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Abstract

We introduce a proper multi-type display calculus for bilattice logic (with conflation) for which we prove soundness, com-
pleteness, conservativity, standard subformula property and cut elimination. Our proposal builds on the product representation of 
bilattices and applies the guidelines of the multi-type methodology in the design of display calculi.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Bilattices are algebraic structures introduced in [26] in the context of a multivalued approach to deductive reason-
ing, and have subsequently found applications in a variety of areas in computer science and artificial intelligence. The 
basic intuition behind the bilattice formalism, which can be traced back to the work of Dunn and Belnap [15,4,5]
and even earlier, to Kleene’s proposal of a three-valued logic, is to carry out reasoning within a space of truth-values 
that results from expanding the classical set {f, t} with a value ⊥, representing lack of information, and a value �, 
representing over-defined or contradictory information.

More generally, Ginsberg [26] argued that one could take as space of truth-values a set equipped with two lat-
tice orderings (a bilattice), reflecting respectively the degree of truth and the degree of information associated with 
propositions. The bilattice framework may thus be viewed as an attempt at combining the many-valued approach to 
vagueness of fuzzy logic with the Dunn–Belnap–Kleene treatment of partial and inconsistent information. In fact, 
a number of works has shown how bilattice-like structures naturally arise in the context of fuzzy logic when one tries 
to account for uncertainty, imprecision and incompleteness of information [16,39,14,13].
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During the last two decades, the theory of bilattices has been investigated in depth from a proof-theoretic and 
algebraic point of view: complete (Hilbert- and Gentzen-style) presentations of bilattice-based logics were introduced 
in [1,2], followed by [9] which focuses on the implication-free reduct of the logic. The calculi introduced in these 
papers share many features with those considered e.g. in [17] for the Belnap–Dunn logic, of which bilattice logics are 
conservative expansions.

Negation plays a very special role. Indeed, it is because of this connective that bilattice logics are not self-
extensional [42] (or, as other authors say, congruential), i.e. the inter-derivability relation of the logic is not a 
congruence of the formula algebra. This means that there are formulas ϕ and ψ such that ϕ �� ψ and yet ¬ϕ /�� ¬ψ

(this is not the case of the Belnap–Dunn logic, which is self-extensional). In the Gentzen-style calculus for bilattice 
logic GBL introduced in [1, Section 3.2], there are four introduction rules for each binary connective, two of which 
are standard and introduce it as main connective on the left and on the right of the turnstile, and two are non-standard 
and introduce the same connective under the scope of negation. From a proof-theoretic perspective, this solution has 
the disadvantage that the resulting calculus is not fully modular, does not enjoy the standard subformula property, and 
violates some key criteria about introduction rules for connectives adopted in the literature on display calculi, struc-
tural proof theory and dynamic logics on the basis of technical considerations, and in the literature on proof-theoretic 
semantics on more philosophical ground and concerns (see [40,38,21,41]).

In this paper, we introduce a proper multi-type display calculus for bilattice logic that circumvents all the above-
mentioned disadvantages.1 As a first approximation to the problem of providing a calculus for the full Arieli–Avron 
logic [1,10], we shall here focus on its implication-free fragment, which is precisely the logic axiomatized by means 
of a Hilbert-style calculus in [9]. We consider this to be a reasonable tradeoff: on the one hand because, thanks to 
the modularity of our calculus, we do not anticipate any major technical difficulties in introducing further rules to 
account for the implication (this is current work in progress); on the other hand because the characteristic behaviour 
of the bilattice negation (and the problems that arise in its proof-theoretic treatment) already manifest in the context 
of the implicationless logic. Another natural future project will be providing a display calculus for modal expansions 
of bilattice logic such as those introduced in [33] – see the concluding remarks in Section 7.

The design of our display calculus follows the principles of the multi-type methodology (cf. Section 2.3), introduced 
in [27,20,18,19] for displaying dynamic epistemic logic and propositional dynamic logic, and subsequently applied 
to displaying several other well known logics (e.g. linear logic with exponentials [31], inquisitive logic [22], semi-De 
Morgan logic [28], lattice logic [30]) which are not properly displayable in their single-type presentation, and also to 
design families of novel logical frameworks in a modular and principled way [7]. Our multi-type syntactic presentation 
of bilattice logic is based on the algebraic insight provided by the product representation theorems (see e.g. [8]) 
and possesses all the desirable properties of proper display calculi. In particular, our calculus enjoys the standard 
subformula property, supports a proof-theoretic semantics and is fully modular. These features make it possible to 
prove important results about the logics in a principled way and are key for developing interactive and automated 
reasoning tools [3].

Structure of the paper In Section 2 we recall basic definitions and results about bilattices and bilattice logics and 
discuss the general motivations and insights underlying (multi-type) display calculi. Section 3 develops an algebraic 
analysis of bilattices as heterogeneous structures which provides a basis for our multi-type approach to their proof 
theory. In Section 4, we introduce the multi-type bilattice logic which corresponds to heterogenous bilattices. Our 
display calculi are introduced in Section 5, and we prove its soundness, completeness, conservativity, subformula 
property and cut elimination in Section 6. In Section 7 we outline some directions for future work.

2. Preliminaries

2.1. Bilattices

The following definitions and results can be found e.g. in [1,9].

1 The notion of proper display calculus has been introduced in [40]. Properly displayable logics, i.e. those which can be captured by some proper 
display calculus, have been characterized in a purely proof-theoretic way in [11]. In [29], an alternative characterization of properly displayable 
logics was introduced which builds on the algebraic theory of unified correspondence [12].
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Definition 2.1. A bilattice is a structure B = (B,≤t ,≤k,¬) such that B is a non-empty set, (B, ≤t ), (B, ≤k) are 
lattices, and ¬ is a unary operation on B having the following properties:

• if a ≤t b, then ¬b ≤t ¬a,
• if a ≤k b, then ¬a ≤k ¬b,
• ¬¬a = a.

We use ∧, ∨ for the lattice operations which correspond to ≤t and ⊗, ⊕ for those that correspond to ≤k . If present, 
the lattice bounds of ≤t are denoted by f and t (minimum and maximum, respectively) and those of ≤k by ⊥ and �. 
The smallest non-trivial bilattice is the four-element one (called Four) with universe {f, t, ⊥, �}.

Fact 2.2. The following equations (De Morgan laws for negation) hold in any bilattice:

¬(x ∧ y) = ¬x ∨ ¬y, ¬(x ∨ y) = ¬x ∧ ¬y,
¬(x ⊗ y) = ¬x ⊗ ¬y, ¬(x ⊕ y) = ¬x ⊕ ¬y.

Moreover, if the bilattice is bounded, then

¬t= f, ¬f= t, ¬� = �, ¬⊥ = ⊥.

Definition 2.3. A bilattice is called distributive when all possible distributive laws concerning the four lattice opera-
tions, i.e., all identities of the following form, hold:

x ◦ (y • z) ≈ (x ◦ y) • (x ◦ z) for all ◦,• ∈ {∧,∨,⊗,⊕}

If a distributive bilattice is bounded, then

t⊗ f= ⊥, t⊕ f= �, � ∧ ⊥ = f, � ∨ ⊥ = t.

In the following, we use B to denote the class of bounded distributive bilattices.

Theorem 2.4 (Representation of distributive bilattices). Let L be a bounded distributive lattice with join � and meet �. 
Then the algebra L � L having as universe the direct product L × L is a distributive bilattice with the following 
operations:

〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 � b1, a2 � b2〉
〈a1, a2〉 ∨ 〈b1, b2〉 := 〈a1 � b1, a2 � b2〉
〈a1, a2〉 ⊗ 〈b1, b2〉 := 〈a1 � b1, a2 � b2〉
〈a1, a2〉 ⊕ 〈b1, b2〉 := 〈a1 � b1, a2 � b2〉

¬〈a1, a2〉 := 〈a2, a1〉
f := 〈0,1〉
t := 〈1,0〉
⊥ := 〈0,0〉
� := 〈1,1〉

Theorem 2.5. Every distributive bilattice is isomorphic to L �L for some distributive lattice L.

Definition 2.6. A structure B = (B, ≤t , ≤k, ¬, −) is a bilattice with conflation if (B, ≤t , ≤k, ¬) is a bilattice and the 
conflation − : B → B is an operation satisfying:

• if a ≤t b, then −a ≤t −b;
• if a ≤k b, then −b ≤k −a;
• − − a = a.

We say that B is commutative if it also satisfies the equation: ¬ − x = −¬x.



G. Greco et al. / Fuzzy Sets and Systems 363 (2019) 138–155 141
Fact 2.7. The following equations (De Morgan laws for conflation) hold in any bilattice with conflation:

−(x ∧ y) = −x ∧ −y −(x ∨ y) = −x ∨ −y

−(x ⊗ y) = −x ⊕ −y −(x ⊕ y) = −x ⊗ −y

Moreover, if the bilattice is bounded, then

−t= t, −f= f, −� = ⊥, −⊥ = �.

We denote by CB the class of bounded commutative distributive bilattices with conflation.

Theorem 2.8. Let D = (D, �, �, ∼, 0, 1) be a De Morgan algebra, then D �D is a bounded commutative distributive 
bilattice with conflation where:

• (D, �, �, 0, 1) � (D, �, �, 0, 1) is a bounded distributive bilattice;
• −(a, b) = (∼b, ∼a).

Theorem 2.9. Every bounded commutative distributive bilattice with conflation is isomorphic to D � D for some 
De Morgan algebra D.

2.2. Bilattice logic

In the present subsection we introduce Bilattice Logic (BL) and Bilattice Logic with Conflation (CBL). The lan-
guage of CBL L over a denumerable set AtProp = {p, q, r, . . .} of atomic propositions is generated as follows:

A ::= p | t | f | � | ⊥ | ¬A | A ∧ A | A ∨ A | A ⊗ A | A ⊕ A | −A,

the language of BL is the conflation-free reduct of L, where conflation is the name of the connective ‘−’. Bilattice 
Logic consists of the following axioms:

A � A, ¬¬A �� A,

f � A, A � t, ⊥ � A, A � �,

A � ¬f, ¬t � A, ¬⊥ � A, A � ¬�,

A ∧ B � A, A ∧ B � B, A � A ∨ B, B � A ∨ B,

A ⊗ B � A, A ⊗ B � B, A � A ⊕ B, B � A ⊕ B,

A ∧ (B ∨ C) � (A ∧ B) ∨ (A ∧ C),

A ⊗ (B ⊕ C) � (A ⊗ B) ∨ (A ⊕ C),

¬(A ∧ B) �� ¬A ∨ ¬B, ¬(A ∨ B) �� ¬A ∧ ¬B,

¬(A ⊗ B) �� ¬A ⊗ ¬B, ¬(A ⊕ B) �� ¬A ⊕ ¬B,

and the following rules:

A � B B � C

A � C

A � B A � C

A � B ∧ C

A � B C � B

A ∨ C � B

A � B A � C A � B C � B
A � B ⊗ C A ⊕ C � B
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CBL consists of the axioms and rules of BL plus the following axioms:

− − A �� A, −¬A �� ¬ − A,

−f � A, A � − t, −� � A, A � − ⊥,

−(A ∧ B) �� −A ∧ −B, −(A ∨ B) �� −A ∨ −B,

−(A ⊗ B) �� −A ⊕ −B, −(A ⊕ B) �� −A ⊗ −B.

The algebraic semantics of BL (resp. CBL) is given by B (resp. CB). We use A |=B C (resp. A |=CB C) to mean: 
for any B ∈ B (resp. B ∈ CB), if AB ∈ Ft then CB ∈ Ft. Here AB and CB mean the interpretations of A and C
in B, respectively; and Ft = {a ∈ B : t ≤k a} is the set of designated elements of B (using the terminology of [1, 
Definition 2.13], Ft is the least bifilter of B).

Soundness of BL (resp. CBL) is straightforward. In order to show completeness, we can prove that every axiom 
and rule of Arieli and Avron’s GBL (resp. GBS, cf. [1]) is derivable in BL (resp. CBL).2 Then the completeness of BL 
(resp. CBL) follows from the completeness of GBL (resp. GBS, [1, Theorem 3.7]).

Theorem 2.10 (Completeness). A �BL C iff A |=B C (resp. A �CBL C iff A |=CB C).

2.3. Display calculi and multi-type display calculi

A major issue in structural proof theory is the design of analytic calculi, that is, calculi in which formulas are 
deduced through a process of step-wise decomposition, in which no elements extraneous to the formula to be proved 
are allowed. The best known analytic calculi are Gentzen’s sequent calculi [25], the analiticity of which takes the form 
of the cut elimination theorem, stating that every sequent for which a deduction exists can be proven by a deduction 
in which a certain rule (the cut rule, the only rule violating analiticity) is not applied. The syntactic proof of cut elim-
ination is very informative, but is also lengthy and intricate, and hence error-prone. Moreover, it is not robust: that is, 
it does not extend modularly from a given calculus to any of its extensions obtained by adding a given rule. Various 
extensions and refinements of Gentzen’s sequent calculi have been introduced to improve modularity while retaining 
cut-elimination. One of the most elegant and successful such proposals is Belnap’s framework of display calculi [6]. 
Belnap’s refinement is based on the introduction of a richer syntax for the constituents of each sequent, which in-
cludes structural connectives along with logical connectives. This syntax allows for the definition of an environment 
in which the essentials of syntactic cut elimination can be precisely described. In this environment, a cut elimina-
tion meta-theorem can be proved, which gives a set of sufficient conditions for the cut elimination theorem to hold 
of sequent calculi. Most of these conditions are easily verified by inspecting the shape of the rules. Meta-theorems 
provide much smoother, robust and modular routes to cut elimination than the original proof devised by Gentzen. In 
a slogan, cut elimination via meta-theorems is to ordinary cut elimination what canonicity is to completeness. Indeed, 
canonicity provides a uniform strategy to achieve completeness; likewise, the conditions of Belnap’s meta-theorem 
guarantee that one and the same transformation strategy achieves cut elimination for any calculus satisfying them. 
Belnap’s display calculi account simultaneously for large families of logical systems, including modal logics and sub-
structural logics. However, the scope of display calculi, as proposed by Belnap and later refined by Wansing by means 
of the notion of proper display calculi [40], does not encompass many important logical systems, and in [11,29], a 
characterization is given of the logics which can be endowed with (single-type) proper display calculi. The theory of 
multi-type calculi is a generalization of Belnap’s original framework, capable to encompass those logics which – like 
linear logic, dynamic epistemic logic, propositional dynamic logic, and inquisitive logic – fall out of the scope of the 
characterization given in [29], and uniformly endow them with the same excellent properties enjoyed by (single-type) 
proper display calculi. What sets multi-type calculi apart from other proof-theoretic methodologies is that, in multi-
type calculi, entities of different types can coexist and interact on equal ground: each type has its own internal logic 
(i.e. language and deduction relation), and the interaction between logics of different types is facilitated by special het-
erogeneous connectives, primitive to the language, and treated on a par with all the others. This enriched environment 
is specifically designed to address the problem of expressing the interactions between entities of different types by 

2 In order to do this, we view a sequent � ⇒ � of GBL (GBS) as the equivalent sequent 
∧

� ⇒ ∨
�.
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means of analytic rules. Indeed, although the source of the mathematical difficulties was different for each of the log-
ics mentioned above, a common core to these difficulties was identified precisely in the encoding of key interactions 
between entities of different types. For instance, for dynamic epistemic logic the difficulties lay in the interactions 
between (epistemic) actions, agents’ beliefs, and facts of the world; for linear logic, in the interaction between general 
resources and reusable resources; for propositional dynamic logic, between general and iterative actions; for inquis-
itive logic, between general and flat formulas. In each case, precisely the formal encoding of these interactions gave 
rise to non-analytic axioms in the original formulations of the logics. In each case, the multi-type approach allowed 
to redesign the logics, so as to encode the key interactions into analytic multi-type rules, and define a multi-type 
proper display calculus for each of them. Adding types makes it possible to move to a richer and more expressive 
environment in which these interactions can be unravelled and reformulated with analytic (multi-type) terms.

A key feature towards the implementation of the multi-type methodology on specific logics, such as bilattice 
logic, is the use of algebraic information for proof-theoretic purposes. That is, we aim at reformulating the algebraic 
semantics of the given logic in a way which highlights the existence and interaction of different algebras, which can 
be taken as potential interpreters of different types, as well as of natural maps connecting these algebras, which can 
be taken as potential interpreters of heterogeneous connectives spanning between these types. In the case of bilattices, 
this reformulation pivots on the representation theorem of bilattices as twist-product of lattices.

3. Multi-type algebraic presentation of bilattices

In the present section we introduce the algebraic environment which justifies semantically the multi-type approach 
to bilattice logic presented in Section 5. The main insight is that (bounded) bilattices (with conflation) can be equiva-
lently presented as heterogeneous structures, i.e. tuples consisting of two (bounded) distributive lattices (De Morgan 
algebras) together with two maps between them.

3.1. Multi-type semantic environment

For a bilattice B, let Reg(B) = {a ∈ B : a = ¬a} be the set of regular elements [8]. It is easy to show that Reg(B)

is closed under ⊗ and ⊕, hence (Reg(B), ⊗, ⊕) is a sublattice of (B, ⊗, ⊕). For every a ∈ B , we let

reg(a) := (a ∨ (a ⊗ ¬a)) ⊕ ¬(a ∨ (a ⊗ ¬a))

be the regular element associated with a. It follows from the representation result of [8, Theorem 3.2] that

B ∼= (Reg(B),⊗,⊕) � (Reg(B),⊗,⊕)

where the isomorphism π : B → Reg(B) ×Reg(B) is defined, for all a ∈ B , as π(a) := 〈reg(a), reg(¬a)〉. The inverse 
map f : Reg(B) × Reg(B) → B is defined, for all 〈a, b〉 ∈ Reg(B) × Reg(B), as

f (〈a, b〉) := (a ⊗ (a ∨ b)) ⊕ (b ⊗ (a ∧ b)).

3.2. Heterogeneous bilattices

Definition 3.1. A heterogeneous bilattice (HBL) is a tuple H = (L1, L2, n, p) satisfying the following conditions:

(H1) L1, L2 are bounded distributive lattices.
(H2) n : L1 → L2 and p : L2 → L1 are mutually inverse lattice isomorphisms.

We let HBL denote the class of HBLs. An HBL is perfect if:

(H3) both L1 and L2 are perfect lattices3;
(H4) p, n are complete lattice isomorphisms.

3 A distributive lattice A is perfect (cf. [23]) if it is complete, completely distributive and completely join-generated by the set J∞(A) of its 
completely join-irreducible elements (as well as completely meet-generated by the set M∞(A) of its completely meet-irreducible elements).
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By (H2) we have that np = IdL1 and pn = IdL2 , from which it straightforwardly follows that n and p are both right 
and left adjoints of each other. The definition of the heterogeneous bilattice with conflation (HCBL) is analogous, 
except that we replace (H1) with the following condition:

(H1′) L1 and L2 are De Morgan algebras, with De Morgan negations denoted ∼1 and ∼2 respectively.

We let HCBL denote the class of HCBLs. In what follows, we let Lδ denote the canonical extension of the lattice L. 
The following lemma is an easy consequence of the results in [24, Theorems 2.3 and 3.2].

Lemma 3.2. If (L1, L2, n, p) is an HBL (HCBL), then (Lδ
1, L

δ
2, n

δ, pδ) is a perfect HBL (resp. HCBL).

L1

L
δ
1

L2

L
δ
2

n

nδ

pδ

p

3.3. Equivalence of the two presentations

The following result is a straightforward verification of Definition 3.1.

Proposition 3.3. For any bounded distributive bilattice B, the tuple

B
+ = (Reg(B), Reg(B), IdReg(B), IdReg(B))

is an HBL., where �1 = �2 = ⊗, �1 = �2 = ⊕, 11 = 12 = � and 01 = 02 = ⊥.
For any CB B, the tuple

B
+ = ((Reg(B),∼1), (Reg(B),∼2), IdReg(B), IdReg(B))

is an HCBL, where ∼2 = ∼1 = −.

Proposition 3.4. If (L1, L2, n, p) is an HBL (resp. HCBL), then L1 × L2 is a bilattice (resp. a bilattice with 
conflation) when endowed with the following structure:

〈a1, a2〉 ⊗ 〈b1, b2〉 := 〈a1 �1 b1, a2 �2 b2〉
〈a1, a2〉 ⊕ 〈b1, b2〉 := 〈a1 �1 b1, a2 �2 b2〉
〈a1, a2〉 ∧ 〈b1, b2〉 := 〈a1 �1 b1, a2 �2 b2〉
〈a1, a2〉 ∨ 〈b1, b2〉 := 〈a1 �1 b1, a2 �2 b2〉

¬〈a1, a2〉 := 〈p(a2), n(a1)〉
−〈a1, a2〉 := 〈p(∼2a2),n(∼1a1)〉

f := 〈0,1〉
t := 〈1,0〉
⊥ := 〈0,0〉
� := 〈1,1〉

A lattice isomorphism h : L → L
′ is complete if it satisfies the following properties for each X ⊆ L:

h(
∨

X) = ∨
h(X) h(

∧
X) = ∧

h(X).



G. Greco et al. / Fuzzy Sets and Systems 363 (2019) 138–155 145
Proof. Firstly, we show that 〈L1 × L2, ⊗, ⊕〉 and 〈L1 × L2, ∧, ∨〉 are bounded distributive lattices. It is obvious that 
they are both bounded lattices. We only need to show that the distributivity law holds. We have:

〈a1, a2〉 ⊗ (〈b1, b2〉 ⊕ (〈c1, c2〉)
= 〈a1, a2〉 ⊗ (〈b1 �1 c1, b2 �2 c2〉) Def. of ⊕
= 〈a1 �1 (b1 �1 c1), a2 �2 (b2 �2 c2)〉 Def. of ⊗
= 〈(a1 �1 b1) �1 (a1 �1 c1), (a2 �2 b2) �2 (a2 �2 c2)〉 Distributivity of L1 and L2
= 〈(a1 �1 b1), (a2 �2 b2)〉 ⊕ 〈(a1 �1 c1), (a2 �2 c2)〉 Def. of ⊕
= (〈a1, a2〉 ⊗ 〈b1, b2〉) ⊕ (〈a1, a2〉 ⊗ 〈c1, c2〉) Def. of ⊗

As to 〈L1 × L2, ∧, ∨〉, the argument is analogous.
Now we show that the properties of ¬ are also met. Assume that 〈a1, a2〉 ≤t 〈b1, b2〉, equivalently, a1 ≤1 b1 and 

b2 ≤2 a2. By the definition of ¬, we have ¬〈a1, a2〉 = 〈p(a2), n(a1)〉 and ¬〈b1, b2〉 = 〈p(b2), n(b1)〉. Hence p(b2) ≤1
p(a2) and n(a1) ≤2 n(b1) by (H2). Thus ¬〈b1, b2〉 ≤t ¬〈a1, a2〉. A similar reasoning shows that the corresponding 
property involving ¬ and ≤k also holds. The following argument shows that ¬ is involutive.

¬¬〈a1, a2〉
= ¬〈p(a2), n(a1)〉 Def. of ¬
= 〈pn(a1), np(a2)〉 Def. of ¬
= 〈a1, a2〉 np = IdL1 and pn = IdL2

As to conflation, assume 〈a1, a2〉 ≤t 〈b1, b2〉, equivalently, a1 ≤1 b1 and b2 ≤2 a2. By the definition of − we have 
−〈a1, a2〉 = 〈p(∼2a2), n(∼1a1)〉 and −〈b1, b2〉 = 〈p(∼2b2), n(∼1b1)〉. Hence p(∼2a2) ≤1 p(∼2b2) and n(∼b1) ≤2
n(∼b2) by (H2). Thus −〈a1, a2〉 ≤t −〈b1, b2〉. A similar reasoning shows that the corresponding property involving 
− and ≤k also holds. The following arguments show that − is involutive and − and ¬ are commutative.

− − 〈a1, a2〉
= −〈p(∼2a2), n(∼1a1)〉 Def. of −
= 〈p(∼2n(∼1a1)), n(∼1p(∼2a2))〉 Def. of −
= 〈p(∼2∼2n(a1)), n(∼1∼1p(a2))〉 H2
= 〈pn(a1), np(a2)〉 H1
= 〈a1, a2〉 np = IdL1 and pn = IdL2

−¬〈a1, a2〉
= −〈p(a2), n(a1)〉 Def. of ¬
= 〈p(∼2n(a1)), n(∼1p(a2))〉 Def. of −
= ¬〈∼1p(a2), ∼2n(a1)〉 Def. of ¬
= ¬〈p(∼2a2), n(∼1a2)〉 H2
= ¬ − 〈a1, a2〉 Def. of − �

Definition 3.5. For any HBL H = (L1, L2, n, p), we let H+ = (L1 × L2, ∧, ∨, ⊗, ⊕, ¬) denote the product 
algebra where the four lattice operations are defined as in L1 � L2 (Theorem 2.4) and the negation is given by 
¬〈a1, a2〉 := 〈p(a2), n(a1)〉 for all 〈a1, a2〉 ∈ L1 × L2. If L1 and L2 are isomorphic De Morgan algebras, then we 
define H+ = (L1 ×L2, ∧, ∨, ⊗, ⊕, ¬, −) as before, with the conflation given by −〈a1, a2〉 := 〈p(∼2a2), n(∼1a1)〉
for all 〈a1, a2〉 ∈ L1 × L2.

Proposition 3.6. For any B ∈ B (resp. B ∈ CB) and any HBL (resp. HCBL) H, we have

B ∼= (B+)+ and H ∼= (H+)+.

Proof. Immediately follows from Propositions 3.3 and 3.4. �
4. Multi-type bilattice logic

The results of Section 3.3 show that HBL (resp. HCBL) is an equivalent presentation of B (resp. CB), and motivate 
from a semantic perspective the syntactic shift we take in the present section, from a single-type language to a multi-
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type language.4 Indeed, heterogeneous algebras provide a natural interpretation for the following multi-type language 
LMT consisting of terms of types L1 and L2.

L1 � A1 ::= p1 | 11 | 01 | pA2 | ∼1A1 | A1 �1 A1 | A1 �1 A1

L2 � A2 ::= p2 | 12 | 02 | nA1 | ∼2A2 | A2 �2 A2 | A2 �2 A2

The interpretation of LMT-terms into HCBLs is defined as the easy generalization of the interpretation of propo-
sitional languages in universal algebra; namely, L1-terms (resp. L2-terms) are interpreted in the first and second 
De Morgan algebras of any HCBL, respectively.

The toggle between CB and HCBL (cf. Sections 3.3) is reflected syntactically by the translations t1(·), t2(·) :
L → LMT defined as follows:

t1(p) := p1 t2(p) := p2
t1(t) := 11 t2(t) := 02
t1(f) := 01 t2(f) := 12
t1(�) := 11 t2(�) := 12
t1(⊥) := 01 t2(⊥) := 02

t1(A ∧ B) := t1(A) �1 t1(B) t2(A ∧ B) := t2(A) �2 t2(B)

t1(A ∨ B) := t1(A) �1 t1(B) t2(A ∨ B) := t2(A) �2 t2(B)

t1(A ⊗ B) := t1(A) �1 t1(B) t2(A ⊗ B) := t2(A) �2 t2(B)

t1(A ⊕ B) := t1(A) �1 t1(B) t2(A ⊕ B) := t2(A) �2 t2(B)

t1(¬A) := pt2(A) t2(¬A) := nt1(A)

t1(−A) := p∼2t2(A) t2(−A) := n∼1t1(A)

The translations above are compatible with the toggle between B (resp. CB) and HBL (resp. HCBL). Indeed, re-
call that B+ denotes the heterogeneous algebra associated with a given B ∈ B (cf. Definition 3.5). The following 
proposition is proved by a routine induction on L-formulas.

Proposition 4.1. For all L-formulas A and B and every B ∈ B (resp. B ∈ CB),

B |= A ≤ B iff B
+ |= t1(A) ≤ t1(B).

5. Multi-type proper display calculus

In this section we introduce the proper display calculus D.BL (D.CBL) for bilattice logic (with conflation).

5.1. Language

The language LMT of D.CBL is given by the union of the sets L1 and L2 defined as follows. L1 is given by 
simultaneous induction over the set AtProp1 = {p1, q1, r1, . . .} of L1-type atomic propositions as follows:

A1 ::= p1 | 11 | 01 | pA2 | ∼1 A1 | A1 �1 A1 | A1 �1 A1

X1 ::= A1 | 1̂1 | 0̌1 | PX2 | ∗1 X1 | X1 �̂1 X1 | X1 �̌1 X1 | X1 �̌1 X1 | X1 �̂1 X1

L2 is given by simultaneous induction over the set AtProp2 = {p2, q2, r2, . . .} of L2-type atomic propositions as fol-
lows:

A2 ::= p2 | 12 | 02 | nA1 | ∼2 A2 | A2 �2 A2 | A2 �2 A2

X2 ::= A2 | 1̂2 | 0̌2 | NX1 | ∗2 X2 | X2 �̂2 X2 | X2 �̌2 X2 | X2 �̌2 X2 | X2 �̂2 X2

The language of D.BL is the {∗1, ∗2, ∼1, ∼2}-free fragment of LMT.

4 In what follows, we only introduce the multi-type language associated with HCBL. The language associated with HBL can be obtained by 
removing the unary operators ∼1 and ∼2.
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5.2. Rules

For i ∈ {1, 2},

• Pure Li -type display rules

Xi �̂i Yi � Zi
res

Xi � Yi �̌Zi

Xi � Yi �̌i Zi
res

Xi �̂i Yi � Zi

• Multi-type display rules

PX2 � Y1
adj

X2 � NY1

NX1 � Y2
adj

X1 � PY2

• Pure Li -type identity and cut rules

Idi
pi � pi

Xi � Ai Ai � Yi
Cut

Xi � Yi

• Pure Li -type structural rules

Xi �̂i 1̂i � Yi
1̂i

Xi � Yi

Xi � Yi �̌i 0̌i
0̌i

Xi � Yi

Xi �̂i Yi � Zi
E

Yi �̂i Xi � Zi

Xi � Yi �̌i Zi
E

Xi � Zi �̌i Yi

(Xi �̂i Yi) �̂i Zi � Wi
A

Xi �̂i (Yi �̂i Zi) � Wi

Xi � (Yi �̌i Zi) �̌i Wi
A

Xi � Yi �̌i (Zi �̌i Wi)

Xi � Zi
W

Xi �̂i Yi � Zi

Xi � Yi
W

Xi � Yi �̌i Zi

Xi �̂i Xi � Zi
C

Xi � Zi

Xi � Yi �̌i Yi
C

Xi � Yi

• Pure Li type operational rules

1̂i � Xi1i
1i � Xi

1i

1̂i � 1i

0i

0i � 0̌i

Xi � 0̌i 0i
Xi � 0i

Ai �̂i Bi � Xi�i
Ai �i Bi � Xi

Xi � Ai Yi � Bi �i

Xi �̂i Yi � Ai �i Bi

Ai � Xi Bi � Yi�i

Ai �i Bi � Xi �̌i Yi

Xi � Ai �̌i Bi �i
Xi � Ai �i Bi

• Multi-type structural rules

X1 � Y1
N

NX1 � NY1

X2 � Y2
P

PX2 � PY2

1̂1 � X1
P1̂2

P 1̂2 � X1

X1 � 0̌1
P0̌2

X1 � P 0̌2
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• Multi-type operational rules

NA1 � X2n
nA1 � X2

X2 � NA1 n
X2 � nA1

PA2 � X1p
pA2 � X1

X1 � PA2 p
X1 � pA2

The multi-type display calculus D.CBL also includes the following rules:

• Pure Li display structural rules:

∗i Xi � Yi
adj∗ ∗i Yi � Xi

Xi � ∗i Yi
adj∗

Yi � ∗i Xi

• Pure Li structural rules:

Xi � Yi
cont ∗i Yi � ∗i Xi

• Multi-type structural rules:

N ∗1 X1 � Y2∗2N ∗2 NX1 � Y2

X2 � N ∗1 Y1 ∗2N
X2 � ∗2 NY1

• Pure Li operational rules:

∗i Xi � Yi∼i ∼i Xi � Yi

Xi � ∗i Yi ∼i

Xi � ∼i Yi

An essential feature of our calculus is that the logical rules are standard introduction rules of display calculi. This 
is key for achieving a canonical proof of cut elimination. The special behaviour of negation is captured by a suitable 
translation in a multi-type environment, which makes it possible to circumvent the technical difficulties created by the 
non-standard introduction rules of [1].

6. Properties

In this section, we sketch the proofs of the main properties of the calculi D.BL and D.CBL. We only sketch them 
since these proofs are instances of general facts of the theory of multi-type calculi.

6.1. Soundness

We outline the verification of soundness of the rules of D.BL (resp. D.CBL) w.r.t. the semantics of perfect HBL 
(resp. HCBL). The first step consists in interpreting structural symbols as their corresponding logical symbols. This in-
duces a natural interpretation of structural terms as logical/algebraic terms, which we omit. Then we interpret sequents 
as inequalities, and rules as quasi-inequalities. The verification of soundness of the rules of D.BL (resp. D.CBL) then 
consists in checking the validity of their corresponding quasi-inequalities in perfect HBL (resp. HCBL). For example, 
the rules on the left-hand side below are interpreted as the quasi-inequalities on the right-hand side:

PX2 � Y1

X2 � NY1
� ∀a2∀b1 [p(a2) ≤1 b1 ⇔ a2 ≤2 n(b1)]

Xi � Yi

∗i Yi � ∗i Xi

� ∀ai∀bi [ai ≤i bi ⇔ ∼ibi ≤i ∼iai]
The verification of soundness of pure-type rules and of the introduction rules following this procedure is routine, 

and is omitted. The validity of the quasi-inequalities corresponding to multi-type structural rules follows straightfor-
wardly from the observation that the quasi-inequality corresponding to each rule is obtained by running the algorithm 
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ALBA [29, Section 3.4] on one of the defining inequalities of HBL (resp. HCBL).5 For instance, the soundness of the 
first rule above is due to p and n being inverse to each other (see discussion after Definition 3.1).

6.2. Completeness

Proposition 6.1. For every formula A of BL (resp. CBL), the sequents t1(A) � t1(A) and t2(A) � t2(A) are derivable 
in D.BL (resp. D.CBL).

Proof. By induction on the complexity of the formula A. If A is an atomic formula, the translation of ti(A) � ti (A)

with i ∈ {1, 2} is Ai � Ai , which is derivable using (Id) in L1 and L2, respectively. If A = B ⊗ C, then ti(B ⊗ C) =
ti (B) �i ti (C) and if A = B ⊕ C, then ti (B ⊕ C) = ti (B) �i ti (C). By induction hypothesis, ti(Ai) � ti (Ai). The 
following derivations complete the proof:

ti (B) � ti (B)
W

ti (B) �̂i ti (C) � ti (B)

ti(C) � ti (C)
W

ti (C) �̂i ti (B) � ti (C)
E

ti (B) �̂i ti (C) � ti (C)

(ti(B) �̂i ti (C)) �̂i (ti (B) �̂i ti (C)) � ti (B) �i ti (C)
C

ti (B) �̂i ti (C) � ti (B) �i ti (C)

ti(B) �i ti (C) � ti (B) �i ti (C)

ti(B) � ti (B)
W

ti (B) � ti (B) �̌i ti (C)

ti(C) � ti (C)
W

ti (C) � ti (C) �̌i ti (B)
E

ti (C) � ti (B) �̌i ti (C)

ti(B) �i ti (C) � (ti(B) �̌i ti (C)) �̌i (ti (B) �̌i ti (C))
C

ti (B) �i ti (C) � ti (B) �̌i ti (C)

ti(B) �i ti (C) � ti (B) �i ti (C)

The arguments for A = B ∧ C and A = B ∨ C are similar and they are omitted.
If A = ¬B , then t1(¬B) = pt2(B) and t2(¬B) = nt1(B). By induction hypothesis ti(A) � ti (A). Hence, the fol-

lowing derivations complete the proof:

t2(B) � t2(B)
P

P t2(B) � P t2(B)

P t2(B) � p t2(B)

p t2(B) � p t2(B)

t1(B) � t1(B)
N

N t1(B) � N t1(B)

N t1(B) � n t1(B)

n t1(B) � n t1(B)

If A = −B , then t1(−B) = p ∼2 t2(B) and t2(−B) = n ∼1 t1(B). By induction hypothesis ti(B) � ti (B). Hence, 
the following derivations complete the proof:

t2(B) � t2(B)
cont∗2 t2(B) � ∗2 t2(B)

∗2 t2(B) � ∼2 t2(B)

∼2 t2(B) � ∼2 t2(B)
P

P ∼2 t2(B) � P ∼2 t2(B)

p ∼2 t2(B) � P ∼2 t2(B)

p ∼2 t2(B) � p ∼2 t2(B)

t1(B) � t1(B)
cont∗1 t1(B) � ∗1 t1(B)

∗1 t1(B) � ∼1 t1(B)

∼1 t2(B) � ∼1 t1(B)
N

N ∼1 t1(B) � N ∼1 t1(B)

N ∼1 t1(B) � n ∼1 t1(B)

n ∼1 t1(B) � n ∼1 t1(B)

�

Proposition 6.2. For all formulas A, B of BL (resp. CBL), if A � B is derivable in BL (resp. CBL), then t1(A) � t1(B)

is derivable in D.BL (resp. D.CBL).

5 As discussed in [29], the soundness of the rewriting rules of ALBA only depends on the order-theoretic properties of the interpretation of the 
logical connectives and their adjoints and residuals. The fact that some of these maps are not internal operations but have different domains and 
codomains does not make any substantial difference.
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Proof. In what follows we show that the translations of the axioms and rules of BL (resp C.BL) are derivable in D.BL 
(resp. D.CBL). Since BL (resp C.BL) is complete w.r.t. the class of bilattice algebras (by Theorem 2.10), and hence 
w.r.t. their associated heterogeneous algebras (by Propositions 3.3 and 3.4), this is enough to show the completeness 
of D.BL (resp. D.CBL). For the sake of readability, in what follows, for each BL-formula A and i ∈ {1, 2}, we let 
ti (A) := Ai .

The identity axiom A � A is proved in Proposition 6.1.
The derivations of the binary rules are standard and we omit them.
As to f � A, by the translation, t1(f) = 01, hence, the sequent 01 � A1 is derivable in D.BL as follows

01 � 0̌1
W

01 � 0̌1 �̌1 A1
0̌101 � A1

The proofs of the translations of A � t, ⊥ � A and A � � are analogous.
As to A � ¬f, by the translation, t1(¬f) = pt2(f) = p12, hence we can prove A1 � p12 by the introduction rule 

of (12) on the left side, (W), (1̂2), (adj), (p) and the introduction rule of (12) on the right side. The proofs of ¬t � A, 
¬⊥ � A, A � ¬� are analogous.

In what follows, we let the sequent on the right side of � denote the result of the translation. The translations of 
the remaining axioms in BL are derivable in D.BL as follows:

¬¬A �� A � p n A1 �� A1

A1 � A1
N

NA1 � NA1

nA1 � NA1adj
P nA1 � A1

p nA1 � A1

A1 � A1
N

NA1 � NA1

NA1 � nA1 adj
A1 � P nA1

A1 � p nA1

− − A �� A � p ∼2 n ∼1 A1 �� A1

A1 � A1
cont ∗1A1 � ∗1A1

∗1A1 � ∼1 A1
N

N ∗1 A1 � N ∼1 A1

N ∗1 A1 � n ∼1 A1∗2N ∗2NA1 � n ∼1 A1adj∗ ∗2n ∼1 A1 � NA1

∼2 n ∼1 A1 � NA1adj
P ∼2 n ∼1 A1 � A1

p ∼2 n ∼1 A1 � A1

A1 � A1
cont ∗1A1 � ∗1A1

∼1 A1 � ∗1A1
N

N ∼1 A1 � N ∗1 A1

n ∼1 A1 � N ∗1 A1 ∗2N
n ∼1 A1 � ∗2NA1 adj∗

NA1 � ∗2n ∼1 A1

NA1 � ∼2 n ∼1 A1 adj
A1 � P ∼2 n ∼1 A1

A1 � p ∼2 n ∼1 A1

−¬A �� ¬ − A � p ∼2 n A1 �� p n ∼1 A1

A1 � A1
cont∗1 A1 � ∗1 A1

∗1 A1 � ∼1 A1
* ∗1 ∼1 A1 � A1

N
N∗1 ∼1 A1 � NA1

N∗1 ∼1 A1 � nA1∗2N ∗2 N ∼1 A1 � nA1adj∗ ∗2 nA1 � N ∼1 A1

∼2 nA1 � N ∼1 A1

∼2 nA1 � n ∼1 A1
P

P ∼2 nA1 � P n ∼1 A1

P ∼2 nA1 � p n ∼1 A1

A1 � A1
cont∗1 A1 � ∗1 A1

∼1 A1 � ∗1 A1 adj∗
A1 � ∗1 ∼1 A1

N
NA1 � N∗1 ∼1 A1

nA1 � N∗1 ∼1 A1 ∗2N
nA1 � ∗2 N ∼1 A1 adj∗

N ∼1 A1 � ∗2 nA1

n ∼1 A1 � ∗2 nA1

n ∼1 A1 � ∼2 nA1
P

P n ∼1 A1 � P ∼2 nA1

P n ∼1 A1 � p ∼2 nA1
p ∼2 nA1 � p n ∼1 A1 p n ∼1 A1 � p ∼2 nA1
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¬A ∧ ¬B �� ¬(A ∨ B) � p A2 �1 p B2 �� p (A2 �2 B2) and
¬A ⊗ ¬B �� ¬(A ⊗ B) � p A2 �1 p B2 �� p (A2 �2 B2)

A2 � A2
P

PA2 � PA2

pA2 � PA2
W

pA2 �̂1 pB2 � PA2

pA2 �1 pB2 � PA2
adj

N (pA2 �1 pB2) � A2

B2 � B2
P

PB2 � PB2

pB2 � PB2
W

pB2 �̂1 pA2 � PB2
E

pA2 �̂1 pB2 � PB2

pA2 �1 pB2 � PB2
adj

N (pA2 �1 pB2) � B2

N (pA2 �1 pB2) �̂2 N (pA2 �1 pB2) � A2 �2 B2
C

N (pA2 �1 pB2) � A2 �2 B2
adj

pA2 �1 pB2 � P (A2 �2 B2)

pA2 �1 pB2 � p (A2 �2 B2)

A2 � A2
W

A2 �̂2 B2 � A2

A2 �2 B2 � A2
P

P (A2 �2 B2) � PA2

P (A2 �2 B2) � pA2

p (A2 �2 B2) � pA2

B2 � B2
W

B2 �̂2 A2 � B2
E

A2 �̂2 B2 � B2

A2 �2 B2 � B2
P

P (A2 �2 B2) � PB2

P (A2 �2 B2) � pB2

p (A2 �2 B2) � pB2

p (A2 �2 B2) �̂1 p (A2 �2 B2) � pA2 �1 pB2
C

p (A2 �2 B2) � pA2 �1 pB2

¬(A ∧ B) �� ¬A ∨ ¬B � p (A2 �2 B2) �� p A2 �1 p B2 and
¬(A ⊕ B) �� ¬A ⊕ ¬B � p (A2 �2 B2) �� p A2 �1 p B2

A2 � A2
P

PA2 � PA2
PA2 � pA2

W
PA2 � pA2 �̌1 pB2

adj
A2 � N (pA2 �̌1 pB2)

B2 � B2
P

PB2 � PB2
PB2 � pB2

W
PB2 � pB2 �̌1 pA2

E
PB2 � pA2 �̌1 pB2

adj
B2 � N (pA2 �̌1 pB2)

A2 �2 B2 � N (pA2 �̌1 pB2) �̌1 N (pA2 �̌1 pB2)
C

A2 �2 B2 � N (pA2 �̌1 pB2)
adj

P (A2 �2 B2) � pA2 �̌1 pB2

p (A2 �2 B2) � pA2 �̌1 pB2

p (A2 �2 B2) � pA2 �1 pB2

A2 � A2
P

PA2 � PA2
pA2 � PA2

adj
N pA2 � A2

W
N pA2 � A2 �̌2 B2
N pA2 � A2 �2 B2

adj
pA2 � P (A2 �2 B2)

pA2 � p (A2 �2 B2)

B2 � B2
P

PB2 � PB2
pB2 � PB2

adj
N pB2 � B2

W
N pB2 � B2 �̌2 A2

E
N pB2 � A2 �̌2 B2
N pB2 � A2 �2 B2

adj
pB2 � P (A2 �2 B2)

pB2 � p (A2 �2 B2)

pA2 �1 pB2 � p (A2 �2 B2) �̌1 p (A2 �2 B2)
C

pA2 �1 pB2 � p (A2 �2 B2)
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−(A ∧ B) �� −A ∧ −B � p ∼2 (A2 �2 B2) �� p ∼2 A2 �1 p ∼2 B2

A2 � A2
W

A2 � A2 �̌2 B2
A2 � A2 �2 B2

cont ∗2 (A2 �2 B2) � ∗2 A2
∗2 (A2 �2 B2) � ∼2 A2
∼2 (A2 �2 B2) � ∼2 A2

P
P ∼2 (A2 �2 B2) � P ∼2 A2
P ∼2 (A2 �2 B2) � p ∼2 A2

p ∼2 (A2 �2 B2) � p ∼2 A2

B2 � B2
W

B2 � B2 �̌2 A2
E

B2 � A2 �̌2 B2
B2 � A2 �2 B2

cont ∗2 (A2 �2 B2) � ∗2 B2
∗2 (A2 �2 B2) � ∼2 B2
∼2 (A2 �2 B2) � ∼2 B2

P
P ∼2 (A2 �2 B2) � P ∼2 B2
P ∼2 (A2 �2 B2) � p ∼2 B2

p ∼2 (A2 �2 B2) � p ∼2 B2

p ∼2 (A2 �2 B2) �̂1 p ∼2 (A2 �2 B2) � p ∼2 A2 �1 p ∼2 B2
C

p ∼2 (A2 �2 B2) � p ∼2 A2 �1 p ∼2 B2

A2 � A2
cont∗2 A2 � ∗2 A2

∼2 A2 � ∗2 A2
P

P ∼2 A2 � P ∗2 A2
p ∼2 A2 � P ∗2 A2

W
p ∼2 A2 �̂1 p ∼2 B2 � P ∗2 A2

adj
N (p ∼2 A2 �̂1 p ∼2 B2) � ∗2 A2

adj*
B2 � ∗2 N (p ∼2 A2 �̂1 p ∼2 A2)

B2 � B2
cont∗2 B2 � ∗2 B2

∼2 B2 � ∗2 B2
P

P ∼2 B2 � P ∗2 B2
p ∼2 B2 � P ∗2 B2

W
p ∼2 B2 �̂1 p ∼2 A2 � P ∗2 B2

E
p ∼2 A2 �̂1 p ∼2 B2 � P ∗2 B2

adj
N(p ∼2 A2 �̂1 p ∼2 B2) � ∗2 B2

adj*
B2 � ∗2 N(p ∼2 A2 �̂1 p ∼2 B2)

A2 �2 B2 � ∗2 N(p ∼2 A2 �̂1 p ∼2 B2) �̌2 ∗2 N(p ∼2 A2 �̂1 p ∼2 B2)
C

A2 �2 B2 � ∗2 N (p ∼2 A2 �̂1 p ∼2 B2)
adj*

N (p ∼2 A2 �̂1 p ∼2 B2) � ∗2 (A2 �2 B2)

N (p ∼2 A2 �̂1 p ∼2 B2) � ∼2 (A2 �2 B2)
adj

p ∼2 A2 �̂1 p ∼2 B2 � P ∼2 (A2 �2 B2)

p ∼2 A2 �̂1 p ∼2 B2 � p ∼2 (A2 �2 B2)
C

p ∼2 A2 �1 p ∼2 B2 � p ∼2 (A2 �2 B2)

−(A ⊗ B) �� −A ⊕ −B � p ∼2 (A2 �2 B2) �� p ∼2 A2 �1 p ∼2 B2

A2 � A2
cont ∗2 A2 � ∗2 A2

∗2 A2 � ∼2 A2
P

P ∗2 A2 � P ∼2 A2

P ∗2 A2 � p ∼2 A2
W

P ∗2 A2 � p ∼2 A2 �̌1 p ∼2 B2

P ∗2 A2 � p ∼2 A2 �1 p ∼2 B2
adj ∗2A2 � N(p ∼2 A2 �1 p ∼2 B2)

adj∗ ∗2N(p ∼2 A2 �1 p ∼2 B2) � A2

B2 � B2
cont ∗2 B2 � ∗2 B2

∗2 B2 � ∼2 B2
P

P ∗2 B2 � P ∼2 B2

P ∗2 B2 � p ∼2 B2
W

P ∗2 B2 � p ∼2 B2 �̌1 p ∼2 A2
E

P ∗2 B2 � p ∼2 A2 �̌1 p ∼2 B2

P ∗2 B2 � p ∼2 A2 �1 p ∼2 B2
adj ∗2 B2 � N(p ∼2 A2 �1 p ∼2 B2)

adj∗ ∗2 N (p ∼2 A2 �1 p ∼2 B2) � B2

∗2 N (p ∼2 A2 �1 p ∼2 B2) �̂2 ∗2 N (p ∼2 A2 �1 p ∼2 B2) � A2 �2 B2
C ∗2 N (p ∼2 A2 �1 p ∼2 B2) � A2 �2 B2

adj∗ ∗2 (A2 �2 B2) � N (p ∼2 A2 �1 p ∼2 B2)

∼2 (A2 �2 B2) � N (p ∼2 A2 �1 p ∼2 B2)
adj

P ∼2 (A2 �2 B2) � p ∼2 A2 �1 p ∼2 B2
p ∼2 (A2 �2 B2) � p ∼2 A2 �1 p ∼2 B2
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A2 � A2
cont ∗2 A2 � ∗2 A2

∼2 A2 � ∗2 A2
P

P ∼2 A2 � P ∗2 A2

p ∼2 A2 � P ∗2 A2
adj

N p ∼2 A2 � ∗2 A2
adj∗

A2 � ∗2 N p ∼2 A2
W

A2 �̂2 B2 � ∗2 N p ∼2 A2

A2 �2 B2 � ∗2 N p ∼2 A2
adj∗

N p ∼2 A2 � ∗2 (A2 �2 B2)

N p ∼2 A2 � ∼2 (A2 �2 B2)
adj

p ∼2 A2 � P ∼2 (A2 �2 B2)

p ∼2 A2 � p ∼2 (A2 �2 B2)

B2 � B2
cont ∗2 B2 � ∗2 B2

∼2 B2 � ∗2 B2
P

P ∼2 B2 � P ∗2 B2

p ∼2 B2 � P ∗2 B2
adj

N p ∼2 B2 � ∗2 B2
adj∗

B2 � ∗2 N p ∼2 B2
W

B2 �̂2 A2 � ∗2 N p ∼2 B2
E

A2 �̂2 B2 � ∗2 N p ∼2 B2

A2 �2 B2 � ∗2 N p ∼2 B2
adj∗

N p ∼2 B2 � ∗2 (A2 �2 B2)

N p ∼2 B2 � ∼2 (A2 �2 B2)
adj

p ∼2 B2 � P ∼2 (A2 �2 B2)

p ∼2 B2 � p ∼2 (A2 �2 B2)

p ∼2 A2 �1 p ∼2 B2 � p ∼2 (A2 �2 B2) �̌1 p ∼2 (A2 �2 B2)
C

p ∼2 A2 �1 p ∼2 B2 � p ∼2 (A2 �2 B2)

�

6.3. Conservativity

To argue that the calculus introduced in Section 5 is conservative w.r.t. BL (resp. CBL), we follow the standard 
proof strategy discussed in [29,27]. Denote by �BL (resp. �CBL) the consequence relation defined by the calculus 
for BL (resp. CBL) introduced in Section 2, and by |=HBL (resp. |=HCBL) the semantic consequence relation arising 
from the class of (perfect) HBLs (resp. HCBLs). We need to show that, for all formulas A and B of the original 
language of BL (resp. CBL), if t1(A) � t1(B) is a D.BL-derivable (resp. D.CBL-derivable) sequent, then A �BL B

(resp. A �CBL B). This can be proved using the following facts: (a) the rules of D.BL (resp. D.CBL) are sound 
w.r.t. perfect HBLs (resp. HCBLs); (b) BL (resp. CBL) is complete w.r.t. B (resp. CB); and (c) B (resp. CB) are 
equivalently presented as HBL (resp. HCBL, cf. Section 3.3), so that the semantic consequence relations arising from 
each type of structures preserve and reflect the translation (cf. Propositions 6.1 and 6.2). Let then A, B be formulas 
of the original language of BL (resp. CBL). If t1(A) � t1(B) is a D.BL (resp. D.CBL)-derivable sequent, then, by (a), 
t1(A) |=HBL t1(B) (resp. t1(A) |=HCBL t1(B)). By (c) and Proposition 4.1, this implies that A |=B B (resp. A |=CB B). 
By (b), this implies that A �BL B (resp. A �CBL B), as required.

6.4. Subformula property and cut elimination

Let us briefly sketch the proof of cut elimination and subformula property for D.BL (resp. D.CBL). As discussed 
earlier on, proper display calculi have been designed so that the cut elimination and subformula property can be 
inferred from a meta-theorem, following the strategy introduced by Belnap for display calculi [6]. The meta-theorem 
to which we will appeal for D.BL (resp. D.CBL) was proved in [19].

All conditions in [19, Theorem 4.1] except C′
8 are readily seen to be satisfied by inspection of the rules. Condition 

C′
8 requires to check that reduction steps are available for every application of the cut rule in which both cut-formulas 

are principal, which either remove the original cut altogether or replace it by one or more cuts on formulas of strictly 
lower complexity. In what follows, we only show C′

8 for the unary connectives ∼ and n (the proof for p is analogous). 
The cases of lattice connectives are standard and hence omitted.

Li -type connectives

... π1

Xi � ∗i Ai

Xi � ∼i Ai

... π2

∗i Ai � Yi

∼i Ai � Yi

X � Y �

... π2

∗i Ai � Yi

∗i Yi � Ai

... π1

Xi � ∗i Ai

Ai � ∗i Xi

∗i Yi � ∗i Xi
cont

X � Y
i i i i
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Multi-type connectives

... π1

X2 � NA1

X2 � nA1

... π2

NA1 � Y2

nA1 � Y2

X2 � Y2 �

... π1

X2 � NA1

PX2 � A1

... π2

NA1 � Y2

A1 � PY2

PX2 � PY2
P

X2 � Y2

7. Conclusions and future work

The modular character of proper multi-type display calculi makes it possible to easily extend our formalism so 
as to capture axiomatic extensions (e.g. the logic of classical bilattices with conflation [1, Definition 2.11]) as well 
as language expansions of the basic bilattice logics treated in the present paper. Expansions of bilattice logic have 
been extensively studied in the literature as early as in [1], which introduces an implication enjoying the deduction-
detachment theorem (see also [10]). More recently, modal operators have been added to bilattice logics, motivated 
by potential applications to computer science and in particular verification of programs [33,36]; as well as dynamic 
modalities, motivated by applications in the area of dynamic epistemic logic [34,35].

Yet more recently, bilattices with a negation not necessarily satisfying the involution law (¬¬a = a) have been 
introduced with motivations of domain theory and topological duality (see [32]), and the study of the corresponding 
logics has been started [37]. These logics are weaker than the one considered in the present paper, and so adapting our 
display calculus formalism to them might prove a more challenging task (in particular, the translations introduced in 
Section 6 may need to be redefined, as they rely on the maps p and n being lattice isomorphisms, which is no longer 
true in the non-involutive case).
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logic, J. Log. Comput. 26 (6) (2016) 2067–2104.

http://refhub.elsevier.com/S0165-0114(18)30267-7/bib617269656C6931393936726561736F6E696E67s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib617269656C693139393876616C7565s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib546F6F6C537570706F7274s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib546F6F6C537570706F7274s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib62656C6E617031393737636F6D7075746572s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib62656C6E61703139373775736566756Cs1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib42656C6E617031393832s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib4247505457s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib4247505457s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib626F7532303131766172696574696573s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib626F75323031306C6F676963s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib626F753230313362696C61747469636573s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib436961626174746F6E6952616D616E6179616B6532303136s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib436F476850613134s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib436F476850613134s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib436F476850613134s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib436F417244654B653037s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib436F417244654B653037s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib44654172436F4B653037s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib44654172436F4B653037s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib64756E6E31393636616C6765627261s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib45734761476F393461s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib45734761476F393461s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib666F6E743139393762656C6E6170s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib50444Cs1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib50444Cs1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib5472656E647358494949s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib5472656E647358494949s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib5472656E647358494949s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib4D756C746974797065s1
http://refhub.elsevier.com/S0165-0114(18)30267-7/bib4D756C746974797065s1


G. Greco et al. / Fuzzy Sets and Systems 363 (2019) 138–155 155
[21] Sabine Frittella, Giuseppe Greco, Alexander Kurz, Alessandra Palmigiano, Vlasta Sikimić, A proof-theoretic semantic analysis of dynamic 
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