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S U M M A R Y
Scanning magnetometers are increasingly used to characterize the magnetization of mineral
grains in rock samples. Up-scaling this measurement technique to large numbers of individual
particles is hampered by the intrinsic non-uniqueness of potential-field inversion. Here it
is shown that this problem can be circumvented by adding tomographic information that
determines the location of the possible field sources. Standard potential theory is used to
prove a uniqueness theorem that completely characterizes the mathematical background of
the corresponding source-localized inversion. It exactly resolves under which conditions a
potential-field measurement on a surface can be uniquely decomposed into signals from the
different source regions. The intrinsic non-uniqueness of potential-field inversion prevents
that the source distribution inside the tomographically outlined regions can be recovered, but
the potential field of each region is uniquely defined. For scanning magnetometers in rock
magnetism, this result implies that magnetic dipole vectors of large numbers of individual
magnetic particles can be reliably reconstructed from surface scans of the magnetic field, if
the particle positions are independently determined. This provides an incentive to improve
scanning methods for future palaeomagnetic applications.

Key words: Inverse theory; Joint inversion; Rock and mineral magnetism; Magnetic anoma-
lies: modelling and interpretation.

1 I N T RO D U C T I O N

Recent developments in scanning magnetometers for rock magnetic
purposes promise that this technique will be increasingly important
for future rock magnetic studies from the millimetre scale down
to the nanometre scale (Egli & Heller 2000; Uehara & Nakamura
2007; Weiss et al. 2007; Hankard et al. 2009; Lima & Weiss 2009;
Lima et al. 2014; Glenn et al. 2017; de Groot et al. 2018). A general
physical limitation of this method is the intrinsic non-uniqueness
of potential-field inversion. This results from the fact that a charge
distribution inside a sphere can be replaced by an equivalent surface
charge distribution creating exactly the same outside potential (Kel-
logg 1929). Therefore, when inverting magnetic field surface mea-
surements, all mathematical approaches have to make substantial
additional assumptions about the source magnetization to achieve
useful reconstructions (see, e.g. Baratchart et al. 2013; Zhdanov
2015). To remediate this problem, we previously suggested to con-
strain the location of the sources inside the investigated region � by
adding independent tomographic information (de Groot et al. 2018).
The corresponding tomography-assisted inversion algorithm turned
out to be extremely successful and efficient, which seemed to de-
serve a mathematical underpinning. This led to the following new
type of inversion problem:

When the potential field is known on the surface ∂� of a re-
gion �, and it is further known that all sources are inside some
tomographically outlined regions P1, . . . , PN �⊂ �, is it possible to
uniquely decompose the measured signal into signals assigned to
P1, . . . , PN?

For example, is it impossible that in Fig. 1(a) some non-vanishing
charge distribution inside the particles P1, P2, P4 and P5 creates
exactly the same measurement signal as some charge distribution
inside the omitted particle P3?

Here it will be shown that this is impossible if the regions P1,
. . . , PN are pairwise disjoint, and the complement of the union of
each subset is simply connected in R

3. The latter requirement is
always fulfilled for separate ‘blob-shaped’ particles, but excludes
ring-shapes or particles that lie inside each other.

The intrinsic non-uniqueness of potential-field inversion turns
out to be constrained to the uncertainty of the internal source dis-
tribution within the individual regions P1, . . . , PN. In the practical
application of a tomography-assisted scanning magnetometer, this
means that one can uniquely determine which part of the measure-
ment signal comes from which particle. From that one can exactly
determine the magnetic dipole moments of the individual particles.
If the signal-to-noise ratio allows, one can even determine higher
multipole moments, but one cannot determine, for example, the
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(a) (b)

Figure 1. The geometric situation for the unique-source-assignment theo-
rem. The idea is that one measures the normal derivative of a potential, for
example, of the magnetic, electric or gravitational potential, on the surface
∂� of the region �. (a) The sketch for the general case shows several dis-
joint source regions P1, . . . , P5, which are known beforehand, for example,
by X-ray tomography. The new theorem guarantees that the measurement
signal on ∂� can be uniquely decomposed into signals from the individual
source regions if these have the No-Mutual-Annihilator property. (b) Sketch
for the simplified case of two disjoint spherical source regions.

magnetization distribution inside the particles—this is impossible
due to the intrinsic non-uniqueness.

The proof of this unexpectedly general result proceeds in three
steps. First it is proved for two regions P1, P2 that a non-zero charge
distribution in one region cannot annihilate the signal of a charge
distribution in the other region. This is the content of the two-
region No-Mutual-Annihilator (NMA) theorem in Section 2. This
theorem encapsulates the main mathematical difficulty in that its
proof requires facts from the theory of partial differential equations
for potential fields and analytic continuation. The second step, its
generalization to an arbitrary number N of regions, just proceeds
by mathematical induction. Finally, the main theorem on unique
source assignment in Section 3 also follows relatively easily from
the general NMA theorem via the linearity of the von Neumann
boundary-value problem for the Poisson equation.

The main mathematical idea is therefore contained in the two-
region NMA theorem, that can be regarded as a substantial gener-
alization of a theorem of Gauss about separating the internal and
external components of the geomagnetic field (Gauss 1877; Backus
et al. 1997). It essentially relies on the fact that harmonic functions
are analytic and can be uniquely analytically continued on simply
connected open sets (Axler et al. 2001, theorem 1.27).

In Section 3.1 it is shown that the inverse operator, which maps
a full surface measurement to the contribution from an individual
region, is continuous. This is of considerable practical importance
because it implies that the inverse problem of determining individual
particle magnetizations from a tomography-assisted surface scan is
well posed in the sense of Hadamard (Zhdanov 2015), and can be
efficiently solved if data quality allows it.

2 T H E N O - M U T UA L - A N N I H I L AT O R
T H E O R E M

Before continuing with the precise formulation of the results, the
reader is kindly asked to recall some terminology from the theory
of metric spaces as collected in the Appendix. Having done that,
let � ⊂ R

3 be open and ∂� a non-empty, smooth manifold. For all
practical purposes, � in the following is assumed to be bounded,
although mathematically this is not strictly necessary. For an open
bounded region G with G ⊂ � the (von Neumann) annihilator of
G in ∂� is defined as the vector space of charge distributions in
G ,which create no measurement signal on the boundary ∂�. To
simplify the proofs, it is assumed that these charge distributions have

some finite distance to the boundary of G. This can be formalized
as

Ann(G) := {
ρ ∈ L1(G) : supp ρ ⊂ G,

∃� ∈ C2(�) ∩ C1(�) : � � = ρ and
∂�

∂n
= 0 on ∂�

}
.

Because the measurement signal is the normal derivative of the
potential, the potential itself is only defined up to a globally con-
stant summand, and in the following this constant is chosen such
that the analytic continuation of � to R

3 vanishes at infinity. The
corresponding potentials are called zero-gauged.

N pairwise disjoint compact sets P1, . . . , PN with Pi �⊂ � have
the NMA property if,

Ann

(
N⋃

i=1

Pi

)
=

N⊕
i=1

Ann(Pi ).

This NMA property is a central concept in the following proofs,
and it is useful to visualize its physical meaning. In the above
equation the ‘�⊃’ inclusion is always true because any element of the
vector space spanned by the annihilators of the Pi is an annihilator of

the union
N⋃

i=1
Pi . This means that if each of some charge distributions

ρk with support inside Pk creates no signal on ∂�, then also any
linear combination

α1 ρ1 + . . . + αN ρN

with α1, . . . , αN ∈ R creates no signal on ∂�. The other inclusion
‘ �⊂’ in the NMA property is the one which excludes mutual annihi-
lators. For it implies, that every annihilator of the union is a linear
combination of individual annihilators. It is thus impossible to have

a charge distribution ρ within the union
N⋃

i=1
Pi of all particles, which

generates a zero signal on the boundary, such that if the charge dis-
tribution is set to zero in some, but not all of the Pi, the resulting
boundary signal is not zero.

An example of two sets that do not have the NMA property are
two nested balls P1 = B(r) and P2 = B(R)\B(r) for 0 < r < R. A
well-known annihilator in this case are constant non-zero charge
distributions of opposite signs such that the integral over B(R) is
zero (Zhdanov 2015). Setting the charge distribution in one of P1,
P2 to zero clearly generates a non-zero field on ∂�. It is also known
that the annihilator sets Ann(G) for G ⊂ � contain a wide variety
of other more complicated charge distributions. For example, if G is
star-shaped, any charge distribution ρ ∈ L1(G) that for all harmonic
functions h ∈ C2(�) : � h = 0 fulfils∫
G

h(r ) ρ(r ) dV = 0,

generates no field on ∂�, and thus is a member of Ann(G) (Zhdanov
2015). This apparently bleak state of affairs with respect to unique-
inversion results is emphasized by the fact that Zhdanov (2015)
reports as the best uniqueness result so far that if a gravity field is
known to be generated by a star-shaped body of constant density
ρ(r) = ρ0, the inverse problem to determine this shape from its
gravitational field has a unique solution (Novikov 1938).

The above historical background, may lead to serious doubt as
to whether a far-reaching uniqueness result, like the one presented
here, is in conflict with the well-established non-uniqueness results.
Yet, intuitively it also appears plausible that, for example, two point
charges inside a sphere, which lie far apart from each other, but close
to the surface of the sphere do have the NMA property. At least if the
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762 K. Fabian and L.V. de Groot

Figure 2. Overview of the proof of the two-region NMA theorem. The measured normal derivatives on the surface ∂� are marked by red arrows. Red shades
mark the regions to which the solution has been extended. The assumption that sources in region P1 generate the same non-zero field on the surface ∂� as
sources inside region P2 leads to a contradiction if T1 and T2 are simply connected.

charge distribution inside one of them has a non-zero total charge,
then the other must have the opposite total charge to annihilate the
field at large distance, but at small distance on the surface ∂� these
charges cannot cancel each other. Unfortunately, it appears to be
impossible to transform this intuitive picture directly into a mathe-
matical proof if higher multipole orders are taken into account. It
will be shown in the following sections by more abstract means that
unique-source-assignment and the classical non-uniqueness results
are in fact compatible.

Two-region NMA theorem: Let � ⊂ R
3 be open and ∂� a smooth

manifold and P1, P2 �⊂ � be disjoint compact sets, such that R3\P1,
R

3\P2 and R
3\(P1 ∪ P2) are simply connected, then P1 and P2 have

the NMA property with respect to �.

Proof. The general outline of the proof is sketched in Fig. 2. We
derive a contradiction from the assumption that there exists a mutual
annihilator
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ρ ∈ Ann(P1 ∪ P2)\(Ann(P1) ⊕ Ann(P2)).

Because ρ is an annihilator of the union P1
⋃

P2, but not a sum
of annihilators of the individual particles, there are two non-zero
functions ρ1, ρ2 ∈ L1(�) with supp ρ1 ⊂ P1, supp ρ2 ⊂ P2, such
that

ρ = ρ1 − ρ2,

and the non-zero normal derivatives of their potentials ∂�1
∂n ,

∂�2
∂n are

identical on ∂�. Now recall that the solution of the von Neumann
boundary problem for harmonic functions is unique for zero-gauged
potentials (Kellogg 1929, theorem 8.4), by which �1 =�2 onR

3\�,
where a potential U is called zero-gauged, if

lim
||x ||→∞

U (x) = 0.

We now conjure up a bit of mathematical magic in the form of
theorem 10.5 in (Kellogg 1929), which essentially encapsulates
Gauss theorem of separation of sources. By assumption, the sets
T1 := R

3\P1 and T2 := R
3\P2 are simply connected and open and

overlap on the simply connected set R3\(P1 ∪ P2). By analytic con-
tinuation on the simply connected open sets T1 and T2 (Axler et al.
2001, theorem 1.27) there is a unique harmonic function U1 on T1

with U1 = �1 on R
3\�, and a unique U2 on T2 with U2 = �2 on

R
3\�. By theorem 10.5 (Kellogg 1929), now there is also a unique

harmonic function U on R
3 with U = U1 on T1 and U = U2 on T2.

This implies that U solves the zero-gauged von Neumann boundary
problem �U = 0 on R

3 with boundary condition ∂U
∂n = ∂�1

∂n on ∂�.
Because the unique zero-gauged potential with �U = 0 on R

3 is U
= 0, it follows that ρ1 = ρ2 = 0, which contradicts the assumption.
�

The above proof makes essential use of theorem 10.5 from Kel-
logg (1929), which may appear unsatisfactory. In the Appendix this
theorem is replicated, and the special case of a two-ball NMA theo-
rem, in which P1, 2 are simply disjoint balls as in Fig. 1b, is proved
by directly applying Gauss theorem of separation of sources. This
may help to acquire a more physical understanding of the strength
and limitations of the result, and may also lend more credulity to
the abstract derivation above. In the next step, the result of the two-
region NMA theorem is extended to arbitrary numbers of regions
by induction.

Corollary: General NMA theorem: Let � ⊂ R
3 be open and ∂�

a smooth manifold. For a natural number N ≥ 1 let P1, . . . , PN �⊂ �

be pairwise disjoint compact sets, such that R3\Pk and R
3\

k⋃
i=1

Pi

are simply connected for all k = 1, . . . , N. Then the Pi have the
NMA property with respect to �.

Proof. For N = 1 there is nothing to prove. Assume that N > 1 and

that the corollary is true for N − 1. Define the sets P ′
1 =

N−1⋃
i=1

Pi and

P ′
2 = PN . The assumptions on the Pk imply that P ′

1 and P ′
2 fulfil the

conditions to apply the two-region NMA theorem, whereby P ′
1 and

P ′
2 have the NMA property with respect to � which implies

Ann

(
N⋃

i=1

Pi

)
= Ann

(
N−1⋃
i=1

Pi

)
⊕ Ann(PN ).

Because the corollary is true for N − 1 and P1, . . . , PN − 1 fulfil the
conditions for its application we have by induction:

Ann

(
N−1⋃
i=1

Pi

)
=

N−1⊕
i=1

Ann(Pi ).

Substituting this in the above equation proves the corollary. �

3 U N I Q U E S O U RC E A S S I G N M E N T

The previous two theorems provide all prerequisites to formulate
the main result of this paper:

Unique source assignment theorem: Let � ⊂ R
3 be open, simply

connected, and ∂� a smooth manifold. Assume that P1, . . . , PN �⊂ �

are pairwise disjoint compact sets, such that R3\Pk and R
3\

k⋃
i=1

Pi

are simply connected for all k = 1, . . . , N. If the sources of the

zero-gauged potential � have compact support on
N⋃

k=1
Pk, then ∂�

∂n

on ∂� uniquely determines zero-gauged potentials �1, . . . , �N,
such that �i is harmonic on R

3\ ⋃
k �=i

Pk , which implies that it has no

sources outside Pi, and

∂�

∂n
=

N∑
i=1

∂�i

∂n
on ∂�.

Proof. Because the source of � is a charge distribution ρ in
N⋃

k=1
Pk ,

there exist zero-gauged harmonic potentials �1, . . . , �N with the
required properties, namely those generated by the local charge
distributions ρk = ρ|Pk . �

Uniqueness is now shown by the general NMA theorem. Take

any charge distribution ρ ′ in
N⋃

k=1
Pk with zero-gauged potentials �1,

. . . , �N, such that � i is harmonic on R
3\ ⋃

k �=i
Pk and

∂�

∂n
=

N∑
i=1

∂�i

∂n
on ∂�.

Then define 	i = �i − � i, such that

	 :=
N∑

i=1

	i = 0 on R
3\�, and

∂	

∂n
= 0 on ∂�.

This 	 is the zero-gauged potential from the source distribution ρ

− ρ ′ and a member of Ann(
N⋃

i=1
Pi ). By the general NMA theorem

for the source regions �1, . . . , �N, we have

Ann

(
N⋃

i=1

Pi

)
=

N⊕
i=1

Ann(Pi ),

which implies that 	 is the sum of annihilators of the individual
source regions Pi, and therefore 	i = 0, or �i = � i for i = 1, . . . ,
N. Thus all zero-gauged �i are uniquely determined by ∂�

∂n on ∂�.

3.1 Unique source assignment is well posed

For the practical application in inversion algorithms it is important
to find out whether the above unique decomposition is sufficiently
robust with respect to inevitable measurement uncertainties or nu-
merical noise. This kind of robustness is captured by Hadamard’s
definition of a well-posed inverse problem (Zhdanov 2015). In or-
der to be well posed, the source assignment of the potential-field
data needs to (1) have a solution, (2) this solution must be unique
and (3) the operator that maps the measurement to the potentials of
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764 K. Fabian and L.V. de Groot

the individual source regions must be continuous. Because (1) and
(2) have been proved above, it remains to show that the solution
operator for unique source assignment is continuous.

To simplify defining the inverse-solution operator for one of the
regions in the unique-source-assignment theorem, we pick this re-
gion and call it P1, and then call the union of the other regions P2.
The continuity which is of interest here, requires that if a sequence
of measurements mk, k ∈ N converges to m in C(∂�), then also the
uniquely defined inverse potentials �1(mk) converge to �1(m) on
R

3\P1, or

lim
k→∞

||m − mk || = 0 ⇒ lim
k→∞

||�1(m) − �1(mk)|| = 0,

where the norm on the right-hand side is from C2(R3\P1). Because
�1 is a linear operator, this is equivalent to the case m = 0 where it
must be proved that

lim
k→∞

||mk || = 0 ⇒ lim
k→∞

||�1(mk)|| = 0.

All mk are measurements on ∂� of fields from zero-gauged po-
tentials �(mk) generated by sources inside P1

⋃
P2. Harnack’s

theorem (Kellogg 1929, theorem 10.1) now guarantees that these
�(mk) converge onR

3\� to a zero-gauged harmonic potential �(0).
Uniqueness of the von Neumann boundary problem yields �(0) =
0. Analytic continuation then implies that the �(mk) also converge
on R

3\(P1 ∪ P2) to zero, which in turn guarantees that the �(mk)
converge to zero on ∂P1

⋃
∂P2. By Harnack’s theorem now also

∂�(mk )
∂n converges to zero on ∂P1. Because due to unique source as-

signment �1(mk) is the unique zero-gauged potential generated by
∂�(mk )

∂n on ∂P1, it also follows, again by Harnack’s theorem, that the
�1(mk) converge to zero.

The above argument confirms that unique source assignment is
a well-posed inverse problem. This guarantees that for each given
configuration of source regions with NMA property, there is some
level of measurement precision which provides sufficiently dense
data and low signal-to-noise ratio, that the inverse problem can be
solved in a stable and robust way. As with any inverse problem, one
has to confirm that the required level of data quality is reached in
practical applications. If this is not the case, the numerical inversion
can still be ill-conditioned, which is common in cases where the
discretization is too coarse, or the signal-to-noise ratio is low.

4 C O N S E Q U E N C E S

The new theorem proved above, provides an astoundingly general
condition for when it is theoretically possible to uniquely assign
potential-field signals to source regions. To give an intuitive argu-
ment why this kind of theorem can exist, consider the simple case
when � and all Pk are balls. The theorem now guarantees that from
the spherical harmonic expansion of the field on ∂� all individual
spherical harmonic expansions on the ∂Pk are uniquely determined.
Thus the coefficients of one countably infinite basis of an harmonic
function space uniquely define N countably infinite coefficient sets
on N infinite bases, which is no contradiction in analogy to the
Hilbert-hotel paradox (Hilbert 1924/1925).

In rock magnetism, after the pioneering work of Egli & Heller
(2000), different magnetic surface scanning techniques are increas-
ingly used to infer magnetization sources and magnetization struc-
ture inside rocks (e.g. Uehara & Nakamura 2007; Hankard et al.
2009; Usui et al. 2012; Lima et al. 2013; Glenn et al. 2017). Here,
the unique-source-assignment theorem enables palaeomagnetic re-
construction from natural particle ensembles (de Groot et al. 2018),
because it establishes that individual dipole moments from a large

number of magnetic particles in a non-magnetic matrix, which are
localized by density tomography (micro-CT), can be uniquely re-
covered from surface magnetic field measurements. In this context,
� is a half-space in R

3 and the scanning measurement determines
the normal component of the magnetic field vector on its surface
plane. In de Groot et al. (2018), uniqueness of dipole reconstruction
was also individually certified by showing that for some specific set
of K magnetic particles found by density tomography one can find
3K surface measurements such that the a 3K × 3K matrix of the
forward calculation is invertible. Based on the uniqueness result
proven here, this individual certification becomes unnecessary. The
theorem even explains, why false magnetizations assigned to some
particles, due to an ill-conditioned inversion matrix, do not influ-
ence the correct determination of the other particle magnetizations:
the potential fields from the different source regions just do not
interfere with each other. The induction proof of the unique source
assignment theorem even indicates a divide-and-conquer type strat-
egy for algorithmic implementation of an improved fast inverse
reconstruction.

When scanning a rock sample in its natural-remanent magne-
tization state, and again after applying standard palaeomagnetic
stepwise demagnetization procedures, the resulting demagnetiza-
tion data set can be studied on an individual particle level to identify
stable and unaltered remanence carriers. By selecting only optimally
preserved and stable remanence carriers from a large collection
of measured particles, statistically reliable palaeomagnetic average
directions or NRM intensities can be calculated for terrestrial or
extraterrestrial rocks that currently cannot be used as recorders of
their magnetic history due to unremovable noise.

Unique source assignment can also be significant in other ar-
eas of geophysics, for example, for the inversion of gravimetric or
aeromagnetic data, when combined with tomographic methods like
seismic imaging.

Further potential application are inversion problems in elec-
troencephalography, magnetoencephalography or electrocardiogra-
phy, where it might enable to uniquely assign externally measured
potential-field signals to previously determined brain or heart re-
gions (Baillet et al. 2001; Michel et al. 2004; Grech et al. 2008;
Huster et al. 2012; Michel & Murray 2012). Empirical inversion
techniques that now use numerical and statistical approaches to
assess the reliability of their results (Friston et al. 2008; Castano-
Candamil et al. 2015) may profit from unique source assignment to
prior known regions.

What remains intrinsically impossible is to assign signals to
source regions, which lie inside other source regions, like the nested
balls described in Section 2. These cases are excluded because they
do not fulfil the condition that for all k, the set R3\Pk is simply
connected. The fact that this appears to be the main obstruction
to unique reconstruction provides a new incentive and direction to
study potential-field measurement techniques in combination with
a priori source localization to recover a maximum of information
about the spherical harmonic expansion of the individual source
regions.
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A P P E N D I X

Fundamental mathematical notions

Metric spaces

A metric space is any set X for which a ‘distance’ between two
elements can be defined. The distance then is a function

d : X × X → [0,∞)

with the properties

(1) d(x, y) = 0 ⇔ x = y,

(2) d(x, y) = d(y, x) and
(3) d(x, z) ≤ d(x, y) + d(y, z).

Every vector space with a norm ||.|| has the natural distance
function d(x, y) = ||x − y||. Thus, all common spaces Rn or Cn are
metric spaces, but also spaces of m-times continuously differentiable
functions Cm(�) with � ⊂ R

n are metric spaces with the norm

|| f − g|| = max
|α|≤m, x∈�

|∂α f (x) − ∂αg(x)|.

A subset A of a metric space X is open, if for each point x ∈ A
there is a ε > 0, such that the ball

B(x, ε) := {y ∈ X : d(x, y) < ε}
is a subset of A. A subset A of X is closed, if its complement X\A is
open. Note that ∅ and X are always open and closed in X. For any
A �⊂ X one defines the open core of A as

Å := {x ∈ A : ∃ ε > 0 : B(x, ε) ⊂ A},
and the closure of A in X as

A := {x ∈ X : ∀ε > 0 ∃y ∈ A : x ∈ B(y, ε)}.
The open core can be viewed as the ‘inside points’ of A, while
the closure contains all points in X that have some inside points
arbitrarily close to them. Note that the closure of A depends not
only on A itself, but also on X. The boundary ∂A of A can be defined
as those points of the closure of A that are not fully inside, or

∂ A := A\ Å.

A subset A �⊂ X is bounded, if there is an R > 0 and x ∈ X, such
that A �⊂ B(x, R).

A function f : X → Y between two metric spaces is continuous,
if for every open subset B �⊂ Y, the set f−1(B) := {x ∈ X : f(x) ∈ B}
is open in X.

Connected, path-connected and simply connected spaces

A metric space X is connected if ∅ and X are its only subsets A that
in X at the same time are open and closed, which means A = Å.
Note that this definition uses the nice fact that if X has several
disconnected pieces, then each of these pieces is also open and
closed in X.

A metric space X is path-connected, if for any two points x, y ∈
X there is some curved path fully inside X that connects x and y.
Formally, this path is a continuous function

p : [0, 1] → X
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with p(0) = x and p(1) = y. A path-connected metric space X is
simply connected, if whenever

p, q : [0, 1] → X

are two continuous paths with equal start and endpoints p(0) =
q(0) and p(1) = q(1), then fully within X, p can be continuously
deformed into q while the endpoints remain fixed. Formally, this
requests that there is a continuous homotopy map

F : [0, 1] × [0, 1] → X,

such that

∀x ∈ [0, 1] : F(x, 0) = p(x), F(x, 1) = q(x).

This condition is also equivalent to the request that all closed
loops within X can be continuously contracted to a single point.
Intuitively, connected spaces that are not simply connected have
‘holes’ going through the whole space, like in a torus (doughnut
shape) where a loop around the hole cannot be continuously con-
tracted inside the torus. In contrast, if a smaller ball is removed from
a larger ball in R

3 the remaining space is still simply connected, be-
cause all loops can still be contracted by moving them ‘around’ the
smaller ball.

Here the notion of simply connected regions is important because
on them analytic functions can be uniquely continued from any open
set to the whole region. If a region X is only path-connected but
not simply connected, this cannot be guaranteed because analytic
continuation along a non-contractible loop p in the region can lead
to different function values at p(0) and p(1), although both points
coincide. In disconnected regions, analytic continuation can only be
performed within each component.

Other notions

A subset A ⊂ R
3 is star-shaped, if there is a centre point c ∈ A,

such that for all x ∈ A also the line connecting c and x lies in A, that
is, ∀α ∈ [0, 1] : αc + (1 − α) x ∈ A.

If X is a metric space, the support of a function f : X → R is
defined as the closed set

supp f := {x ∈ X : f (x) �= 0}.
If V1, V2, . . . , Vn are n linearly independent subvector spaces of V,
then their direct sum is defined as

n⊕
i=1

Vi := {α1 v1 + α2 v2 + . . . + αn vn : vk ∈ Vk and αk ∈ R}.

Using the notion of the span of a subset of the vector space V, this
may also be written as

n⊕
i=1

Vi = span
n⋃

i=1

Vi .

Theorems from Kellogg (1929)

For easier reference theorem 10.5 from Kellogg (1929) is here ex-
plicitly repeated. In the application of this paper, it guarantees that
a harmonic function that can be analytically continued in two dif-
ferent ways onto two different regions, the union of which is R

3 ,
then it also can be analytically continued to R

3.

Kelloggs theorem 10.5: If T1 and T2 are two domains with common
points, and if U1 is harmonic in T1 and U2 in T2, these functions
coinciding at the common points of T1 and T2, then they define a
single function, harmonic in the domain T consisting of all points
of T1 and T2 (Kellogg 1929).

The following theorem of Harnack is given as theorem 10.1 in
Kellogg (1929). In the application of this paper, all boundaries
are compact. The definition of the annihilator was also designed,
such that all boundaries of Pk and � have finite distance from the
sources. This implies that Harnack’s theorem guarantees uniform
convergence of all derivatives of convergent sequences of harmonic
potentials on all boundaries.

Harnack’s theorem: Let R be any closed region of space, and let
U1, U2, U3, . . . be an infinite sequence of functions harmonic in
R. If the sequence converges uniformly on the boundary S of R, it
converges uniformly throughout R, and its limit U is harmonic in
R. Furthermore, in any closed region R′, entirely interior to R, the
sequence of derivatives[

∂ i+ j+k

∂xi ∂y j ∂zk
Un

]
, n = 1, 2, 3, . . . ,

i, j, k being fixed, converges uniformly to the corresponding deriva-
tive of U.

Two-ball NMA theorem

The following is a slightly less general version of the two-region
NMA theorem in the main text. Its main advantage is that the
proof directly uses the separation-of-sources theorem of Gauss for
spherical harmonic expansions, instead of the more abstract theorem
10.5.

Two-ball NMA theorem: Let � ⊂ R
3 be open and ∂� a smooth

compact manifold and P1, P2 �⊂ � be disjoint balls, then P1 and P2

have the NMA property with respect to �.

Proof. If there exists a mutual annihilator,

ρ ∈ Ann(P1 ∪ P2)\(Ann(P1) ⊕ Ann(P2)),

then there are two non-zero functions ρ1, ρ2 ∈ L1(�) with supp ρ1 ⊂
P1, supp ρ2 ⊂ P2, and ρ = ρ1 − ρ2, such that the non-zero nor-
mal derivatives of their potentials ∂�1

∂n ,
∂�2
∂n are identical on ∂�.

Because the solution of the Neumann problem for zero-gauged har-
monic functions is unique, �1 = �2 on R

3\�. Because P1, P2 are
disjoint, R3\P1 ∪ P2 is an open simply connected set and the har-
monic functions �1, �2 are defined on R

3\P1 ∪ P2, and equal on
the non-empty open set R3\�. Because every harmonic function is
analytic, this implies �1 = �2 on R

3\P1 ∪ P2 (Axler et al. 2001,
theorem 1.27).

For the potential �1 all sources lie inside P1 and ∂�1
∂n on ∂P2 is

uniquely defined. By Gauss theorem (Gauss 1877; Backus et al.
1997), the spherical harmonic expansion of �1 on ∂P2 is uniquely
defined from ∂�1

∂n on ∂P2 and thus only contains terms related to
external sources, because supp ρ1 is outside of ∂P2. On the other
hand, ∂�1

∂n = ∂�2
∂n on ∂P2 and the spherical harmonic expansion of

�2 on ∂P2 have only Gauss coefficients from inner sources because
supp ρ2 is inside of ∂�2. Because a non-zero potential cannot at the
same time have only inner sources and only outer sources, a mutual
annihilator cannot exist. �
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