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Determining design principles that boost the robustness of interdependent networks is a fundamental question
of engineering, economics, and biology. It is known that maximizing the degree correlation between replicas
of the same node leads to optimal robustness. Here we show that increased robustness might also come at the
expense of introducing multiple phase transitions. These results reveal yet another possible source of fragility of
multiplex networks that has to be taken into the account during network optimization and design.
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Multilayer networks [1–3] formed by several interacting
layers have emerged as a powerful framework to analyze a
variety of complex systems, including such classical exam-
ples as global infrastructures, economic networks, temporal
networks, and the multilevel structure of the brain. Other
disciplines, such as material science and chemical synthesis,
are on the way to adopt the network science toolbox, less
for analysis purposes, than for its potential for optimization
and rational design [4–8]. Therefore, predicting the robustness
of multilayer networks [9–11], assessing the risk of large
avalanches of failures [9–15], and designing robust multilayer
architectures [16–18] are the key theoretical questions en-
tailing implications for engineering, economics, and biology.
Recent works on percolation in multilayer networks revealed
that the correlation between intralayer degrees of replica
nodes [16,17] and link overlap [19–21] have profound conse-
quences in determining the response of a multiplex network
to random damage. The case of positive interlayer degree
correlation [1,16], when a hub node in one layer is likely to
be interdependent on a hub node in another layer, is known to
increase the robustness of interdependent multiplex networks.
It is widely believed that maximizing the interlayer degree
correlation is a good design principle for building robust
infrastructures. The network optimization is used not only for
engineered networks and infrastructures [22–27] but also for
economic [28] and biological networks [29,30]. Therefore, it
is of fundamental importance to understand how maximizing
the interlayer degree correlation may affect the properties of
multiplex networks.

In this Rapid Communication we demonstrate that such
an optimization strategy might come at a cost: unexpectedly,
multiplex networks with strong intralayer degree correlations
may be prone to multiple percolation transitions. Several
works already showed that percolation processes on inter-
dependent networks may be associated with multiple phase
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transitions [31–35]. For instance, when an interdependent
multilayer network is drawn from the configuration model,
percolation may lead to multiple discontinuous and hybrid
transitions due to a successive deactivation of different layers
at different values of the percolation parameter [31]. A similar
effect is also seen in classical percolation as it can display
multiple phase transitions corresponding to deactivation of
one or several layers at a time [32,35]. Nevertheless, these
phase transitions are continuous and second order. Here we
show that interdependent multiplex networks may be decom-
posed during percolation by multiple discontinuous phase
transitions into submultiplexes that, contrary to previous ob-
servations, span across all layers.

Let P(k, B) be the joint probability that a randomly chosen
node has degree k in every layer and activity B, i.e., it is
dependent on B − 1 replicas in other layers. We identify three
classes of such multiplex networks: (1) multiplex networks
with multimodal degree distribution and a node’s replicas hav-
ing identical degrees in all layers, therefore featuring pairwise
degree correlation one, (2) regular multiplex networks with
all nodes having identical degrees and multimodal activity
distribution, and (3) multiplex networks with a multimodal
joint degree-activity distribution and identical degrees of a
node’s replicas.

In this Rapid Communication multiplex networks are
modeled by the maximum-entropy ensemble preserving the
degree-activity distribution P(k, B), and therefore, as ex-
plained in Appendix A, size S of the MCGC is found by
solving the following equations:

S = p
∑

k,B>0

P(k, B)[1 − (1 − s)k]B, (1)

where p is the probability that the edge is present and s is the
fixed point of

s = p
∑

k,B>0

k

〈k〉P(k, B)[1 − (1 − s)k−1][1 − (1 − s)k]B−1.

2470-0045/2019/100(2)/020301(7) 020301-1 ©2019 American Physical Society

https://orcid.org/0000-0002-3964-2196
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.020301&domain=pdf&date_stamp=2019-08-15
https://doi.org/10.1103/PhysRevE.100.020301


IVAN KRYVEN AND GINESTRA BIANCONI PHYSICAL REVIEW E 100, 020301(R) (2019)

Interdependent percolation can also be interpreted as the
steady state of an interdependent epidemic spreading process
[1,11,36,37] in which each node must have at least one
infected neighbor in each layer to become infected. Under
this interpretation, the discontinuous phase transitions can
be interpreted as a successive abrupt invasion of different
submultiplexes by an epidemic.

Constant activity and multimodal degree distribution. Con-
sider a multiplex network in which all nodes have the same
activity B = M and the intralayer degrees are distributed
according to the degree distribution P̂(k). The degree-activity
distribution is then given by

P(k, B) = δB,MP̂(k), (2)

where δa,b is the Kronecker’s delta. Let the intralayer degree
distribution be multimodal, as defined by

P̂(k) = c1δk,k1 + c2δk,k2 + c3δk,k3 , (3)

where the normalization condition imposes the constraint
c1 + c2 + c3 = 1. We refer to all combinations of c1, c2, c3 ∈
[0, 1] that satisfy the above-mentioned normalization condi-
tion as the phase space of the model (2). Note that even
though we have three parameters to choose, there are only
two degrees of freedom. Networks satisfying Eq. (2) arise as
a result of top-down design [23–27] and appear in temporal
network frameworks [38].

In what follows, we report the existence of peculiar do-
mains in the phase space,

�i, j ⊂ {(c1, c2, c3) : c1, c2, c3 ∈ [0, 1]},
at which, generally speaking, the percolation process features
i continuous and j discontinuous phase transitions. When the
multiplex network is defined by Eq. (3), and as long as the
degrees k1, k2, and k3 are sufficiently distant and the number
of layers M is sufficiently large, one observes up to three
discontinuous phase transitions, that is, i = 0 and j = 1, 2, 3.
The phase diagram of such model can be represented by using
the barycentric coordinate system in which each point has
coordinates (c1, c2, c3). By studying the critical behavior of
Eq. (1) for this choice of the degree distribution, we identify
three distinct domains in the phase diagram as indicated by
�01, �02, and �03 (see Fig. 1). Each of the discontinuous
phase transitions corresponds to progressive deactivation of
distinct submultiplexes. Both theoretical predictions and sim-
ulations of the percolation process [see Figs. 2(a)–2(c)] show
that these phase transitions correspond to the deactivation of
the nodes in the order of their increasing intralayer degrees.
The nodes that are damaged first are the nodes with the lowest
intralayer degree, then the nodes with the second-lowest value
of the intralayer degree are damaged, and finally, also the
nodes with the largest intralayer degree fail. Conversely, in
the epidemic spreading interpretation of the interdependent
percolation, these transitions correspond to an abrupt succes-
sive invasion of the epidemics into different submultiplexes.
Therefore, these three transitions can be revealed by monitor-
ing the order parameters σk indicating the fraction of nodes
that have intralayer degree k and that belong to the MCGC as
a function of p [see Figs. 2(a)–2(c)].

In order to investigate the effect of the interlayer degree
correlations, we have considered a multiplex network in the
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FIG. 1. The phase diagram for interdependent percolation in
multiplex networks with degree-activity distribution P(k, B) =
δB,20P̂(k), and P̂(k) = c1δk,3 + c2δk,9 + c3δk,30 is depicted with
a barycentric plot featuring domains �i j with i continu-
ous and j discontinuous phase transitions. Panels: The frac-
tion S of nodes in the Mutually connected giant component
(MCGC) for the points A, B,C, D, of barycentric coordinates
(c1, c2, c3): A = (0.095, 0.095, 0.810); B = (0.87, 0.04, 0.09); C =
(0.75, 0.2, 0.05), and D = (0.73, 0.20, 0.065). The dashed lines in-
dicate the unstable branch and the vertical guidelines indicate the
predicted positions of the discontinuous phase transitions.

region �03 that features three discontinuous phase transitions
and compared the robustness of this network with the robust-
ness of a null model, which is formed by a multiplex network
having independent degrees of replica nodes, as explained in
Appendix B. As can be seen in Figs. 2(d)–2(f), the multiplex
networks with identical replica degrees are more robust than
the null model, i.e., for every value of p they have a larger
MCGC, which was also reported in Ref. [16]. However,
such an optimization induces two additional discontinuous
phase transitions that are not observable in the null model.
Therefore, we conclude that optimization of network robust-
ness by maximizing the interlayer degree correlations might
come at the expense of inducing additional discontinuous
phase transitions. The decomposition of the studied multiplex
networks into submultiplexes indicates that having multiple
modes in the degree distribution is necessary to maintain
multiple phase transitions. The presence of multiple phase
transitions is strongly favored by the multimodality of the
degree distribution. Figure 3 applies a series of the Gaussian
window filters (i.e., discrete convolution with a Gaussian
function) with progressively increasing standard deviation to
reduce the segregation between the peaks in the case from �03

and shows that, as the peaks merge, the corresponding discon-
tinuous phase transitions disappear. Overall, the investigations
presented in this Rapid Communication suggest that a large
number of layers, segregated multimodal degree distribution,
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FIG. 2. Evolution of the size and structure of MCGC during interdependent percolation. (a)–(c) Theoretical predictions (solid lines) and
simulation results (dots) for size S of MCGC and the fraction σk of nodes that have intralayer degree k are plotted at different points of the
phase diagram from Fig. 1: C, panel (a); B, panel (b); and A, panel (c). (d)–(f) The fractions S of nodes in the MCGC (solid lines) are compared
against the randomized network in which replica degrees are independent random variables (RVs) (dashed lines) and shown at different points
from the phase diagram: C, panel (d); B, panel (e); and A, panel (f). The simulations in panels (a)–(c) are averaged over 20 realizations of
networks with 105 nodes and M = 20 layers.
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FIG. 3. The influence of multimodality of degree distributions
on the number of phase transitions. Three examples of degree dis-
tributions given by P(k, B) = δB,20P̂′(k) are shown together with the
analytically obtained fraction S of nodes in the MCGC. Distributions
P̂′(k) are obtained by applying Gaussian filters to P̂(k) = c1δk,3 +
c2δk,9 + c3δk,30 with (c1, c2, c3) = (0.75, 0.2, 0.05). Case (a) depicts
the unmodified P̂(k) distribution; cases (b) and (c) are obtained by
applying the Gaussian window filter with standard deviation σ =
0.55 and σ = 1.1, respectively.

and identical degrees of nodes’ replicas jointly provide suf-
ficient conditions for the presence of multiple discontinuous
phase transitions in percolation of interdependent multiplex
networks.

Variable activity and constant intralayer degree. In the
previous paragraphs we showed that a multimodal degree
distribution can lead to multiple percolation transitions in
multiplex networks with identical intralayer degrees of nodes’
replicas and the identical activity B = M of each node of the
multiplex networks, in which case, the distribution P(k, B) is
given by Eq. (2). Here we consider the other extreme case in
which P(k, B) corresponds to a multiplex network in which all
nodes have the same intralayer degree k0, and the multimodal
activity distribution P̃(B):

P(k, B) = δk,k0 P̃(B), (4)

where

P̃(B) = c1δB,B1 + c2δB,B2 + c3δB,B3 , (5)

and c1 + c2 + c3 = 1. Also in this scenario, we observe that if
the modes of the activity distribution P̃(B) are well separated,
the interdependent percolation may again result in multiple
phase transitions. These phase transitions correspond to the
decomposition of the multiplex network into submultiplexes
having nodes with activity lower or equal to a given threshold.
If all activities are greater than one, Bn > 1 for n = 1, 2, 3, the
interdependent percolation features up to three discontinuous
phase transitions. In this case the phase diagram contains three
regions denoted as �01, �02, and �03 indicating that there
are zero continuous and one, two, or three discontinuous tran-
sitions, respectively. However, if we set B1 = 1 the network
may also display one continuous and up to two discontinuous
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FIG. 4. The phase diagram for interdependent percolation
in a regular multiplex network defined by degree distribution
P(k, B) = δk,3P̃(B), P̃(k) = c1δB,1 + c2δB,2 + c3δB,30. The barycen-
tric plot features domains �i j with i continuous and j discon-
tinuous phase transitions. Panels: The fraction S of nodes in the
MCGC for points A, B, C, D, and E having the barycentric co-
ordinates (c1, c2, c3): A = (0.85, 0.06, 0.09), B = (0.33, 0.33, 0.33),
C = (0.68, 0.04, 0.28), D = (0.6, 0.16, 0.24), and the shared accu-
mulation point E = (0.70, 0.11, 0.18).

phase transitions. Therefore, in this case, as shown in Fig. 4,
we have four possible domains.

Correlated intralayer degree and activity. Consider a sce-
nario in which a node’s degree and activity correlate:

P(k, B) = c1δk,k1δB,B1 + c2δk,k2δB,B2 + c3δk,k3δB,B3 , (6)

and thus neither B1, B2, B3 nor k1, k2, k3 are triplets of iden-
tical numbers. As shown in Fig. 5, also in this case we see
a rich phase diagram including phases �10, �01, �11, and
�02 having the same definition as above. To assess the effect
of anticorrelations between activity and intralayer degree, the
robustness of multiplex networks can be compared against the
null model presented in Appendix B, in which the intralayer
degrees and activity are independent. The intuition is that
anticorrelations between activity and degree will enhance the
robustness of the network as the hubs of each layer are less
prone to failure than in the null model due to the fact that
they are interdependent with a smaller number of layers; we
call these nodes superrobust nodes (SRNs). Indeed, in these
networks pc is typically lower than in the null model. However
anticorrelations also reduce the fragility of low degree nodes
by associating to them high activity values; we call these
nodes superfragile nodes (SFNs). Therefore intralayer degree-
activity correlation may lead to both increased and reduced
robustness of the multiplex network monitored by measuring
the fraction of nodes S in the MCGC depending on the region
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FIG. 5. Barycentric plot: The phase diagram for interdepen-
dent percolation in the multiplex network with the degree-activity
distribution given by P(k, B) = c1δk,5δB,1 + c2δk,4δB,2 + c3δk,3δB,30.
Panels: Comparison of the MCGC size S versus the randomized
null model at the points A, B, C, D, and E having coordinates
(c1, c2, c3): A = (0.62, 0.10, 0.28), B = (0.36, 0.08, 0.56), C =
(0.1, 0.2, 0.7), D = (0.32, 0.48, 0.2), and E = (0.22, 0.30, 0.48).

of the phase diagram and the exact value of percolation param-
eter p (see Fig. 5). For large values of p the percolation process
on a multiplex network with degree-activity anticorrelation
efficiently dismantles the submultiplex formed by the SFN
leading to a reduced value of S with respect to the null model.
At small p either the network is totally dismantled (see, for
instance, point C in Fig. 5) or the anticorrelated multiplex
network is formed by a large percentage SRN leading to an
increased value of S and a smaller value of pc.

The effect of number of layers. The above-mentioned ex-
amples consider only degree-activity distributions with three
modes; however, other modes may also lead to more nu-
merous discontinuous phase transitions reminiscent of cas-
cades in the Barkhausen effect [39]. Figures 6(a) and 6(b)
show that when multiple phase transitions are present, these
phase transitions can be removed by reducing the number
of layers. In which case the jump discontinuity that cor-
responds to the largest value of pc is first to vanish, and
eventually, all discontinuous transitions disappear. Our results
show that interdependent percolation and thus the corre-
sponding interdependent epidemic spreading process defined
on multiplex networks with many layers cannot always be
effectively approximated with just a few layers. For in-
stance, Figs. 6(a) and 6(b) provide examples of a qualita-
tive change of the percolation properties that are associated
to a small change in the number of layers (i.e., increment
or decrement by one) even if the total number of layers
is large.
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distributions given by (a) P(k, B) = δB,MP̂(k), P̂(k) =
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(b) P(k, B) = δB,M (c1δk,31 + c2δk,32 + c3δk,33 + c4δk,34 + c5δk,35 +
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0.0210, 0.0057, 0.0013). The numbers of layers M are indicated in
the legends.

In this work we have shown evidence of an unexpected
outcome of interdependent percolation on multiplex networks.
We showed that multiplex networks with maximum interlayer
degree correlations that were designed to minimize pc can
also display multiple discontinuous phase transitions corre-
sponding to the successive dismantling of submultiplexes that
span across all the layers of the network. Therefore, although
setting all degrees of a node’s replicas to be identical does
yield optimally robust multilayer networks (as this operation
minimizes pc), such an increased robustness might come at
the expense of introducing a series of discontinuous phase
transitions. This result shows that in the large variety of
contexts, when this type of optimization principle might be
at work, including engineering, economics, and biological
networks, constrained or multiobjective optimization [40,41]
should be adopted to avoid multiple discontinuous phase
transitions.

Another aspect of this study is the demonstration that even
in multiplex networks with a large number of layers, removing

even one layer may lead to a qualitative change in the percola-
tion behavior as the number of phase transitions may change.
Many real networks do naturally admit a multilayer represen-
tation in which the number of layers is large or even tends
to infinity. Examples include airport networks [42,43], trade
networks [44], social networks [43], and temporal networks
[38,45,46] wherein layers represent time. This study shows
that it is not always possible to approximate such networks
with multiplexes having a smaller number of layers while still
preserving the qualitative structure of the phase space.

Acknowledgments. I.K. acknowledges the kind hospital-
ity of the School of Mathematical Sciences at QMUL and
the funding from Netherlands Organisation for Scientific
Research through the Veni scheme, Project No. 639.071.511.

APPENDIX A: PERCOLATION IN INTERDEPENDENT
MULTIPLEX NETWORKS

The MCGC can be defined as the subset of nodes in which
each pair is connected by a path (internal to the MCGC) in
each layer [10]. In a multiplex network with joint degree-
activity distribution P(k, B) the fraction of nodes S in the
MCGC is given by [1,47]

S = p
∑

k,B>0

P(k, B)[1 − (1 − s)k]B, (A1)

where s, the probability that by following a randomly chosen
link one arrives at a node that belongs to the MCGC, satisfies
the following implicit equation:

s = p
∑

k,B>0

k

〈k〉P(k, B)[1 − (1 − s)k−1][1 − (1 − s)k]B−1.

(A2)
The interdependent percolation can thus be fully characterized
by studying the critical behavior of Eqs. (A1) and (A2). If for
a given value of p there exists multiple solutions s ∈ [0, 1]
of Eq. (A2), the solution having the largest value provides
the probability that by following a randomly chosen link one
arrives at a node that belongs to the MCGC. The solutions of
Eqs. (A1) and (A2) fully characterize the critical behavior of
the interdependent percolation in the interdependent multiplex
networks. Since the number and type of discontinuities of
S(p) and s(p) coincide, it suffices to study the behavior of
s = s(p) to obtain the phase diagram. Let us denote

Q(s) :=
∑

k>0

k

〈k〉P(k, B)[1 − (1 − s)k−1][1 − (1 − s)k]B−1,

then, as long as there is a giant component, i.e., as long as
s > 0, we may express the inverse function to s(p) from
Eq. (A2) by simply writing

p(s) = s

Q(s)
. (A3)

Therefore, if s(p) features a jump discontinuity at (pc, sc) then
p(s) has a local minimum at this point:

p′(sc) = 0,

p′′(sc) > 0.
(A4)
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By plugging (A3) into conditions (A4) and assuming that
sc > 0, one obtains a polynomial equation for s:

Q(s) − sQ′(s) = 0 and Q′′(s) < 0. (A5)

Note that not all pairs [p(si ), si] such that si satisfy Eq. (A5)
are associated with valid discontinuous critical points, but
only those that belong to the maximal positive subsequence
of (pi, si ) that is simultaneously descending with respect to
p and s. Thus the discontinuous critical points of (A2) are
related to roots of polynomial equation (A5). In the general
case, Eq. (A5) is not solvable in radicals and one relies on
root-finding algorithms (see supplementary software [48]).
Alternatively, one can view Eq. (A5) as the eigenvalue prob-
lem for the corresponding companion matrix having its size
equal to the maximum degree. It is this connection between
the positions of phase transitions and the roots of polynomial
(A5) that allows performing an efficient parametric study.
The numerical analysis present in this Rapid Communication
reveals how the coefficients of polynomial (A5) influence the
number of its roots.

The continuous critical point is identified by imposing the
continuity condition sc = 0, in which case, plugging Eq. (A3)
into Eq. (A4) gives an explicit expression:

pc = 1

Q′(0)
, (A6)

which is a valid critical point only if 1
Q′(0) < min

i
p(si ), that is,

when 1
Q′(0) is smaller then the smallest discontinuous point.

In order to investigate whether in the presence of multi-
ple percolation transitions the multiplex network effectively
decomposes into submultiplexes we introduce an additional
local order parameter σk,B indicating the fraction of nodes that
have degree k, activity B, and that belong to the MCGC:

σk,B = pP(k, B)[1 − (1 − S′)k]B. (A7)

This local order parameter indicates whether the correspond-
ing submultiplexes belong to the MCGC.

APPENDIX B: RANDOMIZED MULTIPLEX MODELS

In order to investigate the roles of degree and activity
correlations, we introduce two randomized null models. In
the first model, we remove the dependence between the node
degrees and activity by writing the degree-activity distribution
in the factorizable form

Pnull(k, B) = P̃(B)P̂(k), (B1)

where

P̃(B) =
∑

k>0

P(k, B) and P̂(k) =
∑

B>0

P(k, B). (B2)

In this case, the interdependent percolation can be studied by
investigating the critical properties of Eqs. (A1) and (A2) sup-
plied with P(k, B) = Pnull(k, B). Note that in this randomized
model, the degrees of all replicas of a given node are still
identical.

In the second randomized model we relax the later con-
straint by considering a multiplex network in which for a
given node the degrees of its replicas are independent random
variables with probability mass function P̂(k). In this case,
Eqs. (A1) and (A2) are to be replaced by

S = p
∑

k>0

P̃(B)[1 − G0(1 − s)]B,

s = p
∑

k>0

P̃(B)[1 − G1(1 − s)][1 − G0(1 − s)]B−1,
(B3)

where

G0(x) =
∑

k>0

P̂(k)xk, G1(x) =
∑

k>0

k

〈k〉 P̂(k)xk−1. (B4)

Moreover, the fraction of nodes that have activity B and
belong to the MCGC is given by

σB = pP̃(B)[1 − G0(1 − s)]B. (B5)
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