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Stable pairs with descendents on local surfaces I:
the vertical component

Martijn Kool and Richard P. Thomas

with an Appendix by Aaron Pixton and Don Zagier

Abstract: We study the full stable pair theory — with descendents
— of the Calabi-Yau 3-fold X = KS , where S is a surface with a
smooth canonical divisor C.

By both C∗-localisation and cosection localisation we reduce to
stable pairs supported on thickenings of C indexed by partitions.
We show that only strict partitions contribute, and give a complete
calculation for length-1 partitions. The result is a surprisingly sim-
ple closed product formula for these “vertical” thickenings.

This gives all contributions for the curve classes [C] and 2[C]
(and those which are not an integer multiple of the canonical class).
Here the result verifies, via the descendent-MNOP correspondence,
a conjecture of Maulik-Pandharipande, as well as various results
about the Gromov-Witten theory of S and spin Hurwitz numbers.
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1. Introduction

Let S be a smooth complex projective surface, and let X = Tot(KS) be the
total space of its canonical bundle KS with its natural action of T = C∗ on
the fibres. We use the natural maps

X π S.
ι

For β ∈ H2(S,Z) and χ ∈ Z we let PX := Pχ(X, ι∗β) denote the moduli space
of stable pairs (F, s) on X [PT1] with curve class [F ] = ι∗β and holomorphic
Euler characteristic χ(F ) = χ.

The moduli space PX has a symmetric perfect obstruction theory [PT1],
but is noncompact. The T -action induces one on PX with compact fixed
point locus P T

X . Therefore we can define the stable pair invariants of X via
T -equivariant virtual localisation [GP].1 See Section 2 for a review of the

1We emphasise that in this paper we are concerned with the full stable pair and
Gromov-Witten invariants of X, not their reduced cousins computed in [KT1, KT2].
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details, and for the construction of the descendent insertions

τα(σ) := πP∗
(
π∗
Xσ ∩ chT

α+2(F)
)
∈ H∗

T (PX ,Q)

for α ≥ 0. Here we use σ to denote both a class in H∗(S,Q) and the corre-
sponding class σ⊗1 ∈ H∗

T (X,Q) ∼= H∗(S,Q)⊗Q[t], where t is the equivariant
parameter. The resulting descendent invariants of X live in Q[t, t−1] and are
defined by

(1)

Pχ,β

(
X, τα1(σ1) · · · ταm(σm)

)
:=
∫

[Pχ(X,β)T ]vir

1
e(Nvir)

m∏
j=1

ταj (σj)
∣∣
Pχ(X,β)T .

Many of these invariants vanish:

Theorem 1.1. If S has a reduced, irreducible canonical divisor then

Pχ,β

(
X, τα1(σ1) · · · ταm(σm)

)
= 0

unless β is an integer multiple of the canonical class k and all σi lie in H≤2(S).

More generally one can localise the calculation of Pχ,β

(
X, τα1(σ1) · · ·

ταm(σm)
)

to (thickenings of) a canonical divisor C. In the context of Seiberg-
Witten and Gromov-Witten theory on S this goes back to ideas of Witten,
Taubes and Lee-Parker [LP], formalised in algebraic geometry as Kiem-Li’s
cosection localisation [KL1, KL2, KL3].

So from now on we consider only S with a smooth connected canonical
divisor2 C. Because of Theorem 1.1 we need only work with curve classes
β = dk, d ∈ Z>0, which are integer multiples of the canonical class. We
use cosection localisation to further localise the T -fixed moduli space P T

X to
thickenings of C indexed by partitions λ = (λ0, λ1, . . . , λl−1) with λ0 ≥ . . . ≥
λl−1 > 0 and |λ| =

∑
λi = d. The components3 P T

λC of the localised moduli
space parameterise stable pairs with support λC defined by the ideal sheaf

O(−λ0S) + IC(−λ1S) + I2
C(−λ2S) + . . . + I l−1

C (−λl−1S) + I lC .

Here OX(−S) is the ideal of the zero section of KS , and IC = π∗O(−C) is
the ideal sheaf of π∗C.

2In fact all we require, by the deformation invariance of stable pair and Gromov-
Witten invariants, is that some deformation of S should have such a divisor.

3By convention a component means a union of connected components.



584 Martijn Kool and Richard P. Thomas

Example 1.2. The partition λ = (4, 2, 1) corresponds to the thickening λC
which, transverse to C, looks like

λ0 λ1 λ2
−→ surface−→

fib
re

In fact only strict partitions (λ0 > . . . > λl) like this one contribute.
Theorem 1.3. The integrals (1) can be localised to integrals over the moduli
spaces P T

λC ⊂ Pχ(X, dk) with λ 	 d a strict partition of d = |λ|.
We form the generating function

(2) ZP
dk(X, τα1(σ1) · · · ταm(σm)) :=

∑
χ∈Z

Pχ,dk
(
X, τα1(σ1) · · · ταm(σm)

)
qχ

in Q[t, t−1]((q)), and let

(3) ZP
dk(X, τα1(σ1) · · · ταm(σm))ver

denote the contribution from length-1 partitions λ = (d) in Theorem 1.3.
This is a generating series of integrals over moduli spaces of stable pairs
whose support has ideal IC(−dS). In particular they are contained in π−1(C)
and we call them “vertical”. The main result of this paper is an algorithm
for the computation of (3) (Remark 12.1) and a closed formula when all the
insertions σi are H2 classes. We let Di denote their Poincaré dual classes
(these are any H2(S,Q) classes, not necessarily divisors).
Theorem 1.4. Suppose that S has a smooth irreducible canonical divisor of
genus h = k2 +1. Set Q := −q and |α| := α1 + . . .+αm. Without descendents,
ZP
dk(X)ver equals

(−1)χ(OS)
(

(−1)d

dd−1

)h−1(
Q

d
2 −Q− d

2
)2h−2

d−1∏
i=1

(
(d− i)Q

d
2 − dQ

d
2−i + iQ− d

2

)h−1
.

Adding descendents, ZP
dk(X, τα1(D1) · · · ταm(Dm))ver equals

ZP
dk(X)ver (dt)|α|

m∏
j=1

(dk ·Dj)
(αj + 1)!

Q
d
2 (αj+1) −Q− d

2 (αj+1)(
Q

d
2 −Q− d

2
)αj+1 .
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Remark 1.5. We deduce that ZP
dk(X, τα1(D1) · · · ταm(Dm))ver is invariant

under q ↔ q−1 up to a factor (−1)|α|. In particular we get invariance un-
der q ↔ q−1 for primary insertions. In the cases d = 1, 2 these expressions
calculate the full generating function (2).

The MNOP correspondence [MNOP, PT1] conjectures that the Gromov-
Witten and stable pairs theories of X determine one another.4 This has been
upgraded by Pandharipande-Pixton [PP1, PP2] to a correspondence of full
descendent theories. This descendent-MNOP conjecture is more complicated
than the original MNOP conjecture, involving a certain inexplicit matrix K̃μν .
Pandharipande-Pixton have proved their conjecture in many cases, but not
for the local general type surfaces of this paper. So in Sections 13, 14 we
assume the descendent-MNOP correspondence and apply it to our results.
Firstly this gives (see Theorem 13.4) the obvious vanishing result analogous
to Theorem 1.1 for the Gromov-Witten generating function

(4) ZGW
β (X, τα1(σ1) · · · ταm(σm)) ∈ Q[t, t−1]((u)).

Next we consider the vertical contribution of Theorem 1.4 to the stable pairs
generating function for β = dk. Pushing it through the descendent-MNOP
conjecture we get a contribution to the Gromov-Witten theory which we call

(5) ZGW
dk (X, τα1(D1) · · · ταm(Dm))ver ,

which is the full generating function for d = 1, 2. Its computation has several
applications:

• In Theorem 13.7 we prove that (5) is the product of the generating
function without insertions ZGW

dk (X)ver and a formal Laurent series in
u depending only on d, dk·Dj and the descendence degrees α1, . . . , αm.

• The lowest order term in u of (4) has coefficient the descendent Gromov-
Witten invariant

(6) N •
g,β(S, τα1(σ1) · · · ταm(σm))

of the surface S in genus

(7) g := 1 −
∫
β
c1(S) −m +

m∑
j=1

(
αj + 1

2 deg(σj)
)
.

4While the original MNOP correspondence dealt with Gromov-Witten theory
and DT theory, in this paper we always mean its simpler reformulation in [PT1] in
the language of stable pairs. This is critical when descendents are included, as the
form of the conjecture for DT theory is still unknown.
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Here σj ∈ Hdeg σj (S,Q), and the invariant is zero if (7) is not an inte-
ger. This invariant (6) satisfies the same vanishing as its 3-fold analog
(Corollary 14.2). In the case of no insertions Lee-Parker [LP] proved that
(6) is equal to the degree d unramified spin Hurwitz number of C with
theta characteristic KS |C . This result was proved algebro-geometrically
by Kiem-Li [KL1, KL2].
The spin Hurwitz numbers were recently computed explicitly using
TQFT by Gunningham [Gun]. Our vertical contribution correctly re-
produces the part of his formula corresponding to length-1 partitions
(Corollary 14.3). Again this is the whole thing when d = 1, 2. It is
mysterious how the MNOP conjecture matches up the very different
occurrences of these partitions in the two theories.

• The descendent-MNOP correspondence involves a universal matrix

K̃μν ∈ Q[i, c1, c2, c3]((u)),

where μ, ν run over all partitions and i2 = −1. Proposition 13.6 shows
that for local surfaces with irreducible reduced canonical divisor and
deg σi ≥ 2 we only need to know the specialisation

(8) K̃μν

∣∣∣
c1=t, c2=c3=0

for μ, ν of length one.

In this case writing μ = (a), ν = (b), the specialisation (8) equals

ta−b · fab(u) for some fab(u) ∈ Q[i]((u))

by [PP1]. We conjecture that fab(u) is a Laurent monomial of degree
1−a (Conjecture 14.4). Assuming this we show the fab(u) are uniquely
determined by the fact that the Gromov-Witten generating function
(4) starts in the correct degree. They then uniquely determine the sur-
face invariants (6), confirming (Corollary 14.5) old conjectural formu-
lae of Maulik-Pandharipande [MP]. Maulik-Pandharipande’s formulae
were first proved on the Gromov-Witten side by Kiem-Li [KL1, KL2]
and later J. Lee in symplectic geometry [Lee]. Our calculation via
descendent-MNOP requires a combinatorial identity we found exper-
imentally in Maple and Mathematica, and which is proved in Appendix
by A. Pixton and D. Zagier (Theorem A.1).

Remark 1.6. This paper only considers the vertical component of the zero
locus of the cosection in P T

X . In a sequel [KT4] we calculate the contribution
of the other components in the case of bare curves (i.e. minimal χ, so that



Stable pairs on local surfaces I: vertical 587

the stable pairs have no cokernel or “free points”). This turns out to explain
part of the structure of S. Gunningham’s formula [Gun] from the stable pairs
point of view.

Relations to older work. The results of this paper can be seen as being
precisely orthogonal to the earlier work [KT1, KT2] on reduced classes. There
we also considered stable pair invariants on X = KS for S a surface with holo-
morphic 2-forms: h2,0(S) > 0. But we worked only with effective curve classes
β for which the Noether-Lefschetz locus has the expected codimension h2,0(S).
The standard invariants (Gromov-Witten, stable pairs) therefore vanish, and
we get interesting reduced invariants only by reducing the obstruction bundle
in a canonical way.

Here we study the standard (nonreduced) GW/stable pairs invariants.
These need not vanish for curve classes whose Noether-Lefschetz locus has
the “wrong” codimension. We find the only classes which contribute are mul-
tiples of the canonical class k (whose Noether-Lefschetz locus has codimen-
sion 0).

The papers [KT1, KT2] also focused on the horizontal component of the
moduli space of stable pairs. This is the only component relevant for (suf-
ficiently ample) enumerative problems on S such as Göttsche’s conjecture.
Here the horizontal component does not contribute to the invariants and we
study the vertical component instead. There we derived universality results
but no closed formula. Here we obtain a closed product formula when all in-
sertions come from H2 classes.

Plan. We localise [PX ]vir first to its T -fixed locus, in Section 2, then further to
pairs supported on thickenings of a canonical divisor C in Section 3. This will
be enough to prove Theorem 1.1. The moduli space of T -fixed pairs supported
on a vertically thickened smooth curve C is identified with a nested Hilbert
scheme of C in Section 4. Section 5 expresses the virtual cycle as a cycle
on this nested Hilbert scheme. This is further simplified to an expression on
a single symmetric product Symn0C in Section 6. In Sections 7 and 8 we
see how the virtual normal bundle and descendent integrands simplify on
Symn0C. This allows us to compute the integrals in Sections 9 and 10 and
derive Theorem 1.4. The formulae are rather lengthy and complicated at each
stage, until right at the end they are summed up into a mysteriously simple
closed product formula. This suggests one should work with the generating
series, rather than individual invariants, from the beginning, but we have not
found a way to do this. Finally Sections 13 and 14 discuss applications to the
Gromov-Witten invariants of X and S respectively.
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Notation. Given any map f : A → B we also use f for the induced map
f × idC : A × C → B × C. We suppress various pullback maps for clarity of
exposition. We denote the cohomology class Poincaré dual to a cycle A by
[A]. We use ∨ for derived dual of complexes, and ∗ for the underived dual
Hom( · ,O) of coherent sheaves.

We use the standard conventions for (possibly negative) binomial coeffi-
cients. That is

(9)
(
n

k

)
is defined to be (−1)k

(
k − n− 1

k

)
when n < 0, k ≥ 0,

and it is defined to be zero whenever k < 0 or k > n ≥ 0. The binomial
theorem (1 + x)n =

∑
k≥0
(n
k

)
xk then holds for any n ∈ Z.

2. T -localised stable pair theory

Let PX := Pχ(X, ι∗β) denote the moduli space of stable pairs (F, s) on X. It
is a quasi-projective scheme whose product with X,

PX ×X
πP πX

PX X,

carries a universal sheaf F, section s and universal complex

I• = {O −→ F}.

The action of T on X induces one on PX with respect to which F and I•

are T -equivariant. Since the T -fixed locus

P T
X ⊂ PX

is compact we may use virtual localisation [GP] to define stable pair invariants
of X via residue integrals over the virtual cycle of P T

X .
To describe the virtual cycle, we view stable pairs (F, s) as objects I• :=

{OX
s→ F} of D(X) of trivial determinant as in [PT1]. Then PX acquires a

T -equivariant perfect symmetric obstruction theory [HT, Theorem 4.1]

(10) E• := RHomπP (I•, I•)∨0 [−1] −→ LPX

with obstruction sheaf
ObX := E xt2πP

(I•, I•)0.
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Here ( · )0 denotes trace-free part. By [GP] the T -fixed locus P T
X inherits a

perfect obstruction theory

(11)
(
RHomπP (I•, I•)f0

)∨[−1] −→ LPT
X

with obstruction sheaf (
ObX

∣∣
PT
X

)f
.

Here ( · )f denotes the T -fixed part: the weight-0 part of the complex.
The obstruction theory (11) defines a virtual cycle on P T

X by [BF, LT].
The T -localised invariants of X are defined by integrating insertions against
the cap product of e(Nvir)−1 with this virtual cycle. Here the virtual normal
bundle Nvir = {V0 → V1} is defined to be the part of (10) (dualised and
restricted to P T

X) with nonzero weights, and

e(Nvir) :=
cTtop(V0)
cTtop(V1)

∈ H∗
T (P T

X ,Q) ⊗Q[t] Q[t, t−1] ∼= H∗(P T
X ,Q) ⊗Q Q[t, t−1]

is its T -equivariant virtual Euler class.5 As usual

t := c1(t) ∈ H∗(BT,Q) ∼= Q[t]

denotes the first Chern class of the standard weight-1 representation t of T ,
the generator of the equivariant cohomology of BT .

In this paper we are interested in descendent insertions. The sheaf F is
T -equivariant, so we can consider its T -equivariant Chern classes

chT
i (F) ∈ H∗

T (PX ,Q).

Given any σ ∈ H∗(S,Q), we consider it as lying in H∗
T (X,Q) (or its localiza-

tion at t) by identifying it with the element

(12) σ ⊗ 1 ∈ H∗(S,Q) ⊗Q Q[t] ∼= H∗
T (S,Q) π∗

∼ H∗
T (X,Q).

Then for any integer α ≥ 0, define

(13) τα(σ) := πP∗
(
π∗
Xσ ∩ chT

α+2(F)
)

∈ H∗
T (PX ,Q).

5We may choose the Vi to be T -equivariant vector bundles with no weight-0
parts, so that the cTtop(Vi) are invertible in H∗

T (PT
X ,Q) ⊗Q[t] Q[t, t−1].
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The descendent invariants of X are

Pχ,β

(
X, τα1(σ1) · · · ταm(σm)

)
:=
∫

[Pχ(X,β)T ]vir

1
e(Nvir)

m∏
j=1

ταj (σj)
∣∣
Pχ(X,β)T

in Q[t, t−1].

3. The cosection

Let θ ∈ H0(KS) be a nonzero holomorphic 2-form with zero divisor C. We
construct a natural induced cosection of the obstruction sheaf

(
ObX |PT

X

)f . To
use Serre duality it is convenient to compactify X,

X ⊂ X := P(KS ⊕OS),

and use the projections

PX ×X
πP

π
X

PX X.

The universal stable pair I• = {OPX×X → F} pushes forward to a universal
stable pair

I•
X

:=
{
OPX×X −→ j∗F

}
on PX × X. Since I•

X
is isomorphic to O away from the support of F in X,

and since ωX is also trivial on restriction to X, we see that

RHom
(
I•
X
, I•

X
⊗ ωX

)
0

∼= RHom
(
I•
X
, I•

X

)
0 = j∗RHom

(
I•, I•

)
0 .

Pushing down by πP gives

(14) RHomπP

(
I•
X
, I•

X
⊗ωX

)
0
∼= RHomπP

(
I•
X
, I•

X

)
0 = RHomπP

(
I•, I•

)
0 .

Translation by θ up the KS fibres of X → S defines a vector field vθ
on X, vanishing only on the preimage of C ⊂ S. Translating stable pairs by
vθ defines a vector field Vθ on PX :

(15) Vθ = vθ � At(I•) ∈ Γ
(
E xt1πP

(
I•, I•

)
0
)
.
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Pairing with the obstruction sheaf using (14) defines a map

E xt2πP

(
I•, I•

)
0

Vθ⊗1−→ E xt1πP

(
I•, I•

)
0 ⊗ E xt2πP

(
I•, I•

)
0

∼= E xt1πP

(
I•
X
, I•

X
⊗ ωX

)
0 ⊗ E xt2πP

(
I•
X
, I•

X

)
0(16)

∪−→ E xt3πP

(
I•
X
, I•

X
⊗ ωX

) tr−→ R3πP∗ωX
∼= OPX .

In the last Section we localised to the fixed locus P T
X ⊂ PX . Restricting (16)

to P T
X and taking fixed (weight 0) parts gives a cosection

(17) σθ :
(
ObX

∣∣
PT
X

)f
−→ OPT

X
.

Its zero locus inherits a scheme structure from the cokernel of (17).
Basechange issues6 make it nontrivial to equate the zero scheme of the co-

section σθ with the zero scheme of vector field Vθ (15). The correct formulation
involves restricting Vθ to any subscheme Z ⊂ P T

X by first taking its image in
the sheaf E xt1πP

(I•, I•)0|Z then further restricting to E xt1
πZ
P
(I•|Z×X , I•|Z×X)0,

where πZ
P : Z ×X → Z is the restriction of πP : PX ×X → PX . Equivalently,

but more directly, we just set

(18) Vθ,Z := vθ � At(I•|Z×X) ∈ Γ
(
E xt1πZ

P

(
I•|Z×X , I

•|Z×X

)
0
)
.

It is a PX -vector field on Z (so it need not be tangent to Z).

Lemma 3.1. The zero locus Z(σθ) of the cosection (17) is the largest sub-
scheme Z ⊂ P T

X for which Vθ,Z (18) is identically zero.

Proof. By basechange and the vanishing of the higher (E xtπP )0 s, we have

(19)
(
ObX

∣∣
Z

)f
=
(
E xt2πZ

P
(I•|Z×X , I

•|Z×X)0
)f

,

and the restriction of the cosection (17) to Z is the map

(20) ObX

∣∣f
Z
−→ OZ

given by restricting (16) to Z. It follows that the zero locus Z(σθ) is the
largest Z for which this map vanishes.

6E xt1πP
does not basechange well, but we will be able to use the fact that E xt2πP

does.
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The map (20) is therefore the pairing with the section Vθ,Z (18) of

(21)
(
E xt1πZ

P

(
I•|Z×X , I•|Z×X ⊗ ωX

)
0

)f
.

[Though Vθ has T -weight 1, the identification in the second line of (16) mul-
tiplies by the weight −1 trivialisation of ωX |X , giving a T -fixed section.] But
this pairing makes the coherent sheaf (21) the dual Hom(ObX |fZ ,OZ) of the
sheaf ObX |fZ (19), by relative Serre duality for the map πZ

P , its compatibility
with the T -action, and the vanishing of the other E xt0 s. Therefore Z(σθ) is
the largest Z ⊂ P T

X for which the section Vθ,Z vanishes, as claimed.

From now on we assume C is reduced and irreducible. To describe a
subscheme of P T

X containing the zero scheme of the cosection (17) we need
some notation. For any (finite, 2-dimensional) partition λ = (λ0 ≥ λ1 ≥
· · · ≥ λl−1), we denote by λC ⊂ X the Cohen-Macaulay curve defined by the
T -invariant ideal sheaf

IλC := O(−λ0S) + IC(−λ1S) + I2
C(−λ2S) + . . . + I l−1

C (−λl−1S) + I lC .

Here IC = π∗OS(−C) is the ideal sheaf of π∗C, and O(−S) ∼= K−1
S ⊗ t−1 is

the ideal sheaf of the zero section S ⊂ KS = X.

Example 3.2. The partitions λ = (4, 2, 1) and λ = (3, 3, 1) of 7 give the
following two thickenings λC of total size |λ| =

∑
λi = 7.

4 2 1 3 3 1
−→ surface−→

fib
re

The first is strict: λ0 > λ1 > · · · > λl−1 > 0, while the second is not.

We can slice horizontally instead of vertically. If λt = (μ0, μ1, · · · ) de-
notes the transpose partition, we can think of λC as the curve obtained by
thickening C to order μ0 at T -weight level 0, μ1 at T -weight level −1, etc.:

IλC = Iμ0
C + Iμ1

C (−S) + Iμ2
C (−2S) + . . . + I

μk−1
C (−(k − 1)S) + O(−kS).

In the above Example 3.2, the transposed partitions λt are (3, 2, 1, 1) and
(3, 2, 2) respectively.
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If λ has size |λ| =
∑

λi = d we write λ 	 d. We fix χ throughout this
Section and denote by

PλC := Pχ(λC) ⊂ Pχ(X, d[C])

the moduli space of stable pairs with holomorphic Euler characteristic χ whose
scheme-theoretic support is precisely λC. Since λC is T -invariant, PλC has
a T -action and its fixed locus is a closed subscheme

P T
λC = PλC ∩ Pχ(X, d[C])T .

We will find that the support of stable pairs in the zero locus Z(σθ) of the
cosection have support λC for λ strict.
Proposition 3.3. The zero scheme Z(σθ) of the cosection (17) is nonempty
only if β = d[C] for some d > 0. In this case, it is a closed subscheme of⊔

λ
d strict
P T
λC .

Proof. Let Z := Z(σθ) and let s denote the tautological section of π∗KS

cutting out the zero section S ⊂ X. We use T -invariance to write the ideal
sheaf of the support of F|Z×X in the form

π∗I0 + π∗I1.s + · · · + π∗Ik−1.s
k−1 + (sk),

I0 ⊂ I1 ⊂ · · · ⊂ Ik−1 ⊂ OZ×S ,
(22)

for some integer k > 0.
Let t denote the coordinate on Ct := C. Then pulling back I•|Z×X to

Z × X × Ct and translating by tvθ gives a new family of stable pairs over
Z ×X × Ct whose support is defined by the ideal

(23) π∗I0 + π∗I1.(s− tπ∗θ) + · · · + π∗Ik−1.(s− tπ∗θ)k−1 + ((s− tπ∗θ)k).

Restricting to Spec C[t]/(t2) ⊂ Ct gives a flat family of stable pairs on X
parameterized by Z × Spec C[t]/(t2) whose support has ideal (23) mod t2,

(24)
π∗I0+π∗I1.(s−tπ∗θ)+· · ·+π∗Ik−1.(sk−1−(k−1)tπ∗θsk−2)+(sk−ktπ∗θsk−1).

The corresponding first order deformation of I•|Z×X is classified by its exten-
sion class

Vθ,Z ∈ Ext1
(
I•|Z×X , I•|Z×X

)
0 = Γ

(
E xt1πP |Z (I•|Z×X , I•|Z×X)0

)
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of (18). By Lemma 3.1 this is zero, so the family is trivial. In particular its
support is pulled back from Z×X, so (24) is the same ideal as (22)⊗C[t]/(t2).
That is,

θ · Ii ⊂ Ii−1, ∀i = 1, . . . , k − 1, and θ ∈ Ik−1.

Since C is reduced and irreducible, and each O/Ii is pure, this implies that
each Ii = (θμi) for some integer μi, and that μi+1 ≥ μi−1. Thus we can write
(22) as

(θμ0) + (sθμ1) + · · · + (sk−1θμk−1) + (sk),

where we have suppressed some π∗s for clarity. Rewriting this as

(sλ0) + (θsλ1) + · · · + (θl−1sλl−1) + (θl),

where λ = (λ0, λ1, . . .) is the transpose of the partition (μ0, μ1, . . .), the con-
dition μi + 1 ≥ μi−1 becomes the requirement that λ be strict.

So in Example 3.2 we find that P T
λC contains zeros of the cosection when

λ = (4, 2, 1), but not when λ = (3, 3, 1).
We have only considered the effect of the cosection on the underlying

Cohen-Macaulay support curve of a stable pair, showing it forces it to be of
the form λC with λ strict. The proof also shows that bare curves of this form
(i.e. a stable pair isomorphic to (OλC , 1) with no cokernel of “free points”) lie
in Z(σθ). For more general stable pairs, being in Z(σθ) also imposes conditions
on its cokernel; see the sequel [KT4] for more details.

In this paper we content ourselves with a characterization of vertical com-
ponent of Z(σθ), where λ = (d) has length 1. Here there is no further condition
on the cokernels of stable pairs.

Corollary 3.4. The zero scheme Z(σθ) of the cosection (17) on P T
d[C] has a

component
P T

(d)C := P T
λC , λ = (d).

Proof. The vector field vθ vanishes on π∗C ⊂ X. As a consequence the vector
field Vθ vanishes on P T

(d)C which therefore lies in the zero scheme Z of the
cosection (17). By Proposition 3.3 it is a whole component of Z. (In fact we
will see in Proposition 4.1 it is a disjoint union of connected components.)

Corollary 3.5. Assume S has a reduced, irreducible canonical divisor C.
Then

Pχ,β

(
X, τα1(σ1) · · · ταm(σm)

)
= 0

unless β = dk for some d ∈ Z>0 and all σi lie in H≤2(S).
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Proof. For β not a multiple of dk then Z(σθ) is empty by Proposition 3.3, so
the invariants vanish.

If σ ∈ H≥3(S), we can write σ = [γ] for some cycle γ ∈ H≤1(S) disjoint
from C. Therefore π∗

Xσ∩chT
α+2(F) = 0 over the locus of pairs with support λC,

so the insertions τα(σ) certainly vanish over P T
λC for any strict λ 	 d. Since the

virtual cycle can be cosection localised to this locus, the associated invariants
vanish. This completes the proof of Theorem 1.1 in the Introduction.

4. Nested Hilbert schemes

We now begin the process of describing T -fixed stable pairs — especially those
in the vertical component P T

(d)C of Z(σθ) — more explicitly.

4.1. T -equivariant sheaves on X

Given a T -equivariant coherent sheaf F on X, its pushdown by π : X → S

decomposes into weight spaces:

(25) π∗F =
⊕
i

Fi ⊗ ti,

where Fi is T -fixed so Fi ⊗ ti is the summand of weight i. For instance

(26) π∗OX =
⊕
i≥0

K−i
S ⊗ t−i.

Since π is affine, the pushdown loses no information; we can recover the OX -
module structure on F by describing the action of (26) that (25) carries. This
is generated by the action of the weight −1 piece K−1

S ⊗ t−1, so we find that
the OX -module structure is determined by the map

(27)
⊕
i

Fi ⊗ ti ⊗
(
K−1

S ⊗ t−1) −→⊕
i

Fi ⊗ ti,

which commutes with both the actions of OS and T . That is, (27) is a
T -equivariant map of OS-modules. By T -equivariance, it is a sum of maps

(28) Fi ⊗K−1
S −→ Fi−1.
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4.2. T -equivariant pairs on X

Having described T -equivariant coherent sheaves F on X as graded sheaves
(25) on S with T -equivariant maps (28), we can generate a similar descrip-
tion of T -equivariant pairs (F, s) on X. Here s ∈ H0(F )T is a T -equivariant
section of F .

Applying π∗ to OX
s→ F gives a graded map between (26) and

OS ⊕
(
K−1

S ⊗ t−1) ⊕
(
K−2

S ⊗ t−2) ⊕ · · ·

· · · F1 ⊗ t ⊕ F0 ⊕
(
F−1 ⊗ t−1) ⊕

(
F−2 ⊗ t−2) ⊕ · · · ,

which commutes with the maps (28) along the top and bottom rows. So
writing

(29) Gi := F−i ⊗Ki
S ,

(which is T -fixed) we find the data (F, s) on X is equivalent to the following
data of sheaves and commuting maps on S:

(30) OS OS OS · · ·

· · ·G−1 G0 G1 G2 · · · .

4.3. T -equivariant stable pairs in the vertical component

In Section 4.2 we gave a general description of T -equivariant pairs on X.
Now we restrict attention to T -equivariant stable pairs (F, s) whose scheme
theoretic support is π−1C for some fixed connected smooth curve C ⊂ S.
This will lead to a description of the connected component P T

(d)C of Z(σθ) of
Corollary 3.4. We only consider pairs with proper support, which implies that
there is a maximal d ≥ 0 such that Gd−1 
= 0 in the description (29). (This is
the smallest d such that F is supported on dS ⊂ X.)

Thus F is pushed forward from π−1(C) and OX
s→ F has finite cokernel.

Thus all of the sheaves Gi in (30) are supported on C, the vertical maps
factor through OS → OC , and generically on C the induced maps from OC

are isomorphisms. It follows in particular that G−i is 0-dimensional for i > 0
and so vanishes by purity of F .
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The upshot is that the stable pair is equivalent to a commutative diagram

(31) OC OC OC · · · OC

G0 G1 G2 · · · Gd−1

of OC-modules, with each Gn pure 1-dimensional and each vertical map an
isomorphism away from a finite number of points.

Since C is smooth, it follows that each Gi is a line bundle with section,
that the horizontal maps are all injections, and the diagram is the top two
rows of

(32) OC OC OC · · · OC

O(Z0) O(Z1) O(Z2) · · · O(Zd−1)

OZ0(Z0) OZ1(Z1) OZ2(Z2) · · · OZd−1(Zd−1).

Here the Zi are Cartier divisors on C, and all columns are the obvious short
exact sequences.

4.4. Stable pairs and the nested Hilbert scheme

Thus a T -equivariant stable pair (F, s) with proper support in π−1(C) is
equivalent to a chain of divisors

(33) Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Zd−1 ⊂ C.

Hence it defines a point of the nested Hilbert scheme

C [n], n = (n0, . . . , nd−1),

of length-ni zero-dimensional subschemes Zi of C satisfying the nesting con-
dition (33). Here

χ(F ) =
∑
i≥0

χ(F−i) =
∑
i≥0

χ(Gi ⊗K−i
S |C) =

∑
i≥0

(
χ(K−i

S |C) + ni

)
determines |n| =

∑
ni. When C ∈ |KS | is a canonical curve, we find that

χ(F ) =
∑
i

(
ni − (i + 1)k2),
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where k := c1(KS).
Conversely, a point of the nested Hilbert scheme gives a diagram (32),

which we have noted is equivalent to a T -fixed stable pair on X supported
on π−1(C) ∩ dS. Thus we get a set-theoretic isomorphism

(34) P T
χ,(d)C =

⊔
n
C [n],

where the disjoint union is taken over all n = (n0, . . . , nd−1) whose length |n|
satisfies

(35) χ =
∑
i

(
ni − (i + 1)k2).

Proposition 4.1. The bijection (34) is an isomorphism of schemes.

Proof. We simply notice that the constructions of this Section work equally
well for T -equivariant sheaves and stable pairs on X×B, flat over any base B.

Pushing down by the affine map π : X ×B → S×B gives a graded sheaf⊕
i Fi on S×B. It is flat over B, therefore so are all its weight spaces Fi. The

original sheaf F on X×B can be reconstructed from the maps (28). Therefore
a T -equivariant stable pair (F, s) on X ×B, flat over B, is equivalent to the
data (30) with each Gi flat over B.

When F is supported on π−1(C×B), with C a smooth connected curve in
S, we showed that each Gi is a line bundle on any closed fibre C×{b} (where
b ∈ B). Being locally free is an open condition on sheaves, so this shows that
each Gi is a line bundle on C ×B. Together with its nonzero section (30) we
find it defines a divisor Zi ⊂ C ×B, flat over B.

Thus we get the diagram (32) of flat sheaves and nested divisors over B.
This defines a classifying morphism B → ⊔

n C
[n].

Conversely, the universal family on C [n] defines a diagram (32), equivalent
to a T -equivariant stable pair (F, s) on X ×B supported on

(π−1(C) ∩ dS) ×B

and flat over B. This defines the inverse classifying map
⊔

n C
[n] → B.

4.5. The dual description

In this Section we give an explicit description of the pairs constructed in
the last Section in terms of the geometry of the vertical thickening (d)C ⊂
dS ⊂ X. For clarity of exposition we work at a single point of moduli space,
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though just as in the last Section there is no difficulty in having everything
vary in a flat family over a base B.

So we fix a point of C [n], i.e. an increasing flag of effective divisors

Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Zd−1 ⊂ C

as in (33). Setting Di := Zd−1 − Zi gives a dual decreasing flag of effective
divisors

(36) D0 ⊃ D1 ⊃ D2 ⊃ · · · ⊃ Dd−2, Dd−1 = ∅,

in C. These fit together to define aWeil divisor7

D ⊂ (d)C

in the way described in Section 4.2. That is, take Gi = ODi in (30) and use
the following example of the diagram (31),

OS OS OS · · · OS OS

OD0 OD1 OD2 · · · ODd−2 0.

All arrows are the obvious restriction maps. By the construction of Section 4.2
this is equivalent to a T -equivariant pair OX → G with no cokernel, so G
must be a structure sheaf OD of a subscheme D ⊂ (d)C such that π∗OD is

d−2⊕
i=0

ODi ⊗K−i
S ⊗ t−i.

Now π∗Zd−1 is a Cartier divisor on (d)C, defining a line bundle
O(d)C(π∗Zd−1) with a canonical section vanishing on π∗Zd−1 ⊃ D. It therefore
factors through the ideal sheaf ID of D ⊂ (d)C, defining a unique section

(37) OX
s−→ O(d)C(π∗Zd−1) ⊗ ID.

This defines a T -equivariant stable pair.

Proposition 4.2. The isomorphism of Proposition 4.1 takes the nested flag
of subschemes Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Zd−1 ⊂ C to the stable pair (37).

7D ⊂ (d)C is Cartier if and only if all the Di are empty.
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Proof. By Section 4.3, the stable pair (37) is described by a diagram of the
form (31). By pushing down (37) we find that

Gi = OC(Zd−1) ⊗ IDi ,

which by the definition of Di is

OC(Zd−1 −Di) ∼= OC(Zi).

Therefore for the pair (37), the diagram (31) becomes

OC OC OC · · · OC

O(Z0) O(Z1) O(Z2) · · · O(Zd−1),

with all maps the canonical ones. But this is precisely the diagram (32) cor-
responding to the flag Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Zd−1 ⊂ C from which we
construct the T -equivariant stable pair via the isomorphism (34).

Remark 4.3. This description of stable pairs in terms of Hilbert schemes
parameterising either the subschemes Zi (33) or the dual subschemes Di (36)
is related to, but different from, the description [PT3, Appendix B.2] of stable
pairs on surfaces in terms of relative Hilbert schemes. The latter description
is dual to the one above in a different way, involving the (derived dual) of the
sheaf F and complex I• = {OS → F}.

5. Localised virtual cycle

In Corollary 3.4 we showed that the contribution to [P T
dk]vir of its vertical

component is the push forward of a cycle on P T
(d)C

∼= C [n]. We denote this
Kiem-Li [KL3] cosection localised virtual cycle by

(38)
[
P T

ver
]vir ∈ A∗(C [n]).

In this Section we compute it.

Denote by
Hk := Hilbk(S)

the Hilbert scheme of effective divisors in class k = c1(KS) on S. A result of
H.-l. Chang and Y.-H. Kiem [CK] simplifies our life considerably.
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Theorem 5.1. Assume that S has a smooth irreducible canonical divisor C.
Then we may assume C defines a smooth point of Hk at which

dim{C}Hk ≡ χ(OS) mod 2.

Proof. Chang-Kiem [CK, Proposition 4.2] use a result of Green-Lazarsfeld to
prove that there exists a canonical divisor at which Hk is smooth. It follows
that the smooth locus of Hk intersects |KS | in a nonempty Zariski open subset.

The smooth irreducible canonical divisors form another Zariski open sub-
set of |KS |, and our assumption implies it is also nonempty. Since |KS | is a
projective space it is in particular irreducible, so the two Zariski open subsets
have nonempty intersection. Choosing C in this intersection gives the result.

Finally the parity of dimHk at C is also given in [CK, Proposition 4.2].

Using this result, we will find we are in the following situation.
Consider M a projective scheme with perfect obstruction theory, obstruc-

tion sheaf Ob and cosection vanishing on Z
ι

↪−→ M :

Ob σ−→ OM −→ ι∗OZ −→ 0.

Suppose that Z is smooth, and that M is smooth in a neighbourhood of Z.
It is then clear what the virtual cycle of M should be. Away from Z the
surjection Ob → OM ensures that it is zero. Fulton-MacPherson intersection
theory allows us to write it as the pushforward of a class on Z which, by
smoothness and the locally freeness of Ob near Z, should calculate ctop(Ob).
To find it we use the exact sequence

(39) 0 −→ TZ −→ TM |Z
dσ|Z−→ Ob∗|Z −→ Q −→ 0

on Z. Here Q ∼= Ob∗|Z
/
NZ/M is defined to be the cokernel of dσ|Z ; this is

locally free by the smoothness of Z ⊂ M . Excess intersection theory says that
its top Chern class on Z, pushed forward to M , represents the top Chern class
of Ob∗:

(40) ι∗ctop(Q) = ctop(Ob∗).

Let m denote the dimension of M in the neighbourhood of Z, and let vd be
the virtual dimension of the obstruction theory. Therefore r := rk(Ob|Z) is
m − vd. Finally let c denote the codimension of Z ⊂ M , so that rk(Q) =
r − c = m− vd− c.
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Since (40) differs from ctop(Ob) only by the sign (−1)r, and we expect
the virtual cycle to be

(−1)rι∗
(
ctop(Q)

)
= (−1)m−vdι∗

(
cm−vd−c(Q)

)
= (−1)cι∗

(
cm−vd−c(Q∗)

)
.

By (39) this is

(−1)c
[
ι∗c(Q∗)

]
vd

= (−1)c ι∗
[
c(Ob|Z)s(N∗

Z/M )
]
vd
,

where c( · ) and s( · ) denote the total Chern and Segre classes respectively.
Unsurprisingly, the formulation of Kiem-Li gives precisely this answer.

Proposition 5.2. In the above situation, Kiem and Li’s localised virtual cycle
of M is the class in Avd(Z) given by the vd-dimensional part of

(−1)c
(
c(Ob|Z)s(N∗

Z/M )
)
∩ [Z].

Proof. In our situation Kiem and Li’s recipe for their localised class is the
following. Let

E ⊂ BlZ M

p

M

be the blow up of M in Z with exceptional divisor E. Then the pullback of
the cosection has zero locus E, giving an exact sequence

0 −→ G −→ p∗ Ob p∗σ−→ O(−E) −→ 0

for some vector bundle G of rank g = r−1 = m− vd−1. Kiem and Li tell us
to intersect the zero section of G with itself and then with −E, and push the
result down to Z. Since p|E : E → Z is the projective bundle P(NZ/M ) → Z
of relative dimension c− 1, this gives

−(p|E)∗ ctop(G|E) = −
[
(p|E)∗ c(G|E)

]
m−1−g

= −
[
(p|E)∗

(
p∗c(Ob|Z)s(OE(−E))

)]
vd

= −
[
c(Ob|Z) · (p|E)∗ s(OP(NZ/M )(1))

]
vd

= −
[
c(Ob|Z) · (−1)c−1s(N∗

Z/M )
]
vd

,

which gives the required result.
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We can apply this to describe the virtual cycle [P T
ver]vir (38) as follows.

Recall that the zero locus of cosection (17) is⊔
n
C [n] ,

where the sum is over all n satisfying (35). Note that nd−1 is the length
l(Zd−1) of the last divisor in the flag (33) — i.e. the dimension of the nested
Hilbert scheme C [n].

Corollary 5.3. Under the assumptions of Theorem 5.1, the Kiem-Li cosec-
tion-localised virtual cycle of the connected component C [n] of P T

(d)C is

(41) (−1)χ(OS) · cn
d−1−vd

(
Ob
∣∣
C[n]

)
∈ Avd(C [n]).

Therefore [P T
ver]vir is the sum of (the pushforwards of) these classes over all

nonnegative integers n0 ≤ · · · ≤ nd−1 satisfying

(42)
d−1∑
i=0

(ni − (i + 1)k2) = χ.

Remark 5.4. We will see in (51) below that vd = n0, so in the uniformly
thickened case n0 = . . . = nd−1 the localised virtual class is just
(−1)χ(OS)[P T

(d)C ].

Proof. Let U denote the smooth Zariski open neighbourhood U ⊂ Hk of the
smooth point {C} given to us by Theorem 5.1. The nested Hilbert scheme of
the (smooth!) universal curve over U defines a neighbourhood of P T

(d)C ⊂ P T
X :

(43) PU := P T
X

∣∣
U
.

By the same working as in Section 4 this is isomorphic to the open set of P T
X

consisting of stable pairs supported on curves in U .
Since the nested Hilbert schemes of smooth curves are smooth, PU → U

is a smooth map. Therefore both P T
(d)C and PU are smooth, and by Proposi-

tion 3.4 we can apply Proposition 5.2 to P T
(d)C ⊂ P T

X in place of Z ⊂ M .
Since N∗

Z/M is the pullback of the conormal bundle of {C} ⊂ Hk, it
is trivial on P T

(d)C with Segre class 1. And the codimension of Z ⊂ M is
c = dim{C} Hk ≡ χ(OS) mod 2, which fixes the sign. Finally, the sum is over
n satisfying (35).
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Therefore to compute we need only calculate the K-theory class of the
bundle

Ob
∣∣
C[n] = E xt2πP

(I•, I•)0
∣∣f
C[n] .

We do this in the next Section. This will also determine the value of vd (which
we have not yet found, notice!).

6. Obstruction bundle

Throughout this Section we use the notation

〈 · , · 〉 :=
[
RHomπP ( · , · )

]
,

where the square brackets take the T -equivariant K-theory class of an element
of the equivariant derived category D(P T

X)T . We will compute the restriction
to P T

(d)C of the (dual of the) perfect obstruction theory (10):

[
E•]∨ = −〈I•, I•〉0 .

As usual the subscript denotes the trace-free part.
We work on the neighbourhood PU (43) of P T

(d)C ⊂ P T
X . Thus we have the

description of Section 4, which we now summarise. U ⊂ Hk is a smooth open
set of smooth curves in class k = c1(KS) with universal curve

C p−→ U

whose relative nested Hilbert scheme is isomorphic to PU :

Hilbn(C)
p

PU

p∼=
U U.

That is, over PU the universal curve carries a universal family of nested divi-
sors

Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Zd−1 ⊂ p∗C ⊂ X × PU .

These define the universal stable pair via (32) (or equivalently via (37)).
Therefore the universal sheaf F is an iterated (and equivariant) extension

of the sheaves

(44) OC(Zi) ⊗K−i
S , i = 0, . . . , d− 1,
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on X × PU . (The sheaves (44) are of course pushed forward from S × PU ;
they are the eigensheaves of the T -action on π∗F as in Section 4.) Hence the
K-theory class of the universal sheaf is

(45)
[
F
]

=
d−1∑
i=0

[
OC(Zi) ⊗K−i

S ⊗ t−i].
Similarly the class of the universal complex is[

I•
]

=
[
OX×PU

]
−
[
F
]
,

from which we compute

−〈I•, I•〉0 = 〈OX×PU ,F〉 + 〈F,OX×PU 〉 − 〈F,F〉
=
[
RπP∗F

]
−
[
RπP∗F

]∨⊗ t− 〈F,F〉

by (T -equivariant) Serre duality. By (45) this is

−〈I•, I•〉0 =
d−1∑
i=0

[
RπP∗

(
OC(Zi) ⊗K−i

S

)]
t−i −

[
RπP∗

(
OC(Zi) ⊗K−i

S

)]∨
ti+1

− 〈F,F〉,(46)

where

(47) − 〈F,F〉 = −
d−1∑
i,j=0

〈OC(Zi),OC(Zj) ⊗Ki−j
S 〉ti−j .

Since RHom(OC(Zi),OC(Zj)) has the same K-theory class as the alternating
sum of its cohomology sheaves, a local Koszul resolution gives[
RHom(OC(Zi),OC(Zj))

]
=
[(
OC −OC(C) −KS

∣∣
Ct + KS(C)

∣∣
Ct
)
(Zj −Zi)

]
.

Substituting into (47), we find

−〈F,F〉 = RπP∗

d−1∑
i,j=0

[
Ki−j+1

S

∣∣
C(Δij)ti−j + Ki−j+1

S

∣∣
C(Δij)ti−j+1

−Ki−j
S

∣∣
C(Δij)ti−j −Ki−j+2

S

∣∣
C(Δij)ti−j+1

]
,(48)

where Δij is the divisor Zj −Zi (effective if and only if j ≥ i).
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The moving part of (46) is (the K-theory class of) Nvir, and will be used
in Section 7. For now we concentrate on the fixed part — i.e. the dual of the
obstruction theory

[
(E•)f

]∨ of P T
X . We also restrict to C [n] ⊂ P T

(d)C ⊂ P T
X , so

C becomes plain C. We set

Δi := Δi−1,i = Zi −Zi−1 of length δi := ni − ni−1,

and use the standard isomorphism [Che]

C [n] ∼−→ C [n0] × C [δ1] × · · · × C [δd−1] ,(49)
(Z0, Z1, . . . , Zd−1) �−→ (Z0,Δ1, . . . ,Δd−1).

The fixed parts of (46) and (48) give
[
(E•)f

]∨ = −〈I•, I•〉f0 as

RπP∗

[
OC(Z0) +

d−1∑
j=1

(
KS

∣∣
C

+ OC(Δj) −OC −KS

∣∣
C
(Δj)

)
+ KS

∣∣
C
−OC

]
.

Simplifying gives

[
(E•)f

]∨ = RπP∗

[
KS

∣∣
C

+ OZ0(Z0) +
d−1∑
i=1

(
OΔi(Δi) −KS

∣∣
Δi

(Δi)
)]

.

The first term is the natural obstruction theory of Hk, and the next two give
the tangent bundle of C [n] via the isomorphism (49). Subtracting the tangent
terms leaves minus the K-theory class of the obstruction bundle, so

(50)
[
Ob
∣∣
C[n]

]
=
[
R1πP∗

(
KS

∣∣
C

)]
+

d−1∑
i=1

πP∗
[
KS

∣∣
Δi

(Δi)
]
.

In particular the virtual dimension of P T
X at any point of C [n] is χ(KS |C)+

n0, where n0 is the length of Z0. As C is in the canonical class β = k we have
χ(KS |C) = 0, so finally we obtain

(51) vd = n0.

We now substitute (50) into (41). The first term of (50) is the class of
a trivial bundle over P T

(d)C , so does not contribute. Therefore the cosection
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localised virtual cycle in Avd(C [n]) is simply8

(−1)χ(OS)
d−1∏
i=1

ctop
(
πP∗
(
KS

∣∣
Δi

(Δi)
))

∈ An0

(
C [n0] × C [δ1] × · · · × C [δd−1]).

This is easily calculated via relative Serre duality. Since Δi ⊂ C [δi] × C is a
divisor, its relative canonical bundle over C [δi] is

ωΔi/C[δi]
∼= ωC(Δi)

∣∣
Δi

∼= K2
S ⊗OΔi(Δi).

Therefore the localised virtual cycle is

(−1)χ(OS)
d−1∏
i=1

cδi

(
πP∗
(
K−1

S

∣∣
Δi

⊗ ωΔi/C[δi]
))

= (−1)χ(OS)
d−1∏
i=1

cδi

((
πP∗KS

∣∣
Δi

)∗)

= (−1)χ(OS)
d−1∏
i=1

(−1)δicδi
((
KS |C

)[δi]) .
Using the binomial convention (9),

∫
C[k]

ck
(
L[k]) =

(
degL
k

)
,

for any line bundle L on C. This is easiest to see when L has a section s with
reduced zeros z1, . . . , zdegL. Then the induced section s[k] of L[k] has reduced
zeros at precisely the points (zi1 , . . . , zik), where {i1, . . . , ik} is any subset of
{1, . . . , degL}.9 Putting it all together, we have proved the following.

Proposition 6.1. The Kiem-Li localised virtual cycle (41) is the multiple

(−1)χ(OS)+nd−1−n0
d−1∏
i=1

(
k2

δi

)

8As noted in Remark 5.4, when n0 = nd−1 this reduces to (−1)χ(OS)[C [n0]
]
.

9More generally when n ≥ 2h−1 Lemma VIII.2.5 of [ACGH] gives an expression
for c•(L[k]). Combining with (72) below gives the formula. For general n the formula
follows using the “embedding trick” of Section 10.1.
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of the cycle

(52)
[
C [n0]]× [pt] × . . .× [pt]

in An0

(
C [n0] × C [δ1] × . . .× C [δd−1]

)
= An0(C [n]). �

7. The virtual normal bundle

We want to calculate the contribution of the vertical component [P T
ver]vir (38)

to the invariants (1). By Proposition 6.1 we can now pull everything back to
an integral on C [n0]. We do this first with the virtual normal bundle. We use
the projections

(53) C [n] × C
π pC

C [n] C

and usually suppress p∗C as before. We also use the standard notation

cs(E) := 1 + s c1(E) + s2 c2(E) + . . .

for any complex of sheaves E. When E is a vector bundle of rank r we have

(54) e(E ⊗ tw) =
r∑

i=0
ci(E)(wt)r−i = (wt)rc1/wt(E) = (wt)rc−1/wt(E∨).

Therefore the same identity holds for E = {· · · → Ei → Ei+1 → · · · } a
finite complex of rank r :=

∑
i(−1)i rk(Ei). In particular, when E is a trivial

bundle (or constant complex) we have

(55) e(E ⊗ tw) = (wt)r.

Proposition 7.1. The pull-back of 1
e(Nvir) to the cycle C [n0] of (52) equals

A tn0 c−1/dt(E)
d−1∏
i=1

c−1/it(Fi)



Stable pairs on local surfaces I: vertical 609

where

E = Rπ∗
[
KS |−(d−1)

C (Z0 + Δ0,d−1)
]
,

Fi = Rπ∗
[
KS |−(i−1)

C (Z0 + Δ0,i−1) ⊗ (OC −KS |−1
C (Δi))

]
, and

A = (−1)
1
2d(d−1)k2+

∑d−1
i=1 ni

(
d!
dd

)k2

dnd−1
d−1∏
i=1

i−δi .

(56)

Proof. Taking the moving parts of (46) and (48) we find

1
e(Nvir) = e((Rπ∗O(Z0))∨ ⊗ t)

d−1∏
i=1

e((Rπ∗KS |−i
C (Zi))∨ ⊗ ti+1)

e((Rπ∗KS |−i
C (Zi)) ⊗ t−i)

(57)

×
d−1∏

i, j = 0
i �= j

e(Rπ∗KS |i−j
C (Δij) ⊗ ti−j)

e(Rπ∗KS |i−j+1
C (Δij) ⊗ ti−j)

×
d−1∏

i, j = 0
i + 1 �= j

e(Rπ∗KS |i−j+2
C (Δij) ⊗ ti−j+1)

e(Rπ∗KS |i−j+1
C (Δij) ⊗ ti−j+1)

.

We start with the second line of (57). On our cycle C [n0] × Δ1 × . . .× Δd−1
the divisors

Δij =
{∑j

k=i+1 Δk, j > i∑i
k=j+1 Δk, i > j

are fixed, since the divisors Δk are. Therefore each Rπ∗KS |i−j+l
C (Δij) is a

constant complex O⊕r
C[n0] , where

r = χ
(
KS |i−j+l

C (Δij)
)

= nj − ni + (i− j + l − 1)k2

by Riemann-Roch.
So by (55) the second line of (57) is

d−1∏
i, j = 0
i �= j

((i− j)t)nj−ni+(i−j−1)k2

((i− j)t)nj−ni+(i−j)k2

d−1∏
i, j = 0
i + 1 �= j

((i− j + 1)t)nj−ni+(i−j+1)k2

((i− j + 1)t)nj−ni+(i−j)k2
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which simplifies to

d−1∏
i, j = 0
i �= j

1
((i− j)t)k2

d−1∏
i, j = 0
i + 1 �= j

((i + 1 − j)t)k2
.

The only terms in this expression which do not cancel immediately are those
with i = 0 in the first product and i = d−1 in the second product. This gives

(58)
d−1∏
j=1

1
(−jt)k2 ·

d−1∏
j=0

((d− j)t)k2 = (−1)(d−1)k2
d k2

tk
2
.

We now deal with the first line of (57). Applying (54) gives

(59)

tn0−k2
c−1/t(Rπ∗O(Z0))

d−1∏
i=1

((i + 1)t)ni−(i+1)k2

(−it)ni−(i+1)k2

d−1∏
i=1

c−1/(i+1)t(Rπ∗KS |−i
C (Zi))

c−1/it(Rπ∗KS |−i
C (Zi))

.

The first product can be simplified as

(−1)
∑d−1

i=1 (ni−(i+1)k2)
d−1∏
i=1

( i + 1
i

)−(i+1)k2 d−1∏
i=1

( i + 1
i

)ni

= (−1)
(

1
2d(d+1)−1

)
k2+
∑d−1

i=1 ni

d−1∏
i=1

( i

i + 1
)(i+1)k2

(
d−1∏
i=1

ini−1−ni

)
dnd−1

= (−1)
1
2d(d−1)k2+(d−1)k2+

∑d−1
i=1 ni

((d− 1)!
dd

)k2

dnd−1
d−1∏
i=1

i−δi .

(60)

Multiplying tn0−k2 , (60) and (58) together gives A tn0 , as required.
What remains in (59) is

c−1/t(Rπ∗O(Z0))
d−1∏
i=1

c−1/(i+1)t(Rπ∗KS |−i
C (Z0 + Δ0,i))

c−1/it(Rπ∗KS |−i
C (Z0 + Δ0,i))

.

Reordering the product gives

d−1∏
i=1

c−1/it(Rπ∗KS |−(i−1)
C (Z0 + Δ0,i−1))

c−1/it(Rπ∗KS |−i
C (Z0 + Δ0,i))

· c−1/dt(Rπ∗KS |−(d−1)
C (Z0 + Δ0,d−1)),
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which we write as[
d−1∏
i=1

c−1/it
(
Rπ∗

(
KS |−(i−1)

C (Z0 + Δ0,i−1) −KS |−i
C (Z0 + Δ0,i)

))]
c−1/dt(E).

This is c−1/dt(E)
∏d−1

i=1 c−1/it(Fi) as claimed.

8. Descendent insertions

Recall from Section 2 that given a cohomology class σ ∈ H∗(S,Q) and a
nonnegative integer α, we defined in (13) the descendent insertion

τα(σ) ∈ H∗
T (PX ,Q).

We have localised the vertical component [P T
ver]vir of the virtual cycle [P T

X ]vir

to
P T

(d)C =
⊔
n
C [n].

We next restrict the descendents to C [n]. We use the projections (53) and the
universal divisors Z0 ⊂ · · · ⊂ Zd−1 ⊂ C [n] × C.

Proposition 8.1. Let E(x) := 1−e−x

x = 1−x/2!+x2/3!−. . . . The restriction
of τα(σ) to C [n] ⊂ PX is the degree10 2α + deg σ − 2 part of

π∗

⎡⎣p∗C (σ|C − σ.k
2

∣∣∣
C

)
E(k + t)

d−1∑
j=0

e[Zj ]−j(k+t)

⎤⎦ .
Proof. As in (45), the K-theory class of the restriction of the universal sheaf
F to C [n] ×X is

[
F
]

=
d−1∑
j=0

[
OC[n]×C(Zj) ⊗K−j

S ⊗ t−j].
Let i denote both the inclusion C ↪→ X and its basechange C [n] × C ↪→
C [n] ×X. It has normal bundle νC = KS |C ⊕ KS |C ⊗ t, so by T -equivariant
Grothendieck-Riemann-Roch [EG],

chT (F) =
∑
j

ch(i∗O(Zj))e−j(k+t)

10This is the real cohomological degree; twice the complex degree.



612 Martijn Kool and Richard P. Thomas

=
∑
j

i∗
(
ch(O(Zj))td−1(νC)

)
e−j(k+t)

= i∗
∑
j

e[Zj ] E(k)E(k + t) e−j(k+t).(61)

If we write this as i∗A then, again on restriction to C [n] ⊂ PX we find

τα(σ) = πP∗
(
π∗
Xσ ∩ [i∗A]2α+4

)
= π∗

(
i∗π∗

Xσ ∩ [A]2α
)

because π = πP ◦ i. Recalling the identification (12), we also see that i∗π∗
Xσ =

p∗C(σ|C). Substituting into (61) gives

π∗

⎡⎣p∗C(σ|C)E(k)E(k + t)
d−1∑
j=0

e[Zj ]−j(k+t)

⎤⎦
2α+deg σ

,

which simplifies to the required formula.

Corollary 8.2. Let D ∈ H2(S). Then on restriction to the cycle C [n0] of
(52) we find that τα(σ) is the degree 2α part of

(k ·D)E(t)
d−1∑
j=0

eω−jt,

where ω is the class of the divisor Z0 ⊂ C [n0] × C restricted to C [n0] × {c0}
(and c0 ∈ C is any basepoint).

In the formula of Theorem 1.4 we only consider insertions ταj (Dj) coming
from Dj ∈ H2(S). Expanding as a polynomial in ω,

(62)
m∏
j=1

ταj
(Dj) =

m∏
i=1

(k ·Di)

⎡⎣E(t)
d−1∑
j=0

eω−jt

⎤⎦
2αi

=
m∏
j=1

(k ·Dj)
∞∑
a=0

γaω
a,

for some γa ∈ Q[t] whose precise form we do not need. Here [ · ]2αi denotes
the degree 2αi part in the degree 2 variables ω and t.

Therefore by Propositions 6.1 and 7.1, ZP
dk(X, τα1

(D1) · · · ταm
(Dm))ver

equals

(63)
m∏
j=1

(k ·Dj)
∑

0≤n0≤···≤nd−1; a≥0
qχ tn0 γa B

∫
C[n0]

ωac−1/dt(E)
d−1∏
i=1

c−1/it(Fi),
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where E,Fi are defined in (56), χ =
∑d−1

i=0 (ni − (i + 1)k2) by (42), and

B = (−1)χ(OS)+nd−1−n0A
d−1∏
i=1

(
k2

δi

)

= (−1)
1
2d(d−1)k2+χ(OS)+

∑d−1
i=0 ni

(
d!
dd

)k2

(−d)nd−1
d−1∏
i=1

[
i−δi

(
k2

δi

)]
.

9. Expression in terms of tautological classes

We now write the integrand of (63) in terms of tautological classes on the
symmetric product C [n0]. For now we assume, for simplicity, that

n0 > 2h− 2,

where h = k2 + 1 is the canonical genus; later we will explain how to remove
this assumption. Therefore the Abel-Jacobi map

AJ: C [n0] −→ Picn0(C),
Z0 �−→ OC(Z0),

is a projective bundle. In fact, using the notation

C [n0] × C
AJ×1

π1

Picn0(C) × C

π2

C [n0] AJ Picn0(C)

and letting P be a Poincaré line bundle on Picn0(C) × C, we have

C [n0] = P(π2∗P).

We normalise P by fixing

(64) P
∣∣
Picn0 (C)×{c0}

∼= OPicn0 (C) ,

by tensoring it with π∗
2
(
P−1|Picn0 (C)×{c0}

)
if necessary. This fixes a tautological

line bundle

(65) O(−1) ⊂ AJ∗π2∗P
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on C [n0], and so the tautological class

(66) ω := c1(O(1)) ∈ H2(C [n0],Z).

The map π∗
2π2∗P → P, pulled back along AJ × 1 and composed with the

inclusion (65), gives a canonical section of (AJ × 1)∗P(1) vanishing on the
universal divisor Z0 ⊂ C [n0] × C. Therefore

(67) (AJ × 1)∗P(1) ∼= O(Z0) and so O(1) ∼= O(Z0)
∣∣
C[n0]×{c0}

by the normalisation condition (64). In particular the ω of (66) is the divisor
class

[
Z0|C[n0]×{c0}

]
, and so is the same ω as appears in Corollary 8.2.

The second tautological class we use is the pullback of the class of the
theta divisor on Picn0(C),

θ ∈ H2(Picn0(C),Z) ∼= Hom(Λ2H1(C,Z),Z)

which takes α, β ∈ H1(C,Z) to
∫
C α∧β. We denote its pullback AJ∗θ to C [n0]

by θ also.

Proposition 9.1. The integrand ωac−1/dt(E)
∏d−1

i=1 c−1/it(Fi) in (63) can be
written in terms of the tautological classes ω, θ as

(68) ωa
∞∑
k=0

(
1 − ω

dt

)nd−1−dk2−k (θ/dt)k

k!

d−1∏
i=1

(
1 − ω

it

)k2−δi

.

Proof. By (67) we see the complex E (56) satisfies

(69) E(−1) = Rπ1∗
(
(AJ × 1)∗P ⊗KS |−(d−1)

C (Δ0,d−1)
)
,

where we recall that we work with fixed Δ0,d−1 = Δ0 + · · ·+ Δd−1. We begin
by computing the Chern character of this. By Grothendieck-Riemann-Roch,

ch(E(−1)) = π1∗
[
ch
(
(AJ × 1)∗P ⊗KS |−(d−1)

C (Δ0,d−1)
)
td(C)

]
= π1∗

[
exp
(
(AJ × 1)∗c1(P) − (d− 1)k + [Δ0,d−1]

)
(1 + c1(TC)/2)

]
= n0 − (d− 1)k2 + (nd−1 − n0) − k2 − θ

= nd−1 − d k2 − θ,
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where we have identified c1(P) with(
0, id, n0[c0]

)
∈ H2(Picn0(C)) ⊕

(
H1(C)∗ ⊗H1(C)

)
⊕ H2(C)

= H2(Picn0(C) × C
)

using the normalisation condition (64). We also used the (pullback by AJ× 1
of the) standard identity [ACGH, Section VIII.2]

1
2π2∗

(
id∧2 ) = −θ.

Therefore (69) has rank nd−1−d k2, first Chern class −θ, and all higher Chern
characters vanish. From this we deduce that

(70) ck = (−θ)k

k! for all k > 0.

So now applying the identity

(71) cs(V (1)) =
∞∑
k=0

(1 + ωs)rk(V )−kck(V )sk

to (70) we obtain

c−1/dt(E) =
∞∑
k=0

(
1 − ω

dt

)nd−1−dk2−k (−θ)k

k!

(−1
dt

)k
.

This gives the first term of the integrand. The second is easier. By (67) again,

Fi(−1) = Rπ1∗
[
(AJ × 1)∗P ⊗KS |−(i−1)

C (Δ0,i−1) ⊗
{
OC −KS |−1

C (Δi)
}]
.

By Proposition 6.1, each Δi ⊂ C [n0]×C pulls back from C. In the (numerical)
K-group we can write

OC −KS |−1
C (Δi) = OC −KS |−1

C − δi · Oc

= (k2 − δi) · Oc,

where c ∈ C is any point and k2 = degKS |C . Therefore, by the normalisation
condition (64), Fi(−1) equals (k2 − δi) · OC[n0] in the K-group. By (71) we
find

c−1/it(Fi) =
(

1 − ω

it

)k2−δi

.
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10. Evaluation of the integral

Still working under the assumption n0 > 2h − 2 for the time being, we can
now compute the integral in (63).

Proposition 10.1. The integral of (68) over C [n0] is

∑
(dt)−n0+a

(
n0 − nd−1 + (d + 1)k2 − a− |j|

n0 − a− |j|

)
d−1∏
i=1

(−d

i

)ji(k2 − δi
ji

)
,

where the sum is over all j1, . . . , jd−1 ≥ 0, and we set |j| := j1 + · · · + jd−1.

Proof. Expanding (68) by the binomial theorem using the convention (9)
gives the sum over all k, l, j1, . . . , jd−1 ≥ 0 of[( 1

dt

)k(−1
dt

)l(nd−1 − d k2 − k

l

)
d−1∏
i=1

(−1
it

)ji(k2 − δi
ji

)]
θk

k! ω
a+l+|j|.

We can now integrate over C [n0] using [ACGH, Section VIII.3]:

(72)
∫
C[n0]

θk

k! ω
n0−k =

(
h

k

)
, for all k ∈ [0, n0],

where h = k2+1 is the genus of C. This gives the sum over all j1, . . . , jd−1 ≥ 0
and k ∈ [0, n0] of

( 1
dt

)k(−1
dt

)n0−a−k−|j|
(
h

k

)(
nd−1 − d k2 − k

n0 − a− k − |j|

)
d−1∏
i=1

(−1
it

)ji(k2 − δi
ji

)
.

We can sum over all k ≥ 0 since
(h
k

)
= 0 for k > n0 ≥ 2h− 1 ≥ h when h ≥ 1

(and when h = 0 it is also clear we can sum over all k ≥ 0). So using(
a

b

)
= (−1)b

(
b− a− 1

b

)

we get the sum over all k, j1, . . . , jd−1 ≥ 0 of

(dt)−n0+a+|j|
(
h

k

)(
n0 − a− |j| − nd−1 + dk2 − 1

n0 − a− k − |j|

)
d−1∏
i=1

(−1
it

)ji(k2 − δi
ji

)
.
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Summing over k using the Chu-Vandermonde identity

∞∑
k=0

(
a

c− k

)(
b

k

)
=
(
a + b

c

)

gives the claimed formula.

10.1. Extension to all n0

We established Proposition 10.1 assuming n0 > 2h − 2. However the answer
holds for any n0. For general n0, pick N > n0 such that N > 2h − 2. Then
C [N ] ∼= P(π2∗Q), where Q is the normalised Poincaré bundle on PicN (C)×C.
We can embed11

C [n0] ↪−→ C [N ],

Z0 �−→ Z0 + (N − n0)c0.

Denote the universal divisor on C [N ] × C by W, and let s ∈ H0(O(W)) be
the section cutting it out. Then C [n0] ⊂ C [N ] is the locus of effective divisors
containing (N − n0)c0; i.e. it is the locus where s vanishes on restriction to
the Artinian thickened point (N − n0)c0. Denote the restriction to C [N ] ×
(N − n0)c0 of π2 : C [N ] × C → C [N ] by π2 as well. Then π2∗(s|C[N ]×(N−n0)c0)
defines a section of the locally free sheaf

F := π2∗
(
O(W)|C[N ]×(N−n0)c0

)
which cuts out C [n0]. The rank of F is the codimension of C [n0], so it is a
regular section and we can identify the normal bundle

NC[n0]/C[N ] ∼= F |C[n0]

and the cycle class

(73)
[
C [n0]] =

[
cN−n0(F )

]
∈ H2(N−n0)

(
C [N ]).

All results of Sections 9 and 10 can be obtained by pushing forward to C [N ]

and then pushing down AJ using the commutative diagram
11The method described here was used in the case of the Hilbert scheme of curves

on surfaces in [DKO] and also [KT2].
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C [n0]

AJ

+(N−n0)c0
C [N ]

AJ

Picn0(C)
⊗O((N−n0)c0)

� PicN (C).

Pushing forward to C [N ] introduces the class (73), while P gets replaced by
Q(−(N − n0)c0) and Z0 gets replaced by W − (N − n0)c0. The calculation
proceeds in exactly the same manner except for one difference: the usual
relation AJ∗ωi+n0−h = θi/i! that goes into the Poincaré formula (72) for
n0 > 2h− 2 is replaced by the identity

AJ∗
(
cN−n0(F )ωi+n0−h) =

{
θi

i! if i ≥ 0,
0 otherwise;

see for instance [KT2, Lemma 4.3].12 This removes the extra class (73) and
produces the same formulae as for n0 > 2h− 2.

11. Final formula without descendents

Plugging Proposition 10.1 into (63) evaluates Zdk(X, τα1(D1) · · · ταm(Dm))ver
as the sum over all a, j1, . . . , jd−1 ≥ 0 and all 0 ≤ n0 ≤ · · · ≤ nd−1 of

(−1)χ(OS)+ 1
2d(d−1)k2+

∑d−1
i=0 ni

(
d!
dd

)k2

(−d)nd−1
d−1∏
i=1

[
i−δi

(
k2

δi

)]
tn0

m∏
j=1

(k ·Dj)

× qχ γa(dt)−n0+a

(
n0 − nd−1 + (d + 1)k2 − a− |j|

n0 − a− |j|

)
d−1∏
i=1

(−d

i

)ji(k2 − δi
ji

)
.

Here the exponent of q is

χ =
d−1∑
i=0

(
ni − (i + 1)k2) = dn0 +

d−1∑
i=1

(d− i)δi −
1
2d(d + 1)k2.

We combine the first and third products, collect powers of d and t, and write
each ni as n0 + δ1 + . . . + δi. The result is the sum over a, n0 ≥ 0 and all
ji, δi ≥ 0 of

12Although [KT2, Lemma 4.3] is derived for the Hilbert scheme of curves on
a surface the same formula holds in the (easier) setting of the Hilbert scheme of
points on a curve.
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(−1)χ(OS)+ 1
2d(d−1)k2

(
d!
dd

)k2 [d−1∏
i=1

(
k2

δi

)(
k2 − δi

ji

)(−d

i

)δi+ji

(−q)(d−i)δi

]

× q−
1
2d(d+1)k2

⎡⎣ m∏
j=1

(k ·Dj)

⎤⎦γa(dt)a
(

(d + 1)k2 − |δ| − a− |j|
n0 − a− |j|

)(
− (−q)d

)n0 ,

where we have used |δ| to denote δ1 + . . . + δd−1 = nd−1 − n0.
Remarkably this horrible-looking expression can be summed. The sum

over n0 only involves the last 2 terms; using our convention (9) it takes the
form

C
∑
n0≥0

(
r

n0 − s

)
xn0 = Cxs(1 + x)r.

This replaces the last two terms with

(
− (−q)d

)a+|j|(1 − (−q)d
)(d+1)k2−|δ|−a−|j|

.

Setting Q := −q, we write this as

(
−Qd)a(1 −Qd)2k2−a

d−1∏
i=1

(−Qd)ji(1 −Qd)k2−δi−ji .

Combining with the
(k2−δi

ji

) (−d
i

)ji
term we can now sum over ji ≥ 0 using

the binomial theorem again to give

(−1)χ(OS)+ 1
2d(d−1)k2

(
d!
dd

)k2

×

⎡⎣d−1∏
i=1

(
k2

δi

)(−d

i

)δi (
(1 −Qd) + dQd

i

)k2−δi

Q(d−i)δi

⎤⎦
× (−Q)−

1
2d(d+1)k2

⎡⎣ m∏
j=1

(k ·Dj)

⎤⎦γa(dt)a(−Qd)a(1 −Qd)2k2−a.

Moving
(
(d− 1)!

)k2
=
∏d−1

i=1 i k2 inside the product gives

(−1)χ(OS)+d k2
(
d

dd

)k2 [d−1∏
i=1

(
k2

δi

)(
i(1 −Qd) + dQd)k2−δi(−dQ(d−i))δi

]
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×Q− 1
2d(d+1)k2

⎡⎣ m∏
j=1

(k ·Dj)

⎤⎦γa(dt)a(−Qd)a(1 −Qd)2k2−a.

So now we can sum over all δi ≥ 0 (by the binomial theorem again) and a ≥ 0
to give the full expression:

(−1)χ(OS)+d k2
(1
d

)(d−1)k2 [d−1∏
i=1

(
i(1 −Qd) + dQd − dQd−i)k2

]

×
[
d−1∏
i=1

Q− 1
2dk

2

]
Q−d k2(1 −Qd)2k2

⎡⎣ m∏
j=1

(k ·Dj)

⎤⎦∑
a≥0

γa(dt)a
(

−Qd

1 −Qd

)a
.

Combining the first two products gives

(−1)χ(OS)+d k2
(1
d

)(d−1)k2(
Q−d/2 −Qd/2)2k2

×
d−1∏
i=1

(
(d− i)Qd/2 − dQd/2−i + iQ−d/2

)k2

×

⎡⎣ m∏
j=1

(k ·Dj)

⎤⎦∑
a≥0

γa

(
dtQd

Qd − 1

)a
.(74)

When there are no insertions the second line is 1 and we have determined
ZP
dk(X)ver. There is no t-dependence, of course, because the virtual dimension

is already 0. This proves the first half of Theorem 1.4.

12. Final formula with descendents

Finally we compute the insertion term in (74). We recall the definition of the
coefficients γa (62),

∞∑
a=0

γaX
a =

m∏
i=1

[
E(t)

d−1∑
j=0

eX−jt
]
2αi

=
m∏
i=1

d−1∑
j=0

αi∑
k=0

(−t)k

(k + 1)!
[
eX−jt

]
2(αi−k)

=
m∏
i=1

d−1∑
j=0

αi∑
k=0

(−t)k

(k + 1)!
1

(αi − k)! (X − jt)αi−k
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= −
m∏
i=1

tαi

(αi + 1)!

d−1∑
j=0

αi∑
k=0

(
αi + 1
αi − k

)
(−1)k+1(Xt−1 − j)αi−k

= −
m∏
i=1

tαi

(αi + 1)!

d−1∑
j=0

[
(Xt−1 − j − 1)αi+1 − (Xt−1 − j)αi+1

]

by the binomial theorem. All terms of the sum cancel except for j = 0, d− 1,
leaving

∞∑
a=0

γaX
a = t|α|

m∏
j=1

(Xt−1)αj+1 − (Xt−1 − d)αj+1

(αj + 1)! .

Substituting

X = dtQd

Qd − 1 = dtQd/2

Qd/2 −Q−d/2

from the second line of (74) gives

∞∑
a=0

γaX
a = t|α|

m∏
j=1

dαj+1

(αj + 1)!
Qd(αj+1)/2 −Q−d(αj+1)/2

(Qd/2 −Q−d/2)αj+1 .

Substituting this into (74) gives the proof of the second half of Theorem 1.4.

Remark 12.1. Consider (3) for any insertion of the form

m1∏
j=1

ταj (Dj)
m2∏
j=1

τβj (1),

where D1, . . . , Dm1 ∈ H2(S) and 1 ∈ H0(S). Recall the projections π1 :
C [n0] × C → C [n0] and π2 : Picn0(C) × C → Picn0(C) of Section 9. Expand-
ing the explicit expression for the descendent integrands in Proposition 8.1
reduces (3) to a linear combinations of integrals of the form∫

C[n0]

1
e(Nvir)

[
Z0|C[n0]×{c0}

]a ∏
k

π1∗
(
[Z0]bk

)
,

for some a, bk ≥ 0. Using O(Z0) ∼= (AJ × id)∗P(1) gives

Atn0

∫
C[n0]

(68)
∏
k

π1∗
(
(AJ × id)∗(id +n0[c0]) + π∗

1ω
)b

= Atn0

∫
C[n0]

(68)
∏
k

(
ωbk + bkn0ω

bk−1 − bk(bk − 1)ωbk−2θ
)
,



622 Martijn Kool and Richard P. Thomas

where (68) is the same as before, and A is the constant defined in (56).
These integrals can be performed using the Poincaré formula (72) as before.
In this generality we are unable to re-sum the resulting expression to a closed
formula.

13. Links to Gromov-Witten theory of X

In this Section we apply our results for stable pairs to Gromov-Witten theory,
via the descendent-MNOP conjecture of Pandharipande-Pixton [PP1]. We let

M
•
g,m(S, β) = M

•
g,m(X, ι∗β)T

be the moduli space of m-pointed stable maps of genus g curves to S in class
β. The superscript • indicates that we allow disconnected curves, but only
stable maps which contract no connected components. The moduli space co-
incides — as a Deligne-Mumford stack with perfect obstruction theory [KT1,
Proposition 3.2] — with the T -fixed locus of the corresponding moduli space
of maps to X. As such it inherits a virtual normal bundle Nvir described, for
instance, in [KT1, Proposition 3.2], and we can define descendent invariants
of X by residues:

(75) N •
g,β(X, τα1(σ1) · · · ταm(σm)) :=

∫
[M •

g,m(S,β)]vir

1
e(Nvir)

m∏
j=1

ταj (σj).

Here the descendent classes are defined in the usual way by

ταj (σj) := ψ
αj

j ev∗
j σj ,

where the jth ψ-class ψj is the first Chern class of the cotangent line to the
curve at the jth marked point. Their generating function is

ZGW
β (X, τα1(σ1) · · · ταm(σm)) :=

∑
g

N •
g,β(X, τα1(σ1) · · · ταm(σm))u2g−2,

where g can be negative in disconnected Gromov-Witten theory.
When all descendence degrees are zero, the MNOP conjecture [MNOP,

PT1] states that ZP
β (q) is a rational function invariant under q ↔ q−1, and

that substituting q = −eiu gives the Gromov-Witten generating function:

ZGW
β (X, τ0(σ1) · · · τ0(σm))(u) = ZP

β (X, τ0(σ1) · · · τ0(σm))(−eiu).
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Therefore Theorem 1.1 gives the following obvious vanishing in Gromov-
Witten theory. Since this can be proved more easily and directly by cosection
localisation applied to [M •

g,m(S, β)]vir [KL3], it should perhaps be seen as a
confirmation of the MNOP conjecture in this case.

Proposition 13.1. Suppose S has a reduced irreducible canonical divisor. If
the MNOP conjecture holds for X = Tot(KS), then

ZGW
β (X, τ0(σ1) · · · τ0(σm)) = 0,

unless β is an integer multiple of the canonical class k and all σj lie in
H≤2(S).

Since the descendent-MNOP correspondence is linear, we may apply it to
only the vertical contribution ZP

ver to the stable pair generating function to
give a “vertical” contribution

ZGW
dk (X, τα1(D1) · · · ταm(Dm))ver

to the Gromov-Witten generating function. We first study this for degree 0
insertions using the MNOP correspondence (77).

Proposition 13.2. Suppose S has a smooth connected canonical divisor of
genus h = k2 + 1, and the MNOP conjecture holds for X = Tot(KS). Let Pd

denote the product⌊
d−1
2

⌋∏
j=1

2h−1
[
d2+j2−jd+j(d−j) cos(du)−d(d−j) cos(ju)−jd cos((d−j)u)

]h−1
.

Then ZGW
dk (X)ver equals

(−1)χ(OS)(−d)(h−1)(1−d)
[
2 sin

(du
2
)]2h−2[

d cos
(du

2
)
− d
]h−1

Pd

for d even, and

(−1)χ(OS)(−d)(h−1)(1−d)
[
2 sin

(du
2
)]2h−2

Pd

for d odd. Furthermore

(76) ZGW
dk (X, τ0(D1) · · · τ0(Dm))ver = ZGW

dk (X)ver
m∏
j=1

(dk ·Dj).
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For d = 1, 2 these are the complete 3-fold generating functions.

Proof. The generating function ZP
dk(X)ver of Theorem 1.4 is invariant under

q ↔ q−1. More precisely, in the product
∏d−1

j=1(· · · ), mapping q ↔ q−1 swaps
the jth and (d − j)th terms. Setting q = −eiu and all αj = 0 in Theorem
1.4 gives the claimed formulae. Notice as a consistency check that the last
formula (76) also follows from the divisor equation.

The more general descendent-MNOP correspondence of [PP1, PP2] also
states that ZP

dk(X, τα1(σ1) · · · ταm(σm))(q) is a rational function of q, and then
(in this Calabi-Yau setting) that

(77) ZP
dk
(
X, τα1(σ1) · · · ταm(σm)

)
(−eiu) = ZGW

dk
(
X, τα1(σ1) · · · ταm(σm)

)
(u)

for any σ1, . . . , σm ∈ H∗
T (X). Here the correspondence

(78) τα1(σ1) · · · ταm(σm) �−→ τα1(σ1) · · · ταm(σm)

between descendents in the two theories is not the identity unless all αj = 0.
More generally it multiplies by a factor (iu)−|α| and then adds corrections
from stable maps where the evaluations of the marked points come together
in X. These corrections are described by universal matrices13

K̃μν ∈ Q[i, c1, c2, c3]((u)), i2 = −1,

indexed by (finite, 2-dimensional) partitions μ, ν and satisfying

(79) K̃μν = 0 unless |ν| + �(ν) ≤ |μ| + �(μ) − 3(�(μ) − 1),

by [PP1, Proposition 24]. (This makes the sum (81) below finite.) For the ci
we substitute the equivariant Chern classes of TX . Assuming without loss of
generality that α1 ≥ α2 ≥ · · · ≥ αm and setting

(80) μ := (α1 + 1, . . . , αm + 1),

the correspondence is

(81) τα1(σ1) · · · ταm(σm) :=
∑
P

±
∏
S∈P

∑
ν

K̃μS ,ν
τν(σS).

13We will show that only for length-1 partitions μ, ν do the matrices K̃μν con-
tribute to our calculations. For these, K̃μν equals the simpler Kμν defined in [PP1]
by the “capped descendent vertex”.
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Here the first sum is over all set partitions P of {1, . . . ,m} and the second sum
is over all partitions ν. The notation μS means the subpartition of μ defined
by S, i.e. the partition whose elements are αj + 1 for all j in the subset S of
{1, . . . ,m}. Finally, for any permutation ν = (ν1, . . . , ν
) of length � = �(ν),

(82) τν(σS) := ψν1−1
1 · · ·ψν�−1


 · ev∗
1,...,
 Δ∗

(∏
j∈S

σj

)
,

where Δ: X → X
 is the small diagonal. For fixed P , the sign ± (which
is always + if all insertions σi have even cohomological degree) in (81) is
dictated by the usual sign rules for differential forms: choose any ordering of
the subsets Si ⊂ {1, . . . ,m}, thus defining an order of the product

∏
S∈P in

(81). Each term of the product contains a further product
∏

j∈Si
σj from (82).

Multiplying them all together in this order gives a reordering of σ1 · · · σm.
Permuting it back to its original order (taking into account the degrees of the
σi) produces the sign ±.

The definition (82) of τν(σS) may be rewritten in the following equivalent
form. Let

σS :=
∏
j∈S

σj

and write

(83) Δ∗σS =
∑
j

θj,1 ⊗ · · · ⊗ θj,l

for its Künneth decomposition in X l. Then

τν(σS) =
∑
j

τν1−1(θj,1) · · · τν�−1(θj,
).

The following will be useful to compute the Künneth decomposition (83). We
let ΔS denote the small diagonal S → S
 and recall the projection π : X → S
and zero section ι : S ↪→ X.

Lemma 13.3. For σ ∈ H∗(S),

Δ∗ π
∗σ = (π × · · · × π)∗ ΔS

∗ (k
−1 · σ).

Proof. Since (ι× · · · × ι) ◦ (π× · · · × π) is homotopic to the identity, we have

Δ∗π
∗σ = (π × · · · × π)∗(ι× · · · × ι)∗Δ∗π

∗σ.
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To compute the right hand side we write σ = [A] as the Poincaré dual of
homology class A. Then π∗A is a Borel-Moore homology cycle of dimension
2 larger, and (ι × · · · × ι)∗Δ∗π

∗σ is the Poincaré dual of the intersection of
Δ∗(π∗A) with S × · · · × S.

First intersect with S × X
−1. This intersection is transverse and sends
Δ∗π

∗A to (id×ι × · · · × ι)∗ΔS
∗A. Now intersect with S
 ⊂ S × X
−1. Since

our cycle already sits inside this, the intersection simply caps with the Euler
class of the normal bundle OS � KS � · · · � KS of this inclusion. Since this
is k
−1 the result follows.

We can now show that the descendent-MNOP correspondence applied to
the stable pairs vanishing result Theorem 1.1 gives the analogous vanishing
for Gromov-Witten invariants.

Theorem 13.4. Suppose S has a reduced irreducible canonical divisor. If the
descendent-MNOP correspondence holds for X = Tot(KS), then

(84) ZGW
β (X, τα1(σ1) · · · ταm(σm)) = 0,

unless β is an integer multiple of the canonical class k and all σj lie in
H≤2(S).

Proof. For a fixed 3-fold X (or for fixed values of c1, c2, c3), and fixed curve
class β, the descendent-MNOP correspondence is an invertible linear trans-
formation (78) on the free Q[i]((u))-module of descendent operators and their
products. When ordered by total shifted descendence degree,14 it is an (in-
finite) lower triangular matrix with invertible diagonal entries. The diagonal
terms come from the leading order term of (81), which is where P is the finest
partition {1}∪ · · · ∪ {m} and ν = μS in (81). Then each S is a singleton {j},
μS = (αj + 1) = ν and [PP1]

K̃μS ,ν
= (iu)−αj .

All other terms of the same shifted descendence degree contribute zero by
(79). (So even though shifted descendence degree only defines a partial order,
the lower triangular claim makes sense.)

Moreover, all corrections (81) to the leading terms involve the same curve
class β and descendent insertions of classes in H∗(S) which are products of

14The shifting is due to the ±1 shifting in (80) and (81). We define the shifted
descendence degree of τν (81) to be the size |ν| of the partition ν. Thus, in these
conventions, τα = τ(α+1) has shifted degree α + 1. The total shifted degree of a
product of descendents is then the sum of the individual shifted degrees.
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the σj and k (by Lemma 13.3). Thus if β 
= dk or one of the σj ∈ H≥3

the same is true in the correction terms. For such classes, Theorem 1.1 gives
vanishing of the stable pair invariants. Since the correspondence is invertible,
we deduce the same vanishing for ZGW

β as for ZP
β .

Lemma 13.5. Only partitions ν of length �(ν) = 1 contribute to (77) via
(81).

Proof. For general σ1, . . . , σm ∈ H∗(S), fixed S ⊂ {1, . . . ,m} and a partition
ν with �(ν) > 1 we will show the contribution of τν(σS) to (77) — via (81)
— is zero. Let d be the cohomological degree of σS ∈ Hd(S).

If �(ν) = 2 then Δ∗ π
∗ σ = (π × π)∗ΔS

∗ (k · σS), with

ΔS
∗ (k · σS) ∈ Hd+6(S × S) ∼=

⊕
i+j=d+6

H i(S) ⊗Hj(S).

At least one of i or j is ≥ 3 in all of these summands, so their contribution
vanishes by (84).

If �(ν) = 3 then Δ∗ π
∗ σ = (π × π × π)∗ΔS

∗ (k2 · σS), where

ΔS
∗ (k2 · σ) ∈ Hd+12(S × S × S) =

⊕
i+j+k=d+12

H i(S) ⊗Hj(S) ⊗Hk(S).

At least one of i, j, k must always be ≥ 4, so again the contribution vanishes
by (84).

Proposition 13.6. For any σ1, . . . , σm ∈ H≥2(S), the disconnected descen-
dent generating function ZGW

dk (X, τα1(σ1) · · · ταm(σm)) equals

ZP
dk

(
m∏
j=1

αj+1∑
b=1

K̃−1
(αj+1),(b)

∣∣∣
c1=t, c2=c3=0

τb−1(σj)
)
,

where K̃−1
(αj+1),(b)

∣∣∣
c1=t, c2=c3=0

is the inverse of the infinite lower triangular ma-
trix

K̃(a),(b)

∣∣∣
c1=t, c2=c3=0

∈ Q[i, t]((u)).

Proof. First we observe that the only set partition which contributes to

(85) ZP
dk(X, τα1(σ1) · · · ταm(σm)) = ZGW

dk
(
X, τα1(σ1) · · · ταm(σm)

)
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is P = {1} ∪ · · · ∪ {m}. Indeed for any other partition P , there is an S ∈ P
with |S| ≥ 2 and σS ∈ H≥4. Then for any partition ν of any length �, we
have

Δ∗σS ∈ H≥6(
−1)+4(X
).

Since 6�−2 > 2� each summand of the Künneth decomposition of Δ∗σS must
contain a class in H≥3. This contributes zero to (85) by Theorem 13.4.

Furthermore, by Lemma 13.5, only partitions ν of length �(ν) = 1 con-
tribute via (81) to (77). Therefore (77, 81) simplify to

ZP
dk(X, τα1(σ1) · · · ταm(σm)) = ZGW

dk

(
m∏
j=1

αj+1∑
b=1

τb−1
(
K̃(αj+1),(b) σj

))
,

where the sign ± in (81) is + for the set partition P = {1} ∪ · · · ∪ {m}.
The correspondence requires us to set ci to the T -equivariant ith Chern

class of X. Using TX |S = TS ⊕ KS⊗t, we see that c1 = t, c2 = c2(S)−k2−k t,
and c3 = c2(S)t. Any occurrence of c1, c2, c3 is multiplied by a class σj ∈ H2

in (81). Therefore the terms c2(S) − k2 − k t and c2(S)t contribute zero by
Theorem 13.4. We get

ZP
dk(X, τα1(σ1) · · · ταm(σm))

= ZGW
dk

(
±

m∏
j=1

αj+1∑
b=1

K̃(αj+1),(b)

∣∣∣
c1=t, c2=c3=0

τb−1(σj)
)
.

We suppress the specialisation c1 = t, c2 = c3 = 0 from now on for notational
brevity. Multiplying out,

ZP
dk(X, τα1(σ1) · · · ταm(σm)) =

±
∑

b1,...,bm

m∏
j=1

K̃(αj+1),(bj) ZGW
dk (X, τb1−1(σ1) · · · τbm−1(σm)),

for any α1, . . . , αm. Inverting gives

ZGW
dk (X, τα1(σ1) · · · ταm(σm)) =

±
∑

b1,...,bm

m∏
j=1

K̃−1
(αj+1),(bj) ZP

dk(X, τb1−1(σ1) · · · τbm−1(σm)).

Expanding out the result we are required to prove gives precisely this.
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Theorem 13.7. Suppose S has a smooth irreducible canonical divisor of
genus h = k2 + 1 and the descendent-MNOP correspondence holds for X =
Tot(KS). Then ZGW

dk (X, τα1(D1) · · · ταm(Dm))ver equals the product of

ZGW
dk (X)ver

m∏
j=1

(dk ·Dj)

and
m∏
j=1

αj+1∑
b=1

K̃−1
(αj+1),(b)

∣∣∣
c1=t, c2=c3=0

· t
b−1

b!

(−id

2

)b−1 sin(b du/2)
sinb(du/2)

.

For d = 1, 2 these are the complete 3-fold generating functions.

Proof. Without descendents this is Proposition 13.2. The descendent term of
Theorem 1.4 is invariant under q ↔ q−1 up to a sign (−1)|α|. Setting −q = eiu

this term becomes

t|α|
m∏
j=1

(dk ·Dj)
(−i

2

)αj dαj

(αj + 1)!
sin((αj + 1) du/2)

sinαj+1(du/2) .

Combining with Proposition 13.6 and setting the sign ± to + (because all σj
have even degree) gives the desired result.

14. Links to Gromov-Witten theory of S

The (disconnected) Gromov-Witten invariants of S,

(86) N •
g,β(S, τα1(σ1) · · · ταm(σm)) :=

∫
[M •

g,m(S,β)]vir

m∏
j=1

ταj (σj),

can be recovered from those of X (75) by taking the leading order term in
their generating series.

Lemma 14.1. Define g is so that the virtual dimension g− 1 +
∫
β c1(S) +m

of M •
g,m(S, β) equals the complex degree15 of the descendent insertions:

(87) g − 1 +
∫
β
c1(S) + m =

m∑
j=1

(
αj + 1

2 deg(σj)
)
.

15The complex degree is half the cohomological degree.
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Then

ZGW
β (X, τα1(σ1) · · · ταm(σm)) = trN •

g,β(S, τα1(σ1) · · · ταm(σm))u2g−2+O(u2g),

where r = − rk(Nvir) = g − 1 +
∫
β c1(S) =

∑
j

(
αj + 1

2 deg σj − 1
)
.

Of course this coefficient of u2g−2 could be zero, in particular if g defined
by (87) is not an integer.

Proof. By [KT1, Proposition 3.2] the virtual normal bundle of M •
g,m(S, β) =

M
•
g,m(X, β)T ⊂ M

•
g,m(X, β) is

Nvir = Rπ∗f
∗KS ⊗ t,

where

C f

π

S

M
•
g,m(S, β)

is the the universal curve. As in [KT1, Section 3.1], by (54) this implies

1
e(Nvir) = tr + a1t

r−1 + a2t
r−2 + · · · ,

with ai ∈ H2i(M •
g,m(S, β)). Substituting into (75) gives

N •
g,β(X, τα1(σ1) · · · ταm(σm)) = trN •

g,β(S, τα1(σ1) · · · ταm(σm))

for g defined by (87), while for smaller g the left hand side vanishes for
cohomological degree reasons.

As a consequence, by Theorem 13.4 we deduce the well known vanishing:

Corollary 14.2. Suppose S has a smooth connected canonical divisor and
let g be defined by (87). If the descendent-MNOP correspondence holds for
X = Tot(KS), then

N •
g,β(S, τα1(σ1) · · · ταm(σm)) = 0,

unless β = dk and all σj lie in H≤2(S). �
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This was originally proved by Lee-Parker [LP] using analytical techniques
rather than the MNOP conjecture. See [MP] and [KL1, KL2] for algebro-
geometric proofs.

So we consider N •
g,dk(S, τα1(σ1) · · · ταm(σm)). We first consider the case of

no insertions. Thus g = 1 + dk2 (87) is the genus of degree d étale covers
u : Σ → C of genus h = 1+k2. These covers are discrete, and Lee-Parker [LP]
show each contributes (−1)h0(u∗KS |C)/|Aut(u)| to the Gromov-Witten theory
of S:

Ng,dk(S) =
∑
u

(−1)h0(u∗KS |C)

|Aut(u)| .(88)

This was proved within algebraic geometry by Kiem-Li [KL1, KL2]. The right
hand side is the degree d “unramified spin Hurwitz number” of (C,KS|C) —
the count of étale covers of C, signed by the parity of the theta characteristic16

KS |C of C.
Corollary 14.3. Suppose the smooth connected curve C of genus h is the
canonical divisor of a smooth projective surface S, and that the MNOP conjec-
ture holds for X = Tot(KS). Then the vertical contribution to the unramified
spin Hurwitz number (88) is

(89) (−1)χ(OS)
(

2 d−1
2

d!

)2−2h

.

For d = 1, 2 this is the entire unramified spin Hurwitz number (88).
Proof. By Lemma 14.1 we must extract the coefficient of the leading term
u2g−2 of the 3-fold generating function of Proposition 13.2. In the product Pd

all terms of order ≤ 3 cancel, so we expand to order 4 via

cos(x) = 1 − x2

2 + x4

24 + O(x5).

Expanding the remaining cos and sin terms to order 0 and 1 respectively
easily gives the leading order term (89).

Using a TQFT formalism the spin Hurwitz numbers (88) have been cal-
culated by Gunningham [Gun] as a sum over all strict partitions μ of d:∑

μ
d strict
(−1)χ(OS) 
(μ) (dμ)2−2h.

16By the adjunction formula, KS |C is a square root of KC .
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Here dμ is an explicit combinatorial number associated to μ and related to
representations of the Sergeev algebra. The vertical contribution of Corollary
14.3 correctly reproduces the term corresponding to μ = (d).

In stable pairs theory partitions describe thickenings of the canonical di-
visor C, while in TQFT they parameterise irreducible representations of the
symmetric group (the symmetry group of one fibre of an étale cover). Amaz-
ingly the MNOP correspondence seems to match these up. The calculations
in the sequel [KT4] provide further relations to Gunningham’s formula.

Finally we consider (86) with divisorial descendents. For d = 1, 2, Maulik-
Pandharipande [MP] conjectured the following formulae

N •
g,k(S, τα1(D1) · · · ταm(Dm)) = (−1)χ(OS)

m∏
j=1

(k ·Dj)
αj !

(2αj + 1)!(−2)−αj ,

N •
g,2k(S, τα1(D1) · · · ταm(Dm)) = (−1)χ(OS)2h−1

m∏
j=1

(2k ·Dj)
αj !

(2αj + 1)!(−2)αj .

These formulae were proved by Kiem-Li [KL1, KL2] using cosection locali-
sation on the moduli space of stable maps, and later by Lee via symplectic
geometry [Lee]. We will show how their compatibility with our calculations
shapes the form of the descendent-MNOP correspondence.

The leading term of the generating function ZGW
dk (X, τα1(D1) · · · ταm(Dm))

has order u2g−2, where by (87),

2g − 2 = d(2h− 2) + 2|α|.

Similarly the leading order term of ZGW
dk (X) has order ud(2h−2). Therefore

Theorem 13.7 implies the leading order term of

m∏
j=1

αj+1∑
b=1

K̃−1
(αj+1),(b)

∣∣∣
c1=t, c2=c3=0

· t
b−1

b!

(−id

2

)b−1 sin(b du/2)
sinb(du/2)

= O(u2|α|)(90)

is u2g−2u−d(2h−2) = u2|α|.
We can substitute in the fact [PP1, Theorems 2, 3 and Section 7] that the

matrix K̃(a),(b)|c1=t, c2=c3=0 vanishes unless b ≤ a, in which case

K̃(a),(b)

∣∣∣
c1=t, c2=c3=0

= ta−bfab(u),

for some fab(u) ∈ Q[i]((u)) with faa = (iu)1−a. But since the fab(u) could
have many terms, (90) does not determine them.



Stable pairs on local surfaces I: vertical 633

Conjecture 14.4. For each a ≥ b ≥ 1, we have

K̃(a),(b)

∣∣∣
c1=t, c2=c3=0

= ta−bKab u
1−a,

for some constant Kab ∈ Q[i].
If this is true, our results will shortly determine the Kab; see (91) below.

There is a small amount of direct evidence for this conjecture. It is known to
be true for a = b (with Kaa = i1−a [PP1, Theorem 2]) and for a = 2, b = 1
(with K21 = i−1 [PP1, Section 2.5]). Our motivation for it is the following.
Theorem 14.5. Fix S with a smooth connected canonical divisor and H2(S)
classes D1, . . . , Dm. Suppose the descendent-MNOP correspondence holds for
X = KS. If Conjecture 14.4 holds for K̃, then the vertical contribution to
N •

g,dk(S, τα1(D1) · · · ταm(Dm)) equals

(−1)χ(OS)
(

2 d−1
2

d!

)2−2h m∏
j=1

(dk ·Dj)
αj !

(2αj + 1)!(−2)−αjd2αj .

In particular, Maulik-Pandharipande’s formulae for d = 1, 2 are true.
Proof. Note that Conjecture 14.4 is equivalent to

K̃−1
(a),(b)

∣∣∣
c1=t, c2=c3=0

= ta−bLab u
b−1,

where Lab ∈ Q[i] is the inverse of the infinite matrix Kab. Setting x := du
2 ,

the left hand side of (90) then becomes t|α| times

m∏
j=1

αj+1∑
b=1

(−i)b−1Lαj+1,b

b! xb−1 sin bx

sinb x
.

Since
(−i)αjLαj+1,αj+1

(αj + 1)! = 1
(αj + 1)! ,

we can apply Theorem A.1 from the Appendix. By the uniqueness statement
there, the coefficients Lab are uniquely determined by the fact that (90) holds
for d = 1, m = 1. From the second part of Theorem A.1 applied to α = αj+1,
we can then deduce that for any d and m we have

m∏
j=1

αj+1∑
b=1

(−i)b−1Lαj+1,b

b! xb−1 sin bx

sinb x
=

m∏
j=1

(
(−1)αj

(2αj + 1)!! x
2αj + O(x2αj+1)

)
.



634 Martijn Kool and Richard P. Thomas

Substituting back x = du
2 gives

(
m∏
j=1

αj !
(2αj + 1)!(−2)−αjd2αj

)
u2|α| + O(x2|α|+1).

Multiplying by the leading order term of ZGW
dk (X) from (89) and taking the

coefficient of u2g−2 gives the required Gromov-Witten invariants of S.

Remark 14.6. The proof of Theorem A.1 actually gives a formula (94) for
the lower triangular matrix coefficients K̃−1

(a),(b)
∣∣
c1=t, c2=c3=0 = ta−bLabu

b−1,
namely

(91) Lab = ib−1(−1)a−1
b∑

j=1
(−1)b−j

(
b

j

)
jb−a for a ≥ b.

By equation (95) of Appendix A we deduce a formula for the generating series
of vertical contributions of all descendent Gromov-Witten invariants:

∑
α1,...,αm≥0

ZGW
dk (X, τα1(D1) · · · ταm(Dm))ver vα1

1 · · · vαm
m =

ZGW
dk (X)ver

m∏
j=1

∑
n≥1

sin(n du/2) (du/2)n−1

sinn(du/2)
(dk ·Dj)(tvj)n

(tvj)(tvj + 1) · · · (tvj + n) ,

where v1, . . . , vm are formal variables.
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Appendix A. A generating function identity by Aaron
Pixton and Don Zagier

Theorem A.1. For each α ∈ Z>0, there exist unique {cn(α)}αn=1 with
cα(α) = (−1)α−1

α! such that

(92)
α∑

n=1
cn(α) x

n sin(nx)
sinn x

= Aαx
2α−1 + O(x2α+1) as x → 0

for some Aα ∈ Q. Moreover, the leading coefficient Aα is then

(93) Aα = 1
(2α− 1)!! = 1

(2α− 1)(2α− 3) · · · 1 .

Proof. Existence. We show that a solution to (92) is given by

(94) cn(α) :=
n∑

k=1

(−1)n−kkn−α

k!(n− k)! .

Notice that these cn(α) equal the nth forward difference Δn
(
xn−α/n!

)
at

x = 0 when n > α > 0. Therefore they vanish in this range, and their gen-
erating series Lα(y) :=

∑∞
n=1 cn(α) yn is a polynomial in y. We may therefore

substitute y = xeix

sinx and split into real and imaginary parts, writing

Fα(x) := Lα

( xeix
sin x

)
= Eα(x) + i Oα(x)

where Eα(x) ∈ Q[[x2]] is even, while Oα(x) ∈ xQ[[x2]] is odd and equals the
left hand side of (92).

Splitting n as k + (n − k) in (94) gives ncn(α) = cn(α − 1) − cn−1(α −
1), and so the recursive formula L′

α(y) = (y−1 − 1)Lα−1(y). Thus F ′
α(x) =

f(x)Fα−1(x), where

f(x) =
(sin x

xeix
− 1
)

d

dx

(
xeix

sin x

)
= x + 1

x

(
1 − x

tan x

)2
∈ x +x3 Q[[x2]] .

Taking even parts of this equation, we get

O′
α(x) = f(x)Oα−1(x) .

Equation (92) with Aα as in equation (93) now follows by induction on α.



636 Martijn Kool and Richard P. Thomas

Uniqueness. The vector space Vd = xQ[[x2]]/x2d+1Q[[x2]] is d-dimensional
for every d ≥ 1, with basis {ei = x2i−1 + x2d+1Q[[x2]]}1≤i≤d. Let vα (1 ≤
α ≤ d) be the image in Vd of the left hand side of (92) with coefficients
given by (94). The first part of the proof writes vα as a linear combination of
eα, . . . , ed with the coefficient Aα of eα being non-zero (and given by (93)).
It follows immediately that these vectors are linearly independent and that
no combination of the first α of them can be O(x2α+1), which is the desired
uniqueness statement.

Remark A.2. For the application to Gromov-Witten theory the following
formula for the generating series of the left hand sides of (92) is useful:
(95)

∞∑
α=1

(−v)α−1
α∑

n=1
cn(α)x

n sin(nx)
sinn x

=
∞∑
n=1

xn sin(nx)
sinn x

vn

v(v + 1) · · · (v + n) .

To prove it, we use partial fractions and geometric series expansions to get

1
(v + 1) · · · (v + n) =

n∑
k=1

(−1)k−1

(k − 1)!(n− k)!
1

v + k
=

∞∑
α=n

(−1)α−1 cn(α) vα−n .
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