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A B S T R A C T

Various hypotheses exist on the age and origin of the so-called “Pebbly Breccia” unit in the deep-sea record of
DSDP Hole 380A of the Euxinian (Black Sea) Basin. Here, we present a detailed study of diatom and nannofossil
assemblages of Hole 380A. Our diatom records show a characteristic sequence of appearance of markers species,
which we can correlate to the recently established bio-magnetostratigraphic time frame of the Zheleznyi Rog
section on the Black Sea coast of the Taman Peninsula (Russia). It shows that the Pebbly Breccia is sandwiched
between Upper Maeotian deposits, and must have been deposited at an age between 6.7 and 6.3 Ma. The ap-
pearance of nannoplankton and the marine diatom association at above the Pebbly breccia (Unit IVc) suggests a
short-term incursion of marine conditions. The age of Unit IVc, based on diatom data, is 6.3–6.1 Ma. The
nannoplankton record is mainly represented by species that do not have stratigraphic value. The previously
reported presence of Ceratolithus acutus in the Black Sea is explained by misinterpretation of destructed elements
of ascidian spicules. We conclude that the Pebbly Breccia is not related to a desiccated Black Sea at Messinian
Salinity Crisis times, but it corresponds to a late Maeotian episode of gravitational instability in the SW Black Sea
region.

1. Introduction

The only Mio-Pliocene stratigraphic archives (for scientific use) of
the deep parts of the Euxinian (Black Sea) Basin have been obtained by
the Deep Sea Drilling Project (DSDP) Leg 42B, which drilled three lo-
cations (379, 380/380A, 381) in the southwestern and central part of
the basin (Fig. 1; Ross et al., 1978). The integrated studies from these
wells have played a significant role in scientific discussions on the pa-
leoenvironmental history of the Euxinian Basin and its connectivity
with the Mediterranean Sea. Especially the age, significance and de-
positional environment of the anomalous Unit IVd of Hole 380A, the so-
called “Pebbly Breccia”, has resulted in many and widely different in-
terpretations (Hsü and Giovanoli, 1979; Kojumdgieva, 1983; Golovina
et al., 1987; Grothe et al., 2014; Tari et al., 2015).

The Pebbly Breccia is a peculiar sedimentary unit of Late Miocene
age. The interpretation of its limestone clasts as being indicative for
shallow, supratidal and intertidal environments within an otherwise
deep water sequence was suggested after the drilling (Hsü and

Giovanoli, 1979), despite alternative interpretations indicating it may
have formed as a slump breccia and/or cemented slump blocks
(Shipboard Scientific Staff, 1978). The interpretation by Hsü and
Giovanoli (1979), led to the hypothesis that the Black Sea water level
dropped by more than ~1600 m in concert with the Mediterranean Sea
during the Messinian Salinity Crisis (MSC). Later, seismic profiles of the
Black Sea margins provided evidence of several major erosional sur-
faces, refuelling the hypothesis of a largely desiccated Black Sea Basin
during MSC times (Dinu et al., 2005; Gillet et al., 2007; Munteanu et al.,
2012). The alternative interpretation, that the Pebbly Breccia is caused
by gravitational mass transport, without any relation to the MSC, has
also recently revived (Grothe et al., 2014; Tari et al., 2015, 2016). The
poor biostratigraphic control and the lack of reliable marine marker
species in the deep Euxinian (Black Sea) basin so far prevented a direct
age determination of this enigmatic interval.

Especially the changes in diatom assemblages have long been un-
derestimated but indicate basin wide changes in hydrological regime
(Radionova and Golovina, 2010, 2011). Here, we focus on new diatom
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and calcareous nannofossil analyses, as these are the key faunal com-
ponents of the DSDP records. We reanalyse the succession of events in
the DSDP Hole 380A and establish a correlation to the extensively
studied and magneto-biostratigraphically dated Zheleznyi Rog section
on the Taman Peninsula of Russia (Krijgsman et al., 2010; Radionova
and Golovina, 2011; Vasiliev et al., 2011, 2013; Chang et al., 2014;
Popov et al., 2016; Stoica et al., 2016; Rostovtseva and Rybkina, 2017).
This allows us to provide direct age estimates for the Pebbly Breccia
that will shed another light on its origin and on the evolution of the
Black Sea during the late Miocene to Pliocene.

2. Background studies

2.1. DSDP Leg 42 B

DSDP Leg 42b Hole 380A (Fig. 1; 42°05.94 N, 29°36.82 E) was
drilled at a water depth of ~2100 m (Shipboard Scientific Staff, 1978).
The initial lithostratigraphic subdivision of the DSDP sediments was
based on sediment lithology and chemistry, using biotic data as pa-
leoecological indicator (Ross, 1978). The lower part of Hole 380A was
divided into six lithological units (Fig. 2); Unit IVa (sideritic and dia-
tomaceous sediments 644.6–718 mbsf), Unit IVb (laminated lacustrine
chalk (Seekreide), diatomaceous marls 718–816 mbsf); Unit IVc (lami-
nated diatomite, laminated aragonite, diatomaceous shale 820–864.5
mbsf); Unit IVd (coarse clastic, stromatolitic dolomite - 864.5–883.5
mbsf) and Unit IVe (laminated marls and dolomite 883.5–969.0 mbsf).
Below this, Unit V – black shale, with dolomite laminations
(969–1073.5 mbsf) represents the lowermost part of the core. Subunit
IVd, the so-called “Pebbly Breccia”, comprises anomalous coarse clasts
in a mudstone matrix and laminated stromatolitic dolomite previously

interpreted as indicative for a sea level drop in the Black Sea (Stoffers
and Müller, 1978; Hsü and Giovanoli, 1979).

A major problem of the DSDP Leg 42 project was that a reliable time
frame for the recovered sedimentary succession could not be estab-
lished. The main reason was that diagnostic paleontological age mar-
kers were essentially lacking because the observed faunal elements
were mostly endemic to the Black Sea (Jousé and Mukhina, 1978, 1980;
Golovina et al., 1987; Ross et al., 2007). Consequently, the Mio-Plio-
cene geological time scale of the Black Sea basin comprises mainly
regional stages (e.g., Khersonian, Maeotian, Pontian, Kimmerian; see
Hilgen et al., 2012 for the latest update). The initial correlation of the
Pebbly Breccia to the Messinian event (Fig. 2) was considered a
working hypothesis at best (Ross, 1978), and has been seriously ques-
tioned by several authors. Kojumdgieva (1979, 1983) claimed that the
Pebbly Breccia deposits were of latest Khersonian age (~10–8.5 Ma).
Based on diatoms and nannoplankton data, Radionova and Golovina
(2010) proposed a Maeotian age (8.5–6.1 Ma). Grothe et al. (2014)
dated the Pebbly Breccia to be older than 6.1 Ma (=Maeotian or
Khersonian), based on dinoflagellate data: the First Common Occur-
rences of Caspidinium rugosum and Galeacysta etrusca, corresponding to
the base of the Pontian in Zhelezny Rog (Filipova, 2002), which is in
agreement with recent magnetostratigraphic results (Van Baak et al.,
2015, 2016b). In contrast, Popescu (2006), Popescu et al. (2010) and
Suc et al. (2015) supported the MSC correlation mainly based on pa-
lynological arguments. The lack of reliable marine marker species in the
deep Black Sea basin so far prevented a direct age determination.

Diatoms are the most abundant fossil group in the DSDP Leg 42
cores. Initial studies resulted in two contrasting hypotheses: (I) the
drilled sequences correspond to Pliocene–Quaternary deposits, with
various breaks inside the section (Schrader, 1978), or (II) the cores

Fig. 1. Map of the Black Sea region with DSDP Leg 42B drilling locations.
(after Van Baak et al., 2016b).
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comprise a continuous succession of Upper Miocene–Quaternary de-
posits (Ross et al., 2007). Jousé et al. (1980) and Jousé and Mukhina
(1980) identified, in Unit IVe - IVc, diatom assemblages containing
Thalassiosira maeotica and Rhaphaneis maeotica - species that are known
from the regional Maeotian stage - and correlated these deposits to the
Upper Miocene. In addition, they noticed a sequence of diatom as-
semblages changing from typical marine associations at the base (Unit
IVc) (through a series of intermediate steps) to freshwater lake asso-
ciations in the upper (Unit IVb) part and realized that these freshwater-
lake conditions did not specifically depend on the geological evolution
of the Bosporus region, but were principally a reflection of the general
Black Sea basin history.

Calcareous nannoplankton assemblages were initially analysed by
Percival (1978) and Shumenko and Ushakova (1980), but this did not
provide any significant chronostratigraphic results. Later, Golovina
et al. (1987) studied > 500 samples (from Sites 380 - 380a) and con-
firmed the original conclusion that the nannofossil assemblages of Hole
380/380-A lack stratigraphically significant taxa. In general, the DSDP
cores contain only two autochthonous nannoflora species: Gephyrocapsa
caribbeanica, at the top of Hole 379A and 379B (Shumenko and
Ushakova, 1980), and Braarudosphaera bigelowii (Percival, 1978;
Golovina et al., 1987). Braarudosphaera bigelowii is observed in several
levels, especially in the lower part of Hole 380A, and was interpreted as
indicative of marine environments with low salinity (Müller, 1974;
Negri and Giunta, 2001; Giunta et al., 2006); it should be noted that
this species cannot survive at salinities lower than 17‰ (Bukry et al.,
1974). Later, Alekseev et al. (2012) observed mono-specific assem-
blages of Calciosolenia brasiliensis (Lohmann, 1919) at level 889,5 mbsf.
Such coccoliths were previously defined as Scapholithus fossilis and re-
corded in the Lower Maeotian deposits of the Taman Peninsula (Popov
et al., 2016).

Popescu et al. (2010) reanalyzed the calcareous nannoplankton
assemblages of Hole 380A together with a detailed palynological study.
They concluded that the Pliocene marker species Ceratolithus acutus was
observed et level 840.00 mbsf and proposed to correlate the Unit IVc
with the lowermost Zanclean and, as a consequence, the underlying
Pebbly Breccia with the MSC event (Popescu, 2006; Popescu et al.,
2010, 2016). Van Baak et al. (2015, 2016b) re-studied the 840 mbsf
interval in detail to confirm the presence of these Pliocene nannofossils,

but were not able to reproduce the findings of C. acutus in that core.

2.2. Zheleznyi Rog and Popov Kamen sections

In the last decade, several integrated stratigraphic studies have been
performed on the late Miocene-Pliocene sedimentary successions from
the shallow Black Sea margin on the Taman Peninsula of Russia. The
Zheleznyi Rog and Popov Kamen sections have been investigated for
lithostratigraphy (Rostovtseva and Rybkina, 2014; Popov et al., 2016),
magnetostratigraphy (Krijgsman et al., 2010; Vasiliev et al., 2011;
Trubikhin and Pilipenko, 2011), cyclostratigraphy (Chang et al., 2014;
Rostovtseva and Rybkina, 2017), biostratigraphy (Radionova and
Golovina, 2011; Stoica et al., 2016; Popov et al., 2016) and geochem-
istry (Vasiliev et al., 2013, 2019). This provided a unique reference
framework for the Eastern Paratethys with well-defined successions of
events that can now be used to establish correlations to the DSDP cores
(Van Baak et al., 2017). Key constraints are: 1) the base of the Maeotian
is estimated at 7.9–7.8 Ma (Radionova et al., 2012), at ~7.6 Ma (Popov
et al., 2016), and 7.65 Ma (Palcu et al., 2019); Lower/Upper Maeotian
boundary is determined close to the base of chron C3An.2n with an age
of ~6.7 Ma (Radionova and Golovina, 2011; Trubikhin and Pilipenko,
2011; Vasiliev et al., 2011) and 6.8–6.7 Ma (Palcu et al., 2019), 3) and
the Maeotian/Pontian transition interval starts with a marine flooding
dated in the upper part of chron C3An.1n at an age of ~6.1 Ma
(Trubikhin and Pilipenko, 2011; Vasiliev et al., 2011; Chang et al.,
2014; Rostovtseva and Rybkina, 2017).

3. Methods

In total, we have re-analysed 110 samples from DSDP Hole 380A
(42°05.94′N,29°36.82′E) (718–1073.5 mbsf) for diatom and calcareous
nannoplankton content (Figs. 3–5). The investigations were done using
a light polarizing microscope at ×1600 magnification. Our taxonomic
identification follows Perch-Nielsen (1985) and Young (1998). For
diatom analyses 37 samples were studied: 21 samples from Unit IVe
(969–883.5 mbsf), 3 samples from Unit IVd (864.5–883.5 mbsf) and 13
samples from Unit IVc (850.3–864.5 mbsf) (Fig. 6). These samples are
from the collection of the Institute of Oceanology of the Russian
Academy of Sciences and were previously studied by Jousé and

Fig. 2. The evolution of the age model of DSDP 380/380A in the southwestern Black Sea.
(after Van Baak et al., 2017).
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Mukhina (1980). Five additional samples from the interval 840–856.9
mbsf were provided from the Utrecht collection (Van Baak et al., 2015).

Finally, the deep basin sedimentary succession of the DSDP Hole
380 was reinterpreted by combining the original geologic and litholo-
gical information from the DSDP shipboard reports and the paleo-
bathymetric estimations provided by the biostratigraphic analyses and
the new available seismic data (Tari et al., 2015).

4. Results

4.1. Diatoms

Diatoms are not found in deposits below 955 mbsf. The diatom
assemblages from Unit IVe (sample at 950 mbsf) include Navicula zychii,
Cocconeis pelucides, Nitzschia debilis, Amphiprora sp., Amphora sp.,
Rapolodia sp. (Fig. 3) and can be attributed to Sarmatian. The asso-
ciation is dominated by benthic species, suggesting that the depths in
this part of the basin did not exceed 100 m. The interval from 944 mbsf
to 940 mbsf shows the planktonic species Thalassiosira nativa, Th.
lineata, and Th. maeotica (marker-species of Lower Maeotian)
(Kozyrenko and Temnishkova-Topalova, 1990; Kozyrenko and
Radionova, 2002). Sample at 933 mbsf contains planktonic brackish
water species of the genus Stephanodiscus, but the composition of
benthic diatoms assemblages remains the same.

The Upper Maeotian zonal species Cymatosira savtchenkoi is present
above level 930 mbsf (samples at 929 mbsf; 926.2 mbsf and 926.4 mbsf).
This interval also contains several marine species such as Grammatophora
marina, Thalassionema nitzschioides and semi-marine planktonic species
like Actinocyclus octonarius, Act. variabilis and Coscinodiscus granii. In the
interval of 928–921 mbsf, the contribution of brackish water diatoms
increases and species of Coscinodiscus jambori, Stephanodiscus transilva-
nicus(?), St. multifarus, Cyclotella sp. are present. The large benthic dia-
toms Surirella maeotica, Amphiprora paludosa, and particularly the highly
abundant genus Hyalodiscus are typical for sublittoral environments
(Prochkina-Lavrenkoe, 1960). We conclude that during this time the
composition of diatom associations in Unit IVe reflects an overall
brackish-water shallow basin environment, with a short marine incursion
around 930 mbsf. The diatoms of this interval may correspond to the
layers with Coscinodiscus jambori in the Zheleznyi Rog section
(Radionova and Golovina, 2010). Diatoms are absent in the top of Unit
IVe (912–883 mbsf), Unit IVd (883–864 mbsf) and the base of Unit IVc
(864–859 mbsf). In the samples D5 (856.6 mbsf) and D4 (856.2 mbsf)
organic-walled phytoplankton is present, and diatoms are scarce. We
found only several valves of Thalassiosira sp., Th type. burckliana, Lyrella
sp. and some Paleogene species. The diatom assemblages from Unit IVc
(sample at 851 mbsf) contain the brackish water species Coscinodiscus
jambori, Сoscinodiscus granii, Stephanodiscus transilvanicus(?), St. multi-
farus, Cyclotella sp., and rare species of Rhaphoneis maeotica and Rhyzo-
solenia bezrukovii. The diatoms of this interval correspond completely to
the layers with Coscinodiscus jambori. The top of Unit IVb (846–841 mbsf)
shows three levels with abundant diatom flora and a predominance of
Actinocyclus octonarius. The lowermost sample D2 (846 mbsf) contains
common Actinocyclus octonarius together with the marine species Cosci-
nodiscus asteromphalus, Rhaphoneis maeotica, Rhyzosolenia bezrukovii,
Thalassiosira aff. convexa, Th. praeconvexa and the brackish-water dia-
toms St. multifarus, Pliocaenicus sp., Cyclotella sp. In sample 55-4
(78–96 cm) at 844mbsf, Actinocyclus octonarius dominates, while
brackish water species St. multifarus, Thalassiosira bramaputra, and Eller-
bekia arrenaria are also present (Fig. 3). The sequence and structure of the
diatom assemblages in the interval are similar to the microflora

composition described as “Transitional strata” from the Zheleznyi Rog
section (Radionova and Golovina, 2011). However, the thickness of the
beds is greatly reduced, and the sediments show signs of mixing.

In Unit IVb (lacustrine chalk) diatoms are scarce and their compo-
sition changes completely. The freshwater planktonic species Melosira
praeislandica is the dominant diatom, and it is accompanied by
Coscinoiscus rotii, Stephanodiscus multifarus and Actinocyclus octonarius.
Benthic diatoms are absent at level 818.2 mbsf.

4.2. Calcareous nannofossils

Our re-analysis of the DSDP material confirms the presence of scarce
nannofossils that are not stratigraphically significant. The composition of
the nannoplankton assemblages in Unit V (969–1073.5 mbsf) includes
predominantly rare species of Braarudosphaera bigelowii, Coccolithus pe-
lagicus, Reticulofenestra pseudoumbilicus, Reticulofenestra minuta,
Sphenolithus abies and some reworked Paleogene species. The deposits of
subunits IVe (883.5–969 mbsf) and IVd (864.5–883.5 mbsf) contain more
abundant nannofossils. The deposits of subunit IVd (864, 6 and 867,6
mbsf) are characterized by the presence of Helicosphaera carteri,
Helicosphaera sp., Rhabdosphaera sp., and abundant Braarudosphaera bige-
lowii (Fig. 4). Furthermore, we observed in IVd several species of Perfo-
calcinella fusiformis, Lacunolithus menneri and some specific nannofossils
that belong to the genus Micrascidites (Figs. 4,5). In polarized light, these
are round spindle-shaped grains that have high interference colours and
sizes from 13 to 25 μm. Their surface is sometimes granulated and they
often have longitudinal ridges or depressions bordered ribs. We note here
that the genera of Micrascidites are morphologically similar to Perfocalci-
nella (Golovina, 2008). These calcareous elements belong to the so-called
ascidian spicules. It has been noted before that “ascidians are benthic
tunicates, and have nothing to do with nannoplankton. The spicules they
produce commonly occur in nannoplankton preparations, especially from
shallow marine environments” (Nannotax3 website.2017). In the mar-
ginal sections on the Taman and Kerch Peninsulas, these ascidian spicules
are a typical component of the Maeotian nannoplankton associations
(Luljeva, 1989a; Golovina, 2008). An overview and classification of as-
cidian spicules is presented in several papers (e.g., Varol and Houghton,
1996; Varol, 2006; Łukowiak et al., 2016). Ascidians are temperature and
salinity-sensitive, they prefer normal marine habitats (Monniot et al.,
1991), so abundant ascidian spicules can be used for paleoecologic re-
constructions as they are indicators of sublittoral and littoral marine
conditions (Varol, 2006; Golovina, 2008; Łukowiak et al., 2016). It should
be noted that abundant ascidian spicules, together with specimens of
Braarudosphaera bigelowii, are present below (at 883.6 mbsf) and above
(at 855.2 mbsf) the Pebbly Breccia. The sequence and structure of the
nannofossil assemblages in the interval 904.2–855.2 mbsf probably cor-
respond to several stages of slope instability.

The youngest studied subunit IVb (817–850.3 mbsf) contains only a
few samples with rare nannoplankton. Samples from interval
818.5–816.2 mbsf show an abundance of Isolithus semenenko Luljeva
(Fig. 6). This species was first described from Pontian deposits of the
Zheleznyi Rog section, and was considered an index species for the
Pontian stage (Luljeva, 1989b). Later, it was established that it originated
from the Pannonian basin (Cziczer et al., 2009) and it was also observed
in older and younger sediments from the Central and Eastern Paratethys
(Coric, 2005; Chira, 2006; Chira and Malacu, 2008; Popov et al., 2016).
Special attention has been devoted to the interval straddling ~840 mbsf
where Popescu et al. (2010) mentioned the presence of Ceratolithus
acutus, but this species has not been observed by us.

Fig. 3. Diatom marker species. 1. Actinocyclus octonarius var. tamanica; 2. Ellerbekia arrenaria (Moore) Crawford; 3. Stephanodiscus digitatus Churs. et Mukchina; 4.
Stephanodiscus multifarus Churs. et Mukchina; 5. Thalassiosira maeotica Proch.-Lavrenko; 6. Coscinodiscus granii Gough; 7. Cymatosira savtchenkoi Proch.-Lavrenko; 8.
Thalassiosira bramaputrae (Ehr.) Hakansson & Locker; 9. Rhaphoneis maeotica (Milov.) Shesh-Poretskaya; 10. Thalassiosira convexa Mukchina; 11. Coscinodiscus jambori
HayÒs; 12. Thalassiosira miocenica Schrader; 13. Coscinodiscus apiculatus Ehr. Magnification scale 1–6,10,13–20 μ; 7–9,11,12–10 μ.
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Fig. 4. A: LM microphotographs of nannofossils from Hole 380-A (crossed-nicols photographs magnification ×1600). 1–Perfocalcinella fusiformis Bona 1966 (874,6
mbsf); 2 – Braarudosphaera bigelowii (Gran & Braarud 1935) Deflandre, 1947 (864,6 mbsf); 3,4 – Perfocalcinella fusiformis Bona 1966 (866,17 mbsf); 5
–Rhabdosphaera sp. (864,6 mbsf); 6 – Reticulofenestra pseudoumbilicus (Gartner, 1967) Gartner, 1969 (866,17 mbsf); 7 – Lacunolithus menneri Lyul'eva 1989 (864,6
mbsf); 8 – Lacunolithus menneri Lyul'eva 1989 (874,6 mbsf); 9 – Helicosphaera carteri (Wallich 1877) Kamptner, 1954 (864,6 mbsf). 4B: SM microphotographs. Scale
bar in microns. 10, 16 – Perfocalcinella fusiformis Bona 1966 (874,6 mbsf); 11, 12 – destroyed fragments Perfocalcinella fusiformis Bona 1966 (867,67 mbsf); 13, 14, 15
– Lacunolithus menneri Lyul'eva 1989 (867,67 mbsf). Fig. 5

Fig. 5. A: LM microphotographs of nannofossils from Hole 380-A and Taman section ((top of Upper Maeotian) crossed-nicols photographs magnification ×1600). 1-
Micrascidiscus sp. (923,4 mbsf); 2,3 – Micrascidiscus sp. (sample 55, Taman section); 4 – Micrascidiscus sp. (874,6 mbsf); 5, 6, 7 destroyed fragments of the spicules
(sample 55, Taman section); 8 – destroyed fragments of the spicules (846,45 mbsf, DSDP); 9 (883,63 mbsf, DSDP). 5B: SM microphotographs. Scale bar in microns.
10, 16 – destroyed fragments Perfocalcinella fusiformis Bona 1966 (867,67 mbsf); 11,12,15 – Micrascidiscus sp. (867,67 mbsf); 13, 17 – destroyed fragments of the
spicules (sample 55, Taman section, top of Upper Maeotian); 14 – Micrascidiscus sp. (sample 55, Taman section).
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Fig. 6. High resolution observations on the lithology and paleontology (nannoplankton and diatoms) from the Pebbly Breccia interval part of DSDP 380.
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Fig. 7. Biostratigraphic correlation of DSDP 380 and the Zheleznyi Rog sections in the Black Sea.
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5. Discussion

5.1. The age of the Pebbly Breccia

The diatom assemblages of DSDP Hole 380A can directly be com-
pared to the recently established bio-magnetostratigraphic framework
of the Zheleznyi Rog, Popov Kamen and Taman sections of Russia
(Popov et al., 2016). The sequence of the diatom assemblages of the
units IVe- IVc show strong similarities with the diatom complexes from
Maeotian - Lower Pontian deposits of the Taman sections (Radionova
and Golovina, 2011) (Fig. 7). We observe a sequence of changes in
diatom associations below the Pebbly breccia: the layers with Tha-
lassiosira maeotica (interval from 944 mbsf to 933mbsf); the layers with
Cymatosira savtchenkoi (interval from 933 mbsf to 922 mbsf); the layers
with Coscinodiscus jambori (interval from 921mbsf to 916.5 mbsf); the
interval from 920 mbsf to 883 mbsf does not contain diatoms (Fig. 3).
The Pebbly Breccia interval is from 883 mbsf to 864 mbsf. Above the
Pebbly Breccia (the interval from 864 mbsf to 856 mbsf) there are also
no diatoms. Then layers with Coscinodiscus jambori return in the interval
from 850 mbsf to 846 mbsf. Accordingly, the stratigraphic position of
Pebbly Breccia is intercalated between sediments with this specific
diatom assemblage. The presence of some species of diatoms is parti-
cularly important for dating the interval of Unit IVe –IVc. The diatom
Thalassiosira maeotica (FO -7.9–7.8 Ma), frequently observed in the in-
terval 947–940 mbsf, is considered a zonal species of the Lower
Maeotian. Cymatosira savtchenkoi (FO ~6.7 Ma) is a zonal species of the
Upper Maeotian and appears at 930 mbsf. The presence of the marine
diatom species Thalassiosira convexa and Thalassiosira praeconvexa in
subunit IVc (846 mbsf – 840 mbsf) above the Pebbly Breccia, dates this
interval between 6.6 and 6.2 Ma (Barron, 2003) (Fig. 7). Another age
constraint for Hole 380A is given by the short marine influx at 850
mbsf, especially shown in the nannofossil record, that coincides with
the Pontian Flood event of the Paratethys, dated in many sections at
~6.1 Ma (Radionova and Golovina, 2011; Grothe et al., 2014; Chang
et al., 2014; Van Baak et al., 2015, 2016a, 2016c).

Our new biostratigraphic correlations indicate that the Pebbly
Breccia unit (subunit IVd) is intercalated within Upper Maeotian strata.
Because of the poor magnetostratigraphic resolution in this interval in
both DSDP and Taman records (Vasiliev et al., 2011; Van Baak et al.,
2016b) and the presence of several potential unconformities in the
stratigraphic successions, we conservatively estimate the Pebbly
Breccia to be deposited within the Late Maeotian at an age range of 6.7
and 6.3 Ma.

In Zheleznyi Rog, the Upper Maeotian is marked by several hiatuses
in the sedimentary succession, expressed as gravity flows with re-
worked lithoclasts, consisting of clayey breccias with boulders and
pebbles of diatomitic clays (Popov et al., 1996; Vasiliev et al., 2011).
Second suspect interval is located 60 m above the Lower-Upper Maeo-
tian transition and is marked by an angular unconformity (Vasiliev
et al., 2011). We conclude that the Upper Maeotian is characterized by
several phases of basin margin instability, which is in good agreement
with the hypothesis that the Pebbly Breccia relates to a gravity induced
unconformity (Grothe et al., 2014; Tari et al., 2015).

Recently the continuity of core DSDP 380A has been questioned by
new seismic studies which indicate the Pebbly Breccia may represent
the basal surface of a large mass transport deposits (Tari et al., 2015,
2016). Our biostratigraphic results, however, do not reveal any obvious
breaks in stratigraphy in this part of the core and we do not see any
biostratigraphic argument to question the continuity of the succession
across the Pebbly Breccia (Fig. 7).

5.2. On the presence of Ceratolithus acutus in the Eastern Paratethys

Our Late Maeotian age for the Pebbly Breccia unit is in good
agreement with previous magnetostratigraphic (Van Baak et al., 2015)
and biostratigraphic correlations based on diatoms (Radionova and

Golovina, 2010) and dinoflagellates (Filippova and Trubikhin, 2009;
Grothe et al., 2014, 2016). The First Common Occurrences of Caspidi-
nium rugosum and Galeacysta etrusca, corresponding to the base of the
Pontian in Zhelezny Rog, are both found above the Pebbly Breccia in-
terval suggesting a Maeotian (or older) age (Grothe et al., 2014). This
age is, however, in serious contrast with the observation of the Pliocene
(< 5.4 Ma) nannofossil Ceratolithus acutus at level 840 mbsf in DSDP
Hole 380A (Popescu et al., 2010) which we now date at ~6 Ma (see also
Van Baak et al., 2015).

The Ceratolithus acutus Zone comprises an extremely short chron-
ostratigraphic interval and is therefore an important marker species in
the Atlantic Ocean where it first occurs in the latest Messinian at an age
of 5.4 Ma (Gartner and Bukry, 1974; Müller, 1974; Raffi et al., 1998). In
the Mediterranean it is considered a marker species for the Zanclean,
although it is also observed in the Lago Mare deposits of the Messinian,
suggesting Atlantic inflow occurred before the Mio-Pliocene boundary
(Popescu et al., 2016). In the Lago Mare deposits and lowermost Plio-
cene marine marls, C. acutus is so scarce that its reliability as a marker
species for the Mediterranean is seriously questioned (Di Stefano and
Sturiale, 2010; Stoica et al., 2016). Consequently, it should even be
more difficult to find C. acutus in the Black Sea and other Paratethys
basins, but several case studies exist where it has been reported as a
single find. Ceratolithus acutus was documented from very short inter-
vals in Kimmerian deposits in Zheleznyi Rog section (Luljeva data in
Semenenko and Pevzner, 1979; Semenenko and Luljeva, 2006; Luljeva,
1989b), but until now this information has not been confirmed
(Golovina et al., 1989; Popov et al., 2016). We therefore decided to pay
special attention and close investigation to the reported presence of C.
acutus in DSDP Hole 380A at level 840 mbsf (Popescu et al., 2010).

The modern hydrological environment of the Black Sea serves as an
excellent model for understanding paleoenvironments of the Miocene
basins of Eastern Paratethys. In the Black Sea, it is well known that
nannoplankton reflects the most marine conditions, and that they are
highly sensitive to changes in salinity, temperature, bathymetric con-
ditions, transparency of water, availability of nutrients and terrigenous
dilution (Bukry et al., 1974; Auer et al., 2014; Incarbona et al., 2016).
Changes in one of these factors generally lead to the loss of some species
of the assemblage complex, especially those species that are very sen-
sitive to changes in environmental conditions. The Black Sea is a semi-
enclosed basin, connected with the Mediterranean Sea through the
Bosporus Strait, Marmara Sea, and Dardanelles Strait. The qualitative
and quantitative composition of nannoplankton assemblages, however,
show significant differences between Black Sea and Mediterranean.
Ceratolithus cristathus is living in the Eastern Mediterranean now, but it
is present in very small amounts in the nannoplankton community and
is very sensitive to variations in salinity and temperature. For instance,
Ceratolithus spp. is recorded in the studied sediment trap samples only
in the southern deep-water part of the Aegean Sea (Cretan Sea), while it
is absent in the northern Aegean Sea and in the Ionic Sea (Skamba et al.,
2019). In addition, species of the genus Ceratolithus are absent in the
modern calcareous nannoplankton of the Black Sea, while Emiliania
huxleyi have flourishing populations in the Eastern Mediterranean now
(Skamba et al., 2019) and form finely laminated coccolith oozes in the
modern Black Sea (Golovina et al., 1987; Giunta et al., 2006;
Kouwenhoven et al., 2006; Oaie and Melinte-Dobrinescu, 2012; Gozhyk
et al., 2015).

We re-analysed the 840 mbsf interval in great detail, but did not
find any evidence for C. acutus. Perhaps even more important, we also
did not find any species of the typical nannofossil associations of the C.
acutus Zone. Short-lived species like C. acutus form the top of the eco-
logical community and can be considered as the “kings” of the nanno-
plankton assemblage. In stressed (e.g., low salinity) paleoenviron-
mental conditions, often only the “entourage of the king” is observed, as
only the most tolerant and environmentally plastic nannoplankton
species could adapt to the new tough living conditions. In our samples,
however, we did not find the open marine Pliocene “entourage” of C.
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acutus. The nannoplankton associations in the Eastern Paratethys sec-
tions indeed primarily represent the most persistent cosmopolitan and
long-lived species. In the case of findings of single specimens of C.
acutus without the other zonal typical species (cf. Popescu, 2006), it is
hard to imagine that here only the index-species has overcome all en-
vironmental barriers, and that its entire “entourage” failed.

What we did find at level 840 mbsf, there are calcareous elements
(ascidian spicules), which are very often present in Maeotian deposits in
Kerch and Taman Peninsulas (Popov et al., 2016). These abundant as-
cidian spicules occur in intergrowths in the X-shaped and radiating
rosette as well as in the individual elements. They have high inter-
ference colours, are highly birefringent in crossed nicols, and go out
with polarized light. The observed spicules have strong similarities with
Perfocalcinella fusiformis and Micrascidites latens Luljeva of the genus
Micrascidites (Luljeva, 1989a). The partial destruction of these spicules
could be misleading and may create a “pseudo-Ceratolithus” (Fig. 8).
These partially destroyed spicules may have a morphological similarity
with ‘real Ceratolithus’ since it also goes to extinction when it is parallel

to the direction of polarization. The interval from cores 886,51 mbsf –
846,45 mbsf is characterized by abundant ascidian spicules (Figs. 4–5).
Partially destroyed spicules are morphologically similar to Ceratolithus.
These pseudo-Ceratolithus forms are observed in the Upper Maeotian of
Hole 380A (846,45 mbsf) (Fig. 3 -Plate A) and were previously ob-
served in the Upper Maeotian of the Taman section (Golovina, 2008).
The fossil ascidian spicules are known from the Mesozoic and are
abundant in the modern seas (Varol, 2006). The presence of ascidian
spicules is also known from the middle Miocene deposits of Hungary
(Bóna and Gál, 1985), Croatia (Galović and Young, 2012), Moldova
(Łukowiak et al., 2016).

In our opinion, true Ceratolithus acutus is not present in Unit IVb at
840 mbsf, and that this species may be confused with some destroyed
elements of ascidian spicules (Fig. 8).

5.3. The entangled stories of debris flow and slide deposits of the deep Black
Sea basin. A reinterpretation of the DSDP380 sedimentary succession

The lithological data that describes the sedimentary anomalies from
the deepest parts of the Black Sea basin has also been re-examined.
From the lithological perspective, a 20–100 m thick breccia was inter-
cepted in the two cores (DSDP380 and 381) drilled in the basin. A closer
inspection of the cores and the photographic material (Fig. 6) confirms
that this sedimentary unit is characterized by matrix supported mate-
rial, random fabric, variable clast size, variable matrix. Rip ups and
rafts. The pebbly breccia would thus fall in the debris flow category
(Moscardelli and Wood, 2007).

The seismic data from the SW Black Sea region published by Tari
et al. (2015) reveal several mass transport complexes (MTC). The
seismic line bks01-0222 (Fig. 9), that crosses the location of site 380
reveals a larger picture of the sedimentary anomalies in the basin. Close
to the basin rim a thick MTC (X) is identified and interpreted as a series
of stacked blocks, slided on a gliding plane (b). The slided blocks do not
appear internally deformed and bear high-amplitude, continuous re-
flections. Towards the deeper part of the basin the authors interpret a
different, much thinner MTC (a) characterized by low-amplitude, semi-
transparent chaotic reflections that would fit to a seismic expression of
a debris flow.

The palaeontological results of this work show the presence of se-
diments (Unit IVe) formed at shallow depths (< 100 m) below the
Pebbly Breccia. Within the Pebbly Breccia interval, the carbonatic clasts
have been interpreted as shallow deposits, but this feature seems to
characterize a larger package. It suggests that the blocks identified by
Tari et al. (2015) are not limited to the Pebbly Breccia but go further
down, which implies two different episodes of instability with different
expressions in the basin, in agreement with the two types of MTC visible
on this single seismic section.

We speculate here that a two-step scenario explains the anomalies
found in the sedimentary succession of the deepest part of the Black
Sea. In a chronological succession, the first event (a in Fig. 9) is the
formation of the Pebbly Breccia level. This represents a widespread
debris flow in the basin, linked with an episode of slope instability,
probably related to the Intra-Maeotian Event (Palcu et al., 2019). A
second instability event (b in Fig. 9) transported thick sedimentary
packages, containing also the anomalous Pebbly Breccia level, deep into
the basin, far from their initial shallow and marginal location. While the
first event was a debris flow related to shelf edge collapse (Tari et al.,
2015); we interpret the second event to be the consequence of loading
of the slope sediments. This two-step scenario requires future con-
firmation by additional seismic data, preferably by 3D seismics that
exists for the SW Black Sea region.

6. Conclusions

Our micropaleontologic investigations identified the overall se-
quence of events in the development of phytoplankton at both DSDP

Fig. 8. Destroyed ascidian spicules can easily be misinterpreted as Ceratolithus
acutus. 8A: Intact ascidian spicules of Micrascidiscus sp. 8B: The sequence of
destruction of ascidian spicules and the formation of debris (i – spicula, ii –
partially resolved spicula, iii – fragment of spicula). 8C: Fragments of the spi-
cules resembling C. acutus.

L.A. Golovina, et al. Palaeogeography, Palaeoclimatology, Palaeoecology 533 (2019) 109269

11



Hole 380/380A and the Zheleznyi Rog section and established the same
sequence of appearance of diatom markers species. Mainly based on the
presence of Thalassiosira maeotica, our micropaleontological records
show a close correlation of the lower Subunit IVe of DSDP Hole 380A to
the Lower Maeotian sediments of Zheleznyi Rog. The base of the Upper
Maeotian is observed at level 930 mbsf, in the middle part of Subunit
IVc, based on the first occurrence of Cymatosira savtchenkoi at an age of
about 6.9–6.6 Ma. The upper part of Subunit IVc (853–850 mbsf)
comprises mainly non-marine microflora and probably formed in a
closed basin, which had no connection with the Mediterranean. Our
diatomaceous data determine the position of the Maeotian-Pontian
boundary at 841 m (at the base of the Layers with Act. octonarius).
During the main part of the Pontian the diatom fauna are indicative of
brackish water, containing mainly lacustrine flora.

The previously reported presence of the calcareous nannofossil
Ceratolithus acutus at level 840 mbsf in Hole 380A is not confirmed by
our detailed micropaleontological re-investigation, neither did we ob-
serve other nannofossil species of the C. acutus Zone that are expected
to co-occur at that time. We believe that the proposed specimens of C.
acutus have been confused by look-alikes of some destroyed elements of
ascidian spicules of Micrascidites.

The Pebbly Breccia unit (864–883 mbsf) Subunit IVd is thus dated
within the Upper Maeotian at an age between 6.7 and 6.3 Ma. The
formation of the Pebbly Breccia is most likely linked to a period of
gravitational instability of the Black Sea margins leading to slumping
and downslope mass transport in Late Maeotian times.
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