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Abstract

In this paper a retrospective is given on the development of deontic dynamic
logic. It first reviews the basic system PDeL as introduced in 1988, with emphasis
on conceptual issues and technical choices and properties. It then continues with
later developments and applications by ourselves and related work by others. Thus
we will see how contrary-to-duties and free choice permissions are treated, and
how violations can be handled more expressively, including a way of dealing with
red/green states and transitions.

1 The basic system PDeL of Deontic Dynamic Logic

In [2] Alan Ross Anderson proposed a way ofreducingdeontic logic to alethic modal
logic by using an additional ‘propositional constant’V, with the interpretation of indi-
cating a ‘bad’ state-of-affairs (orviolation of some set of rules). The terse treatment
of this idea in [2] is followed by several other papers, and in particular much more
elaborated and explained in [3]. Basically the idea is that obligation toφ is taken to
be equivalent with the statement that the non-fulfillment ofφ implies the bad state-of-
affairsV, with respect to some kind of conditional (in [3] Anderson argues for relevant
implication, but in the modern literature on deontic logic often strict implication in the
sense of necessary implication in a modal logic is taken to be the conditional employed
in Anderson’s reduction.) By adhering to the standard equivalences/ definitions for
prohibition (forbidden is equivalent with obligated to not) and permission (permitted
is not forbidden), we obtain also a similar reducing expression for prohibition:φ is
forbidden if and only if the truth ofφ implies the bad stateV (with respect to the same
choice of conditional).

Inspired by this as well as the fact that there were a lot of problems with Anderson’s
reduction in the sense of undesirable consequences (theorems in the logic), mostly
referred to by the term ‘paradoxes’, cf. [28], in [29] a reduction to dynamic logic instead
of to alethic modal logic is proposed, resulting in the system PDeL, which will be
described below. The idea is very simple. First of all, it is made explicit now that we
are talking about (performing)actions. (In much of the literature including the seminal
work by Von Wright ([44]) and Anderson this is not really clear and a bit confused. One
uses propositions, but often chooses examples involving the performance of actions or
‘acts’.) An action is taken to be forbidden if and only if performance of the action leads
to violation (the bad state). In (Propositional) Dynamic Logic this is written as:

Fα = [α]V
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The expression [α]φmeansinformally that after execution of the actionα it holds that
φ. Then permission is, as usual, defined as ‘not forbidden’ and obligation as ‘forbidden
not’. The former just is expressed as

Pα = ¬Fα

The latter presents us with a problem since now we need the negation of an action (here
denoted by an overbar):

Oα = Fα

Action negation in the context of dynamic logic is by no means a trivial matter. As
pointed out by Broersen [9] there are various different possibilities to give semantics of
action negation, the most straight-forward being taking the complement of the relation
associated with performing the action. However, for various reasons, Meyer chose
a more complicated interpretation of action negation in his original paper [29], the
main reasons being twofold: firstly, Meyer wanted to allow the negation of an atomic
action a to contain/ involve a different actionb with the same effect asa. So the
complement is taken with respect to a set of actionnamesrather than actions viewed
as state transformations. This view may be controversial. The second reason for not
using the straight-forward complement has to do with sequences of actions. We use
the operator ’;’ for concatenation of (sequences of) actions:α1;α2 meaning the action
α1 followed by the actionα2. To get intuitive properties for the deontic operators
regarding sequencesα1;α2, at least as argued in [29], action negation should satisfy the
property:α1;α2 = α1+(α1;α2), where ’+’ stands for the nondeterministic choice. This
ensuredthe desirable propertyO(α1;α2) ↔ Oα1 ∧ [α1]O(α2). The formal treatment
of action negation in this fashion yields an already complicated semantics involving
infinite traces of sets of atomic actions (so-called s-sets or synchronicity sets, indicating
that the elements of these sets are performed at the same time (in parallel)). In the
approach also a parallel operator & is used with intersection as interpretation.

The way this semantics can be best viewed is as action formulas yielding a specifi-
cation of possible ways of performing actions. So, an atomic actiona states that in the
course of action that follows, the next step contains at least the actiona being brought
about. A parallel action specifies that the parallel components are to be brought about
together (in parallel). A choice states that one of the components is to be performed.
And a negation says that whatever is about to happen (be performed), it is not the action
specified. This is captured by the following formal semantics. We use the following
semantical ingredients:

Firstly, we have steps (or s-sets), which are non-empty sets of atomic actions (in-
formally denoting a collection of atomic actions to be performed together in one step).
Furthermore we have s-traces or just traces, which are infinite sequences of steps.
These denote possible behaviors that occur by performing actions. Since we have non-
deterministic actions in our language, we need sets of traces as denotations of actions,
see below.

In the following, U stands for the powerset of steps (excluding the empty s-set),
representing a completely arbitrary step,· stands for concatenation on sequences (lifted
to setsof sequences in the usual manner, cf. [6]), andSω stands for an infinite sequence
of setsS. We now obtain the following interpretation that we will call trace semantics.

John-Jules Meyer

64



∗ [[ a ]] traces= {S | a ∈ S} · Uω

∗ [[ α + β ]] traces= [[ α ]] traces∪ [[ β ]] traces

∗ [[ α&β ]] traces= [[ α ]] traces∩ [[ β ]] traces

The first of these clauses expresses that the trace semantics of an actiona consists
of the sequences that start with a step containinga, followed by an infinite number
of arbitrary steps. The idea being that this trace semantics ofa denotes that we start
with at least doinga followed by something completely arbitrary into infinity. The
second and third clause express that ’+’ should be interpreted as a choice (represented
mathematically by a set-theoretical union) and ’&’ as a ’parallel’ operator, represented
by set-theoretical intersection.

However, this semantics yields only infinite traces, where from some point onwards
anything may happen, i.e. the action(s) to be performed in those steps is/are not spec-
ified. Although the use of such infinite traces renders the above semantics relatively
easy, it is not the end of the story. First of all, we need also the semantics of sequential
compositionα; β. If we would just define [[α; β ]] traces= [[ α ]] traces· [[ β ]] traces, we would
in effect get that [[α; β ]] traces= [[ α ]] traces, since all traces in [[α ]] tracesare infinite, and
thus concatenating something behind it will have no effect. This is obviously not what
we want!

The semantics of negation is given by the following algebraic equalities:

∗ α = α

∗ α1;α2 = α1 + (α1;α2)

∗ α1 + α2 = α1&α2

∗ α1&α2 = α1 + α2

∗ (a;b)&(c; d) = (a&c); (b&d), for atomic (or negated atomic) actionsa,b,c,d.

together with some distributive laws (as familiar in process algebra [5]) we omit here.
By employing these algebraic equations as a term rewriting system [8] we can see

that we can write any term with any number of negations in a normal form, consisting
of unions of sequences of (negated) action atoms and ending withUω. These normal
forms will be used to specify whether dynamic logic properties hold.

To this end, first, we need to determine where we will test logical conditions. In
standard PDL this is easy: at the end of a trace. However, here all traces are infinite, so
this will not work. Moreover, we want of course to test properties at a point where it is
significant. For example if we specify behaviour by considering an actiona;b, where
a andb are atomic actions, in the semantics we get sets of infinite traces where the first
two steps contain executions ofa andb, respectively. So we want to know what is true
after these two initial steps. To this end we define the notion of significant parts of trace
sets. LetTracesstand for the set of all (s-) traces.

Given a setT of s-traces, we define a prefixt′ of t ∈ T significantiff

1. t′ · t ∈ T for all t ∈ Traces
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2. no proper prefix oft′ enjoys the property mentioned in 1.

We denote the set of significant (finite) traces inT asSig(T).
We now define the semantics of actions:

[[ α ]] Sig(s)= Sig( [[ α ]] traces(s))

for all statess. (Here we assume that on the righthandsideα is in normal form.) Infor-
mally, this says that the ‘significant’ semantics of an action is the significant part of its
trace semantics. So, for example, for an atomic actiona, [[ a ]] Sig(s)= {S | a ∈ S}.

Perhaps one wonders why this semantics is state-dependent. This is defined in this
general way so as to accommodate conditional actions of the kind

if condition thenα elseβ

as well. Obviously, in general for conditional actions of this kind, the traces produced
will depend on the state. Here we will not go into this further.

By the way, we are now also in a position to solve the problem with the semantics
of sequential composition, since now we define:

[[ α; β ]] traces= [[ α ]] Sig · [[ β ]] traces

(Note that this has as a consequence that we obtain: [[α; β ]] Sig = [[ α ]] Sig · [[ β ]] Sig.)
Next, we have to look at the changes actions bring about. To this end we consider a

state transition semantics for actions, which we base on the trace semantics on the one
hand and the effect that the execution of an s-set has on the other hand. We assume a
functionR : U → (W→ W), whereU is the set of all steps again, andW is the set of
states (worlds), yielding for each step and each state the state the step leads to (so we
assume steps to be deterministic, but this is not an essential assumption). To be able
to give a state transition semantics to traces and sets of traces we lift the functionR as
follows: for t1, t2 ∈ Traces,

R(t1 · t2) = R(t2) ◦ R(t1)

where◦ stands for function composition, and, for trace setT and states,

R(T)(s)= {s′ | s′ = R(t)(s) for somet ∈ T}

Finally, we obtain our definite semantics of actions by collecting the states resulting
after significant parts of traces: for all statess,

[[ α ]] ( s)= R( [[ α ]] Sig(s))(s)

We are now ready to give an appropriate interpretation of formulas in our logic.
Apart from the clauses for the atoms and propositional connectives we have the fol-
lowing (non-standard) interpretation of the box operator:

M, s |= [α]φ ⇔ ∀s′ ∈ [[ α ]] ( s) : M, s′ |= φ
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With this semantics the following formulas become valid with respectto the deontic
operators (where sometimes the actionsα1 andα2 have to satisfy certain constraints,
having to do with significant parts, which we leave out here, for convenience, but cf.
[29]): (here〈α〉φ = ¬[α]¬φ is the dual of the box operator.)

F(α1;α2)↔ [α1]Fα2

F(α1 + α2)↔ Fα1 ∧ Fα2

Fα1 ∨ Fα2→ F(α1&α2)

O(α1;α2)↔ Oα1 ∧ [α1]O(α2)

Oα1 ∨Oα2→ O(α1 + α2)

O(α1&α2)↔ Oα1 ∧Oα2

P(α1;α2)↔ 〈α1〉Pα2

P(α1 + α2)↔ Pα1 ∨ Pα2

P(α1&α2)→ Pα1 ∧ Pα2

Pα↔ 〈α〉¬V

Pα↔ ¬Oα

To get an intuitive grasp of these formulas, I explain the first three: the first one says
that a sequence of two actions is forbidden if and only if doing the first action of the
sequence leads to the fact that the second is forbidden. The second says that a choice of
actions is forbidden iffboth choices are forbidden. The third says that a joint/ parallel
execution of two actions is forbidden if at least one of the actions is forbidden.

Remark. Note that the incorporation of the functionSig renders the logic non-
standard, and less elegant and familiar than standard dynamic logic. So, for example,
even a standard validity in PDL such as [α+β]φ ↔ [α]φ ∧ [β]φ does not hold any more
without special constraints on the actionα andβ, as was already noted in [29]. This
has to do with the aspect of significant parts. For example takeα = a andβ = a, for
someatomic actiona. Then [[α + β ]] traces = Uω, of which the significant part is the
empty sequenceǫ of s-sets, so [[α + β ]] Sig = {ǫ}, and [α+ β]φ ↔ φ. On the other hand,
in general [a]φ∧ [a]φ is not equivalent withφ, as can be seen by considering an action
a for which it holds that time increases with 1 unit for both executinga anda. Then
both,under the condition thatt = t0, [a](t = t0+ 1) and [a](t = t0+ 1) but of course not
t = t0 + 1 before the actions are executed.

On the other hand, leaving out the aspects of significance from the above semantics,
thus rendering a more traditional form of dynamic logic, is - in general - not adequate
either since it has some very undesirable properties as has been shown in [30] and more
recently in [4]. Because the full logic PDeL is so intricate, it is therefore no surprise
that in later work often (e.g. in [21]) restrictions to the language are adhered to, where
action negation is less problematic (e.g. only allowing for action literals, i.e. atomic
actions and their negations).

From a logical view, it would be very elegant and tempting to consider the whole
action language in the logic and stipulate that terms that are equivalent in the algebra
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can be substituted for each other into logical formulas, salvaveritate. But, indeed, this
leads to very undesirable things, such as the ones shown in [4], where this approach is
taken (and erroneously assumed to be also the approach taken in PDeL!). For example,
as was shown in [30], since it holds thata = (a+ (a;b)) in the algebra, using the ‘naive
rule’ of substitution, we get thatFa ↔ (Fa ∧ F(a;b)), which impliesFa → F(a;b),
which is only allowable under a very strict reading of forbidden: if it is forbidden to do
anything beginning with atomic actiona, then it also forbidden to do anything starting
with a (and then something else starting with ab). But, in general this should not be
a validity, we think. (It depends on the actionb whether a violation occurring after
performance ofa is maintained afterb.)

The complication in the logic thus stems from a form of significance (called ‘rel-
evance’ in [29]) that should be taken into account. In the algebraa stands for any
sequence of actions that at least begins with the execution of an s-set containinga,
followed by arbitrary s-sets. As we explained above, this is done to give a manageable
account of negation. So naturally the denotation ofa;b is included in that ofa, but as
to the issue of signaling a violation after doing action a, the point of when exactly the
violation occurs becomes significant, which is not yet captured by the action algebra
per se. So this must be added separately in the semantics of the logic. So, in this se-
mantics both the action algebra and the significance functionSigw.r.t. the moment of
when a formula (violation) becomes true must be taken into account.

In short, [4] thus shows what happens if the algebra of actions (used for dealing
with action negation) is used as a basis for PDeL without taking the notion of signifi-
cance into account, and in particular the price to be paid for this simplification becomes
apparent: apart from a new paradox mentioned above (which perhaps may be lived with
in view of a particular application), it is shown that one cannot treat contrary-to-duties
(CTD) properly anymore, and the addition of a dynamic variant of the D axiom yields
that no possible action is forbidden! In a way it also shows that this approach resembles
classical SDL more closely, which is quite interesting in itself.

2 Later developments

After the publication of [29], in which the basic dynamic deontic logic PDeL was
proposed, Meyer and colleagues have worked on various extensions of dynamic deontic
logic as well as applications in computer science, especially the theory of databases and
information systems, more in general.

We discuss here a number of these further developments.
In [1] the dynamic deontic logic PDeL is combined with Anderson’s reduction

so as to obtain a logic for both ought-to-do and ought-to-be constraints. After making
plausible that ought-to-be constraints are not reducible to ought-to-do ones, in the paper
it is shown that the two separate frameworks actually merge well, and that the SDL part,
although perhaps (too) simplistic, and not capable of representing difficult scenarios
such as contrary-to-duties (like the Chisholm set) in an adequate way, it does provide
a simple and useful logic to reason about obligations viewed as what happens in ideal
worlds. In the integrated model it also becomes possible to prove the earlier informal
attempts of reducing ought-to-be to ought-to-do to be false.
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Speaking about contrary-to-duties and the Chisholm set in particular. This has
obtained much attention in the deontic logic literature. This is about the following
scenario:

∗ You ought to go to the party

∗ If you go to the party, you ought to tell you are coming

∗ If you do not go, you ought not to tell you are coming

∗ You do not go to the party

In [32, 34] a possible solution is offered in the framework of PDeL. In fact, since
in PDeL one can express actions more properly including their ordering in time (do a
first, followed by b), one can now distinguish between three versions of the Chisholm
set, which are called the ‘forward’, the ‘parallel’, and the ‘backward’ version.

Forward version of Chisholm set

∗ it is obligatory to doα

∗ if you doα, you have to doβ afterwards

∗ if you do not doα, you have to refrain from doingβ

Parallel version of Chisholm set

∗ it is obligatory to doα

∗ you have to doβ while α is being done

∗ if you do not doα, you have to refrain from doingβ

Backward version of Chisholm set

∗ it is obligatory to doα

∗ if you doα, you have to doβ first (i.e., beforeα)

∗ if you do not doα, you have to refrain from doingβ (first)

In fact, what is here called the parallel version of the Chisholm set, is very much
related to the Forrester set [24]:

∗ it is obligatory not to kill

∗ if you kill, you should do it gently (of course, at the same time as the killing)
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It is shown in [32, 34] that all of these can be represented in PDeL,if one allows for
multiple distinct violation atoms signaling violations of particular norms. One might
object, though, that the fourth premise of the Chisholm set cannot be represented in
PDeL. That is because dynamic logic comes down to hypothetical reasoning in the
sense that if an action takes place such and so is the result. It cannot express that an
action is actually performed.

A related issue is addressed in [20]. Here it is observed that in the PDeL approach,
an action that is performed in a violation state and does not change this state is forbid-
den in the strict sense of the logic. Of course, one can mitigate this by a more careful
representation using multiple violation atoms, so that it is clear that the reason why
the action is forbidden is a violation of an earlier norm (which is not restored). But
one can also give a more careful analysis by distinguishing notions of prohibition and
permission taking the status of violation change into account. So, for example, an ac-
tion taking a non-violation state to a violation state is called forbidden in the sense of
a deontic deterioration, and such an action is called deontically undesirable. On the
other hand an action that removes a violation is permitted in the sense of causing a
deontic improvement, and the action is called deontically desirable. In the two other
cases leaving the (non)violation state intact, the action at hand is called deontically
indifferent. So formally we define:

F−(α) = ¬Violation∧ [α]Violation

P∼(α) = ¬Violation∧ [α]¬Violation

F∼(α) = Violation∧ [α]Violation

P+(α) = Violation∧ [α]¬Violation

So, in a way this is a shift from just looking at the deontic status of the end state
after performing an action to a consideration of the change of deontic status that the
action brings about. The paper shows that, especially if one also uses multiple violation
atoms (annotated with the norm violated), one is now able to reason about contrary-
to-duty scenarios such as the Chisholm set, the Forrester paradox and the Reykjavik
scenario in a more refined way without resorting (yet) to such sophisticated means as
nonmonotonic reasoning techniques! (cf. [38])

The approach taken in [20] modifies the simple perspective of Meyer’s original
PDeL [Mey88], where the deontic status of an action is determined only by the deontic
status of the end state after the action has been performed. Later work has refined this
perspective further. Ron van der Meyden [36] observed that it gave rise to paradoxical
results when, for instance, looking at (complex) actions having intermediary states that
are deontically bad but ending up eventually with states that are deontically good. Since
original PDeL only looks at the end state, something like killing the president and then
doing something harmless is still permitted. (“The end justifies the means”.) This is
reflected in the validity of

〈α〉P(β)→ P(α;β)

“If, after killing of the president, it is permitted to open the door, it is permitted to
kill the president and open the door”. So Van der Meyden came up with a more so-
phisticated ‘process-based’ dynamic logic for permission to deal with these situations
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properly. His models contain not only permitted (or ‘green’) one-stepstate transitions
but also trajectories or sequences of state transitions that are permitted (‘green’): such
a trajectory is green if all one-step transitions occurring in it are designated green by
the model. Next he introduces a formulâ(α, p), stating thatp holds after some green
trajectory in the execution of actionα, andπ(α, p), stating that all trajectories in the
execution ofα satisfying the formulap are green, expressing the free choice of the
agent to choose among these ways of executingα.

In a similar vein work by Carmo and Jones [12] distinguish both ideal/sub-ideal
states and transitions, and later Sergot & Craven [35, 13] incorporate green/red states
as well as green/red transitions, thus rendering a more refined treatment of deontically
good and bad behavior. The latter comprises a deontic extension of the action logic
C+ of Giunchiglia et al. [14], designed for specifying and reasoning about the effects
of actions and the persistence of facts over time. (So this is a language for defining
certain classes of theories in anonmonotonicformalism called ‘causal theories’.) This
language is used to describe a labelled transition system and the deontic component
provides a means of specifying the deontic status (permitted/acceptable/legal/green) of
states and transitions. It features the so called green-green-green (ggg) constraint: a
green transition in a green state always leads to a green state. Or, equivalently, any
transition from a green state to a red state must itself be red!

Other work extending PDeL concerns the so-called paradox of free choice permis-
sion [37]. In standard PDeL (as in SDL) one has a validity regarding permission read
as follows:

Pα→ P(α+ β)

for any actionsα andβ. (Here+ stands for the choice operator.) So this says in words,
for instance, that if one is permitted to post the letter then one is also permitted to post
the letter or burn it. In PDeL the choice should be read as imposed rather than free:
the agent is not allowed to choose for him/herself! If one would like to express a free
choice permission, we should have something like a strong permission operatorPs such
thatPsα expresses that the agent is allowed to choose any possible way of performing
the actionα. Formally, Psα = [α]¬Violation. Such an operator would not have a
property as stated above for permission, but instead enjoy a property

Ps(α + β)↔ Psα ∧ Psβ

expressing free choice permission. However, it raises other problems such as e.g. the
validity of Psα → Ps(α&β), where & stands for the concurrent execution operator.
This is counterintuitive in instances like “If one is permitted to fire a gun, one is also
permitted to fire a gun and (while) aim(ing) at the president”. In [21, 20] a solution is
offered based on the notion ofcontexts: one has to specify precisely which context (i.e.,
which set of actions) one considers when talking about all possible ways of performing
an action. In the above example, taking a contextC excluding the action ‘aiming at the
president’, the strong permissionPs( f ire a gunC) now only states that it is permitted
to fire a gun in all possible ways constrained by the contextC, thus excluding doing it
while aiming at the president!

As to applications: in [33] dynamic deontic logic is employed for specifying in-
tegrity constraints in knowledge bases. In particular, attention is paid to deontic con-
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straints of the form

Balance(a,n)∧ ¬V : updatebalance(a,m)∧ n+m< 0→

[update balance(a,m)]V : updatebalance(a,m)

which expresses something like if the bank balance ofa drops below zero (for the first
time) then a violation occurs. In [41] this work is extended and it is explained how de-
ontic integrity constraints are inherited in a taxonomic network of types. The example
given in that paper is the following: if students are permitted to perform certain actions
under certain preconditions, must these preconditions be repeated when specializing
this action for the subtype of graduate students, or are they inherited, and if so, how?
Generally (and trivially), deontic integrity constraints inherit downwards, but in the
paper it is shown that, in practice, integrity constraints may not behave in a common
sense way.

Also, more recently, deontic notions have started playing an important role in the
area of multi-agent systems. Agents are software entities that have autonomous reason-
ing and decision capabilities and decide what action to choose next by themselves [43].
Of course, to keep the multi-agent system as a whole useful for performing the tasks
it is devised for, the autonomous agents in the systems should be constrained in some
way. This can be done by (electronic) institutions or normative elements in the system
more in general (cf. [16]). So, currently there are a number of proposals for specifying
normative systems by means of deontic logic or at least logics with deontic notions in
them like violations and sanctions. Without having the ambition to be complete here,
we mention the approaches in [23] in which a model is presented for organizational
interaction in multi-agent systems and [15] in which a programming language is pro-
posed for programming normative systems. Also there are interesting relations with
(epistemic) update logics [7, 26]. The ideas behind these are directly in line with the
developments on deontic reasoning discussed in this paper, where violation atoms are
employed to signal violation and trigger possible sanctions or repair operations.
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