The Systems Biology of Lateral Root Formation: Connecting the Dots

J.A. Santos Teixeira and K.H. ten Tusscher*
Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
*Correspondence: K.H. ten Tusscher (k.h.w.j.tentusscher@uu.nl)
https://doi.org/10.1016/j.molp.2019.03.015

Abstract

The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxincentered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.

Key words: Arabidopsis, lateral root, developmental stages, auxin signaling modules, systems biology
Santos Teixeira J.A. and ten Tusscher K.H. (2019). The Systems Biology of Lateral Root Formation: Connecting the Dots. Mol. Plant. 12, 784-803.

INTRODUCTION

The root system of plants determines a plant's access to water and nutrients, as well as its anchorage to the soil substratum. While taking up resources, roots are involved in subterranean competition with other plants, complex collaborations with beneficial bacteria and fungi, as well as arms races with detrimental microbes (Lundberg et al., 2012; Rey and Schornack, 2013; Evangelisti et al., 2014; Hortal et al., 2017; Durán et al., 2018). The overall architecture of the root system and the ability to adapt this architecture in response to environmental conditions, called plasticity, is a major determinant of overall plant fitness (Den Herder et al., 2010; Eshel and Kafkafi, 2013; Tian et al., 2014; Rogers and Benfey, 2015). It has been suggested that for a second green revolution, required to feed more people in a more sustainable manner, understanding how plant root system architecture enables plants to adapt to their environment, and how we may enhance this potential or transfer it from one to another species, will be essential (Wollenweber et al., 2005; Den Herder et al., 2010; Kong et al., 2014). However, to achieve this we will need a detailed, mechanistic understanding of the basic developmental processes underlying root system morphogenesis as well as how different environmental conditions impinge on this process.

The branched architecture of plant root systems arises from the continuous formation of additional, new roots. In so-called fibrous root systems, found in the majority of monocot plant species, the original embryonic root loses importance, and new adventitious roots arise from non-root tissues (Atkinson et al., 2014) forming many parallel roots. In contrast, in the dicot tap root system, the embryonic root develops into a persistent main root along which new lateral roots (LRs) are formed, which subsequently reiterate this process, leading to a highly branched root system (Osmont et al., 2007; Bellini et al., 2014). In this review, we focus on the process of LR formation that governs branching in tap root systems, which has been studied in detail in the model plant species Arabidopsis thaliana.

In Arabidopsis, LRs originate from the pericycle tissue layer that overlays the central vasculature and progress through a welldefined sequence of developmental stages (Figure 1A and 1D) (Malamy and Benfey, 1997). Lateral root formation starts with a process called priming, which prepatterns subsets of pericycle cells to become competent for future LR formation. Priming

[^0]

Figure 1. Schematic Overview of Lateral Root Development.
(A) Idealized anatomy of the Arabidopsis root tip with the distinct cell and tissue types in different colors.
(B) Schematized depiction of the lateral root priming process, with oscillations of auxin (response) and gene expression in the basal meristem (blue, low levels; red, high levels), stable memorization of the high phase of the oscillation (1) into prebranch sites (2) and subsequently founder cells (3). EZ, elongation zone; DZ, differentiation zone; MZ, meristematic zone; OZ, oscillation zone.
(C) Temporal dynamics of auxin (response) and gene expression in the basal meristem showing oscillations, with low and high levels indicated as in (B).
(D) Stages of lateral root development, from left to right, founder cell identity establishment, initiation, primordium formation, and emergence. Inset shows the nuclear migration and asymmetric divisions typical of lateral root initiation. Stars indicate auxin accumulation.
(E) Layout of the canonical TIR1/AFB auxin signaling pathway through which auxin affects gene expression. In light gray, additional regulatory interactions often found in specific auxin signaling modules.
occurs in the shootward end of the meristem (Figure 1B-1) and involves periodic oscillations in auxin (response) and gene expression (Figure 1C) (De Smet et al., 2007; Moreno-Risueno et al., 2010; Xuan et al., 2015, 2016). In case of successful priming, these temporal elevations in auxin (response) and gene expression become transduced into domains of stable high auxin signaling, called prebranch sites (Figure 1B-2). Growthinduced displacement subsequently generates a spatially repetitive pattern of prebranch sites along the root (MorenoRisueno et al., 2010; Xuan et al., 2015, 2016). Next, prebranch sites develop into so-called lateral root founder cells (LRFCs) (Figure 1B-3), which upon undergoing asymmetric divisions, initiate the actual LR formation process. During subsequent development, LR primordia first penetrate the overlaying endodermal tissue layer, after which cortical and epidermal cells are pushed aside and the primordium emerges (Figure 1D). Next, the meristem of the new LR becomes activated and the LR starts to elongate, eventually recapitulating the pattern of developmental zones present in the main root. Importantly, the plant root system is highly plastic, enabling it to adapt
the extent and location of root branching to environmental conditions (Krouk et al., 2010; Mounier et al., 2014; OrmanLigeza et al., 2018; van Gelderen et al., 2018). This plasticity arises through environmental conditions having an impact on the probabilities of priming to lead to prebranch sites, of founder cells developing into primordia, and of primordia producing emerged LRs.

In this review, we discuss the current knowledge on LR development from a systems biology perspective. Systems biology aims to provide an integrated mechanistic explanation of how interactions between genes, hormones, mechanical forces, and cellular and tissue level processes together give rise to the temporal dynamics and spatial patterns characterizing the biological phenomenon of interest (Noble, 2006). The combination of experimental approaches with modeling has proven to be of great importance for achieving such an integrated understanding. In the current review, we devote specific attention to the insights on LR development that have been gained by complementing experiments with computational

Molecular Plant

modeling studies simulating the dynamics of the biological processes involved. In addition, we focus on questions regarding "the connecting of the dots" and discuss what is currently known or can be hypothesized about how LR development is transduced from one stage to the next, as well as how the different factors implicated in the spacing of LRs may together form a patterning mechanism.

It is this integration between factors, modules and stages that needs to be further unraveled to move beyond the current descriptions of system subparts and individual stages and move on to a fully integrated systems-level understanding of LR formation. To achieve this, new models capable of simulating the dynamic morphological, mechanical, hydrostatic, and regulatory transitions between different stages of LR development will need to be developed.

TEMPORAL SEQUENCE OF LATERAL ROOT DEVELOPMENT

Auxin signaling plays a major role in all stages of LR development. Often, this involves auxin-driven changes in gene expression. The canonical pathway for auxin-dependent gene regulation involves the auxin sensitive TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptor, which upon binding with auxin targets the AUXIN/INDOLE ACETIC ACID (Aux/IAA) repressors for degradation, thereby freeing the auxin response factors (ARFs) to become transcriptional activators inducing expression of downstream genes (Figure 1E) (Gray et al., 2001; Zenser et al., 2001; Dharmasiri and Estelle, 2002; Dharmasiri et al., 2005; Kepinski and Leyser, 2005).

In the model plant species Arabidopsis, a total of six distinctive TIR1/AFB auxin receptors (Mockaitis and Estelle, 2008), 29 Aux/IAA repressors, and 23 ARFs (Liscum and Reed, 2002; Goh et al., 2012) have been identified. Several Aux/IAA-ARF combinations, which we refer to as auxin signaling modules, have been found to be involved in LR development. Although more modules may eventually be discovered, it is currently accepted that four modules are involved in different stages of LR development (Figure 2A) (Lavenus et al., 2013).

Lateral Root Priming

The repetitive, oscillatory prepatterning of lateral root forming sites was first discovered by the Beeckman group. It was found that a priming signal consisting of an elevated auxin response was repeatedly generated in the protoxylem files of the basal meristem and was subsequently transduced to the overlaying pericycle cells (De Smet et al., 2007). Initially, gravitropismdependent changes in root tip auxin patterns were held responsible for the repeated elevation in auxin levels, but later studies showed that the repeated nature of priming is not caused, but can be modulated by gravistimulation (MorenoRisueno et al., 2010; Kircher and Schopfer, 2016; Xuan et al., 2016). Next, it was found that in addition to oscillations in auxin response, oscillations in many genetic factors were observed (Moreno-Risueno et al., 2010). The auxin response factor ARF7 was found to play a critical role in the oscillations; in arf7 mutants the regular spacing of the prebranch sites

Lateral Root Systems Biology: Connecting the Dots

generated by priming is found to be severely disturbed. In addition, given that not all auxin responsive factors were found to oscillate, it was postulated that rather than auxin concentration levels oscillating, a genetic oscillator similar to the vertebrate somitogenesis clock was driving the oscillations (Moreno-Risueno et al., 2010). Thus far, no experimental support for such a genetic oscillator has been found. A few modeling studies, simulating root tip auxin dynamics in a single cell or one-dimensional strand of cells, suggested that either the auxin signaling system itself (Middleton et al., 2010) (Table 1) or combined with how it intersects with cytokinin (CK) signaling (Muraro et al., 2011, 2013) (Table 1) could generate oscillations in auxin levels. However, parameter settings necessary to generate oscillatory dynamics were inconsistent with experimental data. More recently, a strong spatiotemporal correlation between LR cap apoptosis and pericycle priming was demonstrated (Xuan et al., 2016). These data led to the hypothesis that repeated LR cap apoptosis, via cells undergoing apoptosis releasing their auxin into the neighboring epidermal cells and subsequently being transported to the vasculature, drives pericycle priming (Xuan et al., 2016). A computational model of auxin dynamics in a two-dimensional static representation of the plant root tip simulating this scenario resulted in a modest 11% increase in pericycle auxin levels following lateral root cap apoptosis (Xuan et al., 2016) (Table 1). This raises the question of whether this mechanism could provide a sufficiently strong and robust priming signal. Based on the observed correlation between root cap growth dynamics and apoptosis, as well as the fact that vasculature auxin signaling is necessary for LR priming (De Smet et al., 2007) and synthesis of an auxin precursor in the LR cap strongly determines priming amplitude (Xuan et al., 2015), we recently developed a dynamic, twodimensional root tip model investigating the interplay between root growth and auxin reflux dynamics in the context of priming (Van den Berg and ten Tusscher, 2018). The model builds on our earlier developed models (Mähönen et al., 2014; van den Berg et al., 2016), incorporating details of root tip auxin transport dynamics, root developmental zonation, and root growth dynamics. Our computational study suggested that priming with auxin maxima increasing auxin levels by 40% or more automatically arise as an emergent property of root growth dynamics and reflux loop properties (Van den Berg and ten Tusscher, 2018). Briefly, the root tip reflux loop generates an auxin loading zone at the shootward end of the meristem. In addition, root growth dynamics generate periodic variations in the sizes of cells arriving at this zone. Combined, this gives rise to the periodic arrival of large cells with elevated auxin uptake capacity due to their larger surface to volume ratio, thus resulting in periodic auxin oscillations. The model predicts that while priming frequency predominantly depends on cell division frequency in the meristem, LR density additionally depends on meristem size with larger meristem resulting in increased interlateral root spacing. These model predictions agree well with available experimental data; for example, the observation that application of D15, an inhibitor of carotenoid cleavage dioxygenases, results in both a substantial reduction of cell sizes as well as reduced priming amplitude and hence the number of LRs actually formed (Dickinson et al., 2018), the lower number of LRs formed in cycd4:1 mutants showing reduced pericycle cell division activity (Nieuwland

Figure 2. Overview of the Auxin Signaling Regulatory Modules Involved in Lateral Root Development.
(A) Layout of auxin signaling modules 1-4, with their specific Aux/IAA and ARFs, found to be involved in lateral root development.
(B) Pericycle activation of module 1, together with AUX1 and the LEC2, FUS3, YUC4 loop are involved in founder cell identity establishment. The auxininducible AUX1, and LEC2, FUS3, YUC4 loop give rise to positive feedback that elevates and maintains auxin levels.
(C) Lateral root initiation involves the activation of modules 2 and 3 in the pericycle founder cells, and of modules 2 and 4 in the overlaying endodermal cells. First, the pericycle founder cells activate module 2, causing PIN3 driven export of auxin into the endodermis (yellow arrows). The resulting auxin increase in the endodermis now also activates module 2 there, thus giving rise to a PIN3 reflux loop (orange arrows). As a consequence, pericycle and endodermal auxin levels rise. This results in further activation of module 2 (red arrows) in the pericycle as well as module 3 (green arrows), which together control nuclear migration and asymmetric divisions. At the same time, in the endodermis module 4 becomes active (red arrows), driving the volume loss and cell wall remodeling.
(D) Further divisions and patterning of the growing primordium continue to involve modules 2 and 3 . Module 2 controls PUCHI, involved in patterning LRP boundaries, and the PLETHORA transcription factors that are critical for internal patterning of the primordium. Module 3 represses CK signaling through AHP6, setting up a low CK signaling domain where auxin levels are high, thereby preventing CK-induced downregulation of PIN levels in this domain. At the same time, the moderate CK levels inside the high auxin domain, and the higher CK levels outside this domain enable the polarization of PIN toward the high auxin domain, enhancing and stabilizing this domain.
(E) Lateral root emergence involves the passage of first the endodermis, and after this the cortex and epidermis. Passage of the endodermis involves auxin signaling module 4, previously involved in initiation and now likely activated to a larger extent to enhance volume loss and cell wall remodeling necessary for the primordium to penetrate the endodermis. Passage of the cortex and epidermis involves the activation of module 2 . In these tissues, module 2 causes the sequential activation of first PIN3 and then $\angle A X 3$, which enables a localized increase in auxin levels that subsequently enables the activation of expansins and cell wall remodeling enzymes. In parallel, ROS signaling induces cell wall acidification, while upregulation of aquaporins changes turgor in overlaying tissues. Combined, this enables the separation and pushing aside of cortical and epidermal cells by the primordium.
et al., 2009), as well as the inverse correlation observed for meristem size and LR density for a wide variety of conditions (Gruber et al., 2013). Still the proposed mechanism remains to be experimentally validated.

Founder Cell Identity Establishment

The first event following a successful priming stimulus is the formation of a stable prebranch site, characterized by a persistent high auxin response (Moreno-Risueno et al., 2010). Due to the

Article	Spatial context Spatial formalism Growth	Modeled dynamics Model formalism	Fitted to/estimated from
Priming			
Middleton et al., 2010	Single cell	Auxin, TIR1/SCF, IAA/AUX, ARF: ODEs	Known interactions between molecular players
Muraro et al., 2011	Single cell	Auxin, SCF1/TIR, AUX/IAA, ARF, PIN, CK, AHK, ARR, CK response: ODEs	Known interactions between molecular players
Muraro et al., 2013	One 1D row of cells Non-growing	Auxin, AUX/IAA, ARF, PIN, CK: ODEs	Known interactions between molecular players
Xuan et al., 2016	Realistic 2D root tip Vertex-based cells Non-growing	Auxin: ODE	Root tip tissue topology, PIN patterns and polarity, AUX/LAX patterns, root developmental zones, cell sizes and shapes in different root zones
Van den Berg and ten Tusscher, 2018	Realistic 2D root tip Grid-based cells Growing	Auxin: PDE AUX1: ODE	Root tip tissue topology, PIN patterns and polarity, AUX/LAX patterns, auxindependent AUX1 expression, root developmental zones, cell sizes and shapes in different root zones, cell cycle duration, cell expansion duration
Founder cell establishment, initiation, and sidedness			
Laskowski et al., 2008	Squarish 2D root tip Grid-based cells Non-growing	Auxin: PDE AUX1: ODE	PIN patterns and polarity, auxindependent AUX1 expression, root developmental zones, cell sizes in different root zones
El-Showk et al., 2015	Realistic 2D cross section Grid-based cells Non-growing	Auxin, CK: PDEs AUX1, PIN3, PIN1, PIN7: ODEs	Root cross section tissue topology, PIN patterns and polarity, auxin dependence of AUX1
Chen et al., 2015	Single cell	Auxin, ARF7, FLP, PIN3: ODEs	FLP dependence on ARF7 and PIN3 dependence on ARF7 and FLP
LRP growth and development			
Von Wangenheim et al. 2016	Two-dimensional cross section of LRP Growing	Tissue growth and cell divisions Bezier curves for tissue growth, vertex-based cell modeling	Growth profile of outer boundary LRP
LR emergence			
Péret et al., 2013	Realistic 2D cross section Vertex-based Non-growing	Auxin, PIN3, LAX3: ODEs	Root cross section tissue topology, cortical, auxin-dependent LAX3, and PIN3 expression
Péret et al., 2012	Simplified compartment-based cross section Vertex-based Growing	Water transport, pressure, deformation: ODEs	Size of and pressures in different compartments, water permeabilities, rate of osmotic pressure increase fitted to obtain 28 h emergence time

Table 1. Overview of the Properties of the Computational Model Studies Discussed in the Main Text.
Models are given in the order they are discussed in the main text, and are grouped based on the stage of LR development modeled. 1D, one-dimensional; 2D, two-dimensional; ODE, ordinary differential equation; PDE, partial differential equation. Importantly, models are mostly based on qualitative data on tissue layout, expression patterns, and known interactions. Few data are available on rate constants or affinity constants. This limitation in data availability is generally handled by checking whether model outcomes are robust to changes in the values of parameters for which no data are available. Parameters for auxin transport in most models can be traced back to the pioneering models by Mitchison (Mitchison, 1980) and Kramer (Kramer, 2002) (e.g. Swarup et al., 2008).
limited spatial precision of auxin reporters, it is currently unclear whether stable prebranch sites correspond one to one to cells obtaining LRFC identity, or rather that only a subset of cells in a stable prebranch site subsequently obtains founder cell identity (Du and Scheres, 2018). Experiments have shown that after the priming-induced auxin (response) peak, auxin (response) levels
initially decline (Xuan et al., 2015). Only if priming amplitude is sufficiently high, a secondary rise and subsequent persistent maintenance of auxin levels leading to stable prebranch site formation occurs (Xuan et al., 2015). These data imply that founder cell specification requires active accumulation of auxin. Consistent with this, the auxin-inducible (Gazzarrini et al., 2004;

Horstman et al., 2017) LEAFY COTYLEDON2 (LEC2) and FUSCA3 (FUS3) factors inducing the YUCCA4 (YUC4) auxin biosynthesis gene are expressed in founder cells (Tang et al., 2017). In addition, experiments show that while priming in the basal meristem occurs at both xylem poles, LRs are formed at only one of the two poles. Modeling studies have played a critical role in unraveling the mechanism underlying the sidedness of LR formation (Laskowski et al., 2008; El-Showk et al., 2015).

The auxin-inducible AUXIN RESISTANT 1 (AUX1) auxin importer has been found to be expressed from the earliest stages of LR development (Marchant et al., 2002). By combining experiments with a computational model of auxin dynamics in a simplified, static two-dimensional root model, it was demonstrated that the auxin inducibility of $A U X 1$ generates a positive feedback loop. This feedback loop enables the amplification of modest auxin increases, ensuring the generation and maintenance of robust auxin maxima (Laskowski et al., 2008) (Table 1). A subsequent modeling study simulating auxin-cytokinin interactions in a twodimensional cross section of the root suggested how this auxinAUX1 positive feedback also enables the amplification of differences between the two vascular xylem poles, ensuring the formation of a single-sided auxin maximum (El-Showk et al., 2015) (Table 1). To the authors knowledge, the precise pathway leading from auxin to AUX1 upregulation and whether it overlaps with the auxin signaling modules that have thus far been implicated in LR development, has so far not been elucidated. Still, specification of founder cell identity involves a first auxin signaling module, which is centered around IAA28 (Figure 2B). Downstream of this are ARF5, ARF6, ARF7, ARF8, and ARF19 (De Rybel et al., 2010). The most well-known downstream target of this pathway, GATA23, is generally used as the earliest indicator of founder cell identity (De Rybel et al., 2010), yet a clear function has thus far not been identified. Apart from experiments aimed at directly establishing network interactions, insights may also be gained from studies combining large-scale transcriptomics analyses with network inference algorithms.

Lateral Root Initiation

The next stage in LR development, called initiation, involves a series of events (Figure 2C). Within the LRFCs, first migration of the nuclei to the cell end neighboring the shared cell wall occurs, after which multiple asymmetric divisions ensue (De Smet et al., 2007). For these events to occur, first the overlaying endodermal tissue must lose volume and shrink to lift a mechanical constraint that prevents cell cycle initiation in the pericycle (Vermeer et al., 2014; Marhavý et al., 2016). Pericycle nuclear migration and asymmetric divisions as well as an endodermal accommodation mechanism are auxin dependent (De Rybel et al., 2010; Berckmans et al., 2011; Vermeer et al., 2014) and require coordinated auxin signaling between the two tissue layers. Auxin-dependent LR initiation processes in the pericycle occur downstream of a second auxin signaling module, which starts with the repression of SOLITARY ROOT (SLR)/IAA14, degradation of which to a large extent next derepresses the same ARFs as those employed in the previous module. Chen et al. (2015) demonstrated that, as part of this module, the auxin transporter PIN-FORMED 3 (PIN3) was induced both directly by $A R F 7$, as well as indirectly via the intermediate

FOUR LIPS (FLP/MYB124) factor. Using a computational model simulating auxin, ARF7, FLP, and PIN3 dynamics of an individual cell, the authors subsequently showed that the thus formed so-called coherent feed forward motif enables a prolonged maintenance of PIN3 induction in response to a transient auxin increase, lending a temporal memory to the system (Table 1). This PIN3 induction is essential for ensuring an auxin maximum inside the founder cells and later forming primordium as well as into the overlaying endodermal tissue. In the endodermis, a transient expression of PIN3, polarized toward the pericycle founder cells, has been shown to establish an auxin reflux loop between the pericycle and endodermis that contributes to auxin accumulation and LR initiation (Marhavý et al., 2013).

We speculate that it is the module2-PIN3-mediated auxin export from the pericycle to the endodermis (Figure 2C, yellow arrows) that transiently activates a similar module2-PIN3 response in the endodermis to generate this auxin reflux and elevate auxin levels in both pericycle and endodermis (Figure 2C, orange arrows). Once auxin levels in the endodermis have been elevated, volume loss and shrinkage occur downstream of the auxin-induced SHORT HYPOCOTYL2 (SHY2) factor (Vermeer et al., 2014; Vermeer and Geldner, 2015), considered the central component of an auxin signaling module generally referred to as module 4 (Lavenus et al., 2013). Also, downstream of the auxin module 2 active in the pericycle founder cells are LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), LBD18, and LBD33 (Figure 2C, red arrows), which are required for nuclear migration and the asymmetric divisions that are the hallmark of LR initiation, respectively (Berckmans et al., 2011; Goh et al., 2012). Finally, CYCLIN B1 (CYCB1), necessary for cell cycle activation, is induced downstream of module 2 (Vanneste et al., 2005; Okushima et al., 2007) as well as endodermal accommodation (Marhavý et al., 2016), thus ensuring coordination between pericycle and endodermal events. In addition to module 2, an auxin signaling module consisting of IAA12/BODENLOS (BDL) and ARF5/ MONOPTEROS (MP), generally referred to as module 3 is also involved in LR initiation (Figure 2C, green arrows) (De Smet et al., 2010). This module is induced somewhat later than module 3, yet in s/r mutants can at least partly rescue LR initiation (De Smet et al., 2010). Through which downstream targets it controls nuclear migration and asymmetric division remains to be established.

Lateral Root Development

After initiation, cell divisions continue to give rise to a growing lateral root primordium (LRP). Although divisions are restricted to the more central cells, the timing and orientation of divisions is non-stereotypical (Lucas et al., 2013; Von Wangenheim et al., 2016). Experiments have demonstrated that the mechanical constraints imposed by the overlaying tissues ensure that primordia are channelled into their typical dome shape, with control of cell division playing a less important role (Lucas et al., 2013). Still, while this explains the typical dome shape, it does not yet explain how the organized layered structure of an LRP can arise despite non-stereotypical cell division patterns. Using a two-dimensional computational model of LRP growth, in which different growth profiles (homogeneous, basally

Molecular Plant

dominated) and cellular division rules (random, geometric) were tested, it was shown that a simple, probabilistic shortest-path division rule is sufficient to spatiotemporally self-organize LRP division patterns (Von Wangenheim et al., 2016) (Table 1). The resulting pattern consists of a regular alternation of division plane orientations within individual cells with periclinal divisions occurring earlier in outer tissue layers that together generate the typical layered LRP tissue layout (Von Wangenheim et al., 2016). As the primordium thus grows and develops, the initially diffuse, broad auxin pattern defining the LRFCs is transformed into a distinctive auxin gradient with its maximum residing at the LRP tip (Benkova et al., 2003). In parallel with these changes in auxin patterns, the expression patterns of the auxinexporting PIN proteins undergo substantial changes, with PIN1 becoming more and more restricted to the vasculature, PIN3 becoming restricted to the region close to the quiescent center (QC) and more distal vasculature, and PIN2 arising only after primordium emergence (Benkova et al., 2003). Differences between PIN types in how expression and degradation depend on auxin levels have been suggested to help pattern PIN domains (Mironova et al., 2012), and additional regulatory differences are likely to exist. In addition to changes in expression domain, also PIN polarity patterns change, with PIN1 changing from a predominantly inward oriented to a tipward oriented polarity (Omelyanchuk et al., 2016) and PIN3 likely undergoing similar changes.

The third auxin signaling module that comes into play during LR organogenesis is thought to play an important role in this canalization of auxin flux to the newly forming LRP tip. The module consists of the auxin-dependent degradation of BDL/IAA12, which derepresses MP/ARF5 (Figure 2D) (De Smet et al., 2010). Given the known relation between the BDL/MP module and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN6 (AHP6) in the vasculature (Ohashi-lto et al., 2014), this module is likely responsible for the observed expression of AHP6 (Moreira et al., 2013). AHP6 represses CK signaling, thereby preventing CK from repressing LRP PIN levels (Laplaze et al., 2007; Moreira et al., 2013). In addition, CK has been found to result in the removal of PIN1 from specific cell membranes (Marhavý et al., 2011), resulting in the repolarization of PIN1 toward the tip of the newly forming primordium (Marhavý et al., 2014). In several reviews, these interactions have been summarized as AHP6 directing PIN1 polarization (see e.g. Taylor-Teeples et al., 2016), yet it is important to keep in mind that AHP6 represses CK signaling and hence prevents PIN expression from being strongly downregulated, while remaining CK signaling polarizes PIN1. Together, this results in a PIN1-mediated auxin flow directed to the primordium tip. This auxin flux is essential for the patterning of a proper auxin maximum, necessary to establish the QC and stem cell niche (Benkova et al., 2003).

In parallel, and both up- and downstream of auxin and PIN patterning, the continued activity of auxin response module 2 leads to the induction of the PLT genes (Feng et al., 2012), critical for proper LRP patterning (Du and Scheres, 2017). The PLT genes were demonstrated to control the proper expression of the auxin transporters PIN1 and PIN3, as well as the SHR, SCR, and WOX5 transcription factor genes. In p/t triple mutants, a proper auxin maximum, normal transcription factor pattern or a QC and meristem are not formed, resulting in

Lateral Root Systems Biology: Connecting the Dots

abnormally shaped, arrested primordia (Du and Scheres, 2017). How the interactions between auxin, cytokinin, major transcription factors such as the PLTs and the PINs together pattern the root tip auxin reflux loop in a self-organized manner remains to be elucidated. In addition to inducing the PLTs, module 2 also controls LRP patterning by inducing the PUCHI gene that is involved in defining primordium boundaries (Hirota et al., 2007; Kang et al., 2013).

Lateral Root Emergence

For LRs to emerge from inside the main root, the overlaying endodermal, cortical, and epidermal tissue layers have to be passed. The endodermis is a highly specialized tissue, containing the lignified, supracellular Casparian strip that seals the inner root tissues from the outside by tightly binding endodermal cell membranes to one another (Vermeer et al., 2014). As a consequence, penetration of the endodermis is fundamentally different from the subsequent penetration of cortical and epidermal tissue layers (Stoeckle et al., 2018). In order to preserve the apoplastic diffusion barrier formed by the Casparian strip, penetration of the endodermis occurs through endodermal volume loss and flattening, leading to the fusion of endodermal radial membrane faces to generate an opening through which the primordium can pass (Vermeer et al., 2014). In contrast, passage of the cortex and epidermis, while also involving volume and turgor loss (Péret et al., 2009, 2013), strongly depends on cell wall remodeling (CWR), enabling the pushing LRP to cause the overlaying cells to detach from one another and move to the sides (Laskowski et al., 2006; Swarup et al., 2008; Péret et al., 2009; Kumpf et al., 2013).

Passage of the endodermis, like the earlier endodermal accommodation process, involves auxin signaling module 4, centered around SHY2/IAA3, and ARF7 as well as possibly other ARFs to induce endodermal volume loss and shape changes (Figure 2E) (Vermeer et al., 2014). After passing of the endodermis, module 2 is activated in the overlaying cortical and epidermal tissue layers to guide the next steps of LR emergence (Figure 2E). Within this different tissue context, while deploying the same IAA and ARFs as in the primordium cells, a different set of downstream targets become activated. Activation of the LIKE-AUXIN3 (LAX3) auxin importer plays a major role in elevating cortical and epidermal auxin levels and inducing the necessary CWR (Swarup et al., 2008). To investigate this further, a model was developed simulating auxin dynamics and PIN3 and LAX3 expression in a twodimensional cross section of the root at the location of a developing LRP. It was shown that in order for the LAX3mediated auxin elevation to occur in a localized manner in only those cells that are overlaying the primordium, the additional and earlier activation of an auxin exporter is required (Péret et al., 2013) (Table 1). This auxin exporter was subsequently identified to be PIN3 (Péret et al., 2013). The earlier activation of PIN3 relative to $\angle A X 3$ is consistent with the fact that PIN3 activation occurs directly downstream of ARF7 and ARF19 (Chen et al., 2015), whereas LAX3 is induced downstream of LBD29 (Okushima et al., 2007; Porco et al., 2016), which itself is downstream of ARF7 and ARF19.

LAX3 expression has been shown to be essential for the activation of a series of CWR enzymes (Swarup et al., 2008; Kim and Lee,

2013; Kumpf et al., 2013; Lee and Kim, 2013; Lee et al., 2014, 2015). While in many schematic depictions of LR emergence, this has led to the induction of these CWR enzymes being depicted as being downstream of LAX3 (see e.g. Du and Scheres, 2018), the expansins involved, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), HAESA (HAE), and HAESALIKE2 (HSL), are in fact auxin dependent and downstream of the same ARF7 and ARF19 that are upstream of LAX3 and hence genetically part of parallel pathways. Thus, the dependence of CWR genes on $L A X 3$ expression likely indicates that induction of CWR enzymes requires higher auxin and hence ARF7 and ARF19 levels than the induction of LAX3 itself (Swarup et al., 2008). Indeed, it has been suggested that the auxin dependence of $L A X 3$ creates a bistable switch, and it is the switching to the high auxin high $L A X 3$ state that then induces the CWR genes. In addition to the induction of CWR enzymes, auxin also induces the expression of RESPIRATORY BURST OXIDASE HOMOLOGS $(R B O H)$, leading to production of reactive oxygen species (ROS) and cell wall acidification, which further contributes to the degradation of cell walls (Orman-Ligeza et al., 2016). In addition to CWR, also changes in turgor of the primordium and its overlaying tissues, with the LRP gaining and the overlaying tissues losing water, contribute to LR emergence. Péret et al. (2012) demonstrated that auxin causes a spatially restricted repression of water-transporting aquaporin channels (PIPs). Using a simple compartment model of water transport between the vasculature, primordium, and overlaying tissues, it was shown that the resulting changes in water transport enable volume loss in overlaying tissues as well as build-up of turgor inside the primordium (Péret et al., 2012) (Table 1). It is the combined weakening of cell walls and the increase in turgor of the primordium relative to its overlaying tissues that enables LR emergence.

Specificity

Specificity of auxin action arises from different Aux/IAAs having different auxin binding affinities, enabling them to respond to different auxin levels (Villalobos et al., 2012; Shimizu-Mitao and Kakimoto, 2014). In addition, tissue-specific expression of Aux/ $I A A$ and $A R F$ s results in different Aux/IAA-ARF combinations in different contexts (Weijers et al., 2005; Rademacher et al., 2011). Intriguingly, while all four modules involved in lateral root development are characterized by a unique $A u x / I A A$ repressor, as well as distinct sets of downstream target genes, the intermediate $A R F s$ show a large degree of overlap between the different modules. This is particularly true for ARF7, which occurs in modules 1, 2, and 4. Thus, the question is how Aux/ IAA specificity can be maintained despite signals going through the same downstream ARFs. A potential explanation could be that downstream targets of later-acting modules require higher levels of the same ARFs for their induction. In that case, either the combined degradation of $A u x / I A A s$ of both earlier and later modules, or a larger effect of the degradation of later Aux/IAAs on free $A R F$ levels, would ensure the later induction of these target genes.

In addition to the occurrence of ARF7 in at least three modules, module 2 itself is involved in a series of developmental events that involve different downstream targets. In this case, both $A R F$ and Aux/IAA factors are shared, even more strongly raising
the question of how specificity can be achieved. Part of the specificity here may arise from the different tissue contexts in which ARF7 is deployed, which may result in the presence of different co-factors or differential availability of downstream targets (Boer et al., 2014).

PROGRESSION BETWEEN STAGES

While substantial experimental and modeling effort has been devoted to unraveling the regulatory logic, dynamics, and patterning of individual developmental stages, far less attention has been devoted to how one developmental stage or process leads to the next. In addition to the question of how a transition between stages is set into motion, important questions are how such transitions are ensured to occur in a robust, coherent manner.

Theoretically, several scenarios can be envisioned. First, the temporal sequence of events could arise from the changing tissue context that LR forming sites find themselves in as the development of surrounding tissues progresses over time. In this scenario, the gradual change in tissue context would sequentially trigger the different auxin modules and associated genes involved as well as ensure that these transitions cannot be reverted. Given that LR priming results in an acropetal pattern, yet subsequent LR development may break this acropetal sequence with further developed LRs potentially occurring rootward of early-stage LR primordia (Charlton, 1975; MacLeod, 1990; Dubrovsky et al., 2000, 2006), this scenario appears unlikely to fully explain all sequential steps in LR development. Still, the fact that priming occurs at the shootward end of the meristem, yet the earliest signs of initiating LRs are only visible beyond the elongation zone, may suggest that the transition from founder cells to lateral root initiation may indeed depend on developmental context (Dubrovsky et al., 2011). A zonation-dependent drop in CK signaling has been suggested as a candidate for constituting this developmental gating (Bielach et al., 2012). Consistent with the idea of CK as a developmental gate, CK signaling has been found to repress LR PIN expression (Laplaze et al., 2007) and AUX1 expression (Street et al., 2016), as well as inhibit the cell cycle activity necessary for LR initiation (Li et al., 2006). It is currently unclear whether the repressive effect of CK on the cell cycle is simply through repressing auxin levels or also through more directly affecting cell cycle genes. Given the previously mentioned auxin-dependent induction of AUX1 and the induction of YUC4 downstream of LEC2/FUS3, the following scenario can be envisioned. First, priming initially results in a modest induction of $A U X 1$ and consequently also a modest induction of LEC2/FUS3 and YUC4, enabling the re-establishment and maintenance of auxin levels after priming. The resulting auxin levels enable the activation of the first auxin signaling module responsible for founder cell identity establishment. Next, as cells move shootward and CK levels drop, AUX1 levels are able to further increase, enabling also enhanced induction of LEC2/ FUS3/YUC4. Together this gives rise to a further ramping up of pericycle auxin levels, resulting in the induction of module 2. In addition, the drop in CK levels may potentially lift CK-dependent direct repression on cell cycle activity, enabling module 2 to induce LR initiation. The transition to module 2 is subsequently stably locked in via three synergistic mechanisms. First, module 2 also becomes active in the endodermis, resulting in the PIN3mediated auxin reflux discussed earlier that contributes to

Molecular Plant

Figure 3. Depiction of the Sequence of Transitions between Stages of Lateral Root Development.
(A) Sequential activation of auxin signaling modules 1, 2, and 3 in the primed pericycle cells during founder cell establishment, initiation, and further development. Successful priming induces AUX1 and, via LEC2 and FUS3, YUC4, thereby re-establishing and maintaining auxin levels, enabling the induction of module 1. As cells progress shootward, cytokinin levels drop, derepressing AUX1 expression, and thereby enabling a further increase in auxin levels that now results in activation of module 2. Activation of module 2 causes a further increase in auxin levels through the PIN3-mediated reflux with the endodermis, as well as PLT-dependent induction of $Y U C C A$ genes. The autoactivation of $L B D$ transcription factors further ensures a stable locking in of this stage. Next, the PLT expression downstream of module 2 induces $A R F 5 / M P$, part of module 3 , with $A R F 5 / M P$ upregulating $P L T 3$, ensuring a robust transitioning to module 3.
(B) Sequential transmission of auxin from the primordium to the endodermis, cortex, and epidermis involves the PIN3-mediated export of auxin from the primordium (green arrow), PIN3 reflux-mediated uptake in the endodermis (upward yellow arrow), LAX3-mediated uptake in the cortex and epidermis (gray arrows), and the auxin-induced giving way of overlaying tissues enabling the pericycle to first reach the endodermis, then cortex, and finally the epidermis (dashed green arrows).
elevating auxin levels. Second, downstream of module 2 are the PLETHORA transcription factors, which by inducing the auxin biosynthetic YUCCA genes, further enhance auxin production (Figure 3A). Finally, the positive feedback loop resulting from the induction of ARF7 and ARF19 by LBD18 (Pandey et al., 2018) ensures the transition to a new stable state.

A second possibility is that the temporal sequence of module activation is inherent to the wiring within and between modules, i.e.

Lateral Root Systems Biology: Connecting the Dots

that the ARFs or downstream genes of a module either through inducing the $A R F$ s or repressing the IAA, or some other involved repressor of a second module, activate or sensitize this second module and set it into motion. In this scenario, necessary players of later modules may only become (sufficiently) expressed in response to activation by an earlier module. Although this question has not been explicitly investigated, some knowledge may be gleaned from the downstream targets the different auxin modules have. The PLETHORA transcription factors 3,5 and 7 are auxin-inducible downstream of ARF7/ARF19 and LBDs, which are part of module 2 (Feng et al., 2012) and become active during early stages of lateral root development (Du and Scheres, 2017). The PLETHORAs have been shown to induce ARF5/MP auxin response factor (Santuari et al., 2016), which is central to module 3. Furthermore, given that $A R F 5 / M P$ has been shown to induce PLT3 (Yamaguchi et al., 2016), a feedback loop arises ensuring a robust and irreversible transition from module 2 to module 3 once a certain PLT threshold level has been exceeded. An increase in auxin sensitivity, arising from $B D L /$ $M P$-dependent induction of the CK signaling inhibitor AHP6 is likely to further contribute to this locking on to the next state.

A final option is that a later module is less auxin sensitive, thus requiring higher auxin levels to become activated, and/or that a later module is active in different tissues and auxin levels first have to become elevated there. In this scenario, the activation of an early module, through its downstream targets, may elevate auxin (signaling) levels in the LRP cells and/or its surroundings such that the second module becomes activated. Measured auxin sensitivities of the involved Aux/IAAs, IAA28, IAA14, IAA12, and IAA3 active in modules $1,2,3$, and 4 respectively, suggest no significant differences in auxin sensitivity (Shimizu-Mitao and Kakimoto, 2014). Except for possibly the transition from module 1 to 2 discussed above, it is thus unlikely that it is simply an incremental increase in auxin signaling levels that is driving the temporal order of module activities. In contrast, while founder cell identity establishment appears to mainly involve auxin accumulation in the competent pericycle cells, subsequent initiation also requires auxin accumulation in endodermal cells, while in yet later stages, endodermis penetration and passage of the cortex and epidermis also involve auxin accumulation in these tissues. Thus, the sequential activation of first modules 2 and 4 in the endodermis and next of module 2 in the cortex and epidermis appears to involve the spatiotemporally ordered accumulation of auxin in more and more outward tissue layers. We suggest that this "wave" of auxin signaling (Péret et al., 2013) involves a total of five distinct processes. First, sufficient auxin has to accumulate in the primordium for it to result in substantial transport of auxin into the next layer. To maintain elevated auxin levels in a growing primordium and induce elevation of auxin levels in overlaying cells, an increase in overall auxin availability inside the primordium is required. Robust increases in available auxin are achieved via the auxin-dependent activation of auxin biosynthesizing genes downstream of PLT (Santuari et al., 2016) as well as the early active LEC2/FUS3 transcription factors (Tang et al., 2017). Again, this regulatory architecture gives rise to a positive feedback loop that enables the robust transitioning to and locking in of subsequent developmental stages. Combined with the auxin-dependent induction of PIN3, the elevated auxin levels enhance the capacity for auxin export into the tissues overlaying the primordium. Next, this transport of auxin first into
the endodermis causes a local auxin increase that induces module 4 driven volume loss and CWR (Vermeer et al., 2014), enabling first endodermal accommodation and later the passage of the primordium through the endodermis. Importantly, passage of the endodermis allows the primordium to now transport auxin directly to the cortex (Figure 3B). Here, an initially modest auxin increase triggers module 2, first switching on PIN3 and subsequently $L A X 3$ expression to switch on an incoherent feedback loop, with PIN3 locally reducing and LAX3 locally enhancing auxin levels that ensures elevation of auxin levels in a highly localized manner (Péret et al., 2013). These high auxin levels are required to subsequently induce CWR and changes in tissue turgidity, which together enable the LR primordium to pass the cortex and transport auxin to the epidermis where the same sequence of events is now repeated (Figure 3B). Consistent with the idea of a passing wave of auxin, LAX3 transcription is upregulated under a PIN3 increase (Péret et al., 2013).

In the above, we identified possible players and interactions explaining the transition from priming to the activation of module 1, the activation of module 3 by module 2 , and the activation of modules 4 in the endodermis, and module 2 in the cortex and epidermis from auxin transport of the pericycle into the overlaying tissues. An open question is what drives the activation of module 2 involved in LR initiation in the pericycle. Here, two contributing factors can be envisioned. First, this transition could, like the transition from priming to activation of module 1, also entail the positive feedback arising from auxin-induced $A U X 1$ and YUCCA4 expression. A further drop in CK levels as cells move shootward in the differentiation zone may enable a second, further increase in AUX1 and hence auxin levels, thus activating module 2. In addition, once a minor activation of module 2 has occurred, the PIN3 reflux between the pericycle and endodermis enhances auxin levels, which could lead to the further activation of module 2 (Figure 3A).

Studies specifically aimed at reconstructing how one developmental stage progresses to the next have thus far been scarce. A notable exception is the study by Lavenus and colleagues, in which large-scale transcriptomics data from a time series of LR development were combined with network inference algorithms to reconstruct network topology and temporal ordering of gene activity (Lavenus et al., 2015). In addition to many positive feedbacks and coherent feedforward loops, in line with the above analysis, which are important for ensuring robust transitions to a next stage, in this study also many negative feedbacks were inferred. Interestingly, the inferred network topology and gene activity ordering suggested that these negative feedbacks represent later-acting genes that inactivate earlier active genes. The importance of auxin-induced repression of gene expression was earlier suggested by a study that elegantly combined a series of different LR transcriptomic datasets into a single compendium (Parizot et al., 2010). The inactivation of earlier active genes further contributes to the irreversibility of transitions and may also prevent the formation of LRs nearby already forming.

INCOMING CONNECTIONS

Soil is a highly heterogeneous and dynamic environment (Weil and Brady, 2016), with different nutrients, but also water and
salt having highly distinct spatial patterns and temporal scales of change. To survive, plants must adapt their root system to these complex and variable conditions. To achieve this, plants can adapt the number, size, positioning, and angle of LRs in response to environmental conditions (Malamy, 2005; Gruber et al., 2013; Kellermeier et al., 2014). Here, we discuss the impact of a subset of environmental factors on lateral root development (Figure 4).

Water is of critical importance for plant survival, and its availability strongly affects plant root growth dynamics. Under conditions of drought, lack of water induces stress signaling that reduces root branching, while in case of patchy water availability, it acts as a positional cue for lateral root positioning (Robbins and Dinneny, 2015), with the absence of water having an additional abscisic acid (ABA)-dependent repressive effect (Orman-Ligeza et al., 2018). Finally, also LR growth angle is affected by water availability (Koevoets et al., 2016). Drought as well as salinity induces ABA signaling, which through its interplay with auxin, represses LRs (De Smet et al., 2003; Deak and Malamy, 2005; Duan et al., 2013; Promchuea et al., 2017) and to a much lesser extent main root elongation (De Smet et al., 2006). ABA signaling represses both later-stage LR outgrowth (De Smet et al., 2003), as well as LR initiation (Gibbs and Coates, 2014). The latter occurs via the MYB93 transcription factor that is expressed in endodermal cells overlaying LR founder cells (Gibbs et al., 2014) and represses lateral root initiation. MYB93 (MYELOBLASTOSIS) is auxin induced, ensuring that LR initiation only occurs in response to substantially strong and persistent elevations in auxin relative to surrounding auxin levels (Gibbs and Coates, 2014). Salt- or drought-induced ABA-dependent upregulation of MYB93 elevates the threshold auxin levels required for $L R$ initiation, thereby reducing $L R$ formation (Figure 4, green boxes). In addition to ABA, salt-induced upregulation of the small signaling peptide C-TERMINALLY ENCODED PEPTIDE 3 (CEP3) contributes to reduced LR growth (Delay et al., 2013). Hydropatterning, the biasing of LR formation in the direction of water availability, appears to be a conserved process observed in a variety of plant species, such as Arabidopsis, maize, and rice (Bao et al., 2014). Although the precise mechanism is currently still poorly understood, a clear role for auxin was identified while ABA signaling was shown not to be involved (Bao et al., 2014). Local auxin production through TRYPTOPHAN AMINO-TRANSFERASE OF ARABIDOPSIS 1 (TAA1) and PIN-mediated transport were shown to contribute to increases in auxin levels and responses induced by water availability (Figure 4, blue boxes) (Bao et al., 2014) and result in the preferential induction of endodermal PIN3 on the side exposed to water. Consistent with the role of this endodermal PIN3 in LR initiation discussed earlier, hydropatterning appears to act at the earliest stages of LR formation: establishment of founder cell identity (Bao et al., 2014). The authors suggest that the upstream sensing of differences in water availability occurs close to the root tip and subsequently is somehow memorized (Bao et al., 2014).

Although at first perhaps counterintuitive, light has a major effect on plant root development (Mo et al., 2015; Lee et al., 2017; van Gelderen et al., 2018) (Figure 4, yellow boxes). Roots have been shown to predominantly display negative phototropism (Kutschera and Briggs, 2012; Wan et al., 2012), with mild

Figure 4. Overview of the Impact of a Subset of Environmental Factors on Lateral Root Development.
Schematic depiction of the impact of water, salt, drought, light, nitrate, and phosphate on lateral root development. For nitrate, the effects of both systemic nitrate levels, local nitrate levels, and signaling of nitrate lack are incorporated, which all affect lateral roots at the outgrowth stage. In contrast, water presence and phosphate deprivation affect laterals at the earliest stages of initiation and shade influences predominantly emergence, while salt and drought have effects at both early and late stages.
positive phototropic responses occurring to red light in the absence of gravity (Kiss et al., 2001, 2003; Ruppel et al., 2001). In addition, uniform light induces ROS signaling and affects root PIN patterns (Laxmi et al., 2008) and is likely to reflect a stress response (Yokawa et al., 2014). In addition to these direct effects of light on roots, also shoot light conditions have an
impact on plant root architecture (van Gelderen et al., 2018). First, shoot light conditions affect photosynthesis, thereby affecting sugar production and hence shoot to root sugar transport (Kircher and Schopfer, 2012). In addition, shoot light conditions influence shoot to root auxin transport via CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1)-dependent
modulation of plant stem PIN1 levels, resulting in differential regulation of root PIN1 and PIN2 membrane levels (Sassi et al., 2012). Improved light conditions enhance both sugar and auxin delivery to the root (Reed et al., 1998; Bhalerao et al., 2002; Kircher and Schopfer, 2012), thereby enhancing root growth. Interestingly, sugars affect both auxin transport and biosynthesis (Mishra et al., 2009; Sairanen et al., 2012; RayaGonzález et al., 2017), and sugars and auxin converge on the same target of rapamycin (TOR) centered regulatory machinery for cell cycle and growth control (Henriques et al., 2014), enabling a highly coordinated control. Besides sugars and auxin, the light-dependent transcription factor, ELONGATED HYPOCOTYL5 (HY5), was identified as influencing root development in response to changes in shoot light conditions (Oyama et al., 1997; Sibout et al., 2006). Shoot HY5 production increases under a shading-induced shift to far red light, and HY5 subsequently travels to the roots through the phloem (Chen et al., 2016). In addition, light itself has been suggested to be transported from shoots to roots (Sun et al., 2003, 2005), a phenomenon called stem-piped light transmission, thereby activating phytochrome receptors in the root (Lee et al., 2016), and thus potentially enabling local HY5 induction. The relative importance of this mechanism remains unclear, particularly given the substantial reduction occurring in light transmission with increasing distance. HY5 enhances its own expression (Abbas et al., 2014; Binkert et al., 2014), and this autoactivation may contribute to local, root-specific signal amplification. HY5 was recently shown to repress the auxin transporters, $L A X 3$ and PIN3 (van Gelderen et al., 2018), explaining the observed inhibition of LR emergence from the repression of the LAX3/ PIN3-mediated auxin accumulation in overlaying tissue layers (Péret et al., 2013).

Nitrogen (N) is the most limiting macronutrient for plant growth, with nitrate $\left(\mathrm{NO}_{3}^{-}\right)$being the major inorganic source of this nutrient (Ruiz Herrera et al., 2015). Systemic levels as well as soil availability and soil distribution patterns have been shown to substantially influence root architecture (Figure 4, orange boxes) (Sun et al., 2017). In Arabidopsis thaliana, local nitrate availability is sensed close to the tip of primary roots and LRs. Under homogeneous nitrate conditions, root development is suppressed both under conditions of very low and very high nitrogen availability. Severe nitrogen deficiency has been shown to upregulate the LR-repressing, small signaling peptides CEP1, 3, 4, and 7 (Delay et al., 2013), with additional repression likely resulting from reduced sugar supply downstream of decreased photosynthetic activity. Also, in the case of nitrogen excess, systemic signals repress LR growth. Under these conditions, LR development is repressed by reducing auxin flow to the roots (Tian et al., 2008), induction of ethylene (Tian et al., 2009), and ABA signaling (Vidal et al., 2010), known to affect auxin levels and signaling, and modulation of the AFB3-miR393 pathway (Gifford et al., 2008; Vidal et al., 2014). Systemic repression likely also involves the glutamate receptors such as GLR3.2 and AtGLR3.4 which are phloem localized and repress LR initiation (Vincill et al., 2013). In contrast, for intermediate systemic nitrogen levels, LR development is promoted in a nitratedependent manner through TAR and YUCCA-mediated auxin biosynthesis and upregulation of $P I N s$ occurring downstream of NITRATE TRANSPORTER 2 (NRT2) nitrate transporters (Ma et al., 2014; Yu et al., 2014; Huang et al., 2015). In addition, nitric
oxide, generated from nitrate, has been shown to promote LR formation (Sun et al., 2015).

In the case of spatially heterogeneous nitrate supply, an enhancement of LR growth on the high nitrate side and concomitant repression of LR growth on the low nitrate side occurs (Zhang and Forde, 1998; Little et al., 2005). The dual-affinity nitrate transporter NRT1.1 (Liu et al., 1999) was shown to play an important role in this asymmetric growth response (Remans et al., 2006), by acting both as a nitrate transporter and sensor (Ho et al., 2009). Under low local nitrate availability, NRT1.1 was shown to act as an auxin importer, and due to its position in the LR cap, this promotes the efflux of auxin out of the LR tip, thereby repressing LR growth (Krouk et al., 2010). In the presence of sufficient nitrate, NRT1.1 only transports nitrate, thereby avoiding this negative affect. In addition, NRT1.1 under these conditions further promotes LR development via ARABIDOPSIS NITRATE REGULATED 1 (ANR1) (Zhang and Forde, 1998; Remans et al., 2006). Given that both auxin and nitrate induce NRT1.1 expression, a positive feedback loop arises robustly promoting LR development in the presence of nitrate (Guo et al., 2002; Muños et al., 2004). In addition, also systemic signaling plays an important role in the asymmetric growth response. Roots at the low nitrate side were shown to produce a CEP signaling peptide, which upon perception in the shoot leads to the production of a downstream signal (Tabata et al., 2014). Co-occurrence of this signal with local nitrate perception on the other, high nitrate side of the root enhances NRT2.1 expression (Ohkubo et al., 2017), thereby enabling an enhanced promotion of LR development.

Phosphate is another example of a nutrient whose soil availability is a major effector of plant root development (Williamson et al., 2001; Péret et al., 2011, 2014). Importantly, soil phosphate diffusion and leaching are considerably slower than that of nitrate, causing phosphate and nitrate to have contrasting, shallow versus deep soil distribution patterns under limiting conditions (Tinker and Nye, 2000). Under homogeneous low phosphate conditions, LR development is enhanced (Figure 4, pink boxes) while primary root growth is reduced. Both LR density and elongation are stimulated (Williamson et al., 2001; López-Bucio et al., 2002; Reymond et al., 2006; Jiang et al., 2007; Pérez-Torres et al., 2008). These morphological alterations of root system architecture enable so-called top soil foraging, the exploration of the superficial soil layers where phosphate is most likely to be found. The processes involved in the arrest of primary root growth were recently reviewed in detail elsewhere (Gutiérrez-Alanís et al., 2018). Stimulation of LR development involves phosphate starvation-induced upregulation of the auxin receptor TIR1, resulting in an enhanced auxin sensitivity that promotes primed pericycle cells to undergo LR initiation (Pérez-Torres et al., 2008). This TIR1 upregulation was shown to be strigolactone dependent (Mayzlish-Gati et al., 2012). Under phosphate starvation, strigolactone was additionally demonstrated to reduce PIN2 membrane levels (Kumar et al., 2015), thereby likely reducing LR tip auxin efflux and hence enhancing later stages of LR development. Besides responses to overall phosphate limitation, root architecture is also sensitive to phosphate distribution patterns, with local high phosphate levels inducing yet low levels repressing LR elongation (Drew, 1975; Linkohr

Molecular Plant

et al., 2002). Similar to the response to heterogeneous nitrate, this differential response involves communication between different plant parts (Liu et al., 1998; Burleigh and Harrison, 1999; Franco-Zorrilla et al., 2005), yet the precise nature of the longdistance signaling system and its integration with local phosphate sensing has so far remained elusive. In addition to water, gravitropic stimuli have also been found to influence the side of the root at which LR formation occurs (Lucas et al., 2008). Both the gravitropism-induced tissue curvature and downstream effects of cell shape changes on auxin accumulation (Laskowski et al., 2008) and mechanical Ca^{2+} dependent signaling have been implicated in this effect (Richter et al., 2009). Water availability and gravitropic stimuli likely act independently in biasing the sidedness of LR initiation, since root curvature appears to affect sidedness only after LRFC specification (Bao et al., 2014).

Plant roots need to simultaneously adjust to multiple and continuously changing environmental conditions. For this, integration between the signaling pathways set in motion by different environmental factors is of critical importance. As can be seen in Figure 4, for LR initiation multiple factors affect auxin levels, sensitivity or transport, enabling coordinated, weighted decision making on how often LRFCs should move on to LR initiation. Also, at later stages of LR development, environmental factors frequently target auxin processes, thereby enabling their integration. Besides converging on auxin, many more types of signal integration occur. As an example, we discussed in the above how both nitrate starvation and salt induce the signaling peptide CEP3, which represses LR outgrowth, enabling these factors to have additive repressive effects. Similarly, high systemic nitrate and salt or drought both induce ABA signaling. In contrast, light and low systemic nitrate levels have opposing effects on the delivery of sugar to the root.

In addition to different environmental factors converging on a shared signal, environmental factors may also have an impact on the plants response to other environmental factors. As an example, shoot light conditions, via the aforementioned HY5, have been shown to induce the nitrate transporter NRT2.1 yet repress NRT1.1 (Chen et al., 2016), thereby ensuring coordination of enhanced photosynthesis with enhanced nitrate uptake (Gangappa and Botto, 2016). Furthermore, light, by affecting the photosynthetic state and hence stomata opening and transpiration, has a direct effect on plant water dynamics. In addition to this direct link, circadian clock genes have been shown to control aquaporin expression (Takase et al., 2011) as well as auxin signaling (Voß et al., 2015). Shoot light conditions are thus likely to affect the threshold turgor and auxin levels required for LR emergence to occur and hence the response to other environmental factors.

We expect that many more signal convergence points will be discovered, and systems biology approaches will be essential to unravel how plants compute which decisions to reach based on their incoming information.

LOOSE ENDS

Particularly for founder cell identity establishment and lateral root initiation, many factors additional to the ones we have discussed

Lateral Root Systems Biology: Connecting the Dots

have been found to be involved. Examples are ABERRANT LATERAL ROOT FORMATION4 (ALF4), MYB93, Aurora kinases, ARABIDOPSIS CRINKLY4 (ACR4), GOLVEN6 (GLV6), RAPID ALKALINIZATION FACTOR34 (RALF34), CEP5, MEMBRANEASSOCIATED KINASE REGULATOR4 (MAKR4) (DiDonato et al., 2004; De Smet et al., 2008; Van Damme et al., 2011; Gibbs et al., 2014; Fernandez et al., 2015; Xuan et al., 2015; Murphy et al., 2016; Roberts et al., 2016). Many of these factors are involved in controlling the number, location, and orientation of the cell divisions initiating LRs and have an effect on lateral root spacing. ALF4, the expression of which is auxin independent, is required for maintaining pericycle cells in a mitosis competent state (DiDonato et al., 2004; Dubrovsky et al., 2008). Aurora kinases were found to play a critical role in the orientation of formative cell divisions, with mutants showing aberrant division plane orientations (Van Damme et al., 2011). ACR4, GLV6, RALF34, and CEP5 are all involved in controlling the location and number of cell divisions (De Smet et al., 2008; Fernandez et al., 2015; Murphy et al., 2016; Roberts et al., 2016). This constriction of cell divisions to a limited region is essential for generating a dome-shaped LRP capable of normal emergence (Fernandez et al., 2015), as well as preventing the formation of nearby clustered LRP (De Smet et al., 2008; Murphy et al., 2016; Roberts et al., 2016). While ACR4, GLV6, and RALF34 are all auxin inducible and division numbers and primordia clustering occurs in mutants, CEP5 appears to be repressed by auxin, and its overexpression induces supernumerary division and LRP clusters. While we currently lack the data to understand how mitotic competence, location of cell cycle activation, and cell division orientation are properly integrated, it is apparent from the nature of the factors involved (small peptides, receptors) that these processes rely heavily on cell-cell signaling. For later stages of LR development, additional factors have been reported. As an example, the non-canonical auxin response factor ETTIN, as well as the transient closure of plasmodesmata, has been demonstrated to play a key role in LR emergence (Maule et al., 2013; Simonini et al., 2016).

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

In the current review, we provided an overview of what is currently known and can be hypothesized on LR development from a systems biology perspective. Specifically, we focused on how we can order distinct events within individual stages as well as connect the dots between the different stages of LR development. In addition, we considered how environmental conditions impinge on LR development and how computational models have helped increase our understanding of these processes.

An overwhelming number of molecular players involved in LR development have been identified, and likely many more are to be added. Here, we focused on those for which clear links have been established, and hence can be subjected to a systems biology analysis in terms of the motifs present in the regulatory networks and the temporal and spatial patterning dynamics these enable us to explain. One observation we made is that in an attempt to graphically summarize known data into regulatory network graphs, sometimes dangerous simplifications are made that can easily lead to misunderstandings. As an example,
often CWR enzymes are depicted as being regulated by LAX3 (Taylor-Teeples et al., 2016; Du and Scheres, 2018). While the CWR enzymes are downstream of LAX3 in the sense that they depend on $L A X 3$ activity for their induction, the fact that CWR enzymes are genetically regulated by the same factors as $L A X 3$ suggest that they simply require higher auxin levels, achieved through auxin import by $L A X 3$. We thus recommend that care should be taken when drawing these summarizing regulatory graphs.

Our review of the data suggests that, for the sequence of transitions from priming to primordium patterning, positive feedback loops as well as repression of genes involved in earlier stages can be identified that may enable the robust transduction of one developmental stage into the next. Furthermore, we discuss how the subsequent transition to LR emergence can be envisioned as a propagating wave of auxin, with auxin inducing its own export and import into subsequent tissue layers. Following this propagating auxin wave, auxin-dependent targeted changes in cell wall properties and tissue turgidity subsequently enable LR emergence. To investigate these hypotheses, two complementary approaches are needed. First, substantial technical challenges need to be overcome to develop experimental setups capable of perturbing with spatiotemporal precision the positive feedbacks and repressive interactions identified, as well as within tissue auxin transport, water flows, and CWR. Furthermore, thus far, models have mostly focused on a single specific stage of LR development. Thus, a second important step is to extend models such that the temporal dynamics of developing from one LR stage into the next can be simulated, possibly first by simply morphing on LR shape into the next (Von Wangenheim et al., 2016).

However, apart from only modeling a single stage, current LR development models often also only consider a single process. As an example, for LR emergence and primordium development, the patterning of auxin in overlaying tissue layers, the auxin-dependent aquaporin dynamics changing tissue turgidity, and the cellular division patterns giving rise to a properly shaped layered primordium have thus far only been modeled in isolation (Péret et al., 2012, 2013; Von Wangenheim et al., 2016), while CWR has not yet been included in any model. It has therefore remained unclear how water transport, CWR, and tissue growth are coordinated, and to what extent their mutual interactions may synergistically contribute to the patterning and robustness of LR development. Indeed, models aimed at elucidating shoot meristem development and phyllotaxis that integrated gene regulation, hormone transport, and tissue mechanics have revealed important synergies between these processes (see e.g. Hamant et al., 2008; Heisler et al., 2010; Armezzani et al., 2018) Thus, new models eventually should combine core gene regulatory networks, hormone metabolism, and hormone transport with cellular growth and division, tissue mechanics, and water transport. Integrating these different processes within a model and investigating whether the incorporated interactions are necessary and sufficient to reproduce the available data (see e.g. Scheunemann et al., 2018) will be key to investigating how these processes together generate the specific spatiotemporal patterning of LRs in a robust and highly self-organized manner.

A well-known quote from the famous physicist Richard Feynman states "I do not understand what I can not build". In the context of LRs, this implies that obtaining an integrated systems-level understanding of LR development requires building more comprehensive models incorporating the different stages and processes. Such a model will be a valuable asset in our attempts to understand how roots integrate the multitude of environmental signals into their developmental programs such that they adapt themselves flexibly to their current situation. This ambitious aim will require the efforts of many experimentalists, bioinformaticians, and modelers alike.

FUNDING

This work was supported by the Netherlands Scientific Organization (Nederlandse Organisatie voor Wetenschappelijk Onderzoek) (737.016.012 to J.A.S.T. and K.T.T and 864.14.003 to K.T.T).

AUTHOR CONTRIBUTIONS

K.T.T. conceived the idea for the review, J.A.S.T. and K.T.T. wrote the manuscript. K.T.T. and J.A.S.T. conceived the figures. J.A.S.T. produced the figures.

ACKNOWLEDGMENTS

The authors declare no conflict of interest.

Received: November 23, 2018
Revised: March 20, 2019
Accepted: March 26, 2019
Published: April 3, 2019

REFERENCES

Abbas, N., Maurya, J.P., Senapati, D., Gangappa, S.N., and Chattopadhyay, S. (2014). Arabidopsis CAM7 and HY5 physically interact and directly bind to the HY5 promoter to regulate its expression and thereby promote photomorphogenesis. Plant Cell 26:1036-1052.

Armezzani, A., Abad, U., Ali, O., Robin, A.A., Vachez, L., Larrieu, A., Mellerowicz, E.J., Taconnat, L., Battu, V., Stanislas, T., et al. (2018). Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis. Development 145. https://doi.org/10.1242/dev.162255.

Atkinson, J.A., Rasmussen, A., Traini, R., Voss, U., Sturrock, C., Mooney, S.J., Wells, D.M., and Bennett, M.J. (2014). Branching out in roots: uncovering form, function, and regulation. Plant Physiol. 166:538-550.

Bao, Y., Aggarwal, P., Robbins, N.E., Sturrock, C.J., Thompson, M.C., Tan, H.Q., Tham, C., Duan, L., Rodriguez, P.L., Vernoux, T., et al. (2014). Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc. Natl. Acad. Sci. U S A 111:9319-9324.
Bellini, C., Pacurar, D.I., and Perrone, I. (2014). Adventitious roots and lateral roots: similarities and differences. Annu. Rev. Plant Biol. 65:639-666.

Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jürgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591-602.

Berckmans, B., Vassileva, V., Schmid, S.P.C., Maes, S., Parizot, B., Naramoto, S., Magyar, Z., Kamei, C.L.A., Koncz, C., Bogre, L., et al. (2011). Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23:3671-3683.

Molecular Plant

Bhalerao, R.P., Eklöf, J., Ljung, K., Marchant, A., Bennett, M., and Sandberg, G. (2002). Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J. 29:325-332.

Bielach, A., Podlešáková, K., Marhavý, P., Duclercq, J., Cuesta, C., Müller, B., Grunewald, W., Tarkowski, P., and Benková, E. (2012). Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell 24:3967-3981.

Binkert, M., Kozma-Bognar, L., Terecskei, K., De Veylder, L., Nagy, F., and Ulm, R. (2014). UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell 26:4200-4213.

Boer, D.R., Freire-Rios, A., van den Berg, W.A.M., Saaki, T., Manfield, I.W., Kepinski, S., López-Vidrieo, I., Franco-Zorrilla, J.M., de Vries, S.C., Solano, R., et al. (2014). Structural basis for DNA binding specificity by the auxin-dependent arf transcription factors. Cell 156:577-589.
Burleigh, S.H., and Harrison, M.J. (1999). The down-regulation of mt4like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol. 119:241-248.

Charlton, W.A. (1975). Distribution of lateral roots and pattern of lateral initiation in Pontederia cordata L. Bot. Gaz. 136:225-235.

Chen, Q., Liu, Y., Maere, S., Lee, E., Van Isterdael, G., Xie, Z., Xuan, W., Lucas, J., Vassileva, V., Kitakura, S., et al. (2015). A coherent transcriptional feed-forward motif model for mediating auxinsensitive PIN3 expression during lateral root development. Nat. Commun. 6:8821.

Chen, X., Yao, Q., Gao, X., Jiang, C., Harberd, N.P., and Fu, X. (2016). Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr. Biol. 26:640-646.

De Rybel, B., Vassileva, V., Parizot, B., Demeulenaere, M., Grunewald, W., Audenaert, D., Van Campenhout, J., Overvoorde, P., Jansen, L., Vanneste, S., et al. (2010). A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 20:1697-1706.
De Smet, I., Signora, L., Beeckman, T., Inzé, D., Foyer, C.H., and Zhang, H. (2003). An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 33:543-555.
De Smet, I., Zhang, H., Inzé, D., and Beeckman, T. (2006). A novel role for abscisic acid emerges from underground. Trends Plant Sci. 11:434-439.

De Smet, I., Tetsumura, T., De Rybel, B., Frey, N.F.D., Laplaze, L., Casimiro, I., Swarup, R., Naudts, M., Vanneste, S., Audenaert, D., et al. (2007). Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681-690.

De Smet, I., Vassileva, V., De Rybel, B., Levesque, M.P., Grunewald, W., Van Damme, D., VanNoorden, G., Naudts, M., Van Isterdael, G., De Clercq, R., et al. (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322:594-598.

De Smet, I., Lau, S., Voss, U., Vanneste, S., Benjamins, R., Rademacher, E.H., Schlereth, A., De Rybel, B., Vassileva, V., Grunewald, W., et al. (2010). Bimodular auxin response controls organogenesis in Arabidopsis. Proc. Natl. Acad. Sci. U S A 107:27052710.

Deak, K.I., and Malamy, J. (2005). Osmotic regulation of root system architecture. Plant J. 43:17-28.
Delay, C., Imin, N., and Djordjevic, M.A. (2013). CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J. Exp. Bot. 64:5383-5394.

Den Herder, G., Van Isterdael, G., Beeckman, T., and De Smet, I. (2010). The roots of a new green revolution. Trends Plant Sci. 15:600-607.

798 Molecular Plant 12, 784-803, June 2019 © The Author 2019.

Lateral Root Systems Biology: Connecting the Dots
Dharmasiri, S., and Estelle, M. (2002). The role of regulated protein degradation in auxin response. Plant Mol. Biol. 49:401-409.
Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature 435:441-445.
Dickinson, A.J., Lehner, K., Mijar, M., and Benfey, P.N. (2018). B-cyclocitral is a conserved root growth regulator. BioRxiv https:// doi.org/10.1101/337162.
DiDonato, R.J., Arbuckle, E., Buker, S., Sheets, J., Tobar, J., Totong, R., Grisafi, P., Fink, G.R., and Celenza, J.L. (2004). Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J. 37:340-353.

Drew, M.C. (1975). Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol. 75:479-490.
Du, Y., and Scheres, B. (2017). PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth. Proc. NatI. Acad. Sci. U S A 114:11709-11714.

Du, Y., and Scheres, B. (2018). Lateral root formation and the multiple roles of auxin. J. Exp. Bot. 69:155-167.
Duan, L., Dietrich, D., Ng, C.H., Chan, P.M.Y., Bhalerao, R., Bennett, M.J., and Dinneny, J.R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324-341.
Dubrovsky, J.G., Doerner, P.W., Colón-Carmona, A., and Rost, T.L. (2000). Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol. 124:1648-1657.
Dubrovsky, J.G., Gambetta, G.A., Hernández-Barrera, A., Shishkova, S., and González, I. (2006). Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Ann. Bot. 97:903-915.
Dubrovsky, J.G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M.G., Friml, J., Shishkova, S., Celenza, J., and Benkova, E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. U S A 105:8790-8794.
Dubrovsky, J.G., Napsucialy-Mendivil, S., Duclercq, J., Cheng, Y., Shishkova, S., Ivanchenko, M.G., Murphy, A.S., and Benkova, E. (2011). Auxin minimum defines a developmental window for lateral root initiation. New Phytol. 191:970-983.
Durán, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., and Hacquard, S. (2018). Microbial interkingdom interactions in roots promote Arabidopsis survival. BioRxiv https://doi.org/10.1101/354167.
El-Showk, S., Help-Rinta-Rahko, H., Blomster, T., Siligato, R., Marée, A.F.M., Mähönen, A.P., and Grieneisen, V.A. (2015). Parsimonious model of vascular patterning links transverse hormone fluxes to lateral root initiation: auxin leads the way, while cytokinin levels out. PLoS Comput. Biol. 11:1-40.
Eshel, A., and Kafkafi, U. (2013). Plant Roots: The Hidden Half (Boca Raton, FL: CRC Press).
Evangelisti, E., Rey, T., and Schornack, S. (2014). Cross-interference of plant development and plant-microbe interactions. Curr. Opin. Plant Biol. 20:118-126.
Feng, Z., Zhu, J., Du, X., and Cui, X. (2012). Effects of three auxininducible LBD members on lateral root formation in Arabidopsis thaliana. Planta 236:1227-1237.
Fernandez, A., Drozdzecki, A., Hoogewijs, K., Vassileva, V., Madder, A., Beeckman, T., and Hilson, P. (2015). The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation. J. Exp. Bot. 66:5245-5256.
Franco-Zorrilla, J.M., Martín, A.C., Leyva, A., and Paz-Ares, J. (2005). Interaction between phosphate-starvation, sugar, and cytokinin
signaling in Arabidopsis and the roles of cytokinin receptors CRE1/ AHK4 and AHK3. Plant Physiol. 138:847-857.
Gangappa, S.N., and Botto, J.F. (2016). The multifaceted roles of HY5 in plant growth and development. Mol. Plant 9:1353-1365.
Gazzarrini, S., Tsuchiya, Y., Lumba, S., Okamoto, M., and McCourt, P. (2004). The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev. Cell 7:373-385.

Gibbs, D.J., and Coates, J.C. (2014). AtMYB93 is an endodermisspecific transcriptional regulator of lateral root development in Arabidopsis. Plant Signal. Behav. 9:1-4.
Gibbs, D.J., Voß, U., Harding, S. a, Fannon, J., Moody, L. a, Yamada, E., Swarup, K., Nibau, C., Bassel, G.W., Choudhary, A., et al. (2014). AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. New Phytol. 203:1194-1207.
Gifford, M.L., Dean, A., Gutierrez, R.A., Coruzzi, G.M., and Birnbaum, K.D. (2008). Cell-specific nitrogen responses mediate developmental plasticity. Proc. NatI. Acad. Sci. U S A 105:803-808.

Goh, T., Kasahara, H., Mimura, T., Kamiya, Y., and Fukaki, H. (2012). Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philos. Trans. R. Soc. B Biol. Sci. 367:1461-1468.

Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001). Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271-276.

Gruber, B.D., Giehl, R.F.H., Friedel, S., and von Wirén, N. (2013). Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163:161-179.
Guo, F.Q., Wang, R., and Crawford, N.M. (2002). The Arabidopsis dualaffinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots. J. Exp. Bot. 53:835-844.

Gutiérrez-Alanís, D., Ojeda-Rivera, J.O., Yong-Villalobos, L., Cárdenas-Torres, L., and Herrera-Estrella, L. (2018). Adaptation to phosphate scarcity: tips from Arabidopsis roots. Trends Plant Sci. 23:721-730.

Hamant, O., Heisler, M.G., Jonsson, H., Krupinski, P., Uyttewaal, M., Bokov, P., Corson, F., Sahlin, P., Boudaoud, A., Meyerowitz, E.M., et al. (2008). Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650-1655.

Heisler, M.G., Hamant, O., Krupinski, P., Uyttewaal, M., Ohno, C., Jonsson, H., Traas, J., and Meyerowitz, E.M. (2010). Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol. 8:e1000516.
Henriques, R., Bögre, L., Horváth, B., and Magyar, Z. (2014). Balancing act: matching growth with environment by the TOR signalling pathway. J. Exp. Bot. 65:2691-2701.

Hirota, A., Kato, T., Fukaki, H., Aida, M., and Tasaka, M. (2007). The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156-2168.
Ho, C.H., Lin, S.H., Hu, H.C., and Tsay, Y.F. (2009). CHL1 functions as a nitrate sensor in plants. Cell 138:1184-1194.
Horstman, A., Li, M., Heidmann, I., Weemen, M., Chen, B., Muiño, J.M., Angenent, G.C., and Boutilier, K. (2017). The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol. 175:848-857.
Hortal, S., Lozano, Y.M., Bastida, F., Armas, C., Moreno, J.L., Garcia, C., and Pugnaire, F.I. (2017). Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community. Sci. Rep. 7:17756.

Huang, S., Chen, S., Liang, Z., Zhang, C., Yan, M., Chen, J., Xu, G., Fan, X., and Zhang, Y. (2015). Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner. Sci. Rep. 5:1-12.

Jiang, C., Gao, X., Liao, L., Harberd, N.P., and Fu, X. (2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol. 145:1460-1470.

Kang, N.Y., Lee, H.W., and Kim, J. (2013). The AP2/EREBP gene PUCHI co-acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis. Plant Cell Physiol. 54:1326-1334.

Kellermeier, F., Armengaud, P., Seditas, T.J., Danku, J., Salt, D.E., and Amtmann, A. (2014). Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26:1480-1496.

Kepinski, S., and Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446-451.

Kim, J., and Lee, H.W. (2013). Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis. Plant Signal. Behav. 8:8-10.
Kircher, S., and Schopfer, P. (2012). Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc. Natl. Acad. Sci. U S A 109:11217-11221.

Kircher, S., and Schopfer, P. (2016). Priming and positioning of lateral roots in Arabidopsis. An approach for an integrating concept. J. Exp. Bot. 67:1411-1420.

Kiss, J.Z., Ruppel, N.J., and Hangarter, R.P. (2001). Phototropism in Arabidopsis roots is mediated by two sensory systems. Adv. Space Res. 27:877-885.
Kiss, J.Z., Correll, M.J., Mullen, J.L., Hangarter, R.P., and Edelmann, R.E. (2003). Root phototropism: how light and gravity interact in shaping plant form. Gravit. Space Biol. Bull. 16:55-60.

Koevoets, I.T., Venema, J.H., Elzenga, J.T.M., and Testerink, C. (2016). Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 7:1-19.

Kong, X., Zhang, M., De Smet, I., and Ding, Z. (2014). Designer crops: optimal root system architecture for nutrient acquisition. Trends Biotechnol. 32:597-598.

Kramer, E.M. (2002). A mathematical model of pattern formation in the vascular cambium of trees. J. Theor. Biol. 216:147-158.
Krouk, G., Lacombe, B., Bielach, A., Perrine-Walker, F., Malinska, K., Mounier, E., Hoyerova, K., Tillard, P., Leon, S., Ljung, K., et al. (2010). Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18:927-937.
Kumar, M., Pandya-Kumar, N., Dam, A., Haor, H., Mayzlish-Gati, E., Belausov, E., Wininger, S., Abu-Abied, M., McErlean, C.S.P., Bromhead, L.J., et al. (2015). Arabidopsis response to lowphosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling. J. Exp. Bot. 66:1499-1510.

Kumpf, R.P., Shi, C.-L., Larrieu, A., Sto, I.M., Butenko, M.A., Péret, B., Riiser, E.S., Bennett, M.J., and Aaalen, R.B. (2013). Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proc. Natl. Acad. Sci. U S A 110:5235-5240.
Kutschera, U., and Briggs, W.R. (2012). Root phototropism: from dogma to the mechanism of blue light perception. Planta 235:443-452.

Molecular Plant 12, 784-803, June 2019 © The Author 2019.

Molecular Plant

Laplaze, L., Benkova, E., Casimiro, I., Maes, L., Vanneste, S., Swarup, R., Weijers, D., Calvo, V., Parizot, B., Herrera-Rodriguez, M.B., et al. (2007). Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889-3900.

Laskowski, M., Biller, S., Stanley, K., Kajstura, T., and Prusty, R. (2006). Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol. 47:788-792.

Laskowski, M., Grieneisen, V.A., Hofhuis, H., Ten Hove, C.A., Hogeweg, P., Marée, A.F.M., and Scheres, B. (2008). Root system architecture from coupling cell shape to auxin transport. PLoS Biol. 6:2721-2735.

Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De Smet, I., Fukaki, H., Beeckman, T., Bennett, M., and Laplaze, L. (2013). Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci. 18:450-458.

Lavenus, J., Goh, T., Guyomarc'h, S., Hill, K., Lucas, M., Voß, U., Kenobi, K., Wilson, M.H., Farcot, E., Hagen, G., et al. (2015). Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines Primordia flanking and central zones. Plant Cell 27:1368-1388.

Laxmi, A., Pan, J., Morsy, M., and Chen, R. (2008). Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One 3:1-11.

Lee, H.W., and Kim, J. (2013). EXPANSINA17 up-regulated by LBD18/ ASL20 promotes lateral root formation during the auxin response. Plant Cell Physiol. 54:1600-1611.

Lee, H.W., Park, J.H., Park, M.Y., and Kim, J. (2014). GIP1 may act as a coactivator that enhances transcriptional activity of LBD18 in Arabidopsis. J. Plant Physiol. 171:14-18.

Lee, H.W., Cho, C., and Kim, J. (2015). Lateral organ boundaries domain16 and 18 act downstream of the AUXIN1 and LIKE-AUXIN3 auxin influx carriers to control lateral root development in Arabidopsis. Plant Physiol. 168:1792-1806.
Lee, H.-J., Ha, J.-H., and Park, C.-M. (2016). Underground roots monitor aboveground environment by sensing stem-piped light. Commun. Integr. Biol. 9:e1261769.

Lee, H.J., Park, Y.J., Ha, J.H., Baldwin, I.T., and Park, C.M. (2017). Multiple routes of light signaling during root photomorphogenesis. Trends Plant Sci. 22:803-812.

Li, X., Mo, X., Shou, H., and Wu, P. (2006). Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol. 47:1112-1123.

Linkohr, B.I., Williamsom, L.C., Fitter, A.H., and Leyser, H.M.O. (2002). Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 29:751-760.

Liscum, E., and Reed, J.W. (2002). Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol. 49:387-400.
Little, D.Y., Rao, H., Oliva, S., Daniel-Vedele, F., Krapp, A., and Malamy, J.E. (2005). The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc. Natl. Acad. Sci. U S A 102:13693-13698.

Liu, C., Muchhal, U.S., Uthappa, M., Kononowicz, A.K., and Raghothama, K.G. (1998). Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 116:91-99.

Liu, K.-H., Huang, C.-Y., and Tsay, Y.-F. (1999). CHL1 Is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865-874.

800 Molecular Plant 12, 784-803, June 2019 © The Author 2019

Lateral Root Systems Biology: Connecting the Dots
López-Bucio, J., Hernandez-Abreu, E., Sanchez-Calderon, L., NietoJacobo, M.F., Simpson, J., and Herrera-Estrella, L. (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129:244-256.

Lucas, M., Godin, C., Jay-Allemand, C., and Laplaze, L. (2008). Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J. Exp. Bot. 59:55-66.
Lucas, M., Kenobi, K., von Wangenheim, D., Voss, U., Swarup, K., De Smet, I., Van Damme, D., Lawrence, T., Peret, B., Moscardi, E., et al. (2013). Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc. Natl. Acad. Sci. U S A 110:5229-5234.

Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., del Rio, T.G., et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488:86-90.

Ma, W., Li, J., Qu, B., He, X., Zhao, X., Li, B., Fu, X., and Tong, Y. (2014). Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J. 78:70-79.
MacLeod, R.D. (1990). Lateral root primordium inception in Zea mays L. Environ. Exp. Bot. 30:225-234.
Mähönen, A.P., Ten Tusscher, K., Siligato, R., Smetana, O., DíazTriviño, S., Salojärvi, J., Wachsman, G., Prasad, K., Heidstra, R., and Scheres, B. (2014). PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125-129.
Malamy, J.E. (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28:67-77.
Malamy, J.E., and Benfey, P.N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33-44.
Marchant, A., Bhalerao, R., Casimiro, I., Eklöf, J., Casero, P.J., Bennett, M., and Sandberg, G. (2002). AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589-597.
Marhavý, P., Bielach, A., Abas, L., Abuzeineh, A., Duclercq, J., Tanaka, H., Pařezová, M., Petrášek, J., Friml, J., Kleine-Vehn, J., et al. (2011). Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev. Cell 21:796-804.
Marhavý, P., Vanstraelen, M., De Rybel, B., Zhaojun, D., Bennett, M.J., Beeckman, T., and Benková, E. (2013). Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO J. 32:149-158.
Marhavý, P., Duclercq, J., Weller, B., Feraru, E., Bielach, A., Offringa, R., Friml, J., Schwechheimer, C., Murphy, A., and Benková, E. (2014). Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr. Biol. 24:1031-1037.
Marhavý, P., Montesinos, J.C., Abuzeineh, A., Van Damme, D., Vermeer, J.E.M., Duclercq, J., Rakusová, H., Nováková, P., Friml, J., Geldner, N., et al. (2016). Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation. Genes Dev. 30:471-483.

Maule, A.J., Gaudioso-Pedraza, R., and Benitez-Alfonso, Y. (2013). Callose deposition and symplastic connectivity are regulated prior to lateral root emergence. Commun. Integr. Biol. 6:e26531.
Mayzlish-Gati, E., De-Cuyper, C., Goormachtig, S., Beeckman, T., Vuylsteke, M., Brewer, P.B., Beveridge, C.A., Yermiyahu, U., Kaplan, Y., Enzer, Y., et al. (2012). Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 160:1329-1341.

Middleton, A.M., King, J.R., Bennett, M.J., and Owen, M.R. (2010). Mathematical modelling of the Aux/IAA negative feedback loop. Bull. Math. Biol. 72:1383-1407.

Mironova, V.V., Omelyanchuk, N.A., Novoselova, E.S., Doroshkov, A.V., Kazantsev, F.V., Kochetov, A.V., Kolchanov, N.A., Mjolsness, E., and Likhoshvai, V.A. (2012). Combined in silico/ in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance. Ann. Bot. 110:349-360.

Mishra, B.S., Singh, M., Aggrawal, P., and Laxmi, A. (2009). Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One 4:e4502.
Mitchison, G.J. (1980). The dynamics of auxin transport. Proc. R. Soc. London. Ser. B. Biol. Sci. 209:489-511.
Mo, M., Yokawa, K., Wan, Y., and Baluška, F. (2015). How and why do root apices sense light under the soil surface? Front. Plant Sci. 6:1-8.
Mockaitis, K., and Estelle, M. (2008). Auxin receptors and plant development: a new signaling paradigm. Annu. Rev. Cell Dev. Biol. 24:55-80.

Moreira, S., Bishopp, A., Carvalho, H., and Campilho, A. (2013). AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation. PLoS One 8:e56370.

Moreno-Risueno, M.A., Van Norman, J.M., Moreno, A., Zhang, J., Ahnert, S.E., and Benfey, P.N. (2010). Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306-1311.

Mounier, E., Pervent, M., Ljung, K., Gojon, A., and Nacry, P. (2014). Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ. 37:162-174.

Muños, S., Cazettes, C., Fizames, C., Gaymard, F., Tillard, P., Lepetit, M., Lejay, L., and Gojon, A. (2004). Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1. 1 in the regulation of another nitrate transporter, NRT2. 1. Plant Cell 16:2433-2447.

Muraro, D., Byrne, H., King, J., Voss, U., Kieber, J., and Bennett, M. (2011). The influence of cytokinin-auxin cross-regulation on cell-fate determination in Arabidopsis thaliana root development. J. Theor. Biol. 283:152-167.

Muraro, D., Byrne, H., King, J., and Bennett, M. (2013). The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana. J. Theor. Biol. 317:71-86.
Murphy, E., Vu, L.D., Van Den Broeck, L., Lin, Z., Ramakrishna, P., Van De Cotte, B., Gaudinier, A., Goh, T., Slane, D., Beeckman, T., et al. (2016). RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. J. Exp. Bot. 67:4863-4875.

Nieuwland, J., Maughan, S., Dewitte, W., Scofield, S., Sanz, L., and Murray, J.A. (2009). The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region. Proc. Natl. Acad. Sci. U S A 106:22528-22533.

Noble, D. (2006). The Music of Life: Biology beyond the Genome (Oxford: Oxford University Press).

Ohashi-Ito, K., Saegusa, M., Iwamoto, K., Oda, Y., Katayama, H., Kojima, M., Sakakibara, H., and Fukuda, H. (2014). A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr. Biol. 24:2053-2058.

Ohkubo, Y., Tanaka, M., Tabata, R., Ogawa-Ohnishi, M., and Matsubayashi, Y. (2017). Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat. Plants 3:1-6.

Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118-130.
Omelyanchuk, N.A., Kovrizhnykh, V.V., Oshchepkova, E.A., Pasternak, T., Palme, K., and Mironova, V.V. (2016). A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biol. 16:1-12.

Orman-Ligeza, B., Parizot, B., de Rycke, R., Fernandez, A., Himschoot, E., Van Breusegem, F., Bennett, M.J., Périlleux, C., Beeckman, T., and Draye, X. (2016). RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 143:3328-3339.
Orman-Ligeza, B., Morris, E.C., Parizot, B., Lavigne, T., Babé, A., Ligeza, A., Klein, S., Sturrock, C., Xuan, W., Novák, O., et al. (2018). The xerobranching response represses lateral root formation when roots are not in contact with water. Curr. Biol. 28:3165-3173.e5.
Osmont, K.S., Sibout, R., and Hardtke, C.S. (2007). Hidden branches: developments in root system architecture. Annu. Rev. Plant Biol. 58:93-113.

Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11:2983-2995.
Pandey, S.K., Lee, H.W., Kim, M.J., Cho, C., Oh, E., and Kim, J. (2018). LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. Plant J. 95:233-251.

Parizot, B., De Rybel, B., and Beeckman, T. (2010). VisuaLRTC: a new view on lateral root initiation by combining specific transcriptome data sets. Plant Physiol. 153:34-40.
Péret, B., De Rybel, B., Casimiro, I., Benková, E., Swarup, R., Laplaze, L., Beeckman, T., and Bennett, M.J. (2009). Arabidopsis lateral root development: an emerging story. Trends Plant Sci. 14:399-408.
Péret, B., Clément, M., Nussaume, L., and Desnos, T. (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci. 16:442-450.
Péret, B., Li, G., Zhao, J., Band, L.R., Voss, U., Postaire, O., Luu, D.-T., Da Ines, O., Casimiro, I., Lucas, M., et al. (2012). Auxin regulates aquaporin function to facilitate lateral root emergence. Nat. Cell Biol. 14:991-998.
Péret, B., Middleton, A.M., French, A.P., Larrieu, A., Bishopp, A., Njo, M., Wells, D.M., Porco, S., Mellor, N., Band, L.R., et al. (2013). Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Mol. Syst. Biol. 9:1-15.
Péret, B., Desnos, T., Jost, R., Kanno, S., Berkowitz, O., and Nussaume, L. (2014). Root architecture responses: in search of phosphate. Plant Physiol. 166:1713-1723.
Pérez-Torres, C.-A., López-Bucio, J., Cruz-Ramirez, A., IbarraLaclette, E., Dharmasiri, S., Estelle, M., and Herrera-Estrella, L. (2008). Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258-3272.
Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., Swarup, R., Kuempers, B., Bishopp, A., Lavenus, J., et al. (2016). Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development 143:3340-3349.
Promchuea, S., Zhu, Y., Chen, Z., Zhang, J., and Gong, Z. (2017). ARF2 coordinates with PLETHORAs and PINs to orchestrate ABA-mediated root meristem activity in Arabidopsis. J. Integr. Plant Biol. 59:30-43.
Rademacher, E.H., Möller, B., Lokerse, A.S., Llavata-Peris, C.I., Van Den Berg, W., and Weijers, D. (2011). A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J. 68:597-606.

Molecular Plant

Raya-González, J., López-Bucio, J.S., Prado-Rodríguez, J.C., RuizHerrera, L.F., Guevara-García, Á.A., and López-Bucio, J. (2017). The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. Plant Mol. Biol. 95:141-156.
Reed, J.W., Elumalai, R.P., and Chory, J. (1998). Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation. Genetics 148:1295-1310.

Remans, T., Nacry, P., Pervent, M., Filleur, S., Diatloff, E., Mounier, E., Tillard, P., Forde, B.G., and Gojon, A. (2006). The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc. Natl. Acad. Sci. U S A 103:19206-19211.

Rey, T., and Schornack, S. (2013). Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biol. 14:1-6.
Reymond, M., Svistoonoff, S., Loudet, O., Nussaume, L., and Desnos, T. (2006). Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ. 29:115-125.
Richter, G.L., Monshausen, G.B., Krol, A., and Gilroy, S. (2009). Mechanical stimuli modulate lateral root organogenesis. Plant Physiol. 151:1855-1866.

Robbins, N.E., II, and Dinneny, J.R. (2015). The divining root: moisturedriven responses of roots at the micro- and macro-scale. J. Exp. Bot. 66:2145-2154.

Roberts, I., Smith, S., Stes, E., De Rybel, B., Staes, A., Van De Cotte, B., Njo, M.F., Dedeyne, L., Demol, H., Lavenus, J., et al. (2016). CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J. Exp. Bot. 67:4889-4899.

Rogers, E.D., and Benfey, P.N. (2015). Regulation of plant root system architecture: Implications for crop advancement. Curr. Opin. Biotechnol. 32:93-98.

Ruiz Herrera, L.F., Shane, M.W., and López-Bucio, J. (2015). Nutritional regulation of root development. Wiley Interdiscip. Rev. Dev. Biol. 4:431-443.

Ruppel, N.J., Hangarter, R.P., and Kiss, J.Z. (2001). Red-light-induced positive phototropism in Arabidopsis roots. Planta 212:424-430.

Sairanen, I., Novak, O., Pencik, A., Ikeda, Y., Jones, B., Sandberg, G., and Ljung, K. (2012). Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24:4907-4916.
Santuari, L., Sanchez-Perez, G.F., Luijten, M., Rutjens, B., Terpstra, I., Berke, L., Gorte, M., Prasad, K., Bao, D., Timmermans-Hereijgers, J.L.P.M., et al. (2016). The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. Plant Cell 28:29372951.

Sassi, M., Lu, Y., Zhang, Y., Wang, J., Dhonukshe, P., Blilou, I., Dai, M., Li, J., Gong, X., Jaillais, Y., et al. (2012). COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 139:3402-3412.
Scheunemann, M., Brady, S.M., and Nikoloski, Z. (2018). Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Sci. Rep. 8:1-15.

Shimizu-Mitao, Y., and Kakimoto, T. (2014). Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/ AFB. Plant Cell Physiol. 55:1450-1459.
Sibout, R., Sukumar, P., Hettiarachchi, C., Holm, M., Muday, G.K., and Hardtke, C.S. (2006). Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet. 2:1898-1911.

802 Molecular Plant 12, 784-803, June 2019 © The Author 2019

Lateral Root Systems Biology: Connecting the Dots

Simonini, S., Deb, J., Moubayidin, L., Stephenson, P., Valluru, M., Freire-Rios, A., Sorefan, K., Weijers, D., Friml, J., and Østergaard, L. (2016). A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev. 30:2286-2296.

Stoeckle, D., Thellmann, M., and Vermeer, J.E. (2018). Breakout lateral root emergence in Arabidopsis thaliana. Curr. Opin. Plant Biol. 41:67-72.

Street, I.H., Mathews, D.E., Yamburkenko, M.V., Sorooshzadeh, A., John, R.T., Swarup, R., Bennett, M.J., Kieber, J.J., and Schaller, G.E. (2016). Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development 143:3982-3993.

Sun, Q., Yoda, K., Suzuki, M., and Suzuki, H. (2003). Vascular tissue in the stem and roots of woody plants can conduct light. J. Exp. Bot. 54:1627-1635.
Sun, Q., Yoda, K., and Suzuki, H. (2005). Internal axial light conduction in the stems and roots of herbaceous plants. J. Exp. Bot. 56:191-203.

Sun, H., Li, J., Song, W., Tao, J., Huang, S., Chen, S., Hou, M., Xu, G., and Zhang, Y. (2015). Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J. Exp. Bot. 66:2449-2459.

Sun, C.-H., Yu, J.-Q., and Hu, D.-G. (2017). Nitrate: a crucial signal during lateral roots development. Front. Plant Sci. 8:1-9.
Swarup, R., Péret, B., Graham, N., Sandberg, G., Carrier, D., Jones, J.D.G., Kerr, I., Swarup, K., De Smet, I., Benková, E., et al. (2008). The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 10:946-954.
Tabata, R., Sumida, K., Yoshii, T., Ohyama, K., Shinohara, H., and Matsubayashi, Y. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N -demand signaling. Science 346:343-346.
Takase, T., Ishikawa, H., Murakami, H., Kikuchi, J., Sato-Nara, K., and Suzuki, H. (2011). The circadian clock modulates water dynamics and aquaporin expression in Arabidopsis roots. Plant Cell Physiol. 52:373-383.

Tang, L.P., Zhou, C., Wang, S.S., Yuan, J., Zhang, X.S., and Su, Y.H. (2017). FUSCA3 interacting with LEAFY COTYLEDON2 controls lateral root formation through regulating YUCCA4 gene expression in Arabidopsis thaliana. New Phytol. 213:1740-1754.
Taylor-Teeples, M., Lanctot, A., and Nemhauser, J.L. (2016). As above, so below: auxin's role in lateral organ development. Dev. Biol. 419:156-164.

Tian, Q., Chen, F., Liu, J., Zhang, F., and Mi, G. (2008). Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J. Plant Physiol. 165:942-951.
Tian, Q.Y., Sun, P., and Zhang, W.H. (2009). Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol. 184:918-931.

Tian, H., De Smet, I., and Ding, Z. (2014). Shaping a root system: regulating lateral versus primary root growth. Trends Plant Sci. 19:426-431.
Tinker, P.B., and Nye, P.H. (2000). Solute Movement in the Rhizosphere (New York: Oxford University Press).
Van Damme, D., De Rybel, B., Gudesblat, G., Demidov, D., Grunewald, W., De Smet, I., Houben, A., Beeckman, T., and Russinova, E. (2011). Arabidopsis α aurora kinases function in formative cell division plane orientation. Plant Cell 23:4013-4024.
van den Berg, T., Korver, R.A., Testerink, C., and ten Tusscher, K.H.W.J. (2016). Modeling halotropism: a key role for root tip
architecture and reflux loop remodeling in redistributing auxin. Development 143:3350-3362.
Van Den Berg, T., and Ten Tusscher, K.H. (2018). Lateral root priming synergystically arises from root growth and auxin transport dynamics. BioRxiv https://doi.org/10.1101/361709.
van Gelderen, K., Kang, C., Paalman, R., Keuskamp, D.H., Hayes, S., and Pierik, R. (2018). Far-red light detection in the shoot regulates lateral root development through the HY5 transcription factor. Plant Cell 30:101-116.

Vanneste, S., De Rybel, B., Beemster, G.T.S., Ljung, K., De Smet, I., Van Isterdael, G., Naudts, M., lida, R., Gruissem, W., Tasaka, M., et al. (2005). Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035-3050.
Vermeer, J.E.M., and Geldner, N. (2015). Lateral root initiation in Arabidopsis thaliana: a force awakens. F1000Prime Rep. 7:1-7.
Vermeer, J.E., von Wangenheim, D., Barberon, M., Lee, Y., Stelzer, E.H.K.K., Maizel, A., and Geldner, N. (2014). A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178-183.
Vidal, E.A., Tamayo, K.P., and Gutierrez, R.A. (2010). Gene networks for N -sensing, signaling and response in Arabidopsis thaliana. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:683-693.

Vidal, E.A., Álvarez, J.M., and Gutiérrez, R.A. (2014). Nitrate regulation of AFB3 and NAC4 gene expression in Arabidopsis roots depends on NRT1.1 nitrate transport function. Plant Signal. Behav. 9:e28501.
Villalobos, A.C., Lee, S., De Oliveira, C., Ivetac, A., Brandt, W., Armitage, L., Sheard, L.B., Tan, X., Parry, G., Mao, H., et al. (2012). A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 8:477-485.
Vincill, E.D., Clarin, A.E., Molenda, J.N., and Spalding, E.P. (2013). Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis. Plant Cell 25:1304-1313.

Von Wangenheim, D., Fangerau, J., Schmitz, A., Smith, R.S., Leitte, H., Stelzer, E.H.K., and Maizel, A. (2016). Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr. Biol. 26:439-449.

Voß, U., Wilson, M.H., Kenobi, K., Gould, P.D., Robertson, F.C., Peer, W.A., Lucas, M., Swarup, K., Casimiro, I., Holman, T.J., et al. (2015). The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nat. Commun. 6:1-9.

Wan, Y., Jasik, J., Wang, L., Hao, H., Volkmann, D., Menzel, D., Mancuso, S., Baluska, F., and Lin, J. (2012). The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24:551-565.
Weijers, D., Benkova, E., Jäger, K.E., Schlereth, A., Hamann, T., Kientz, M., Wilmoth, J.C., Reed, J.W., and Jürgens, G. (2005). Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J. 24:1874-1885.
Weil, R.R., and Brady, N.C. (2016). The Nature and Properties of Soils (Harlow: Pearson Education).
Williamson, L.C., Ribrioux, S.P.C.P., Fitter, A.H., and Leyser, H.M.O. (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol. 126:875-882.
Wollenweber, B., Porter, J.R., and Lübberstedt, T. (2005). Need for multidisciplinary research towards a second green revolution. Curr. Opin. Plant Biol. 8:337-341.
Xuan, W., Audenaert, D., Parizot, B., Möller, B.K., Njo, M.F., De Rybel, B., De Rop, G., Van Isterdael, G., Mähönen, A.P., Vanneste, S., et al. (2015). Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root. Curr. Biol. 25:1381-1388.
Xuan, W., Band, L.R., Kumpf, R.P., Van Damme, D., Parizot, B., De Rop, G., Opdenacker, D., Möller, B.K., Skorzinski, N., Njo, M.F., et al. (2016). Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science 351:384-387.
Yamaguchi, N., Jeong, C.W., Nole-Wilson, S., Krizek, B.A., and Wagner, D. (2016). AINTEGUMENTA and AINTEGUMENTA-LIKE6/ PLETHORA3 induce LEAFY expression in response to auxin to promote the onset of flower formation in Arabidopsis. Plant Physiol. 170:283-293.

Yokawa, K., Koshiba, T., and Baluška, F. (2014). Light-dependent control of redox balance and auxin biosynthesis in plants. Plant Signal. Behav. 9, e29522.
Yu, P., Li, X., Yuan, L., and Li, C. (2014). A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment. Physiol. Plant 150:133-144.
Zenser, N., Ellsmore, A., Leasure, C., and Callis, J. (2001). Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl. Acad. Sci. U S A 98:11795-11800.
Zhang, H., and Forde, B.G. (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407-409.

[^0]: Published by the Molecular Plant Shanghai Editorial Office in association with Cell Press, an imprint of Elsevier Inc., on behalf of CSPB and IPPE, SIBS, CAS.

