrigated agri-
culture in complex landscapes. The segmentation of NDVI and NDVI-
change maps produced image objects matching individual agricultural
fields. Results show that it is possible to map irrigated agriculture and
irrigation period with an accuracy of 94% using a GEOBIA approach
with high values for the kappa coefficient (0.84), producer's (62–98%)
and user's accuracy (84–95%). Spectral, shape, texture and neighbour
variables are essential in the classification of irrigated agriculture.
Furthermore, GEOBIA allowed for the characterization of the agri-
cultural system, i.e. traditional smallholder farming versus modern
large-scale agriculture, with an overall accuracy of 95% using spectral,
shape, texture and location variables.

This method is a valuable tool in assessing the spatio-temporal dy-
namics of irrigated agriculture in complex landscapes, especially with
the increased attention on food security and water availability in the
developing world. It will help to identify areas of sub-optimal irrigation
schemes and can form a basis to optimize water use for crops in
smallholder irrigation and large-scale irrigation schemes.
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Appendix A. Overview of variables in the GEOBIA workflow. For a detailed description see Trimble (2017)

Type Variable Definition

Shape Area The number of pixels within an object. A proxy for size.
Border index The smallest rectangle enclosing the object.
Border length Sum of the edges of the object.
Compactness The product of the maximum length and width divided by the

number of pixels of the object.
Length width ratio The maximum length divided by the maximum width of the

object.
Rectangular fit How much the object approaches the shape of a rectangle.
Roundness Difference between the radius of the largest enclosing ellipse

and the radius of the smallest enclosing ellipse.
Shape index The border length of an object divided by four times the square

root of its area.

Texture GLCM angular 2nd
momentum NDVI (ch. p1 & p2) Gray level co-occurrence matrix (Haralick et al., 1973).

GLCM contrast NDVI (ch. p1 & p2), NIR (Nov, Dec, Feb)
GLCM correlation NDVI (ch. p1 & p2)
GLCM dissimilarity NDVI (ch. p1 & p2)
GLCM entropy NDVI (ch. p1 & p2)
GLCM homogeneity NDVI (ch. p1 & p2), NIR (Nov, Dec, Feb)
GLCM mean NDVI (ch. p1 & p2)
GLCM standard deviation NDVI (ch. p1 & p2)

Spectral Mean NDVI (ch. p1, ch. p2, Nov, Dec, Feb) Mean NDVI value of an object.
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Mean blue (Nov, Dec, Feb) Mean blue reflection value of an object.
Mean green (Nov, Dec, Feb) Mean green reflection value of an object.
Mean red (Nov, Dec, Feb) Mean red reflection value of an object.
Mean NIR (Nov, Dec, Feb) Mean near-infrared reflection value of an object.

Neighbour Mean difference to neighbouring NDVI (ch. p1 & p2) Weighted (with regard to length of the border between objects)
layer mean difference with neighbouring objects.

Mean difference to darker neighbouring NDVI (Nov, Dec, Feb) Weighted (with regard to length of the border between objects)
layer mean difference with neighbouring objects, which have a
lower layer mean value than the object under consideration.

Mean difference to brighter neighbouring NDVI (Nov, Dec, Feb) Weighted (with regard to length of the border between objects)
layer mean difference with neighbouring objects, which have a
higher layer mean value than the object under consideration.

Location X- and Y-location Coordinates of the object center

Appendix B. Variable importances (Mean Decrease Accuracy) of the Random Forests

Fig. B.7. Variable importance (Mean Decrease Accuracy) of the Random Forest classifying cropland and other LULC. Abbreviations: ch. is change, p1 is period
between 8 November 2013 and 4 December 2013, p2 is period between 4 December 2013 and 1 February 2014, GLCM is gray-level co-occurrence matrix, ang. is
angular 2nd momentum, con. is contrast, corr. is correlation, diss. is dissimilarity, ent. is entropy, hom. is homogeneity, stdev. is standard deviation, DN is difference
to neighbours, DDN is difference to darker to neighbours, DBN is difference to brighter neighbours.
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Fig. B.8. Variable importance (Mean Decrease Accuracy) of the Random Forest classifying irrigation period. Abbreviations: ch. is change, p1 is period between 8
November 2013 and 4 December 2013, p2 is period between 4 December 2013 and 1 February 2014, GLCM is gray-level co-occurrence matrix, ang. is angular 2nd

momentum, con. is contrast, corr. is correlation, diss. is dissimilarity, ent. is entropy, hom. is homogeneity, stdev. is standard deviation, DN is difference to
neighbours, DDN is difference to darker to neighbours, DBN is difference to brighter neighbours.
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