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Abstract Microfossils from plankton are used for paleoceanographic reconstructions. An often-made
assumption in quantitative microplankton-based paleoceanographic reconstructions is that sedimentary
assemblages represent conditions of the directly overlying surface water. However, any immobile particle
sinking down the water column is subjected to transport by three-dimensional currents, which results in a
lateral relocation along transport. We model dinoflagellate cyst (dinocyst) transport in a high-resolution
(0.1° horizontally) global model of the present-day ocean and compare ocean conditions in the simulated
origin of sedimentary particles to that in the directly overlying water. We find that the assumption that
sedimentary particles represent the overlying surface waters is in most regions not valid. The bias induced
by dinocyst transport depends on ocean current strength and direction, aggregation of particles which
could increase the sinking speed, and the sediment sample depth. By using realistic sinking speeds of
dinocysts and aggregates, extreme biases up to approximately +16 °C warmer or +4 PSU saltier are found,
while other regions show lower bias from particle transport. Our model results provide a way to
mechanistically and statistically explain the unexpected occurrences of some dinocyst species outside of
their “normal” occurrence region, such as the northerly occurrence of the allegedly sea-ice-affiliated
dinocyst Selenopemphix antarctica. Exclusion of such outlier occurrences will yield better constrained
ecological affinites for dinocyst species, which has implications for microfossil-based quantitative and
qualitative proxies for paleoceanographic conditions. We recommend paleoceanographers to a priori
evaluate the (paleo)water depth, oceanographic setting, current strength, and particle aggregation
probability for their sedimentary microplankton assemblages.

1. Introduction

Dinoflagellates are a common component of the surface water microplankton community. As part of
their complex life cycle, about 20% (Evitt, 1985) of modern dinoflagellate species produce a resting cyst
(Zonneveld et al., 2013b). The cyst-producing dinoflagellates lose their mobility at cyst formation, from that
time onward they are subject to ocean current transport until they reach the ocean floor. The cyst wall
protects the dormant dinoflagellate and is composed of a biopolymer that is relatively resistent to oxic degra-
dation; hatching of the dinoflagelate leaves the dinocyst as a microfossil trace in the sedimentary record if
it is preserved.

Dinoflagellate cysts show distinct bioprovincialism in the present-day globally (Zonneveld et al., 2013b),
regionally (Matthiessen, 1997; Prebble et al., 2013), and for long-extinct species during time intervals in
the geologic past (Bijl et al., 2011, 2013). It was shown that the composition of sedimentary dinoflagellate
cyst (dinocyst) species relate to environmental conditions at the surface ocean, which is used to recon-
struct past oceanographic conditions. For many cyst species, it is unknown which dinoflagellate produces
a specific cyst. As a result, ecologic affinity of a dinocyst species in most cases cannot be derived from its
biological producer, the dinoflagellate. Hence, the relationships between the nonmotile cysts and surface
conditions are made independent of the taxonomy and biology of the motile dinoflagellates. Both quantita-
tive (de Vernal et al., 1992; Frieling & Sluijs, 2018; Marret et al., 2001) and qualitative (Bijl et al., 2011, 2018;
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Crouch etal., 2014; Cramwinckel et al., 2019; Houben et al., 2013; Sluijs et al., 2005, 2006) paleoceanographic
reconstructions based on dinocysts exist.

Quantitative reconstructions using transfer functions of modern analogues have been instrumental to recon-
struct past ocean conditions (de Vernal et al., 1992; Datema et al., 2017; Matthiessen, 1997). Transfer
functions are based on the assumption that a sedimentary microfossil assemblage composition explains part
of the variability of environmental conditions. Transfer functions are used to calculate these relationships
using a present-day core top data set, which includes surface sediment microfossil data and compares these
to the environmental conditions inferred from the directly overlying water. This technique has also enabled
to assess paleoceanographic affinities of extinct dinocyst species, by comparing their relative abundance to
proxy reconstructions of past sea surface temperature (SST) in the same samples (de Schepper et al., 2011).

However, applications of these quantitative techniques have large uncertainties or scatter in some regions
(Prebble et al., 2013) or show unrealistic values in past time intervals, for example, near New Zealand
(Marret et al., 2001). This induced large error bars of uncertainty and also reduced confidence in using
these techniques to reconstruct past oceanographic conditions. Some challenged the quantitative methods
on ecological grounds (Dale et al., 2002) and others on statistical grounds (Telford & Birks, 2009). However,
sediment trap measurements indicate that sinking particles could be transported laterally (Chen et al., 2012;
Fahl & No6thing, 2007; Honjo et al., 1982). The lateral particle transport in these sediment trap studies could
occur during their trajectory from the surface to the bottom of the ocean. Another view for dinocysts, how-
ever, is that they are mainly transported after resuspension, and the cysts in the deep ocean reflect a specific
biogeographic zone in shallow coastal waters (where most cysts appear; Dale, 1996). Nevertheless, the lat-
eral transport of the sinking cysts by ocean currents could induce a major uncertainty on their use as a proxy
of local environmental conditions.

SST is suggested as the variable that explains most of the dinocyst distributions by multivariate statistics on a
global data set of sedimentary distributions (Zonneveld et al., 2013b; which comprises dinocyst assemblage
data from 2405 surface sediment sites), and the average surface oceanographic properties of the overlying
water. Nevertheless, this relationship shows profound scatter, also for specific dinocyst species. Of course,
some dinocyst species will have a more stringent temperature range than other (more generalistic) species.
However, the scatter is a commonly seen feature and particularly the broad tailing of species' tempera-
ture affinity (toward the cold and/or warm end). Although it could be that dinocysts have relatively broad
temperature tolerances, perhaps other factors also play a role in the dinocyst-environmental relationships.

To illustrate the potential of these transportation effects, one can perform a quick calculation. If a sedi-
mentary cyst sunk to 4-km depth, at 11 m/day (which is a typical sinking speed for dinocysts according to
Anderson et al., 1985) through the water column with an average horizontal ocean flow speed of ~5 cm/s,
it took almost 1 year before the dinocysts reached the ocean floor and could be displaced by up to 1,570 km
from its location at the surface. The bias could have major effects on the ability to use sedimentary dinocyst
assemblages as proxy for surface ocean conditions. By understanding the surface origin of the cysts in the
sediment and quantifying the biases and regional variations of the effects of lateral transport during sinking,
improved relations between cyst species occurrence and sea surface conditions can be obtained.

Ocean models have over the recent years become increasingly sophisticated: Ocean general circulation mod-
els (OGCMs) resolve eddies (Marzocchi et al., 2015), and coupled biogeochemical models provide more
properties of the ocean (Aumont et al., 2015; Yool et al., 2013). Together with Lagrangian particle tracking
techniques (van Sebille et al., 2018), the high-resolution ocean models enable quantitative assessment of the
biasing effects of lateral transport of sedimentary microfossil assemblages. These developments have now
offered the opportunity to assess the bias potential of lateral transport in sedimentary plankton assemblages.

Here, we investigate the potential bias of the relationship between dinocysts (as example of any microplank-
ton fossil group) and surface conditions that can be induced by the lateral cyst transport by ocean currents.
We will refer to this bias as the “advection bias” (AB). We will present and discuss the regional difference
in the AB. Moreover, we examine the sensitivity of the AB to the sinking velocity assumptions. The local
magnitude of the effect of ocean currents on sedimentary cyst distributions will be quantified.

Section 2 describes the data and methods, which are used to model and analyze the transport of the cysts.
The first part of section 3 focuses on the global scale. We determine the geographic regions where particle
transport is important and perform a sensitivity analysis of these results to the sinking velocity of the cysts.
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In the second part of section 3, an analysis of the AB is done for a specific location near Antarctica and a
specific species (S. antarctica). Finally, section 4 provides a summary and a discussion of the implications
of our results for microplankton-based paleoceanography.

2. Data and Methods

2.1. Ocean Flow Field Data

We make use of ocean model simulations to propagate virtual particles. OGCM for the Earth Simu-
lator (OFES; Chi et al., 2018; Masumoto et al., 2004; Masumoto, 2010; Sasaki et al., 2008) provides a
three-dimensional flow field for the years 2000-2005 from the edge of the Antarctic continent at 75°S to
75°N with 3-daily output. Since the model has no output north of 75°N, we only show results up to 70°N in
this paper. The flow field from OFES is used to calculate the trajectories of sinking particles (similar to van
Sebille et al., 2015). Moreover, OFES includes a three-dimensional temperature and salinity field, which are
environmental variables that influence the habitat of a dinoflagellate. The model has a 0.1° horizontal res-
olution with 54 vertical levels and is forced by the National Centers for Environmental Prediction wind and
heat/freshwater flux fields.

To study the model dependence of the results, we performed the same analysis with another model:
Nucleus for European Modelling of the Ocean (NEMO; Madec, 2016; Storkey et al., 2014; Uotila et al., 2017)
for the same years (2000-2005; http://opendap4gws.jasmin.ac.uk/thredds/nemo/root/nemo_catalog.html).
The NEMO model has a higher horizontal resolution compared to OFES ((1/12)° horizontally) and 75 ver-
tical layers. The output of this model is 5-daily. Furthermore, it includes the Arctic, as the model uses a
tripolar grid, which solves the singularity at the North Pole. However, we only consider results south of
70°N as is done for OFES, to be able to compare the NEMO and OFES simulations. The tripolar grid makes
interpolation and calculation of the particle trajectories more difficult, but this is recently made possible
(Delandmeter & van Sebille, 2019). The results of the analysis from NEMO can be found in the supporting
information.

The spatial resolution of the OFES and NEMO models is high enough to resolve mesoscale eddies. The
eddies are important to realistically resolve the dynamics of the ocean currents. For example, the 0.1° is seen
as a threshold to realistically simulate the seperation location and other features of the Gulf Stream (Hecht
& Smith, 2013). Moreover, eddies are important for the transport of dinocysts, as is the case for the trans-
port of heat (Volkov et al., 2008), salt (McWilliams et al., 2014), and floating particles at the surface (such as
microplastics; Fraser et al., 2018). Furthermore, the temporal resolution of the OFES and NEMO model out-
puts is high enough to calculate the particle trajectories within the flow field. To apply a three-dimensional
Lagrangian tracking method, the output of the model results must be of high enough temporal resolution
(at least 9-daily for ~0.1° horizontal resolution Qin et al., 2014).

2.2. Particle Tracking and Analysis

Parcels version 1.0.4 (Lange & Sebille, 2017) is used to release virtual particles at the bottom of the OGCM
and calculate their trajectories back in time (https://zenodo.org/record/1402023). Parcels computes the
trajectories by

t+At
Xt + AL = X(0) + / ¥, 1)dr + C (2) A, 1)
t

where X(t) the three-dimensional position of a particle at time ¢, ¥(¥, t) the flow velocity at location X and
time ¢, C (z) is the sinking velocity, and z the vertical coordinate. We add the sinking velocity to the vertical
velocity field (obtained from the ocean model) to make sure that the particles sink to the bottom while
passively advected. Coriolis and inertial effects on the particles are small and neglected (Monroy et al., 2017).
Moreover, it is essential that the flow field is three-dimensional (i.e., also includes the vertical velocity),
because the sinking speed of particles can be of comparable magnitude to the vertical velocity. We release the
particles at the bottom of the ocean. This allows us to compare these particles directly to surface sediment
sample data. Therefore, we use At < 0, such that the particles are tracked back in time.

To analyze the trajectories of the sinking particles in physical space and the probability that particles move
from some location at the surface to some other location at the bottom of the ocean, we use a surface-bottom
‘transportation’ matrix (7). The bottom of the ocean Y is divided into the boxes {B; }ﬁi , and the surface of

the ocean (or any other horizontal layer within the ocean) Z is divided into the boxes {U} 7 , (see Figure 1).
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Particles are released at the bottom of the ocean at uniformly distributed
Surface locations and every 5 days. The probability that a particle, which is ini-
U z tialized at the bottom in any box B;, reaches the surface in box U within

/ m B/ the total time period considered is calculated according to

Bottom

#y:yeBand T(y) € U;}
v #{y: y€ B} '

Here T(y) : Y — Z maps a particle y, which is released at the bottom
°N to the surface box where the cyst once formed at the surface. Hence,

©)

Figure 1. Illustration of the surface-bottom transportation matrix. The

P; estimates the probability that a particle that is measured in box B; at

; °E the bottom comes from box U; at the surface where it once formed. This

matrix allows us to investigate the validity of the assumption that parti-

transportation matrix contains the probabilities that a particle that is found ~ cles sink vertically to the bottom up to a degree of uncertainty, which is
in bottom box B; came from box Uj at the surface, for all (i, ). determined by the size of the boxes. Moreover, we can quantify the ocean

surface area that is spanned by a sediment sample site in any bottom box
by summing over the surface area of the connected surface boxes, which also depends on the choice of the
box size. Here, we release particles ata 1 ° x 1° grid at the ocean floor every 5 days for 6 years (~107 particles
in total) and use 2° x 2° boxes for the bottom and surface boxes of the transportation matrix.

Although this particle tracking method could be applied to any sinking particle, to set an example, we
specifically track sinking dinocysts in this paper. This requires the incorporation of some dinocyst-specific
assumptions and boundary conditions. Before dinoflagellates form their cyst, they are active swimmers with
velocities compared to the speed of the currents (Smayda, 2002). This means that dinoflagellates can main-
tain their position in surface waters with, for them, favorable conditions. However, if the dinoflagellates
form their cyst at the “encystment location,” they lose their mobility and start sinking. For this reason, we
track the particles back in time until they reach their encystment location. As an encystment location we
generally choose the location where the particles first reach a depth of 10 m in the back trajectory calcula-
tion. Although not much is known about the exact encystment depths of the species, it is often assumed to
be at the surface. In order to investigate the dependence of the model results to our choice of encystment
depth, we perform a simulation with an encystment depth down to 100 m (see the Figures S7 and S8 of
the supporting information), but the sensitivity of the results to encystment depths was found to be much
smaller than the sensitivity to sinking speeds.

Choosing a realistic sinking speed is not straightforward. Once formed, dinocysts tend to behave like fine
silt particles (Dale, 1976) and sink with a velocity in the order of 6-11 m/day based on the specific density,
shape, and buoyancy measurements of several cyst species with fresh cell contents (Anderson et al., 1985;
without fresh cell contents, the cysts could be lighter and sink slower). The formation of aggregates can
significantly enhance sinking speeds of particles, which reduces the AB. Aggregates can form either by bind-
ing of particles, often with help of sticky substances such as transparent exopolymer particles (Azetsu-Scott
& Passow, 2004; Bach et al., 2016), or via fecal pelletting. Moreover, aggregate sizes could change within
the water column while sinking (Jokulsdottir & Archer, 2016). Particulate organic carbon export flux and
flux efficiency (flux relative to surface water primary production) is varying spatially (Tang et al., 2019) due
to varying ballasting effect of lithogenic particles (Rixen et al., 2019), or variations in particle composition
(Schmidt et al., 2014). Although there is a strong bias of larger, fast-sinking particles contributing to the par-
ticulate organic carbon that reaches the seafloor (Riley et al., 2012), because the sinking speed and particle
size reduce the biomineralization process along the sinking trajectory, it was shown that at several locations,
both marine snow (Alldredge et al., 1998) and aggregates (Mudie, 1996) are devoid of dinocysts. This may
be because of two reasons. First, it was suggested that zooplankton select against dinocysts for their lack of
nutritional value (Montresor et al., 2003). Second, formation of large particles is the consequence of surface
water primary production peaks (Schmidt et al., 2014). It is unlikely that these dinoflaggelates encyst dur-
ing these primary production peaks, since they reproduce asexually when plenty of nutrients are available
and return to dormancy when conditions worsen. As a result, encystment will occur at times when surface
water primary production is low, and particles avoid the fast-track to the sea bottom in large particles. This
was clearly demonstrated for sediment trap studies in the Arabian Sea, where dinocyst flux was highest in
low primary production seasons (Pospelova et al., 2018). However, whether dinocysts sink as being part of
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marine snow could be species specific, as was shown in areas with exceptionally high cyst fluxes (~50,000
cysts per square meter per day; Bringué et al., 2018, 2019).

All in all, we conclude that it is unlikely that dinocyst sink via large aggregates, but it remains challenging
to realistically and adequately incorporate the observations on sinking speeds into our simulations. In order
to evaluate the effect of sinking speed assumptions on the AB, we perform a sensitivity test by which we
simulate particle transport under a suite of realistic constant sinking speeds of both individually sinking
dinocysts (Anderson et al., 1985) and aggregates (Berelson, 2002). Moreover, aggregates seem to increase
sinking speed with water depth (Berelson, 2002), probably due to increasing size and mass of the aggregates,
and decrease of buoyancy. In order to investigate this scenario, we also perform two simulations (SC1 and
SC2) where we make the sinking speed C(z) of a particle dependent on the depth of the particle (z), as
follows: In SC1, the sinking speed is 6 m/day between 10- and 100-m depths and increases linearly between
100 and 2,000 m up to 45 m/day. SC2 is similar to SC1, but the sinking speed increases further between
2,000- and 3,500-m depths up to 65 m/day. So the sinking speed in SC1 and SC2 are respectively defined as

6 10m < z < 100m
C, @ =1 6+ 010 150 <7 <2.000m |
45 Z>2,000m
6 10m < z < 100m
#5-6)2-100
& =]t S, 100m<z<2,000m
2 45 + ©=8@2000 5 G000 2 <3 500m
35,00—-2,000 ’ = 9
65 z>3,500m

The sensitivity study provides ways to portray the bias effect for various sinking speeds, making our simu-
lations applicable to any particle. We apply SC2 as the most plausible sinking speed scenario for dinocysts.
A constant sinking velocity of 6 m/day (see Figures S1, S3, and S5-S9 of the supporting information) is con-
sidered as an upper bound of the magnitude of the lateral particle transport, because the lateral particle
transport is expected to decrease if the sinking speed increases and 6 m/day is the lower bound of individ-
ually sinking cysts (Anderson et al., 1985). The sinking scenarios ignore any seasonal dependence of the
sinking speed and the dinocyst productivity.

Once the virtual dinocysts are tracked with a certain sinking scenario and encystment depth, the AB has to
be determined. The ocean surface water conditions where the cysts come from (i.e., where the model sim-
ulates the encystment location) are compared to the environment in the surface waters above the release
location at the bottom (where cysts are found in a sediment sample). We express environmental conditions
at the surface as probability density functions (PDFs). The first PDF is inferred from the values of the envi-
ronmental variable at the surface where the virtual particles first reach the encystment location (10-m water
depth) in the model. This type of PDF is referred to as the “advection PDF” (APDF). The second PDF can
be determined from the environmental variable that evolves in time at the fixed surface location overly-
ing a sample site. This PDF is referred to as the “local PDF at a fixed location” (LPDF; blue in the figures
throughout the paper); see, for example, Figure 2.

In this paper, we use two measures for the AB (AB1 and AB2) between the APDF and the LPDF. AB1 and
AB2 are defined as the difference between tail of the APDF with respectively the LPDF's mean (often used in
quantitative and qualitative methods) or the LPDF's tail (part of the difference between APDF tail to LPDF
mean which is caused by lateral particle transport). We define the tail by the 5th or 95th percentile. Hence,
we use the following measures for temperature AB:

AB1Y*™ = percentile(APDF, 95) — {1 ppp>
AB1%°Y = percentile(APDF, 5) — pi; ppp»

AB2V*™ = percentile(APDF, 95) — percentile(LPDF, 95),
AB2 = percentile(APDF, 5) — percentile(LPDF, 5),

where yppr is the mean and percentile(PDF, k) is the kth percentile of the PDF. The tail of the APDF
informs about the environmental conditions of far-traveled particles. The tails of the APDF are used here asa
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Figure 2. Schematic of the LPDF and APDF for three different oceanographic settings resulting in a different
temperature APDF. (a) Map view. The blue plus represents the location of the sediment sample site. Red, black, and
yellow are the backtracked locations in respectively the first, second, and third oceanographic setting. The contours
show the annual average sea surface temperature. (b) The LPDF and the APDFs of sea surface temperature for the
three backtracking scenarios. In the first oceanographic setting (red, APDF1), all backtracked particles come from a
warmer region, leading to a warm shift of the APDF with respect to the LPDF. The second (black, APDF2) and the
third (yellow, APDF3) oceanographic setting result in, respectively, warm and cold tail with respect to the LPDF. APDF
= advection probability density function; LPDF = local probability density function.

measure of the AB for two reasons. First, because we only model the area where the cysts in a sediment core
could have come from as a result of the transport by ocean flow. In reality, the productivity of dinocysts at
the surface is not uniform in space and time, and the dinocysts do not necessarily originate from the model
predicted locus (e.g., because the ecological preference of the dinocyst does not agree with the model pre-
dicted locus). Therefore, we use the tail to obtain a confidence interval with a lower and an upper bound
of species properties in a sediment sample. Second, transfer functions of modern analogues, which quan-
titatively relate sedimentary dinocyst assemblage data to environmental conditions, are very sensitive to
extreme occurrences (i.e., occurrences of species outside of their typical habitat with low abundance) and
therefore greatly affect the reliability of the proxy (Ohlwein & Wahl, 2012).

3. Results

We first distinguish regions where lateral particle transport is important from those where it is not. Further-
more, we perform a sensitivity analysis on sinking speed to account for uncertainties in our assumptions
on sinking behaviours of dinocysts. Then we show one case study of a specific sediment sample site with a
relatively large AB. Finally, we indicate what kind of implications the particle transport could have for the
interpretation of dinocyst species and their ecological affinities.

3.1. Global Analysis

We first investigate the lateral transport of the particles using the transportation matrix, without considering
the AB of environmental variables. In general, we find a relatively small effect of the particle transport by
currents at shallow water depths (Figure 3). At those areas, most released particles come from the overlying
surface grid box (Figure 3a), a sediment sample relates to a relatively smaller surface area (Figure 3b) and the
average traveled horizontal distance of particles released in the bottom boxes is lower (Figure 3c). Hence, the
assumption that particles sink vertically to the bottom is more plausible in shallow, continental shelf areas.

The lateral particle transport is relatively large in deep ocean basins and further enhanced near strong cur-
rents, such as the western boundary currents and near the Antarctic Circumpolar Current (ACC). The large
surface area (Figure 3b) is horizontally distant from the release location at the bottom at the ACC, because
the ACC strongly transports the particles eastward and the travel distance is large (Figure 3c). On the other
hand, near western boundary currents, the surface area is closer to the release location, because the verti-
cally integrated currents are weaker compared to the ACC. Locations with relatively large lateral (latitudinal)
travel distances that are mapped to a small surface area are rare, because the large travel distances require
strong currents, and strong currents are often accompanied by eddies. These eddies increase the variability
of the direction and strength of transport pathways and therewith the surface area which is mapped to a
bottom box.

Changing the sinking speed assumption for the particles does not affect the geographical structure of where
the lateral transport is important. However, the sinking speed assumption does influence the magnitude of
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Figure 3. Transportation matrix results with 2° x 2° surface and bottom boxes with sinking scenario SC2: Geographic plot (left) and scatterplot against depth of
the bottom boxes (right). (a) The probability that a particle ends up in the same box at the surface as it is released at the bottom (the diagonal of the
transportation matrix). (b) The surface area of all grid boxes at the ocean surface that a bottom box is connected to. (c) The average horizontal distance between
the release location and the backtracked encystment location (averaged for a bottom box). See Figures S5 and S6 of the supporting information for the same
figure with 6 m/day sinking velocity instead of SC2.

the lateral particle transport distance and therefore the magnitude of the potential bias. The lateral particle
transport distance reduces if the sinking speed increases (Figure 4). However, locally the particle transport
distance can still be substantial at higher sinking speeds. The lateral particle transport distance becomes
0 if the sinking speed approaches infinity. Most sites in the core top data set (Zonneveld et al., 2013a) are
relatively close to the coast and therefore in relatively shallow regions. Hence, the particle transport is on
average lower at the sample site locations compared to the global average ocean. The results for the linearly
increasing sinking scenarios (SC1 and SC2) yield similar results, so the increase in sinking speed of SC2
below 3,500-m depth compared to SC1 does not influence the particle transport on average. More impor-
tantly, the horizontal particle transports for SC1 and SC2 are not clearly higher compared to the constant
11-m/day simulation, which indicates that a large part of the transport takes place in deeper than ~344 m
in the 11-m/day simulation (in SC1 and SC2 the sinking speed exceeds 11 m/day at depths z = 344 m). It
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Figure 4. Sensitivity analysis of the results in Figure 3 versus sinking speed. (a) Illustration of the sinking speed
scenario's (with constant sinking speeds and SC1, SC2 with sinking speed dependent on depth), which are used in the
sensitivity analysis on sinking speed (note that the horizontal axis is logarithmic). Boxplots show the 5th, 25th, 75th,
and 95th percentiles around the median of (b) the probability that a particle ends up in the same box at the surface as it
is released at the bottom (diagonal of the transportation matrix), (c) the surface area of all grid boxes at the ocean
surface a bottom box is connected to (including outliers), (d) the average travel distance from a bottom box. For all
defined bottom grid boxes as in Figure 3 in the ocean (blue) and for the locations of present-day surface sediment
samples (orange). The red diamonds are the mean of the distribution.

also means that even under the aggregate sinking speed velocities available from the literature, transport of
dinocysts still plays an important role.

3.2. Temperature and Salinity AB

While the amount of lateral transport of sinking particles can be relevant for a substantial part of the ocean,
the environment is not necessarily different at the location where the cysts are transported from, compared
to the local surface conditions. That is why we will now compare the tails of the temperature/salinity APDFs
with the mean of the temperature/salinity LPDFs: the advection bias (AB1).

The temperature ABI is relatively large (up to +16 °C) in specific regions, such as the western boundary
currents and north of the Southern Ocean (Figure 5), it is smaller (than +2 °C) in other regions, such as near
the equator. For salinity, the AB1 is large (up to +4 PSU; Practical Salinity Unit) in regions with ice melt
and near river outflow regions such as near India and the Amazon, while the AB1 is low (smaller than 0.5
PSU) in the open ocean and away from the strong western boundary currents. Interestingly, not all regions
with large transport effects have a large temperature AB: A strong current does not always lead to a large
AB, such as in parts of the ACC. The relatively low AB is induced in these regions by a lower temperature
or salinity gradient along the transport pathways of the particles, for example, the transport in parts of the
ACC is zonal and the zonal temperature gradient is low.

The southeast of Brazil (at the Uruguayan margin) is an example with large temperature and salinity AB. In
this dynamic region, the northward branch of the ACC (the Malvinas current) and the southward flowing
Brazil Current meet, and locally, large temperature and salinity gradients exist (Matano et al., 2010). The
APDF and also the LPDF therefore have a non-Gaussian shape in this area. As a result, our model simula-
tions predict that a surface sediment sample in this area could contain species which represent SSTs of either
16 °C colder (Figure 5a) or warmer (Figure 5b) compared to the local average (mean of LPDF). Although cyst
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assemblages in higher latitudes naturally include warmer species that exist in summer together with colder
ones from winter, the example, indicates that cyst transport could induce a strong AB here. Another inter-
esting example where the LPDF of temperature has a non-Gaussian shape is the Kuroshio current, because

the path of the current is bimodal (Schmeits & Dijkstra, 2001).

The AB in terms of the difference between the APDF and LPDF tails (AB2) also shows considerable depen-
dence on sinking speed assumptions (Figure 6), for example, comparing the boxplot with sinking speed
6 m/day with SC2 (Figure 6a): It is at 6 m/day very unlikely (below 1% probability) that the sedimentary
dinocysts that are found at an arbitrary location are related to a habitat at the surface 6 °C colder than the
cold tail of the local temperature (LPDF) due to the particle transport, while for SC2 this is 2.5 °C. Hence,

the AB2 reduces quickly if the sinking speed is larger.
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sinking speed (SC1 and SC2 are the two sinking scenarios with increasing sinking speed with depth). Difference of the
(a) 5th and (b) 95th percentiles of the temperature advection probability density function from the same percentile of
the local probability density function. (c, d) The same as (a) and (b) but for salinity. The boxplots show the 1st, 25th,

50th, 75th, and 99th percentiles around the median for all locations (blue) and the dinocyst sample locations in

Zonneveld et al. (2013a; orange).
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The tails of APDFs and LPDFs differ little at about 50% of the locations (up to +0.5 °C or +0.1 PSU for SC2).
At some locations, however, the tails of the APDF could become ~3 °C warmer or colder and ~2.5 PSU
fresher or ~0.5 PSU saltier at SC2. The AB2 for salinity is asymmetric here, because of the backtracking of
particles near outflow regions of rivers: A particle that is released in the ocean could end up in a fresh river
outflow region after backtracking, leading to a strong fresh AB2. On the other hand, a particle that is released
in the river outflow region will likely end up in the same region due to the direction of the current, which
leads to a small AB2. The change in the tails decreases quickly for higher sinking speed at the locations
where the particle transport matters most. Eventually, this change converges toward 0 for all variables and
all locations if the sinking speed increases up to 500 m/day. It is interesting to note that the transport of
currents does not always cause the tail of the PDF to be fatter and can also decrease the tail and result in a
more confined PDF (with a lower kurtosis). In these cases, the spread of an LPDF is large due to a passing
front (such as the Kuroshio current), while the backtracked particles come from a surface location with more
constant properties. Most interestingly, however, the lateral particle transport is not important in regions
where many large aggregates form, although it can be relevant under realistic aggregate sinking scenarios
SC1 and SC2. Hence, it is crucial to get a better understanding for mechanisms and factors that control the
sinking velocity of particles.

To summarize these global results, the importance of the particle transport at a certain location on the sea
floor depends on five factors. First, the water depth at the sample site and second the strength of the current,
which both control the distance that cysts travel before they reach the bottom of the ocean. Third, it is the
horizontal spread of directions a cyst could travel within the flow field, which determines the surface area
at the ocean surface, which is measured at a sample site. Fourth, it is the gradient of the environmental
variable of interest (such as temperature and salinity) along the trajectories that cysts can travel within
the flow field. Fifth, it is the aggregation probability of the microplankton, which influences the sinking
speed. We determined in which regions these factors create the largest AB and the sensitivity of the AB
to the sinking velocity of the cysts. We further conclude that all these factors are important to take into
account when looking at sedimentary microplankton data, also in sediment cores that aim to reconstruct
past oceanograpgic changes. To investigate whether these factors are of importance in the past record, one
could apply the backtracking method to an ocean model, which simulates the past ocean circulation.

In order to test for model dependency of our global results, we also performed the same simulations with the
NEMO model (see Figure S1 through S4 of the supporting information). The model dependency test shows
geographic differences between the simulations, because the exact pathways of ocean currents are model
dependent. These geographical differences induce larger particle transport and larger AB in the NEMO
simulation compared to OFES for the sediment sample site locations. However, the global average of the
particle transport by ocean currents is similar (according to the sensitivity study on sinking speed Figure S2).
Moreover, the general conclusions regarding the global transport of sinking cysts and the AB are similar.

3.3. Case Study in the Southern Ocean

From the global simulations we were able to identify regions where the particle transport is important in
terms of the relation of sedimentary cysts with environmental variables at the surface of the ocean. One of
the regions with important particle transport is the Southern Ocean, because a large part of the Southern
Ocean has a strong AB due to the combination of strong currents and strong latitudinal SST gradients. We
will study how the particle transport can be important for the interpretation of a particular sample site as well
as the global ecological affinity of two specific species: Selenopemphix antarctica and Spiniferitus delicatus.

3.3.1. A Subtropical Southern Ocean Surface Sediment Site

Station 3627 (Zonneveld et al., 2013a; Figure 7) is an example of a Southern Ocean sediment sample site at
almost 5-km water depth. The temperature LPDF at this location, which is computed from the evolution of
SST at the sediment sample location over the six simulated model years, has a unimodal shape. The (blue)
LPDF shows that the SST is 9 + 1.5 °C (the 90% confidence interval around the average, which gives a range
of species properties that could be measured in the sediment sample). Hence, if one assumes that the cysts
sunk vertically to the ocean floor, the sediment sample relates well to the average of the LPDF. Furthermore,
station 3627 is located close to the subtropical front (Orsi et al., 1995) and remote from sea ice and icebergs
(Tournadre et al., 2012).

Moreover, the sediment sample of station 3672 contains a diverse dinocyst assemblage (Figure 7d). Some of
these species are typically abundant in temperate regions similar to the local conditions (but are sometimes
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Figure 7. Example of the particle backtracking for station 3627 (154.91°E and 49.71°S) at approximately 4,730-m
depth. The particles are released at the ocean bottom and tracked back in time with a sinking speed of 6 m/day (red),
11 m/day (green), and 50 m/day (yellow; ~600 particles for each sinking speed scenario). (a) The release location at the
blue cross and in red/green/yellow the locations where the particles reach the encystment location of 10 m. (b) The
probability density functions, which are infered from the evolving temperature at the sea surface location at the station
(during the 6 years of the simulation; local probability density function in blue) and for the sea surface temperatures
when a particle reaches the encystment location after backtracking in the simulation (advection probability density
functions in red/green/yellow). The vertical dashed lines are the probability density function means. (c) Distribution of
the time that particles took to sink (the vertical dashed lines show the median and quartiles). (d) The relative
abundances (%) of species found in the surface sediment at station 3627.

also found in warmer areas), for example, Dalella chathamensis, Impagidinium aculeatum, Impagidinium
paradoxum, and Spiniferitis mirabilis (Zonneveld et al., 2013b). On the other hand, Nemaosphaeropsis
labyrinthus and Pyxidinopsis reticulata are particularly abundant at ocean frontal system localities, and par-
ticularly the subtropical front. Impagidinium pallidum occurs in high abundance in polar regions, although
low abundances in other regions have also been reported (Zonneveld et al., 2013a). Finally, S. antarctica
is only very high in abundance closer to Antarctica south of the polar front and within the sea ice zone
(Prebble et al., 2013; Zonneveld et al., 2013a), has been reported in high abundance in Holocene
polynya-derived drift sediments (Hartman et al., 2018) and is used as proxy for sea ice conditions for the geo-
logic past (Bijl et al., 2018; Houben et al., 2013). However, S. antarctica also occurs in the sediment sample
of station 3627 with 6.1%.

From the local conditions of station 3672, S. antarctica and I. pallidum are not expected in the sediment sam-
ples. However, surface Ekman transport induces northward surface currents, being part of the meridional
overturning circulation (Marshall & Radko, 2003), which could transport particles northward, from across
the ACC. Hence, cold species could be transported from the far south to the site, while warmer species did
not travel far, because of limited southward water transport in the region. When looking at our particle back
trajectory calculations, we note under assumptions of sinking speed that a fraction of the particles come
from colder waters close to Antarctica. The cold tail of the APDF represents this additional input of colder
water species to the site. The 90% confidence interval around the median of the APDF is 1-12 °C (if the
sinking speed is 6 m/day).

These simulations also allow for investigation of the travel time of the particles. The travel time of particles
ending up at station 3672 exceeds 1 year for all particles in the 6- and 11-m/day simulations. Furthermore,
the spread of the travel time between the particles increases if the sinking speed decreases. The spread of the
travel time is induced by the varying vertical velocities of the flow field. This means that seasonal variations
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Figure 8. Selenopemphix antarctica compared to clusters with similar dinocyst assemblages. The clusters are derived
with the k-means algorithm as in Prebble et al. (2013), for the surface sediment samples south of 12°S. (a) Map of the
sediment sample sites and their cluster. (b) Swarm plot of the local temperatures (mean local probability density
function) of the surface sediment samples in specific clusters. (c) The local average temperature versus the cold AB1
(with SC2) for the sediment samples of cluster 2. The color is the relative abundance of S. antarctica in the surface
sediment samples in (b) and (c) (black if the relative abundance is 0).

are averaged out in dinocyst assemblages at this location, on top of the typical mixing of accumulation from
multiple years within the surface sediment sample itself.

3.3.2. Ecological Affinities of Specific Species

The skewness of the APDF in the surface sediment sample of station 3672 is not unique. A mismatch
between dinocyst core top sediment samples and overlying sediment traps is also measured in some other
areas of the Southern Ocean, indicating that lateral transport affects the sediment samples (Harland & Pud-
sey, 1999). The question is whether all samples with cold-water affiliated species have a cold tail in the APDF
(which indicates that these species could have been transported to the sites) or whether these species actu-
ally occur in relatively warm regions with lower abundances. Therefore, we cluster the sediment samples
in the Southern Ocean based on their species constituents and investigate the tailing of the samples' APDFs
in these clusters (Figure 8). We compare the tailing of the APDFs in these clusters to the sea-ice-affiliated S.
antarctica.

We choose to focus on S. antarctica here, because its occurrence in low to moderate abundance north of the
polar front and around New Zealand (Crouch et al., 2010; Prebble et al., 2013) led to questioning of the valid-
ity of S. antarctica as proxy for polar conditions. It was further reported in higher abundance in Pleistocene
glacial deposits offshore New Zealand, which caused quantitative reconstructions using dinocyst-based
modern analogue technique to suggest much colder glacial SSTs for that region than anticipated by SST
reconstructions with foraminifera (Marret et al., 2001). Thus far, these authors have considered S. antarctica
to be part of the in situ, pelagic sedimentary component and have interpreted it to be originating from the
overlying water mass. However, it could be that S. antarctica was actually transported to the site via ocean
currents, from the polar front area.

Prebble et al. (2013) statistically clustered Southern Hemisphere dinocyst assemblages from the surface sed-
iment sample data set into seven clusters. S. antarctica is found in multiple clusters of similar dinocyst
assemblages. S. antarctica dominates cluster 1, which only contains samples in cold areas close to Antarc-
tica. As expected, the AB is lower in cluster 1 compared to other clusters, because the ACC isolates these
sample sites, which prevents southward transport of subtropical species. More interesting are the clusters
which do contain S. antarctica and also consist of sample sites in relatively warm areas (e.g., cluster 2 and
cluster 4). First of all, we note that in clusters 3-5, the stations with S. antarctica come from the stations
with relatively cold LPDF (Figure 8b). If the occurrence of S. antarctica in these sample sites is caused by
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Figure 9. Biasing effects of ocean currents on dinocyst distributions (with SC2). (a) In blue the sediment sample sites
where Selenopemphix antarctica is found, where the color represents the relative abundance (n) of S. antarctica in the
sediment sample. In red a selection of the locations where the virtual particles reached the surface after backtracking
from the sediment sample sites. We have only plotted the surface ocean locations where the temperature was lower
than the nth percentile of the temperature APDF (see Figure 7) associated with the sediment sample site where the
particle was released. Hence the higher n at a site, the larger the part of the cold tail of the APDF is considered. The
ACC location (black line) is determined by the latitude with strongest average flow at every longitude. (b) In blue the
mean of the temperature LPDF of a site against the relative abundance of S. antarctica at the site. In red the (1/2)nth
percentile of the temperature APDF of a site against the relative abundance (n) of the site. (c) Same as (b) but for S.
delicatus and the (100—1/2n)th percentile in order to represent the warm tail of the probability density function.

ACC = Antarctic Circumpolar Current; APDF = advection probability density function; LPDF = local probability
density function.

transport, one expects a relationship between the local temperature and the cold tail of the APDF. This
implies that any site with a relatively high local temperature has either an APDF with a relatively large
cold tail (colder AB1) or a lower relative abundance (or absence) S. antarctica. This is the case in cluster
2 (Figure 8c). To conclude, we see that in most regions a sediment sample site contains relatively more S.
antarctica if (a) the local average temperature is low and/or (b) the cold ABI is large.

These observations support the idea that one could misinterpret the ecological affinity of species with
relating sedimentary cyst assemblages to the directly overlying water. We will further substantiate the quan-
titative effects of this for S. antarctica. We apply the backtracking method at all sites where S. antarctica is
found and only consider the backtracked locations, which belong to the coldest nth percentile associated
with the site (here n is the relative abundance of S. antarctica in the sample; Figure 9a). Under the assump-
tion that the relative abundance scales with the amount of cold backtracked particles, we deduce that the
surface locations where S. antarctica comes from are almost exclusively constrained within or south of the
ACC. It is therefore plausible that S. antarctica at temperate to subtropical sites actually originated from
colder regions and was transported to the sediment sample location. To further illustrate the consequences
of this interpretation, we adjust the SST of each of these sample sites from the mean of the LPDF to the tem-
perature according to their APDF's cold tail (the 1/2nth percentile of the backtracked temperatures). This
approach increases the adjustment of the LPDF according to the amount of cold tailing in the APDF and
the relative abundance of S. antarctica n: The larger the cold tail in the APDF and the lower n, the more the
temperature of that sample location is adjusted. In this approach, we can constrain the temperature range
of S. antarctica occurrence to 0-13 °C instead of the original 0-20 °C (Figure 9b); dominant occurrences
(>20%) even only occur at SSTs between 0 and 5 °C.
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Similarly, we show that the warm species S. delicatus (which is also shown to have affinity with high nutrient
levels Dale et al., 2002) could be a warmer species than previously thought. From the means of the LPDFs
(blue points in Figure 9c) it seems that S. delicatus has some local preference at around 16 °C (Zonneveld et
al., 2013b) and does also occur in low abundances at sites with a much colder temperature in the overlying
waters. Particularly interesting in this case is the suite of samples with overlying waters around 15 °C, and
relative abundances of S. delicatus ranging between 0% and 37%. However, we observe in the same figure
that all sites where S. delicatus is found are related to a temperature APDF, which contains a tail toward
warm regions. Following this logic, and by applying the same approach as for S. antarctica but then for
the warm tails, the temperature affinity range of this dinocyst can be constrained to 17-30 °C instead of
4-30 °C (Figure 9c¢), with a strong affiliation of high (>30%) abundance of S. delicatus to SSTs above 24 °C.
Particularly, the cluster of sample sites with high abundance of S. delicatus at 15 °C has apparently a strong
warm tail: The temperature of all these sample sites was adjusted to above 24 °C. To conclude, both the
APDF tailing of S. antarctica and S.delicatus serve as examples of how the particle tracking method can be
used to suggest ecological affinities of microplankton species taking particle lateral transport into account.
More investigations of specific species of dinocysts and their ecologic affinity can be made available upon
request. For other microplankton groups, slight adjustments of the underlying assumptions need to be made
in order to make this fully applicable.

4. Summary and Discussion

We have investigated how lateral dinocyst transport by ocean currents influence sedimentary signals pre-
served in microfossil assemblages used to reconstruct past climate. Virtual particles are released at the
bottom of the ocean in an OGCM. The particles were tracked back in time, to compute where and at what
kind of surface environment they potentially came from for certain sinking scenarios.

First, we identified locations where the particle transport is low (e.g., shallow and equatorial regions) and
regions with relatively large particle transport (e.g., western boundary currents and ACC). However, even if
we found that the transport of particles is large in space, the environment is not necessarily different from
the local surface environment. The temperature AB is typically large in the proximity of ocean fronts (e.g.,
subtropical front and Labrador current), as well as regions where currents flow meridionally (Gulf Stream).
A sensitivity analysis on the sinking velocity showed that the transport of particles reduces if the sinking
speed increases as expected. In regions with a high degree of aggregate formation, lateral cyst transport
will be limited. However, even under linearly increasing sinking speed assumptions based on sediment trap
measurements, transport has a profound influence on the sedimentary dinocyst assemblage composition.

Next we identified a specific station in a region where the particle transport is important. Particles were
transported from a colder area to the station. The example of dinocyst species S. antarctica at this station
showed that a sediment sample is not always related to the average environment of the surface above it.
Moreover, the extremes of the environment after the backtracking of particles can be important. In the case
of S. antarctica this was the cold extreme of the PDF, which includes the advection of the cysts.

Overall, we conclude that the cyst transport by currents can have an important effect on the sedimentary
dinocyst assemblage composition as a paleoceanographic proxy. If a cyst is found outside of its expected
habitat region, information on the particle transport could suggest whether a cyst actually occurs here (but
perhaps in lower abundance) or whether the cyst was transported to the sediment sample locations. We
recommend five factors to consider when relating micropaleontological data to the overlying surface water
conditions: (1) What was the water depth? (2) Did the microplankton sink through aggregate formation?
(3) Was the site under influence of strong ocean currents? (4) What was the orientation of this current?
(5) Did strong gradients of environmental variables exist near the site? We further recommend for any
microplankton-related data set to take particle transport into account when relating sedimentary data to
oceanography. The particle tracking method provides an opportunity to quantify the probability that these
factors matter at a specific sample location.

In general, the inferred PDFs after the backtracking of particles converged sufficiently fast to one shape and
comprised multiple seasonal cycles. However, the low abundances of species in surface sediment samples
could be related to rare events. Examples of rare events are polynya events (Holland, 2001), marine heat-
waves, or severe storms (Ummenhofer & Meehl, 2017). Future simulations should run sufficiently long to
include strong El Nifio and La Nifia events, which could influence the results. Such variability is averaged
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out in the surface sediment samples but is currently not covered in the model runs. However, the rare occur-
rences have quite profound effects on modern analogue techniques, and therefore, it is important that we
understand how these arrive at the sample site and what their ecological implications are.

We use the tails of the APDF as a measure of AB in this paper. However, different measures of AB could
be applied in future research. It is intuitive to think about the differences of the PDF's higher-order modes
such as the mean or standard deviation, although both are not informative with non-Gaussian PDFs. Fur-
thermore, one could apply a measure which combines differences between the LPDF and the APDF in
terms of all their modes (such as the Wasserstein distance; Ramdas et al., 2017). Then one can investigate
whether the APDF is different from the LPDF, but on the other hand, it is not clear which mode(s) cause
these differences.

No observed data of dinocysts close to the surface exists in the open ocean. Hence, we cannot compare
our model results of lateral transports with measured data. Dinoflagellate data at the surface do exist (e.g.,
Eynaud et al., 1999) and in broad lines these do seem to confirm the overall sedimentary dinocyst biogeog-
raphy, but it is not sufficiently known which cyst type the dinoflagellates form. Hence, we are limited to the
sedimentary dinocyst assemblages.

Similar backtracking methods could be applied to other sinking proxies, such as planktic foraminifera (van
Sebille et al., 2015) and coccoliths. However, it is important to take into account different properties of the
proxy. For example, dinocysts relate directly to the environment at the surface, while another proxy can
be influenced by the environment along a trajectory before sinking, or the productivity of other proxies
in the water column could be different. Moreover, the sinking velocity of another proxy could be different
compared to the sinking velocity of dinocysts. Hence, each microplankton group requires a specific type of
modeling and inclusion of specific boundary conditions.

The results in this paper challenge the conventional transfer function methods. Future work is required to
investigate whether a new type of transfer function, which corrects for lateral transport, could improve the
skill of quantitative paleoceanographic reconstructions.
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