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Non-parametric estimation of
transition probabilities in non-Markov
multi-state models: The landmark
Aalen–Johansen estimator

Hein Putter1 and Cristian Spitoni2

Abstract

The topic non-parametric estimation of transition probabilities in non-Markov multi-state models has seen a remarkable

surge of activity recently. Two recent papers have used the idea of subsampling in this context. The first paper, by de Uña

Álvarez and Meira-Machado, uses a procedure based on (differences between) Kaplan–Meier estimators derived from a

subset of the data consisting of all subjects observed to be in the given state at the given time. The second, by Titman,

derived estimators of transition probabilities that are consistent in general non-Markov multi-state models. Here,

we show that the same idea of subsampling, used in both these papers, combined with the Aalen–Johansen

estimate of the state occupation probabilities derived from that subset, can also be used to obtain a relatively simple

and intuitive procedure which we term landmark Aalen–Johansen. We show that the landmark Aalen–Johansen estimator

yields a consistent estimator of the transition probabilities in general non-Markov multi-state models under the same

conditions as needed for consistency of the Aalen–Johansen estimator of the state occupation probabilities. Simulation

studies show that the landmark Aalen–Johansen estimator has good small sample properties and is slightly more efficient

than the other estimators.
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1 Introduction

Multi-state models are finding increased application in medical research. They allow a detailed view of the disease
or recovery process of a patient, and they can be used to obtain prediction probabilities of future events, after a
given event history. A number of reviews on multi-state models are available in the literature.1–5 The relevant
quantities for these prediction probabilities in multi-state terminology are the transition probabilities, the
probabilities to be in a state m at time t, given that the patient is in state ‘ at an earlier time s. When the
multi-state model is Markov, an elegant theory connects the transition intensities of the multi-state model to
the transition probabilities, leading to the Aalen–Johansen estimator.6

When the multi-state model is Markov, the Aalen–Johansen estimator gives consistent estimators of the
transition probabilities. When the multi-state model is non-Markov, this is no longer the case. Meira-Machado
et al.7 considered estimation of the transition probabilities for a non-Markov irreversible illness-death model.
Their procedure was based on expressing the transition probabilities of interest in terms of expectations of
transformations of the joint distribution of the time to absorption and the sojourn time in the initial state, and
replacing these expressions by weighted averages. They showed superior performance of their non-Markov
estimators over the Aalen–Johansen estimator in case of strong violation of the Markov assumption. Allignol
et al.8 defined a competing risks process (which is by its nature always Markov) for which the cumulative
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incidences relate in a certain way to the transition probabilities of interest. Both methods require that the support
of the censoring distribution is contained in the support of the lifetime distribution, an assumption that is unlikely
to hold in most medical applications, because of limited follow-up of patients. Two recent papers have improved
on these results by removing the restrictive support assumption. The paper by de Uña Álvarez and Meira-
Machado9 considers an irreversible illness-death model and proposes—among others—a subsampling approach
where a selection is made of the data consisting of subjects occupying a given state at a particular time; based on
this subset an estimator proposed by Pepe10 consisting of a difference between two Kaplan–Meier estimates is
proposed for one of the transition probabilities. Titman11 extended and improved on Allignol et al.8 by also
allowing extension to general multi-state models. Although not explicitly mentioned, Titman’s estimators are also
based on subsampling.

Although the non-parametric Aalen–Johansen estimator6 will not in general give consistent estimators of the
transition probabilities in non-Markov multi-state models, Datta and Satten12 have shown that, even for non-
Markov multi-state models, the estimator of state occupation probabilities derived from the non-parametric
Aalen–Johansen estimator is consistent. The paper by Glidden13 provides further understanding of this result
and presents asymptotic results and estimators of pointwise standard errors and simultaneous confidence bands.
In this paper, we show that a relatively simple and intuitive procedure that we call landmark Aalen–Johansen
(LMAJ) will also provide consistent estimators of transition probabilities for general multi-state models. As in de
Uña Álvarez and Meira-Machado9 and Titman,11 the procedure is based on subsampling; it selects subjects
fulfilling the requirements of being in a given state (or set of states). Within this subset, estimates of the state
occupation probabilities are obtained using the Aalen–Johansen estimator. Since the idea of selecting subjects in a
given state at a given (landmark) time is akin to landmarking,14–16 we refer to the new estimator as the LMAJ
estimator. The LMAJ estimator makes no assumptions on the support of the censoring distribution and is defined
for arbitrary multi-state models. We show how the LMAJ estimator compares with the other estimators9,11 by
including the LMAJ estimator in the same simulation set-up as Titman,11 and two additional scenarios, and we
apply the LMAJ estimator in data from a randomized clinical trial in breast cancer. For easy comparison of the
LMAJ estimator with the aforementioned estimators, we refer to them with the same abbreviations as used by
Titman11: CP (conditional Pepe) for the subsampling estimator of de Uña Álvarez and Meira-Machado9 and NM
(non-Markov) for the estimator of Titman.11

2 The LMAJ estimator

We broadly follow notation of Glidden13 and define ~XðtÞ to be a random multi-state process, taking values in the
state space 1, . . . ,K, with K finite. The multi-state process has right-continuous paths and a finite number of
transitions. For i ¼ 1, . . . , n, and j, k ¼ 1, . . . ,K, with j 6¼ k, the counting processes

~NijkðtÞ ¼ # u � t, ~Xiðu�Þ ¼ j, ~XiðuÞ ¼ k
� �

count the number of direct transitions of subject i from state j to state k up to and including time t, and

~YijðtÞ ¼ 1f ~Xiðt�Þ ¼ j
�

is the at-risk process of subject i corresponding to state j. The sigma-algebra generated by the counting and at-risk
processes defines the filtration

Ft ¼ �f ~NijkðuÞ, ~YijðuÞ, 0 � u � t, i ¼ 1, . . . , n, j, k ¼ 1, . . . ,K, j 6¼ kg

The transition hazards are defined by

~�jkðtjFt�Þ ¼ lim
�t#0

Pð ~Xðtþ�tÞ ¼ kj ~XðtÞ ¼ j,Ft�Þ=�t ð1Þ

In general (non-Markov) multi-state models, these transition hazards will depend not only on the present state j
at time t but also on the further past Ft�. When the multi-state process is Markov, equation (1) simplifies to
~�jkðtÞ ¼ lim

�t#0
Pð ~Xðtþ�tÞ ¼ kj ~XðtÞ ¼ j Þ=�t. The transition probabilities are defined by

P‘mðs, tjFs�Þ ¼ Pð ~XðtÞ ¼ mj ~XðsÞ ¼ ‘,Fs�Þ
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For Markov models, the transition probabilities simplify to P‘mðs, tÞ ¼ Pð ~XðtÞ ¼ mj ~XðsÞ ¼ ‘ Þ.
When the multi-state model is not Markov, the transition probability P‘mðs, tjFs�Þ will depend on the

past before time s, Fs�. For instance, when the process is a Markov renewal process, P‘mðs, tjFs�Þ will crucially
depend on the time at which state ‘ was entered before time s, because that will determine the duration in state ‘.
We would like to emphasize at this point that in such a case one should always try to take into account
the extra relevant information (here the time of entry into state ‘), both in the target of inference and in the
estimation procedure; for instance, in Markov renewal processes explicit expressions for estimators of
transition probabilities are also available.17 Even when the multi-state model is not Markov, however, the
transition probability P‘mðs, tÞ may be relevant as a summary of different transition probabilities P‘mðs, tjFs�Þ,
in case (1) the extra relevant information in Fs� is not available, or (2) when interest is in an average over the
histories Fs� of P‘mðs, tjFs�Þ or (3) when it is unknown how ~�jkðtjFt�Þ depends on the history; in practice, it will
often be uncertain whether the multi-state model is Markov or not, and in such cases, an estimator that is robust
against possible non-Markovianity would be useful.

The sentence ‘‘average over the histories Fs� of P‘mðs, tjFs�Þ’’ is admittedly not very precise.
In particular instances, when the nature of violation of the Markov assumption is known, the statement can be
made precise. To give an example of what is meant, consider the irreversible illness-death (Markov renewal)
model, where the transition ~�23ðtjFt�Þ from the illness to the death state depends (only) on the duration in
state 2. Then, P23ðs, tjFs�Þ depends on Fs� only through the time of entry, say T2, in state 2. In this instance,
we have

P23ðs, tÞ ¼

Z s

0

P23ðs, tjT2 ¼ t2Þ f ðt2 jXðsÞ ¼ 2Þdt2

where f ðt2 jXðsÞ ¼ 2Þ represents the density of T2, given the subject is in state 2 at time s4 t2. Other types of
violations of the Markov assumption will call for different dependencies of P‘mðs, tjFs�Þ on Fs�, and hence
different kind of averages.

For a Markov model, define the cumulative transition hazards ~�jkðtÞ ¼
R t
0

~�jkðuÞdu and gather all of them

in the K�K matrix e,ðtÞ with (j, k)th off-diagonal element ~�jkðtÞ and (j, j)th diagonal element
~�jjðtÞ ¼ �

P
k 6¼j

~�jkðtÞ. Similarly, define the K�K matrix Pðs, tÞ with ð‘,mÞ th element P‘mðs, tÞ. Then Aalen and

Johansen6 showed that the matrix of transition probabilities can be written as a matrix product integral of the

transition hazards, as

Pðs, tÞ ¼
Y

s5u�t

Iþ de,ðuÞ� �
The vector PðtÞ of state occupation probabilities, with mth element PmðtÞ ¼ Pð ~XðtÞ ¼ mÞ, can be retrieved

through PðtÞ ¼ �ð0ÞPð0, tÞ, with �ð0Þ a 1� K vector with kth element �kð0Þ ¼ Pð ~Xð0Þ ¼ kÞ. Together, we have
the relation

PðtÞ ¼ �ð0Þ
Y

05u�t

Iþ de,ðuÞ� �
ð2Þ

Datta and Satten12 showed that also for non-Markov multi-state processes, the state occupation probability
vector follows a relation like equation (2), but with ,ð�Þ replaced by the partly conditional transition rates ,ð�Þ,18

where

�jkðtÞ ¼ lim
�t#0

Pð ~Xðtþ�tÞ ¼ kj ~XðtÞ ¼ j Þ=�t, �jkðtÞ ¼

Z t

0

�jkðuÞdu

for the transition rate from state j to state k. In contrast to the transition rates in equation (1), the partly
conditional transition rates condition only on the current state, not on the further history Ft�, and can be
thought of as complex weighted averages of transition hazards over all possible histories.

Putter and Spitoni 2083



The observed data consist of right censored versions of the multi-state process. Let Ci be a right censoring time,
for i ¼ 1, . . . , n, assume that ~Xið�Þ and Ci are independent and identically distributed, and define HiðtÞ ¼ 1fCi � tg
and the censored multi-state, counting and at-risk processes XiðtÞ ¼ ~Xðt ^ CiÞ

NijkðtÞ ¼ #fu � t,Xiðu�Þ ¼ j,XiðuÞ ¼ k,HiðuÞ ¼ 1g

YijðtÞ ¼ 1fXiðt�Þ ¼ j,HiðtÞ ¼ 1g

To define Aalen–Johansen type estimators, it is convenient to gather the counting and at-risk processes into
K�K matrices. Define NiðtÞ to be the matrix with off-diagonal (j, k)th element NijkðtÞ and (j, j)th diagonal element
NijjðtÞ ¼ �

P
k6¼j NijkðtÞ, and define YiDðtÞ to be the diagonal matrix with (j, j)th diagonal element equal to YijðtÞ.

Estimators of the cumulative partly conditional transition rates are obtained by defining �NjkðtÞ ¼Pn
i¼1 NijkðtÞ, �Yj ðtÞ ¼

Pn
i¼1 YijðtÞ, their matrix versions NðtÞ and YDðtÞ, and finally

b,ðtÞ ¼ Z t

0

Y
�1

D ðuÞdNðuÞ

With b�ð0Þ the 1� K vector containing the empirical proportions �̂kð0Þ ¼ n�1
Pn

i¼1 1f
~Xið0Þ ¼ kg, under

appropriate conditions, the empirical counterpart of equation (2)

bPðtÞ ¼ b�ð0Þ Y
05u�t

Iþ�b,ðuÞ� �
ð3Þ

provides a consistent estimator of the state occupation probabilities Pð ~XðtÞ ¼ mÞ.12

We are ready to formulate our LMAJ estimator of the transition probabilities P‘mðs, tÞ ¼ Pð ~XðtÞ ¼ mj ~XðsÞ ¼ ‘ Þ.
For fixed s and ‘, the estimator is based on re-estimated partly conditional rates obtained from selecting subjects
with XiðsÞ ¼ ‘. We will use the superscript ðLMÞ to denote versions of counting and at-risk processes and of
estimators based on a landmark data set which selects subjects who are at state ‘ at time s, suppressing in the
notation that this selection depends on the fixed ‘ and s. Thus, the landmark-based versions of �NjkðtÞ, �Yj ðtÞ andb,ðtÞ are defined as

�N
ðLMÞ
jk ðtÞ ¼

Xn
i¼1

NijkðtÞ1fXiðsÞ ¼ ‘g

�Y
ðLMÞ
j ðtÞ ¼

Xn
i¼1

YijðtÞ1fXiðsÞ ¼ ‘g

b,ðLMÞðtÞ ¼ Z t

0

Y
ðLMÞ

D �1ðuÞdN
ðLMÞ
ðuÞ

ð4Þ

where N
ðLMÞ
ðtÞ and Y

ðLMÞ

D ðtÞ are matrices containing as elements �N
ðLMÞ
jk ðtÞ and �Y

ðLMÞ
j ðtÞ, arranged as in NðtÞ and

YDðtÞ. Finally, the LMAJ estimator is given by

P̂LMAJ
‘m ðs, tÞ ¼ b�ðLMÞðsÞ Y

s5u�t

Iþ�b,ðLMÞðuÞ� �
ð5Þ

with b�ðLMÞðsÞ a 1� K vector with �̂ðLMÞ‘ ðsÞ ¼ 1, and other values equal to 0.
In Appendix 1, we prove consistency of P̂LMAJ

‘m ðs, tÞ, under the same assumptions as needed for consistency of
the Aalen–Johansen estimator of the state occupation probabilities,12 plus the additional assumption that
Pð ~XðsÞ ¼ ‘ Þ4 0.

2.1 Standard errors

Glidden13 argues that the Greenwood estimators of the pointwise standard errors of the Aalen–Johansen estimator
of the state occupation probabilities remain valid also if the Markov assumption is violated. We claim that the
same is true for the LMAJ estimator. The simulation studies, reported below, corroborate this claim. For
simultaneous confidence bands, more elaborate methods need to be used.13
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2.2 Generalized conditional probabilities

Titman11 considers more generally estimators of PLMðs, tÞ ¼ Pð ~XðtÞ 2 Mj ~XðsÞ 2 LÞ. It is not difficult to see that
the proof of consistency of the LMAJ estimator (see Appendix 1) can be extended in a straightforward way to yield
consistency of P̂LMAJ

Lm ðs, tÞ obtained by replacing 1fXiðsÞ ¼ ‘g by 1fXiðsÞ 2 Lg in the definitions of equation (4).
Also, �̂ðLMÞðsÞ in equation (5) should be replaced by the vector of relative proportions of subjects in the states
‘ 2 L at time s. Finally, a consistent estimator of PLMðs, tÞ follows by defining P̂LMAJ

LM ðs, tÞ ¼
P

m P̂LMAJ
Lm ðs, tÞ.

2.3 Comparison with CP and NM for the irreversible illness-death model

If there is no censoring between s and t, both the CP (for irreversible illness-death models) and the NM and LMAJ
estimators of P‘mðs, tÞ (for general multi-state models) reduce to the proportion (among those in state ‘ at time s) in
state m at time t. In fact this holds more generally for P̂NM

LMðs, tÞ and P̂LMAJ
LM ðs, tÞ. In the presence of censoring, the

three estimators may differ.
It is instructive to contrast the CP, NM and LMAJ estimators, in the case of an irreversible illness-death model.

It is not difficult to see that all three methods give identical estimates for P22ðs, tÞ and P23ðs, tÞ ¼ 1� P22ðs, tÞ, so we
concentrate on estimates of P11ðs, tÞ, P12ðs, tÞ and P13ðs, tÞ. We consider a small example data set, shown in Table 1,
and take s¼ 1.5. The table shows the times t2 and t3 at which states 2 and 3 were entered. The 4þ for t3 of subject 2
means that the subject was censored (in state 2) at time t¼ 4; the—for t2 of subject 3 means that state 2 was never
reached because the subject went directly to state 3.

All estimators only consider subjects 1–4, since subject 5 is in state 2 at time s¼ 1.5. Recall the definitions

of �N
ðLMÞ
jk ðtÞ and �Y

ðLMÞ
j ðtÞ from equation (4), taking ‘ ¼ 1 and s¼ 1.5 to define the landmark data set, and in

addition, define

Ni J kðtÞ ¼ #fu � t,Xiðu�Þ 2 J ,XiðuÞ ¼ k,HiðuÞ ¼ 1g

Yi J ðtÞ ¼ 1fXiðt�Þ 2 J ,HiðtÞ ¼ 1g

and

�N
ðLMÞ
J k ðtÞ ¼

Xn
i¼1

Ni J kðtÞ1fXiðsÞ ¼ ‘g

�Y
ðLMÞ
J ðtÞ ¼

Xn
i¼1

Yi J ðtÞ1fXiðsÞ ¼ ‘g

Then, with �N
ðLMÞ
1� ðtÞ ¼

�N
ðLMÞ
12 ðtÞ þ

�N
ðLMÞ
13 ðtÞ, we can define the conditional Kaplan–Meier survival functions

Ŝ1ðtjsÞ ¼
Y

s5u�t

1�
d �N
ðLMÞ
1� ðuÞ

�Y
ðLMÞ
1 ðuÞ

 !

Ŝf12gðtjsÞ ¼
Y

s5u�t

1�
d �N
ðLMÞ
f12g ðuÞ

�Y
ðLMÞ
f12g ðuÞ

 !

Ŝ2ðtjsÞ ¼
Y

s5u�t

1�
d �N
ðLMÞ
23 ðuÞ

�Y
ðLMÞ
2 ðuÞ

 !

Table 1. A small data set used for illustration.

id t2 t3

1 2 5

2 3 4þ

3 – 7

4 6 8

5 1 9

Putter and Spitoni 2085



The first estimates the conditional probability of remaining in state 1, the second of remaining in state 1 or 2, the
third of remaining in state 2. With these definitions, we can see that estimators for P11ðs, tÞ and P13ðs, tÞ are the
same for CP and NM, given by

P̂CP
11 ðs, tÞ ¼ P̂NM

11 ðs, tÞ ¼ Ŝ1ðtjsÞ

and

P̂CP
13 ðs, tÞ ¼ P̂NM

13 ðs, tÞ ¼ 1� Ŝf12gðtjsÞ

Estimators for P12ðs, tÞ differ between CP and NM; for CP, we simply have P̂CP
12 ðs, tÞ ¼ 1� P̂CP

11 ðs, tÞ � P̂CP
13 ðs, tÞ,

while the definition of NM gives

P̂NM
12 ðs, tÞ ¼ Ŝf12gðtjsÞ�̂2 j1ðtjsÞ

where �̂2 j1ðtjsÞ is the proportion of subjects, among those not yet absorbed in state 3 and under follow-up at time t
and having started in state 1 at time s, who are in state 2 at time t. Note that, in contrast with CP, NM is

not guaranteed to satisfy P̂NM
11 ðs, tÞ þ P̂NM

12 ðs, tÞ þ P̂NM
13 ðs, tÞ ¼ 1. Indeed, for t¼ 6, we have P̂NM

11 ðs, tÞ ¼

0:250, P̂NM
12 ðs, tÞ ¼ 0:333 and P̂NM

13 ðs, tÞ ¼ 0:333, which sums up to less than 1. The CP estimator

has P̂CP
12 ðs, tÞ ¼ 0:417. The LMAJ estimator has the same estimate of P11ðs, tÞ, namely P̂LMAJ

11 ðs, tÞ ¼ Ŝ1ðtjsÞ, and

the more complicated estimators

P̂LMAJ
12 ðs, tÞ ¼

X
s5u�t

d �N
ðLMÞ
12 ðuÞ

�Y
ðLMÞ
1 ðuÞ

Ŝ1ðu� jsÞŜ2ðtjuÞ

P̂LMAJ
13 ðs, tÞ ¼

X
s5u�t

d �N
ðLMÞ
12 ðuÞ

�Y
ðLMÞ
1 ðuÞ

Ŝ1ðu� jsÞ 1� Ŝ2ðtjuÞ
� �

þ
X
s5u�t

d �N
ðLMÞ
13 ðuÞ

�Y
ðLMÞ
1 ðuÞ

Ŝ1ðu� jsÞ

Estimates of P̂LMAJ
12 ðs, tÞ and P̂LMAJ

13 ðs, tÞ at t¼ 6 for our example data set are given by 0.25 and 0.50, respectively.
It is also of interest to see at which time points the different estimators can change value. The most notable

differences can again be seen for the estimates of P12ðs, tÞ. Considering only subjects who are in state 1 at time s
(for all three estimators), we see that P̂LMAJ

12 ðs, tÞ changes value only at time points t at which a 1! 2 transition is
observed. In contrast, both P̂CP

12 ðs, tÞ and P̂NM
12 ðs, tÞ can change value at all time points t at any transition time point,

be it an 1! 2, 1! 3, or 2! 3 transition.
The computations from this small data set illustrate that P̂NM

11 ðs, tÞ þ P̂NM
12 ðs, tÞ þ P̂NM

13 ðs, tÞ ¼ 1 is not guaranteed
for Titman’s estimator. This unfavorable property originates from the construction of these probabilities, which
uses a possibly different competing risk process (depending on time s and the state ‘ that is occupied at time s, but
also on the target state m) for each transition probability P‘mðs, tÞ of interest. From our simulation studies,

reported in the next section, it became clear that replications for which
P
m
P̂NM
‘m ðs, tÞ 6¼ 1 were common

(both smaller and larger than 1), but deviations from 1 were usually very small. If interest is in one particular
transition probability P‘mðs, tÞ, not in P‘mðs, tÞ for all states m, the fact that transition probabilities do not add up
to one should not be a real problem in practice.

3 Simulation results

Three sets of simulations were performed, comparing the LMAJ estimator with the CP and NM estimators.

3.1 Irreversible illness-death model

The objective of the first simulation study was to replicate the first simulation study of Titman11 and to add the
new LMAJ estimator. The set-up is exactly as in Titman.11 Briefly, data were simulated from a three-
state irreversible illness-death model (states numbered here as 1¼ healthy, 2¼ illness, 3¼ death). The same
three processes, termed here Markov, Frailty and non-Markov, were considered. The Markov process was
based on a time-homogeneous process with intensities �12 ¼ 0:12, �13 ¼ 0:03 and �23 ¼ 0:1. For the frailty
model, all three intensities were multiplied by a common gamma frailty Z with unit mean and variance 2. The
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other non-Markov process also has the same intensities as the Markov process, except that ~�13ðtÞ depends on the
state occupied at time 4; ~�13ðtÞ ¼ 0:05 if ~Xð4Þ ¼ 0, and 0.1 otherwise. Two different independent right-censoring
mechanisms were applied: Unif, where right-censoring times were uniform on (5, 40), and Exp, where right-
censoring times were exponential with rate 0.04. Each scenario used sample sizes n¼ 200 and n¼ 500, all
starting in state 1. Table 2 reports bias, root mean squared error (RMSE) and empirical coverage of nominal
95% confidence intervals (all �100) across M¼ 5000 replicated data sets for four methods of estimating
P12ð�0:15, �0:45Þ, where �0:15 and �0:45 are the 15th and 45th percentile, respectively, of the time-to-absorption
(state 3) distribution. Values of �0:15 and �0:45 were taken from the supplementary material.11 The four methods
considered are the Aalen–Johansen estimator (AJ), the new subsampling method of de Uña Àlvarez and Meira-
Machado9 (CP), the method of Titman11 (NM) and the new proposed LMAJ method. The simulations also
included the estimator proposed by Allignol et al.,8 but results were not included here, because they clearly
underperformed. The same conclusions as in Titman11 apply. In addition, the LMAJ estimator performs
similarly to CP and slightly outperforms NM.

3.2 Reversible Markov renewal illness-death model

The second set of simulations was based on a Markov renewal process, with a reversible illness-death model,
containing an additional recovery transition from illness (state 2) to healthy (state 1), compared to the illness-death
model in Section 3. The hazard rates ~�jkðt, d Þ, with t time from start, and d duration in the state (sojourn time),
were chosen as

~�jkðt, d Þ ¼ �jk�j expð��jkd
�j�1Þ, j ¼ 1, 2, k ¼ 1, 2, 3, j 6¼ k

i.e., a Weibull hazard with duration d as time scale and no dependence on t. The shape parameters were chosen to
be identical for both transitions from state 1 (�1) and for both transitions from state 2 (�2). When �1 ¼ �2 ¼ 1,
hazards are exponential, and the model is Markov. For �1 ¼ �2 ¼ 1, we chose �12 ¼ 0:12,�13 ¼ 0:03,�23 ¼ 0:09
and �21 ¼ 0:06. Values chosen for �1 and �2 were 1, 1.5 and 1, 0.5, respectively. For �1 and �2 different from 1, the
�jks were adjusted so that the expected sojourn times in states 1 and 2 remained the same and the ratios between
�12 and �13 and between �21 and �23 also remained the same. Data of n¼ 200 and n¼ 500 subjects were generated,
all starting from state 1. Censoring was independent and uniform on (5, 40).

Table 3 shows bias, RMSE and coverage (all �100) across 5000 replications of P‘mðs, tÞ for s¼ 5 and t¼ 15,
comparing the Aalen–Johansen estimator (AJ), the non-Markov estimator of Titman11 (NM) and the LMAJ
estimator. The methods of Allignol et al.8 and de Uña Àlvarez and Meira-Machado9 are not available for
reversible illness-death models and were therefore not included in this comparison. Table 3 shows results for

Table 2. Bias, root mean squared error (RMSE) and coverage (all �100) of the Aalen–Johansen (AJ), the methods by de Uña Àlvarez

and Meira-Machado9 (CP) and Titman11 (NM) and the new proposed landmark Aalen–Johansen method (LMAJ) for estimating

P12ð�0:15,�0:45Þ.

AJ CP NM LMAJ

Model Truth Cens n Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov

Markov 0.3497 Unif 200 �0.086 4.166 94.2 �0.093 4.727 94.2 0.046 4.841 94.9 �0.061 4.739 94.8

500 0.072 2.691 94.6 0.070 3.051 94.6 0.111 3.105 94.8 0.081 3.045 94.8

Exp 200 �0.031 4.702 94.3 �0.074 5.395 93.8 0.146 5.545 94.2 �0.019 5.373 94.6

500 0.031 2.958 95.0 �0.051 3.338 95.1 0.042 3.463 94.9 �0.033 3.345 95.3

Frailty 0.1722 Unif 200 �0.448 3.012 93.0 �0.019 3.300 94.4 0.048 3.444 94.3 0.004 3.291 95.0

500 �0.416 1.949 93.5 0.017 2.091 95.0 0.034 2.171 95.1 0.029 2.088 95.1

Exp 200 �0.413 3.427 92.7 �0.032 3.793 93.6 0.062 3.960 93.4 0.015 3.784 94.2

500 �0.448 2.224 92.4 �0.038 2.412 93.4 0.008 2.544 93.7 �0.018 2.406 93.8

Non-Markov 0.3566 Unif 200 4.810 6.578 83.4 0.013 5.225 94.1 0.222 5.339 94.5 0.027 5.211 95.2

500 4.822 5.577 63.0 �0.052 3.921 94.5 0.023 3.383 94.6 �0.046 3.292 94.9

Exp 200 4.699 6.907 86.8 0.033 5.937 93.6 0.282 6.124 94.2 0.036 5.915 94.4

500 4.868 5.807 69.8 0.049 3.916 94.3 0.142 3.981 95.0 �0.031 3.887 95.0

Truth refers to the true value of P12ð�0:15,�0:45Þ.
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P11ðs, tÞ and P21ðs, tÞ. The Aalen–Johansen estimator outperforms the non-Markov estimators when the model is
actually Markov. Interestingly, in many cases where departure from Markovianity is modest, the Aalen–Johansen
estimator does show a moderate bias, but the smaller variance still results in smaller RMSE. Coverage, however, is
noticeably below the nominal level of 95%, because of the bias. As in the first simulation study, both NM and LMAJ
are unbiased with good coverage, and the latter consistently shows a somewhat lower RMSE than the former.

3.3 Reversible four-state extended illness-death model

The third set of simulations assessed the performance of the same three estimators, AJ, NM and LMAJ, in a reversible
four-state extended illness-death model with frailty. States 1, 2 and 3 represent progressively serious illness states with
transitions back and forth between 1 and 2 and between 2 and 3, and transitions between each of states 1, 2 and 3 and
a death state 4. Transition intensities were taken as �jkZ, with Z a gamma frailty with unit mean and variance 0 (no
frailty, so Markov), 1 and 2, with �12 ¼ �23 ¼ 0:20, �21 ¼ �32 ¼ 0:10 and �14 ¼ 0:06, �24 ¼ 0:09, �34 ¼ 0:12.
M¼ 5000 data sets of size n¼ 500 were generated with independent right censoring from a uniform distribution
on (5, 40). Table 4 reports bias, RMSE and coverage for estimating P11ðs, tÞ, P12ðs, tÞ, P21ðs, tÞ and P22ðs, tÞ for s¼ 5
and t¼ 15. The overall picture is similar to that of the previous simulation studies. For the Markov model (frailty
variance equal to 0), the Aalen–Johansen estimator performs best, with considerably smaller RMSE compared to the
other robust estimators. For the non-Markov case (frailty variance 1 and 2), the Aalen–Johansen estimator is biased,
leading to an increased RMSE and unacceptable coverage, increasingly so for increasing frailty variance. Both NM
and LMAJ perform adequately in terms of bias and coverage, also in the non-Markov case. The LMAJ estimator
consistently has a somewhat smaller RMSE compared to NM.

4 Application

We further compare the LMAJ method with the Aalen–Johansen method in data from a clinical trial in breast cancer
patients, conducted by the European Organization for Research and Treatment of Cancer (EORTC trial 10854). The
objective of the trial was to study whether a short intensive course of perioperative chemotherapy yields better overall
survival than surgery alone. The trial included 2795 patients with early breast cancer, who underwent either radical
mastectomy or breast conserving therapy before being randomized. Patients were randomized to either perioperative
chemotherapy or no perioperative chemotherapy. Results of the trial were reported in the literature.19,20 In this
analysis, we consider the same 2687 eligible patients that were also studied in earlier analyses.15,21,22 In those papers it

Table 3. Bias, root mean squared error (RMSE) and coverage (all �100) of the Aalen–Johansen (AJ), the method of Titman11 (NM)

and the new proposed landmark Aalen–Johansen method (LMAJ) for estimating P‘mð5,15Þ, for different values of ‘ and m.

AJ NM LMAJ

ð�1,�2Þ n ‘! m Truth Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov

(1, 1) (Markov) 200 1! 1 0.3084 0.008 4.472 94.5 0.195 5.291 94.3 0.031 5.066 94.8

2! 1 0.1506 0.000 3.075 94.2 0.114 5.477 92.3 �0.041 5.329 93.2

500 1! 1 0.3084 0.005 2.822 95.1 0.057 3.288 94.8 0.008 3.171 95.0

2! 1 0.1506 �0.021 1.930 94.5 0.034 3.509 93.9 �0.031 3.365 94.7

(1.5, 1) 200 1! 1 0.2140 1.697 4.265 93.2 0.055 4.463 93.8 �0.039 4.430 94.1

2! 1 0.1669 �4.100 5.010 60.9 0.284 6.115 92.5 0.069 5.883 94.2

500 1! 1 0.2140 1.720 2.955 90.8 0.037 2.759 94.9 0.020 2.667 95.0

2! 1 0.1669 �4.147 4.505 33.6 0.045 3.834 94.1 �0.065 3.723 94.5

(1, 0.5) 200 1! 1 0.3230 �0.846 4.565 94.2 0.141 5.136 94.2 0.014 4.984 94.8

2! 1 0.1299 2.437 4.037 92.3 0.250 6.334 90.2 0.066 6.098 94.4

500 1! 1 0.3230 �0.906 2.972 94.1 0.058 3.261 94.5 �0.015 3.167 94.5

2! 1 0.1299 2.449 3.189 81.4 0.062 3.990 92.6 �0.024 3.828 93.6

(1.5, 0.5) 200 1! 1 0.2326 0.513 3.983 94.8 0.107 4.330 94.3 �0.012 4.215 94.7

2! 1 0.1452 �2.009 3.504 82.1 0.300 7.193 89.6 0.033 6.883 93.8

500 1! 1 0.2326 0.531 2.525 94.9 0.044 2.740 94.6 �0.001 2.676 94.7

2! 1 0.1452 �2.041 2.725 73.9 0.052 4.476 93.1 �0.050 4.277 94.2

Truth refers to the true value of P‘mð5,15Þ.
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was noted that patients with early local recurrence had a higher transition rate from local recurrence than patients
with later local recurrence, pointing to a possible violation of the Markov assumption.

We consider a multi-state model with states ‘‘Surgery’’ (state 1), ‘‘Local Recurrence’’ (state 2) and ‘‘Death’’
(state 3). The multi-state model is an irreversible illness-death model, with transitions from Surgery to Local
Recurrence and Death, and from Local Recurrence to Death. Of 2687 patients, 84 patients died directly, without
prior local recurrence; 1061 experienced a local recurrence, of which 645 died afterwards. The remaining patients
were censored, 1542 in state 1 and 416 in state 2. The total number of deaths observed was 729.

Figure 1 shows estimated curves of the conditional probabilities of being alive with local recurrence at time t,
and of having died by time t, conditional on being alive without local recurrence at two years, for both randomized
treatment groups. In the notation of this paper, these are the transition probabilities P‘mðs, tÞ, t � s, for ‘ ¼ 1,
m¼ 2 and 3 and s¼ 2 years. Two different estimates are considered; the Aalen–Johansen (AJ) estimator that is
valid only when the Markov assumption is satisfied, and the robust LMAJ estimator. It is seen from Figure 1 that,
conditional on being alive without local recurrence at two years, both the probabilities of being alive with local
recurrence and having died are somewhat higher for the no perioperative chemotherapy group. Comparing the
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Figure 1. Estimated transition probabilities PðXðtÞ ¼ 2jXð2Þ ¼ 1Þ and PðXðtÞ ¼ 3jXð2Þ ¼ 1Þ for the two-randomized treatment

groups, with estimates based on (a) Aalen–Johansen and (b) the landmark Aalen–Johansen estimator.

Table 4. Bias, root mean squared error (RMSE) and coverage (all �100) of the Aalen–Johansen (AJ), the method of Titman11 (NM)

and the new proposed landmark Aalen–Johansen method (LMAJ) for estimating P‘mð5,15Þ, for different values of ‘ and m.

AJ NM LMAJ

Variance n ‘! m Truth Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov

0 (Markov) 500 1! 1 0.1893 �0.004 2.571 94.7 0.016 3.317 94.3 �0.023 3.241 94.8

1! 2 0.1680 0.018 2.440 94.3 0.013 3.275 94.0 �0.014 3.231 94.4

2! 1 0.1338 �0.008 1.989 94.5 0.116 3.679 93.2 0.020 3.545 94.9

2! 2 0.1455 �0.006 2.148 94.9 0.054 3.679 94.2 0.017 3.626 95.2

1 500 1! 1 0.4853 �4.154 5.228 72.7 0.118 3.650 94.8 0.060 3.483 95.1

1! 2 0.1756 0.921 2.513 94.5 0.002 2.821 94.7 �0.026 2.726 94.8

2! 1 0.1397 9.848 10.160 1.6 0.018 4.209 92.8 �0.042 4.050 94.5

2! 2 0.2305 �4.279 4.955 57.7 0.127 5.099 94.5 0.004 4.973 95.0

2 500 1! 1 0.6358 �4.244 5.208 69.3 0.122 3.292 94.3 �0.127 3.156 94.6

1! 2 0.1363 1.365 2.477 92.3 0.065 2.409 94.0 0.145 2.309 94.8

2! 1 0.1354 15.000 15.327 0.1 �0.074 4.777 93.2 �0.066 4.595 93.8

2! 2 0.2605 �7.110 7.643 28.3 0.257 6.035 94.2 0.047 5.841 95.5

Truth refers to the true value of P‘mð5,15Þ.
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two different estimators, it is seen that for both treatment groups the robust estimator results in a somewhat more
optimistic picture; the estimated probability of having died is lower for LMAJ compared to AJ, and the estimated
probability of being alive with local recurrence is higher for LMAJ compared to AJ. The estimated probability of
being alive without local recurrence (not shown) is very similar for LMAJ and AJ.

5 Discussion

In this paper, we showed that a simple and intuitive procedure combining landmarking (subsampling) and the
Aalen–Johansen estimator of the (conditional) state occupation probabilities yields a consistent estimator of
transition probabilities in general non-Markov multi-state models. The method is comparable to the estimator
of de Uña Àlvarez and Meira-Machado9 (conditional Pepe) with respect to bias and RMSE but can be used
beyond the irreversible illness-death model. It shows a slight improvement in terms of RMSE to the method of
Titman.11 In addition, unlike the non-Markov estimator of Titman,11 the transition probability estimators
P̂LMAJ
‘m ðs, tÞ, when summed over all states m, add up to one. Interestingly, our simulation studies indicated that

on occasion the Aalen–Johansen estimator outperforms the non-Markov estimators when the multi-state model
exhibits modest deviations from Markovianity. In such cases, the modest bias does not weigh against the smaller
variance of the Aalen–Johansen estimator. Coverage of the Aalen–Johansen estimator is too low, however.
If departure from Markovianity increases, the robust estimators clearly are to be preferred.

Titman11 proposes the use of pseudo-observations when interest is in the effect of covariates on the transition
probabilities. This indeed provides a useful alternative to fitting regression models to the transition intensities in a
multi-state model. The LMAJ estimator can also be used for this purpose. In fact, this approach has been used to
model the expected length of stay in a given state in a multi-state models, based on the LMAJ estimator, also in
non-Markovian models.23

The LMAJ method has been implemented (function LMAJ) in the latest version (0.2.9) of the mstate package24 in R.
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Appendix 1: Consistency of the LMAJ estimator

Here, we show that if Pð ~XðsÞ ¼ ‘ Þ4 0 and the same conditions as needed for consistency of the Aalen–Johansen
estimator of the state occupation probabilities12 are satisfied, the LMAJ estimator will also be consistent.

Fix ‘ and s. From the original multi-state process ~XðtÞ with state space f1, . . . ,Kg define the coupled multi-state
process X?ðtÞ with enlarged state space f�K, . . . , � 1, 1, . . . ,Kg by X?ðtÞ ¼ ~XðtÞ for t< s and X?ðtÞ ¼
ð2 � 1f ~XðsÞ ¼ ‘g � 1Þ � ~XðtÞ for t � s. In words, X?ðtÞ follows the original multi-state model ~XðtÞ until just before

time s, while for t � s, X?ðtÞ follows either ~XðtÞ, if ~XðsÞ ¼ ‘, or diverges to � ~XðtÞ, if ~XðsÞ 6¼ ‘. Note that the process

X?ð�Þ is not Markov even in case Xð�Þ is Markov: for any t> s, X?ðtÞ depends on the past through X?ðsÞ. Since state

m � 1 at time t> s can be reached only if ~XðsÞ ¼ ‘, this artificial multi-state model has, for t> s, m � 1

P?mðtÞ ¼ PðX?ðtÞ ¼ mÞ ¼ Pð ~XðtÞ ¼ m, ~XðsÞ ¼ ‘ Þ

so that the transition probability of interest can be written as

P‘mðs, tÞ ¼ Pð ~XðtÞ ¼ mj ~XðsÞ ¼ ‘ Þ ¼
P?mðtÞ

P?‘ðsÞ

which is a ratio of two-state occupation probabilities of the coupled multi-state process. By the results in Datta and
Satten,12 the Aalen–Johansen estimators P̂?mðtÞ and P̂?‘ðsÞ of the state occupation probabilities P?mðtÞ and P?‘ðsÞ are
consistent, and hence, their ratio consistently estimates the transition probability of interest if P?‘ðsÞ4 0.

The ratio of the Aalen–Johansen estimates of state occupation probabilities can be written as

P̂?mðtÞ

P̂?‘ðsÞ
¼

b�?ð0ÞQ05u�t Iþ db,?ðuÞ� �h i
mb�?ð0ÞQ05u�s Iþ db,?ðuÞ� �h i
‘

¼

P
j b�?ð0ÞQ05u�s Iþ�b,?ðuÞ� �h i

j

Q
s5u�t Iþ�b,?ðuÞ� �h i

jmb�?ð0ÞQ05u�s Iþ�b,?ðuÞ� �h i
‘
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¼

b�?ð0ÞQ05u�s Iþ�b,?ðuÞ� �h i
‘

Q
s5u�t Iþ�b,?ðuÞ� �h i

‘mb�?ð0ÞQ05u�s Iþ�b,?ðuÞ� �h i
‘

¼
Y

s5u�t

Iþ�b,?ðuÞ� �" #
‘m

where �̂?ð0Þ and b,? are, respectively, the initial state proportions and the estimated cumulative hazards matrix of
X?, and all matrix products are over the observed transition times u. The third equality follows because for all
j 6¼ ‘, Y

s5u�t

Iþ�b,?ðuÞ� �" #
jm

is zero, because just before the first event time after s, everyone is either at state ‘ or has been redirected to a
negative state, from which state m � 1 cannot be reached.

The last step we need for proving the theorem is to show thatY
s5u�t

Iþ�b,?ðuÞ� �" #
‘m

¼ b�ðLMÞðsÞ Y
s5u�t

Iþ�b,ðLMÞðuÞ� �
This follows by noting that the matrices Iþ�b,?ðuÞ on the left-hand side are 2K� 2K diagonal block matrices,

consisting of two blocks representing the positive states and the negative ones, with no interaction between them
for u> s. The only relevant K�K sub-matrices are those representing the positive states. For these sub-matrices,
note that the counting and at-risk processes N?

ijkðtÞ and Y?ijðtÞ, defining the b,?ðtÞ used in the Aalen–Johansen
estimator, are given by

N?
ijkðtÞ ¼ NijkðtÞ1fXiðsÞ ¼ ‘g and Y?ijðtÞ ¼ YijðtÞ1fXiðsÞ ¼ ‘g

because if XiðsÞ 6¼ ‘, then X?i ðtÞ would be negative for t � s. So for t> s, we have that �N
ðLMÞ
jk ðtÞ ¼ �N?

jkðtÞ,

�Y
ðLMÞ
j ðtÞ ¼ �Y?j ðtÞ, and hence �b,ðLMÞðtÞ ¼ ½�b,?ðtÞ�1,...,K;1,...,K. This concludes the proof.
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