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Abstract

Derived from the term exposure, the exposome is an omic-scale characteri-
zation of the nongenetic drivers of health and disease. With the genome, it
defines the phenome of an individual. The measurement of complex en-
vironmental factors that exert pressure on our health has not kept pace
with genomics and historically has not provided a similar level of resolu-
tion. Emerging technologies make it possible to obtain detailed information
on drugs, toxicants, pollutants, nutrients, and physical and psychological
stressors on an omic scale. These forces can also be assessed at systems and
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network levels, providing a framework for advances in pharmacology and toxicology. The expo-
some paradigm can improve the analysis of drug interactions and detection of adverse effects of
drugs and toxicants and provide data on biological responses to exposures. The comprehensive
model can provide data at the individual level for precision medicine, group level for clinical trials,
and population level for public health.

INTRODUCTION

“The dose makes the poison,” first coined by the sixteenth-century Swiss physician and chemist
Paracelsus, remains one of the basic principles of toxicology. This maxim states that the toxicity
of a chemical is dependent on its concentration in a biological system, implying that all chemicals
may be toxic if present at high enough levels. Toxicology and pharmacology practices embrace
this concept in traditional toxicity testing, which generally investigates the acute effects of a single
chemical exposure in animal models and in vitro systems.

However, the health effects of a chemical depend on numerous factors beyond dose.
Christopher Wild (1, 2) addressed this issue in 2005 by proposing the concept of the exposome,
a paradigm involving the study of the health effects of cumulative environmental exposures and
concomitant biological responses from conception until death (3, 4). The exposome represents a
shift toward comprehensive exposure assessment: (a) assessing multiple, co-occurring exposures
that may be found at low concentrations, similar to real-life exposure conditions; (b) understanding
how the interactions of exposures with endogenous processes influence their biological effects; and
(c) identifying critical windows of exposure over the life course. By taking into account the complex-
ities of chemical exposures and organisms’ unique biochemical makeups that impact metabolism,
the exposome concept will enable a more nuanced understanding of the environmental influences
on human health (5).

Here, we broadly review the exposome and its applications in biomedical research. We posit
that the adoption of the exposome concept in pharmacology and toxicology will enable substan-
tial advancements in the understanding of chemical toxicities and drug responses. Exposome-
based approaches may improve identification of low-frequency exposures as well as detection of
widespread exposures with small effect sizes on health outcomes. We provide a vision for the future
of exposome research and suggest guidelines for the implementation of the exposome concept in
pharmacology and toxicology.

COMPONENTS OF THE EXPOSOME

Exposures

The exposome is composed of the entire set of environmental exposures throughout the life
course. This definition encompasses exposures of all types, ranging from individual-level exposures
that arise from exo- and endogenous processes (e.g., smoking, radiation, diet, physical activity,
infectious agents, psychosocial stress) to general exposures that impact populations (e.g., climate,
air quality, urban environment, social capital) (1–3). Exposures can be monitored externally (i.e.,
measured outside the body) or detected in biosamples for information on an individual’s internal
dose.
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Biological Responses

The original definition of the exposome was refined by Wild (2) and Miller & Jones (3) to include
the concept of biological responses. Biological responses represent physiological alterations that
are induced as the result of environmental exposures, such as metabolic changes, protein modifi-
cations, DNA mutations and adducts, epigenetic alterations, and perturbations of the microbiome
(3). Investigating biological responses to exposures provides a better understanding of toxicity
mechanisms as well as the interindividual variability in susceptibility to toxic insults. Biological
responses can also provide information on transient exposures that cannot be directly measured.

AN ENVIRONMENTAL COMPLEMENT TO THE GENOME

Variance in health outcomes, or phenotypes (P), result from contributions from genetic (G) and
environmental (E) factors (i.e., G + E = P). In this paradigm, G is represented by the genome,
while the exposome, which captures E, can be conceptualized as the environmental analog to G.
While greater attention has been placed on the characterization of the genome, recent evidence
suggests that the contributions of environmental factors may be equally, or more, influential in
determining human health outcomes. For example, a large meta-analysis of 2,748 twin studies
found that the contribution of the environment across thousands of complex human phenotypes
was nearly equal to that of genetics (6), and a study in monozygotic twins found that the average
risk attributable to genetics for 28 chronic diseases was just 19% (range, 3–49%) (7).

Rapid progress in genomics has resulted from the highly organized nature of the field of
genetics and from large-scale initiatives, such as the Human Genome Project (8), that have spurred
discoveries and the development of low-cost, high-throughput sequencing technologies. However,
characterizing the exposome is a far more challenging task. Environmental exposures are dynamic,
varying widely in detection and concentration throughout the life course. Capturing the breadth
of exposures that comprise the exposome requires the integration of data from numerous sources
and platforms. Until recently, progress in understanding E has been hindered by a lack of low-cost,
high-throughput technologies for exposome profiling, but recent advancements in analytical tools
and approaches show promise to enable rapid advancements in the field, as discussed below.

TOOLS TO MONITOR EXOGENOUS EXPOSURES

Measurement of exposures in our surroundings can provide information about the sources and
routes of exposure, address temporal variability of exposure, and provide estimates of historical
exposures (9, 10). Researchers have employed several methods to quantify exogenous exposures,
ranging from the population (measurements, modeling, geographic information systems, remote
sensing) to the individual (questionnaires, measurements) level. Recent technological develop-
ments have enabled more comprehensive measurements of environmental factors for population-
level (e.g., moving from large-spatial scale assessments to hyperlocal maps) and individual-level
[e.g., ecological momentary assessments, sensors, accelerometry, and global positioning system
(GPS) tracking] assessments.

Exogenous Exposure Assessment at the Population Level

The assessment of exogenous exposures at the population level can provide local-scale exposure
estimates over broad geographical areas, enabling large epidemiological investigations that link
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exposures with health outcomes. Generally, population-level exposure assessment relies on the
integration of sensor technologies with mathematical modeling approaches.

Remote sensing. Remote sensing is the science of obtaining information about objects or ar-
eas from a distance, typically from aircraft or satellites. Remote sensing techniques can identify
exposures related to the urban environment, such as air pollution, temperature, and green space
(10). For example, van Donkelaar et al. (11) estimated global fine particulate (PM2.5) concentra-
tions by combining information from three satellites in conjunction with a chemical transport
model and ground-based sun photometer observations. The PM2.5 estimates, predicted at a spa-
tial scale of 1 km × 1 km, corresponded well to available ground-based data (R2 = 0.81) (11).
New technologies, such as the TROPOspheric Monitoring Instrument, provide more spatially
and temporally resolved data on air quality in addition to data on specific atmospheric constituents
(e.g., formaldehyde, methane, nitrogen dioxide). Satellites can also estimate the normalized dif-
ference vegetation index, an indicator of green space (12)—which can be integrated with Google
Street View images for a comprehensive assessment of the quality, accessibility, and esthetics of
the urban environment (13)—and outdoor light-at-night exposure (14, 15). While remote sensing
data are increasingly becoming available at higher temporal and spatial resolutions, these measures
do not necessarily translate to exposure at the individual level, necessitating validation and inte-
gration with individual-level information (see the section titled Exogenous Exposure Assessment
at the Individual Level).

Mobile and stationary sensing. External exposure information is often sampled at a limited
number of locations, generally as part of a national measurement network or through study-
specific measurement campaigns. Both approaches have limitations: National networks (e.g., air
pollution) have limited geographical coverage (i.e., in the 60% of the US urban areas with regula-
tory monitoring, there are on average only two to five monitors per million people and 1,000 km2)
(16), while study-specific measurements are usually conducted over a short period (17). To provide
dense spatial information over a long period, one solution is to use distributed sensor networks,
which consist of low-cost sensors deployed in large numbers in urban environments. Examples of
such projects are the 100 × 100 West Oakland Community Air Quality Study, wherein a dense
network of 100 black carbon sensors has been deployed for 100 days, and the AERIAS project
(Eindhoven, The Netherlands), in which a network of 35 air quality sensor boxes has been de-
ployed since 2013. Although the application of such networks is still limited due to the limited
validity of low-cost sensors (18), technological advances to improve the validity and pricing will
result in dense information on air quality, noise, and temperature in urban environments. Mobile
monitoring platforms, which can be equipped with high-grade measurement equipment to cover
a large geographical area, have also been proposed for this purpose (16, 19). Mobile measurement
campaigns have been small, but several recent efforts have started to implement sensors in pro-
fessionally driven fleet vehicles, including trams in Karlsruhe, Germany, and Zurich, Switzerland,
and Google Street View cars in Oakland (16, 20, 21). The latter effort resulted in unprecedented
citywide concentration maps of annual daytime nitrogen monoxide, nitrogen dioxide, and black
carbon at a 30-m spatial scale.

Modeling. The availability of satellite measurement and geospatial information allows for in-
creasingly accurate estimations of population-level exposures. However, such data are often in-
complete in time and space and collected at different geospatial resolutions. As such, modeling
approaches are necessary to concatenate information and to distill stable, long-term spatial pat-
terns from time-resolved data. Empirical and geostatistical models, including land use regression,
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kriging, and maximum entropy models, have been considered and will need further elaboration,
especially as data resolution in time and space increases.

Exogenous Exposure Assessment at the Individual Level

Although population-based estimates are invaluable for epidemiological purposes, individual-level
information is more actionable, can be used for personalized advice, and provides possibilities to re-
late individual external exposure information to internal dose and associated biological responses.
Personal sensors have become more mainstream, for example, in measuring physical activity (e.g.,
Fitbit, Jawbone, etc.). In addition, the ubiquitous presence of smartphones provides new oppor-
tunities for individual measurements of exogenous exposures.

External sensors. A wide range of novel sensor technologies is emerging. Personal location data
can easily be obtained through GPS devices, enabling the integration of exposure maps with loca-
tion tracking for individualized exposure estimates (22). Triaxial accelerometers calculate physical
activity (steps and metabolic equivalents); several research-grade activity devices are available (e.g.,
Actigraph; Intelligent Device for Estimating Energy Expenditure and Activity), but there has been
a recent boom in commercial activity trackers, such as Fitbit, Jawbone, Apple Watch, and Polar,
which have varying degrees of concordance with research-grade trackers (23). Nieuwenhuijsen
et al. (24) reviewed the advances in personal sensing technology for external assessment of a broad
range of environmental exposures, including air pollution, temperature, and green space. While
some devices show promise, the reliability and specificity of low-cost sensors remains a limitation
(18, 23).

Besides active sensors, passive individual dosimeters can also be used for exposure monitoring.
For example, the use of silicone wristbands, which passively sample individual exposures to organic
compounds, can be a useful monitoring technique in large studies and in remote populations (25,
26). After collection, wristbands are analyzed with high-resolution mass spectrometry for a wide
range of chemical compounds, including polycyclic aromatic hydrocarbons (PAHs), pesticides,
phthalates, and industrial compounds. Recent field evaluations found that these wristbands provide
valuable (semiquantitative) information on a variety of chemical compounds, with reasonable
correlations between many chemical (e.g., organophosphate flame retardants) concentrations in
the wristband and in matched urine samples (27–29).

Smartphone-based sensors and assessments. Due to the high penetration rate of smart-
phones (approximately 80% of the US and 65% of the worldwide population), data collection
of external measures via smartphones has become possible. Smartphones can integrate internal
sensors, including accelerometers, GPS, barometers, thermometers, and ambient light sensors
(30, 31); contain functionality, such as a camera and microphone, to record personal exposures,
such as occupational and environmental noise (32); and enable communication-based research
tasks, such as administrating electronic questionnaires and relaying information from other sen-
sors. Context-sensitive ecological momentary assessments, which integrate sensor information
with information collected through short questionnaires on the smartphone, provide new op-
portunities for integrating information on external exposures with data on well-being and health
(33).

Personal sensors. An increasing number of personal sensors are being developed to monitor
heart rate, blood glucose, blood pressure, muscle activity, temperature, and sweat production (34).
Similar to environmental sensors, many are still under development and will require validation
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before implementation in large-scale patient and general population studies. However, maturation
of sensor technology for physiological and contextual data will open up new research possibilities,
especially for integration with external exposure sensor data.

The Future of Exogenous Exposure Monitoring

Over the last decade, several major technological advances have produced increasingly time-
and spatially resolved information on exogenous exposures. While many of the technologies are
at an early technological readiness level (TRL), some are approaching Levels 4 and 5, which
indicates that these technologies have been validated (TRL4) and demonstrated (TLR5) in relevant
environments (35). Thus, we expect that many of these technologies will be widely applied in
population studies in the near future, allowing improved exposure assessment and linkage to both
internal dose and associated biological responses.

ASSESSING INTERNAL DOSES AND BIOLOGICAL RESPONSES

A critical component of the exposome is linking exogenous exposures to both internal dose (phar-
macokinetics or toxicokinetics) and the associated biological response (pharmacodynamics or tox-
icodynamics). Exposure to environmental chemicals can initiate local and global changes in gene
transcription, enzyme activity, metabolite pathway alterations, and protein synthesis/folding. As
a result, micro- and macroscale interactions occur among these systems that can be characterized
to study dose–response relationships. Measurements can provide information on acute biological
responses that occur at a biologically relevant dose and also on whether long-term alterations
in physiology—that is, markers of exposure memory—have been detected from environmental
stressors occurring years or decades before (36–38).

Since high-dimensional analytical platforms now provide omic-level characterization, applica-
tion of the exposome framework has the potential to provide deeper insight into how environment
influences human health. The following sections describe the use of omic approaches to better
understand the role of exposures in human health, with a specific focus on measuring biological
response. Overall coordination of metabolism and homeostatic control occurs through different
regulatory mechanisms and signaling pathways; dysregulation due to exposure can be measured by
alterations through connected hubs in a biological network (39). Thus, we close with a discussion
of the role of multi-omic approaches in the exposome framework.

Metabolomics

The metabolome includes all low molecular weight (<2,000 Da) chemicals present in a living sys-
tem and represents a functional output of genetic disposition, environment, diet, and health, and
it was recently estimated that the collective spectrum of chemicals in the human metabolome may
include 1 million or more compounds (40). Current approaches, which are based on untargeted
analyses using high-resolution mass spectrometry with advanced data extraction and annotation
algorithms, allow measurement of more than 20,000 chemical signals in biological samples, span-
ning endogenous metabolites, dietary chemicals, microbiome-derived metabolites, environmental
chemicals, commercial products, and drugs (41–43). Because endo- and exogenous chemicals are
simultaneously detected, metabolomics provides an integrated measurement to link exposure to
internal dose, biological response, and disease pathobiology (44–46). By not limiting detected
analytes to those selected a priori, untargeted metabolomics greatly expands surveillance of en-
vironmental chemicals, detection of new xenobiotic metabolites, and identification of previously
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uncharacterized pollutants (47–51). Curation of metabolomics data to provide confirmed identi-
fication of the chemicals associated with the mass spectral features represents a critical research
need. Despite this limitation, the unbiased and global characterization of metabolic responses
enables the generation of new hypotheses for delineating toxicological mechanisms underlying
chemical exposures in model systems (52–58) and humans (59–70). These advantages combined
with its relatively high throughput and low cost have poised metabolomics to be a key analytical
platform for the exposome.

Transcriptomics

Gene expression is the process whereby the genetic code is transcribed to RNA, which is used
to initiate and direct protein synthesis. Regulation occurs through a complex series of interac-
tions that controls the amount of RNA and protein produced. Thus, gene expression changes
due to the exposome can reflect underlying changes that lead to functional alterations in the pro-
teome and metabolome, providing a direct link between exposure and phenotype. Chemical expo-
sures have been linked to distinct gene expression profiles in humans and in model systems (71).
Transcriptomic analyses of exposure to environmental chemicals have primarily used DNA mi-
croarray hybridization, which utilizes 40,000–50,000 molecular probes (72–76). Next-generation
sequencing (e.g., RNA-Seq), which has recently become widely available, allows measurement
of messenger RNAs, microRNAs, small interfering RNAs, and long noncoding RNAs, provid-
ing new insight into gene expression changes associated with chemical exposures (77–80). The
availability of databases, such as the Comparative Toxicogenomics Database, that contain cu-
rated information on chemical, gene, phenotype, and disease relationships (81) greatly enhances
the biological interpretation of transcriptomics within the exposome framework. The biological
information from these databases provides a basis to compare mechanisms identified in model sys-
tems and changes observed in human populations, which can be used to define chemical-specific
profiles.

Proteomics

The measurement of proteins to assess signaling, inflammation, oxidative stress, and tissue damage
is well established in clinical settings, epidemiology, toxicology, and pharmacology. While gene
expression provides insight into mechanisms underlying protein synthesis, the measure of protein
levels and post-translational modifications provides a more direct measure of functional changes.
Targeted measurement of a limited number of proteins is typically completed using enzyme-
linked immunosorbent assays, but new multiplexed, bead-based assays can measure more than 50
proteins using a small amount of biological material (82, 83). In humans, proteomic studies have
identified immune- and inflammation-related proteins associated with exposure to diesel exhaust
(84, 85) and PAHs (86). Continued development of multiplexed proteomics has considerable
potential for characterizing biological responses. Untargeted proteomics via high-resolution mass
spectrometry has expanded the understanding of protein and gene function (87), though traditional
untargeted proteomics is challenging due to the difficulties of detecting low-abundance proteins
in serum. Protein adductomics has emerged as a key technology for assessing chemical exposure
to reactive electrophiles, reactive oxygen species, and lipid peroxidation products (88). Current
adductomic platforms enable the measurement of more than 100 human serum albumin adducts
at the nucleophilic locus Cys34, which have been used to assess exposure to lifestyle factors, indoor
stove smoke, and ambient air pollution (89–91).
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Epigenomics

Gene expression is modified through epigenetic changes that alter the genome without chang-
ing the underlying DNA sequence. These changes, which occur through DNA methylation (or
related processes) or histone modifications, result in long-term changes to gene expression that
can persist during cell division and be inherited by subsequent generations. Stressors, includ-
ing chemical exposures, injury, disease, and infection, can lead to distinct epigenetic signatures
that remain long after the initial event (92); epigenomics is a key approach to evaluate exposure
history and allostatic load (36, 93). In human cells, methylation of DNA occurs at the CpG din-
ucleotides in the cytosine C5 position. While tens of millions of CpG sites are present within
the human genome, current high-throughput assays based on massively parallel sequencing of
DNA with bisulfite conversions provide measures of up to 850,000 CpG sites. Epigenome-
wide association studies have found distinct methylation patterns associated with chemical ex-
posures, providing insight into mechanisms underlying biological responses and disease (94–100).
While epigenomics studies have largely focused on single or easy-to-characterize exposures, ap-
plication within the exposome framework will provide insight into the interactions between the
genome and proteome and characterize long-term and generational changes due to environmental
exposures.

Multi-Omic Assessment of the Exposome

The availability of omic-level data to assess biological responses allows new opportunities to
understand environmental influences on human health. By integrating response measures from
metabolomics, proteomics, transcriptomics, and epigenomics, it is possible to develop a systems
biology–level understanding of how exposures influence critical biochemical processes. Aggre-
gated biological response patterns, which combine toxicology and pharmacology with molecular
and environmental epidemiology, represent a new paradigm to delineate mechanisms underlying
chemical toxicology (Figure 1). In a study of occupational exposure to the volatile organic chemi-
cal trichloroethylene (TCE), integration of untargeted metabolomics with established biomarkers
of immune function and renal damage identified unknown metabolites of TCE associated with
biological response, which was not found using traditional urinary TCE biomarkers (101). This
demonstrates how a limited number of biological response markers can provide insight into the
biological changes from chemical exposures. Continued development of statistical approaches to
identify interactions among biological response networks (102, 103) and the application of multi-
omic approaches to characterize human exposures in cohort studies (104, 105) will spur discoveries
in the coming years.

HANDLING EXPOSOME-SCALE DATA

From a practical point of view, exposome data can be classified into two categories: exogenous
data compiling heterogeneous measurements of stressors occurring outside the body, including
environmental exposures, behavioral and socio-economic factors, and high-throughput molecular
(omics) data essential to the characterization of internal doses and biological responses. As such,
exposome data are diverse in nature, and the strength and complexity of the correlation structures
across the variables are different (106, 107). Most omics data—and to a lesser extent, exogenous
exposure data—share a high-dimensional nature in which the number of variables is large and can
exceed the number of observations n. Several approaches have been proposed to accommodate
this situation and have been reviewed previously (108–110).
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• Air quality
• Industrial chemicals 
• Pesticides
• Radiation
• Food and water 
• Tobacco

• Medications
• Physical activity
• Climate
• Psychological stress
• Urban environment
• Social support

 etc. 

Lifetime exposures Exposome pharmacokinetics-pharmacodynamics

Proteome

Pharmacokinetics Pharmacodynamics

Transcriptome

Metabolome

Epigenome

Internal dose Biological response

Health phenotypes

Figure 1
The exposome as an analytical framework linking exposures to outcomes. The exposome attempts to measure, integrate, and interpret
the complex exposures faced throughout the life course. Further, the exposome measures how these complex exposures impact our
biological systems and provides a connection to health and disease outcomes. Head MRI image adapted from Pixabay
(https://pixabay.com/en/head-magnetic-resonance-imaging-mrt-254866/), CC0.

Univariate Methods

Univariate approaches separately assess the association between each variable in the predictor
matrix (exposures or omics data) and the outcome of interest, which are coupled with multiple
testing-correction strategies via controlling the family-wise error rate or the false discovery rate.
Due to the correlation across predictors, the same information is, at least partially, tested several
times across the p-tests actually performed. To avoid overly conservative corrections that hamper
statistical power, it is warranted to define the effective number of tests performed across the actual
p-tests, for example, through eigen decomposition (111) or resampling (106, 112, 113) techniques.

Dimensionality Reduction

Owing to the complex effects of exposures, there is a need to jointly model omics or exposome
data in relation to the outcome. Dimensionality reduction techniques build on the correlation
within the data to summarize lower dimensions at the cost of a minimal loss of information.
The resulting latent variables (components) can be constructed in an unsupervised manner [e.g.,
through principal component analysis (PCA)] to identify the fewest components that minimally
distort the original dataset. Plugging these components into regression models evaluates how the
main drivers of the variation in the original data are related to the outcome. Supervised alternatives
[e.g., partial least square models (PLS) (114)] directly construct latent variables, capturing the
maximal variation in the predictors relevant to the outcome.

Variable Selection

Variable selection approaches identify a sparse subset of predictors most relevant to the outcome.
Variable selection is achieved in a regression framework through the use of a penalty imposing
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a constraint on the estimates of the regression coefficients. The least absolute shrinkage and
selection operator (LASSO) (115) and elastic net (116) perform variable selection by shrinking the
regression coefficients of the least influential variables to zero. The penalization principle can also
provide shrunken loadings coefficients in PCA [sparse PCA (117)] and PLS [sparse PLS (118)].
Bayesian methods for variable selection, which generally rely on the estimation of the posterior
distribution of a binary p-dimensional vector defining the model space, have also been proposed.
Several algorithms have been developed to search in the vast (2p dimensional) model space to scale
to full-resolution omics data (119–122).

Mixtures

Combinations of exposures may have different, and possibly stronger, effects than the effect of
each exposure separately. This warrants modeling the effect of exposure mixtures, notably by
considering interactions among exposures (123–125). However, these approaches rely on strong
assumptions in the number, order, and parametric form of these interactions. Such assumptions
are challenging for exposome data, wherein some effective exposures are not measurable or are un-
known. A two-stage strategy has recently been proposed to explore exposure mixtures to (a) identify
exposures of interest and (b) fully investigate their potential interactions (124, 126). However, this
approach assumes that exposures active in a mixture could be detected based on their marginal
effects. To better capture the complexity of the exposure mix, including potential (unmodeled)
interactions, and better account for multivariate/pleiotropic effects, models accommodating mul-
tivariate exposures and responses, such as PLS, have been proposed (127).

Functional Characterization

Exploring the biological effects of the exposome depends on the functional characterization of
identified exposome-related molecular alterations. Because the regulation of cellular metabolism
involves multiple types of molecules interacting in complex cascades, data from exposome profiling
should be complemented with an investigation of the biological pathways affected by the identi-
fied molecular signals. Ontology-based tools interrogating existing databases are rich sources of
information to identify biological pathways corresponding to candidate biomarkers. These tools
are established for gene expression data (128–130) and full-resolution mass spectrometry profiles
(131). For omics platforms lacking ontology tools, biological interpretation can be informed by
linking these platforms to other omics data whose functional role is better characterized. Inte-
grative analyses can be performed with univariate models that assess pairwise associations across
biomarkers from different platforms (132).

Data Integration

To capture the complexity of multi-omic correlations, it is necessary to explore long-distance re-
lationships using dimensionality reduction techniques and variable selection approaches. Sparsity
is essential to ensure results interpretation but may not be sufficient to ensure a detailed under-
standing of the complex patterns exhibited by omics data integration. The incorporation of prior
knowledge on functionally relevant structures can improve the interpretability of results and be
used as a grouping factor in sparse statistical models. Resulting (sparse) group LASSO (133) and
(sparse) group PLS (134) select the most relevant set of (predefined) groups and can identify the
most influential markers within each group.
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Networks

Omics profiling and integration approaches produce prioritized lists of (multi-)omic markers that
jointly reflect the molecular effects of the exposome. Exploring their interconnections via network
topologies provides insight into their modes of action. Network modeling relies on pairwise
correlations and the selection of influential edges (e.g., significance assessment via permutations
or stability analyses). When sparsity is imposed on the network topology, modules may emerge
that identify sets of multi-omic markers that are functionally close, facilitating their functional
interpretation. Supervised alternatives, as defined by differential networks (135–137), will account
for differences in subpopulations by linking two nodes if their relationships differ across two
populations (e.g., cases and controls).

Longitudinal Analyses

Longitudinal data are key for identifying causal relationships and enable explicit modeling of
the processes linking exposures and biological responses. For repeated exposome or omics mea-
surements, analyzing trajectories through classification methods [e.g., sequence analyses (138),
time warping algorithms] assesses autocorrelation across observations to identify time-resolved
patterns characteristic of life stages of higher susceptibility to exposure and/or disease. Dynamic
approaches, including multistate models, which are defined by a set of ordered states (compart-
ments) reflecting the evolution of the individual state, and estimated transition probabilities, ensure
the best reconstruction of the individual trajectories (139). Integrating biomarkers in these mod-
els may help identify the step(s) of the pathological pathways on which they exert effects, further
elucidating their functional roles.

Computing Solutions for Exposome Data

The analysis and integration of complex, high-dimensional exposome data represent a considerable
computational burden. These challenges call for optimized implementations and the development
of publicly accessible databases, which could be efficiently handled by cloud-based computing.
Many methods, such as univariate approaches, can be parallelized and would directly benefit from
shared computing. Computational optimization of multivariate approaches and network inference
can be achieved by parallelizing calibration procedures and/or stability analyses.

INCORPORATING THE EXPOSOME IN PHARMACOLOGY
AND TOXICOLOGY

The broad purview of the exposome captures many of the molecular- and systems-based pathways
and networks generally included in the analysis of the effects of drugs and toxicants.

The comprehensive chemical profiling inherent within the exposome paradigm could improve
the assessment of adverse drug interactions. With thousands of drugs now detectable in single
mass spectrometry–based assays, it will be possible to test the internal dose of multiple compounds
and their metabolites. This platform has been adopted in drug testing programs for athletics
(140), and the same approach could be used to test for possible dangerous interactions among
pharmaceuticals, recreational drugs, dietary factors, supplements, and other chemical exposures
in clinical populations. This approach could be especially helpful for conditions that require drug
cocktails or in patients with multiple conditions whose combined treatment results in an unplanned
drug cocktail. An exposome-level analysis not only provides the concentrations of the potential

www.annualreviews.org • The Exposome: Molecules to Populations 117

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

9.
59

:1
07

-1
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

tr
ec

ht
 U

ni
ve

rs
ity

 o
n 

10
/0

7/
19

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



PA59CH07_Miller ARI 24 November 2018 14:27

exposures/drugs but also provides complementary information on key biological pathways and
networks altered by the administered compounds.

Interindividual variability is recognized and appreciated among the pharmacology and toxicol-
ogy community. The field of pharmacogenomics has helped tailor treatments to individuals with
particular enzymatic profiles that influence drug metabolism. The exposome could provide more
precision to this approach by providing information on dietary and lifestyle factors that impact
drug responsiveness. The field has long recognized that many dietary factors induce cytochrome
p450 enzymes, and an exposome approach could help capture the network state of an individ-
ual’s metabolism. An omic-level assessment of metabolites via metabolomics could help identify
adverse biological effects prior to the onset of symptoms. For example, when treating a patient
with asthma, information on an individual’s exposures to a wide range of potential triggers (e.g.,
pet dander, particulate matter, other allergens) would be extremely beneficial for determining a
personalized treatment plan. This is precisely the type of comprehensive approach the exposome
provides.

While mechanistic studies have historically taken a reductionist approach to determine precise
modes of action, the field of pharmacogenetics must embrace the fact that humans are rarely ex-
posed to single chemicals. Humans are subjected to chemical mixtures and the exposome provides
a means to measure these exposures and assess their biological impacts. However, assessing the
effects of complex mixtures presents numerous challenges, especially in the regulatory toxicology
arena, which plays an important role in the drug and product approval process. The field has moved
away from the analysis of single targets toward the analyses of adverse outcomes at a pathway level.
Namely, the adverse outcome pathway (AOP) framework recognizes that many chemicals con-
verge on similar biological pathways, thus assessing risk by examining disrupted pathways may
be more informative than looking at single targets (141, 142). As the AOP framework advances,
it is clear that targeted pathways are, in reality, networks that mirror findings from omic-scale
biology. Thus, the exposome is entirely consistent with the move toward studying adverse events
at pathway and network levels.

FROM PRECISION MEDICINE TO POPULATION-BASED
PUBLIC HEALTH

Traditionally, clinical practice has focused on treating disease phenotypes. However, the develop-
ment of platforms for comprehensive patient characterization as well as computational tools for
identifying patterns linked to disease show promise for personalized medicine, wherein prevention
and treatment strategies are based on an individual’s unique characteristics (143). To date, preci-
sion medicine approaches have focused on genomics to identify variants associated with disease
risk and pharmacogenomics for determining responders/nonresponders to treatment strategies.
Currently, there are genetic tests for over 2,000 clinical conditions, and this number is expected
to increase as genetic testing becomes cheaper and more readily available (144).

In the United States, over 85,000 chemicals are registered with the EPA for manufacture, im-
port, and use in commercial products. Additionally, approximately 40,000 pesticide formulations,
100,000 dietary phytochemicals, and 5,000 other chemicals are approved for use as inert ingredi-
ents and 7,500 compounds are registered by the US Food and Drug Administration as drugs or
food additives. An individual’s history of these exposures over a lifetime—that is, their chemical
experience—may contribute directly to phenotype and health. In almost all cases, limited infor-
mation is available about these chemicals in terms of their distributions across populations, the
health effects of low-level exposures, and the influence of complex mixtures encountered in real-
world scenarios. The adequate characterization of an individual’s chemical burden will require the
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ability to measure upwards of 1 million chemicals routinely across the lifespan in a cost-effective
and efficient manner (40). This need crystallizes a grand challenge for analytical chemistry, clinical
science, precision medicine, epidemiology, toxicology, and exposure science.

Approaches for measuring individual exposures include varying levels of uncertainty. For ex-
ample, studies have employed heuristic models calibrated to chemical biomonitoring surveys
to prioritize toxicity screening (145); geospatial models calibrated using mobile, stationary, and
remote-sensing techniques to predict respiratory exposures (146, 147); recall surveys to estimate
dietary exposures and their links to disease (148); ambient exposure measurements to provide es-
timates of exposure to large groups; and breathing zone samplers to estimate exposure over short-
and long-term periods (149, 150). In all cases, these approaches provide generalized estimates and
do not assess internal exposure or biological relevance. Targeted biomonitoring assesses expo-
sure biomarkers in biological samples to estimate body burden of previously identified chemicals.
While biomonitoring has proven invaluable, chemical coverage is limited. For example, the Na-
tional Health and Nutritional Examination Survey applies targeted biomonitoring approaches to
measure 212 chemicals in a cross-section of the US population, which represents only 0.02% of
the 1 million chemicals that may comprise the human exposome. Thus, the ability to assess expo-
sures on this magnitude far exceeds the capability of targeted platforms, and advanced chemical
profiling techniques are required.

High-resolution metabolomics (HRM), which uses gas or liquid chromatography with
ultrahigh-accuracy mass spectrometry, is the most promising analytical technology for an ex-
posome platform for precision medicine (41, 45, 55, 151–153). Due to increases in scan speed and
data extraction algorithms, modern instruments are capable of detecting 20,000–100,000 unique
chemical signals in small volumes (<150 µL). Including triplicate injections improves reliabil-
ity of peak detection when studying exposures that occur in a small subset of the population.
Combined with a technique known as reference standardization, HRM can determine absolute
concentrations of biomarkers for the assessment of potential risks from exposures (153).

Additionally, HRM is cost-effective relative to other biomonitoring platforms (45). Further
cost reduction is possible through focused analysis of high-abundance metabolites and exposure
markers. HRM reliably detects approximately 1,000 common, endogenous metabolites, com-
mercial products, and drug metabolites with coefficient of variation (CV) less than 10% (41, 151,
153–155). By limiting detection to chemical signals with low CVs, reducing runtimes, and employ-
ing automation, samples could theoretically be processed with a throughput of 500 samples/day
(125,000 samples/instrument-year) at a cost of $5 per sample. In addition, minimally invasive
sampling systems could simplify biosample collection (156; P. Samant, M.M. Niedzwiecki, N.
Raviele, V. Tran, D.I. Walker, et al., submitted manuscript). Thus, sufficient chemical coverage
for the purposes of precision medicine and the detection of environmental exposures and related
bioeffects could be obtained at a low cost with available technology. The cost and throughput of
exposome profiling by HRM could enable regular internal exposure assessment, possibly through
a direct-to-consumer product and/or as part of an annual health checkup. This information will
not only provide important insight into the role of environment in human health but also a crit-
ical public health tool for environmental chemical surveillance and hazard identification, linking
precision medicine to improved population health.

CONCLUSIONS

The exposome paradigm embraces cutting-edge technologies that strive to capture every chem-
ical entity to which we are exposed, moving far beyond a targeted list of compounds measured
by traditional methods. Although molecular interactions are already critical in pharmacology and
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toxicology, systems biology and networks play increasingly important roles in both fields. The
exposome paradigm can help provide systems-level analysis to better understand interactions such
as drug–drug, drug–supplement, drug–dietary factors, and drug–chemical exposures or combina-
torial interactions thereof. Further, the exposome provides concepts and tools that complement
traditional approaches in pharmacology and toxicology and should lead to a better understanding
of the complex environmental factors that influence the response to drugs and toxicants.
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and Mark D. Habgood � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 487

Assessment of Pharmacokinetic Drug–Drug Interactions in Humans:
In Vivo Probe Substrates for Drug Metabolism and Drug Transport
Revisited
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