
lable at ScienceDirect

Environmental Modelling & Software 24 (2009) 1088–1099
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
Linking external components to a spatio-temporal modelling framework:
Coupling MODFLOW and PCRaster

O. Schmitz a,*, D. Karssenberg a, W.P.A. van Deursen b, C.G. Wesseling b

a Department of Physical Geography, Faculty of Geosciences, Utrecht University, Heidelberglaan 2, PO Box 80115, 3508 TC Utrecht, The Netherlands
b PCRaster Environmental Software Consultancy, Van Swindenstraat 97, 3514 XP Utrecht, The Netherlands
a r t i c l e i n f o

Article history:
Received 16 July 2008
Received in revised form
12 February 2009
Accepted 27 February 2009
Available online 11 April 2009

Keywords:
Environmental modelling
PCRaster
Python
MODFLOW
Integrated modelling
* Corresponding author. Tel.: þ31 30 253 9363; fax
E-mail address: o.schmitz@geo.uu.nl (O. Schmitz).

1364-8152/$ – see front matter � 2009 Elsevier Ltd.
doi:10.1016/j.envsoft.2009.02.018
a b s t r a c t

An important step in the procedure of building an environmental model is the transformation of
a conceptual model into a numerical simulation. To simplify model construction a framework is required
that relieves the model developer from software engineering concerns. In addition, as the demand for
a holistic understanding of environmental systems increases, access to external model components is
necessary in order to construct integrated models.
We present a modelling framework that provides two- and three-dimensional building blocks for
construction of spatio-temporal models. Two different modelling languages available in the framework, the
first tailored and the second an enhanced Python scripting language, allow the development and modifi-
cation of models. We explain for both languages the interfaces allowing to link specialised model compo-
nents and thus extending the functionality of the framework. We demonstrate the coupling of external
components in order to create multicomponent models by the development of the link to the groundwater
model MODFLOW and provide results of an integrated catchment model. The approach described is
appropriate for constructing integrated models that include a coupling of a small number of components.

� 2009 Elsevier Ltd. All rights reserved.
Software availability

Name: PCRaster
Developer: Department of Physical Geography, PO Box 80115, 3508

TC Utrecht, The Netherlands; PCRaster Environmental
Software Consultancy, Van Swindenstraat 97, 3514 XP
Utrecht, The Netherlands

Contact: o.schmitz@geo.uu.nl (MODFLOW extension),
d.karssenberg@geo.uu.nl

Required software:
PCRaster: Windows (free), Linux and UNIX on request; http://

pcraster.geo.uu.nl/
Python: all major platforms; http://www.python.org/

Online courses at http://pcraster.geo.uu.nl/courses/
courses.html
Example scripts and data sets are included in the install
package
: þ31 30 253 1145.

All rights reserved.
1. Introduction

Numerical spatio-temporal models simulating processes in the
geographic domain are important tools to improve our under-
standing of geographic systems. They are used in disciplines as
diverse as human and physical geography, ecology, environmental
sciences and hydrology. Each discipline uses models representative
for components of their specific geographic field. For instance,
human geographers model the socio-economic system to represent
urban sprawl, ecologists model the evolution of vegetation under
environmental stress, and hydrologists use simulations of water
flow in catchments. However, the need to link models of individual
components is becoming more and more urgent. This is driven by
the necessity to understand interactions in large geographic
systems, particularly in environmental management and planning.
Such large systems can only be modelled by explicitly representing
the interrelations between different, smaller, component models.
This is referred to as integrated modelling (Argent, 2004).

Component models are often developed to describe particular
environmental processes and are used by a limited user group.
Integrated models representing a number of interacting processes
optionally include social, economic, infrastructure and governance
aspects (McIntosh et al., 2007). The increase of involved domains
equally increases the number of involved user groups and their

mailto:o.schmitz@geo.uu.nl
mailto:d.karssenberg@geo.uu.nl
http://pcraster.geo.uu.nl
http://pcraster.geo.uu.nl
http://www.python.org/
http://pcraster.geo.uu.nl/courses/courses.html
http://pcraster.geo.uu.nl/courses/courses.html
mailto:o.schmitz@geo.uu.nl
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–1099 1089
specific perceptions of the integrated model. An example for
divergent perceptions of integrated models is decision support
systems where the policy view is originated in the value-driven
perceptual domain while the research view is originated in the
theoretical domain (Oxley et al., 2004). The problems related to the
transfer of scientific knowledge into policy models (e.g. McIntosh
et al., 2005) are not addressed here. In this paper we discuss the
development of integrated research models by scientists speci-
alised in their domain, for instance hydrology or ecology.

In general, both component models and integrated models need
to provide a spatial representation in two or three dimensions, and
need to simulate changes over time. The representation of the time
domain is referred to as transient or dynamic modelling (Beck et al.,
1993; Karssenberg and de Jong, 2005; Burrough, 1998). In dynamic
modelling, which is the term used here, the state of a model is
iteratively updated over a set of discretised timesteps by equations
representing real world processes such as urban sprawl, vegetation
growth, or groundwater flow. Dynamic models either use contin-
uous fields or discrete entities to represent the geographic domain.
Discrete entities are widely applied in agent based and individual
based modelling (c.f. Benenson and Torrens, 2004; Grimm and
Railsback, 2005). The focus in this work is on models that use
continuous fields discretised in raster cells utilising as update rules
for instance cellular automata, differential equations or rule based
spatial functions.

The aim of model building is to find the optimal set of equations
to represent real world processes, given the purpose of the model
and the data available. This is often done in an explorative way,
whereby different sets of equations are evaluated and the set of
equations is selected that gives the best performance of the model in
terms of its predictive capability, calibration and validation results,
runtime, and input data required (Wainwright and Mulligan, 2004).
Thus, in model building it is important to have a tool that is flexible
such that a wide range of different model equations can be pro-
grammed, (re-)combined and tested in relatively short time (Kars-
senberg, 2002; Argent, 2004). Such a flexible tool is also required
when adjustments to existing models need to be made, for instance
when new data become available that need to be fed to the model,
or when new scientific understanding can be used to improve the
representation of real world processes in the model.

Although in principle any programming language could be used
as model construction tool, modelling frameworks (Argent, 2004;
Rizzoli et al., 2008) have been developed for the purpose of model
construction (e.g. MATLAB, 2005; Wang and Pullar, 2005; PCRaster,
2008; Leavesley et al., 1998; Repast, 2008; Hurkens et al., 2008). For
model construction, three features of a modelling framework are
essential (Argent, 2004; Karssenberg, 2002): native operations on
spatial entities, a modelling language for combining these opera-
tions in order to build dynamic models, and a means to link with
external programs or models.

The range of native operations included can vary from low-level
approaches where the operations are mathematical operators on
arrays (e.g. MATLAB, 2005) to high level approaches that provide
operations representing spatial processes on 2D and 3D entities
representing a landscape (Pullar, 2004; PCRaster, 2008; ArcGIS,
2008). The use of high level operations minimises the time required
to program models, but comes with the risk that not all types of
models can be implemented because the number of different
operations is too small, or the operations do not provide enough
flexibility to support application in a wide range of application
domains (c.f. Karssenberg, 2002).

The language provided to construct the models using the native
operations is also an important factor determining the efficiency of
model construction and the possible user group of the modelling
framework. Low-level system programming languages like C,
FORTRAN or Cþþ require that many technical details, not related to
environmental modelling, which need to be defined in the
program. As a result, combining the operations requires a strong
background in programming. On the other hand, frameworks based
on higher level languages such as Geographic Information System
(GIS) languages (ArcGIS, 2008; GRASS, 2008) are completely
tailored to model construction and include standard functionality
for data handling and detailed type checking and in some cases also
for iterations over time (e.g. De Vasconcelos et al., 2002; PCRaster,
2008). In this case, the model script resembles very much a technical
documentation of the model: it can be written and read without
much knowledge of informatics. In general, it is preferable to hide as
many technical details from the modeller, so higher level languages
are preferable to lower level languages (Karssenberg, 2002).

By combining the operations provided by the modelling frame-
work, the user can construct a large range of models. However, in
some cases a model component is required that cannot be con-
structed from the operations provided by the modelling framework.
This model component can be small, for instance a single spatial
operation that is not provided by the framework, or it can be large,
i.e. a complete spatio-temporal sub-model that needs to interact
with the model that is constructed. The latter is often the case with
integrated modelling, where a number of models need to commu-
nicate by exchanging their model states.

Two approaches can be followed to create a link with external
model components. In the first approach, the modelling framework
keeps its central role in handling input and output of data and
providing control flow, in particular timesteps. The external model
component is linked to the framework and is called from within the
framework itself. In the second approach, an external modelling
interface is used to create the link with an external component. The
model constructed in the modelling framework looses its central
role and it becomes one of the component models in the modelling
interface, just like the external model component to which it needs
to be linked. This approach to model integration is possible with the
Open Modelling Interface (OpenMI, 2008; Gregersen et al., 2007).

In this paper we describe and evaluate the PCRaster modelling
framework (van Deursen, 1995; Karssenberg and de Jong, 2005;
PCRaster, 2008). This framework provides an extensive set of
operations on two- and three-dimensional continuous fields, and
seamlessly integrates the temporal dimension in the operations
and the database. For the construction of models from these native
operations and, in effect also from external modules, PCRaster
comes in two flavours: the PCRcalc modelling language, fully
tailored to construction of dynamic spatial models and an inte-
gration of the Python scripting language (2008). The PCRcalc
language is an example of a dedicated high level language as
described above that is fully targeted at model builders by hiding all
technical details. The Python language is at a somewhat lower level
because it is a generic language. For both flavours of the PCRaster
framework we describe features to extend the languages with links
to external model components. Here, the modelling framework
keeps it central role as described above in the first approach. The
procedure to link external components is illustrated with an
example hydrological model. The purpose of the example is to
create a link with MODFLOW, the widely used software for
groundwater flow modelling (McDonald and Harbaugh, 1984).

The aim of this paper is 1) to explain the concepts of dynamic
modelling and how operations have been designed following these
concepts, 2) to describe the technical implementation in the
PCRaster modelling framework (for both PCRcalc and PCRaster
Python) that incorporate these operations, 3) to explain how
external models can be linked to the modelling framework with the
example of MODFLOW, and 4) to evaluate the modelling framework
with respect to the usability for model construction whereby we

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–10991090
discuss the use of OpenMI as an alternative strategy to link external
components.

2. Concepts of dynamic spatial modelling

To simulate dynamic behaviour of a geographic system a dis-
cretisation of a time period into a sequence of timesteps and an
iteration over these timesteps are needed. This can be described by
executing a functional f at each timestep ti:

Z1; .; mðtiÞ ¼ f
�
Z1; .; mðti�1Þ; I1; .; nðtiÞ; P1; .; l

�
cti (1)

The model variables Z1, ., m at the new timestep are the result of
the state change functional f which can either be an update rule,
a differential equation derivative describing the variables as
a continuous function or a probabilistic ruleset (Karssenberg and de
Jong, 2005). Arguments to that function are a set of parameters
P1, ., l and input parameters I1, ., n of the current timestep.
Furthermore the variable states of the previous timestep Z1, .,

m(ti�1) are included in order to model feedback dependencies.
The representation of space basically demands the same prop-

erties provided by current GISs and requires native data types to
manage two-dimensional map data and three-dimensional volume
data. To represent f, a set of native operations is essential (Tomlin,
1990; Wesseling et al., 1996; Pullar, 2003). A consecutive applica-
tion of the function f updates the model state for each timestep.
Spatial and temporal operations on native data types form the
building blocks which enable the model developer to construct
dynamic models. As an additional requirement visualisation tools
that are able to display spatio-temporal data need to be provided.
Changes over time can be shown as timeseries graph data or as an
animated sequence of maps.

In the following sections we present the PCRaster modelling
framework offering two- and three-dimensional data structures
and native operations which can be combined to construct f
(Equation (1)).

3. PCRaster modelling framework

PCRaster (2008) is a framework for the development of dynamic
models. The integrated database organises the storage and
management of raster-based two-dimensional maps and three-
dimensional block structures. Building on that, the modelling
framework offers a large set of native operations that operate on
spatial entities and the temporal domain. The operations can be
classified into the following groups (Karssenberg and de Jong,
2005; Tomlin, 1990) (see Fig. A1):

(1) Point or local functions that operate on single cells or voxels.
Examples are arithmetic functions or all functions returning
attributes of a cell as a function of values at the cell itself, for
instance the assignment of hydraulic conductivity derived from
the lithology of a cell.

(2) Direct neighbourhood or focal functions operating on cells or
voxels in a spatially bound neighbourhood. Examples are two-
or three-dimensional filters calculating the new cell value as
a function of attribute values in the window.

(3) Entire neighbourhood functions. These functions derive attri-
bute values of a cell from attribute values in potentially all cells
on a map. Examples are functions solving equations repre-
senting flow in the whole modelling domain, or functions
calculating distances between cells or voxels.

(4) Functions with a neighbourhood defined by a given topology.
These functions calculate cell values from attribute values of
cells from a neighbourhood defined by an explicit given
topology. Examples are functions transporting material over
the local drain direction network representing flow directions
over a map (Fig. A3).

In contrast to most GISs, PCRaster provides capabilities for
modelling in space and time. Fig. A2 provides a conceptual scheme
of a PCRaster model including the model sections, each with
a specific role in a model. The initial section holds the code defining
the starting values of the model. Initial values can be obtained from
disk, or are calculated with spatial operations. The dynamic section
holds all operations that are executed in one timestep. Model input
can be read from disk, resulting output can be in the form of
temporal data or spatio-temporal data. The timer sets and controls
the number of iterations over timesteps. After a model run, the
results can be displayed as static or dynamic, animated data.

The PCRaster framework is used worldwide for model develop-
ment at research institutes and academia as well as for education in
environmental modelling, including e-learning courses (Karssenberg
et al., 2001). Applications of the framework can be found amongst
others in hydrological modelling (e.g. LISFLOOD, van der Knijff et al.,
2008), geomorphologic modelling (Karssenberg and Bridge, 2008) or
wind erosion modelling (Visser et al., 2004). The implementation of
various models using PCRaster is discussed in Wesseling et al. (1996),
Burrough et al. (2005) or Karssenberg (2002).

3.1. The PCRaster PCRcalc modelling language

3.1.1. Native functions and model script
The PCRcalc modelling language uses the native PCRaster

functions in the development environment PCRcalc. The basic
layout of a model described in PCRcalc contains five different
sections which are shown in the example script of Table A1. The
binding section links external file names to model parameters and
thus allows the exchange of input data without modifications in the
remaining sections of the script. The areamap section defines the
spatial discretisation of a model. In the timer section the start time,
end time and duration of a model are specified. The initial section
contains the code for the model setup which means initialising
variables by values read from disk, setting constant values or
assigning the result of spatial operations. The dynamic section
finally covers a set of operations describing the system processes to
represent f (Equation (1)) for each timestep. Inputs dependent on
the timestep are retrieved with the temporal operations, interme-
diate results can be stored on disk. The initial and dynamic sections
contain one or more statements of the type:

result Map ¼ native Operation (argument Maps);

The combination of several statements allows the formal
representation of the processes occurring in a system, as shown in
the example of Table A1. Here the initial section is used to create
a local drain direction map as shown in Fig. A3 containing the flow
direction of each cell in a catchment. The native operation time-

inputscalar reads the timeseries file rain.tss and assigns for
each timestep each cell a precipitation value as input data. The
native accuflux operation calculates the amount of water that
flows out of a cell to its neighbour cell in a direction specified in the
local drain direction map ldd. The modelling framework parses the
PCRcalc model script and checks it for syntax errors and optimi-
sation opportunities before it executes the model.

3.1.2. Extending the PCRcalc language with external model
components

The Application Programming Interface (API) of PCRaster
enables software developers to integrate their models into the
PCRaster framework. The API offers a communication layer that

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–1099 1091
allows to add own model components and enables access and
modification of PCRaster data values. The API therefore allows
transformation from own data types to that used in PCRaster as
well as storage and modification of data independent from
PCRaster data types and timesteps. Developers of model compo-
nents can add functionality to the modelling language by writing
libraries in their favourite programming language.

The library is accompanied by an XML manifest file. The XML file
is used by the framework to identify the operations the library
provides. Table A2 shows an example of a manifest file specifying
an extension operation performing a statistical calculation which is
not available as native operation. The operation named colMedian
takes a spatial argument of the data type scalar as input and returns
a scalar spatial result. At the beginning of a model script execution
the XML manifest file is parsed by the modelling framework. In
a second step the type informations of the operations and argu-
ments are tested for correctness.

In addition to the manifest file the developer has to implement
the function itself that is callable by the PCRaster framework and
organises the data transfer between the modelling framework and
the extension library. Table A3 shows a code extract of the library
for the operation colMedian. The function pcr_LinkInExecute is
called by the PCRaster framework and provides at method invo-
cation via the array LinkInTransferArray, which is holding
pointer to result and argument maps, access to the PCRaster data
types.

The operation implemented in the library can be used in
a PCRcalc script as follows:

result:map ¼ extensionName :: colMedian(dem:map);

where extensionName is the filename of the extension selectable
by the library developer.

The API therefore allows the development of more advanced
libraries by providing object-orientation with an object state and
methods interacting with that state. It is therefore possible to link
to complex state persistent model components as will be shown in
Section 4.2.

3.2. The PCRaster Python language

3.2.1. The Python language
Unlike PCRcalc, being a tailored modelling language, Python is

a generic programming language. Compared to the traditional
system programming languages such as FORTRAN and C, Python
liberates the model developer from the need to obtain specialised
knowledge about for example the underlying operating system and
memory management. Python provides the typical programming
language features like loops, control flow and definition of func-
tions as well as object-orientation which allows modularisation,
definition of own data types and re-use of specific components. The
clean syntax makes Python easily learnable and thus a suitable
basis for a modelling language.

3.2.2. Extending Python with model building blocks
To enhance Python with modelling abilities spatial data types

and operations must be added. The mixed language programming
feature provided by Python allows the integration of C, Cþþ or
FORTRAN code without the need for modifications of the existing
code. We use this approach to provide the spatial operations of the
PCRaster framework as a Python extension. The added overhead for
the communication between Python and the framework code is of
minor importance, as the main runtime of a model is spent on
spatial operations and thus in the optimised framework code.

The mixed programming layout requires additional code which
organises the communication between the Python language and
the PCRaster code. The interface used to expose the objects and
methods is the Boost.Python library (2008). Functionality such as
operations on each cell of a map is implemented in Cþþ methods.
The Boost.Python framework defines the operation name used in
the Python language and specifies the associated Cþþ class and
method. At compile time the library generates code that is callable
by the Python C API. Result of the compilation is an extension that
can be imported and used in a Python script.

In addition to the algebraic operations on maps a framework for
model execution is needed. We provide a set of Python classes that
organise the execution of static and dynamic models (c.f.
Karssenberg et al., 2007), whereby the structure of the model is
similar to the structure of a model written in PCRcalc. Furthermore
modules for error propagation and data assimilation are available
(Karssenberg et al., 2008a,b).

Table A4 shows the Python version of the PCRcalc runoff model
given in Table A1 and demonstrates the combination of Python
language features by defining the model with a class and member
functions and execution by the dynamic framework.

As well as the map algebra operations of the PCRaster frame-
work are provided as Python extension, external components can
be included into model scripts. We again use the Boost.Python
library to implement the link to the MODFLOW component as
Python extension, as will be shown below.

4. Catchment model case study

In this section we show how the PCRaster framework can be
used to construct an integrated catchment model. This model uses
hereby a combination of native and extension operations to
represent hydrologic processes. Simulation of surface runoff and
the calculation of discharge fluxes are done with native operations.
As three-dimensional flow equations are not available as native
operations within the framework, the groundwater component is
simulated by the external application MODFLOW.

4.1. Linking the MODFLOW component

MODFLOW (Harbaugh et al., 2000), developed by the US
Geologic Survey (USGS, 2008) and first released in 1984, is a free
software package solving three-dimensional groundwater flow
equations. Due to its comprehensive documentation, the extensi-
bility and development of additional packages (e.g. Osman and
Bruen, 2002; Batelaan and De Smedt, 2004), it is used in a number
of scientific research projects (Herzog et al., 2003; Nguyen et al.,
2005; Gedeon et al., 2007). Documentation and source code from
MODFLOW are available at the website of the USGS (2008).

MODFLOW uses a set of specific packages to define the model.
The discretisation package sets the spatial and temporal dimen-
sions. Spatial properties cover the finite difference grid in the
horizontal and the number of layers in the vertical orientation.
Time is divided into stress periods, during which external stresses
like pumping rates are constant, and furthermore into timesteps.

Initial head values and boundary conditions are defined in the
basic package. Boundary values define whether the flow in a cell is
constant, calculated or not considered. Conductivity and trans-
missivity values and settings for the rewetting capabilities are spec-
ified in the block-centred flow package. Packages simulating stress
factors are the well, recharge, river and drain packages. Furthermore
solver and control files must be specified for a simulation. Results of
a simulation are head and new boundary values for each layer as well
as flow terms related to each of the specified packages.

All MODFLOW inputs need to be defined as ASCII input files with
a strict format. As it is sometimes cumbersome to create these files,
a wide range of commercial and free pre- and postprocessors have

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–10991092
been developed to ease the model creation (e.g. Winston, 1999;
Processing Modflow, 2008; VisualMODFLOW, 2008; Carrera-
Hernández and Gaskin, 2006). However, these MODFLOW shells do
not allow for integration of MODFLOW with other component
models that model parts of the system that cannot be represented
by MODFLOW, such as the unsaturated zone or surface water.

The link between the PCRaster modelling framework and
MODFLOW does allow for integrated modelling, because MOD-
FLOW can be called from within the modelling framework.
Groundwater is modelled with MODFLOW, while the native oper-
ations of the modelling framework are used to represent the other
components of the hydrological system. The MODFLOW stress
periods are mapped to the framework timesteps, the modeller is
able to choose steady-state or transient simulations of the stress
periods. Thus, the modeller is free in choosing a duration of time-
steps that matches the available data and process dynamics.

We developed extensions both for the PCRcalc and Python
languages using the PCRcalc API and the Python wrapper
approaches explained in the Sections 3.1.2 and 3.2.2. The extension
updates necessary MODFLOW input files each timestep and reads
the output generated by MODFLOW. An executable of MODFLOW
2000 (v1.17) is included in the extension package. Minor modifi-
cations to the MODFLOW code were made to suppress status
messages to the standard output.

The approach is illustrated below in an example where rainfall
and river discharge are represented with the native operations of
the modelling framework. This framework is linked to a two layer
MODFLOW model to represent groundwater flow.

4.2. PCRaster Modflow

4.2.1. Study area
We used the extension to build an integrated model of the

‘‘Utrechtse Heuvelrug’’ catchment located in the centre of the
Netherlands. The model written in the PCRaster PCRcalc modelling
language is provided in Table A5 and continued in Table A6. For the
PCRaster Python version of the same model we refer to Table A7.

Fig. A4 shows the digital elevation map and the streams in the
area. The size of the catchment amounts to 120 km2. Elevation values
range from 2–5 m in the lowland parts to 50 m on top of the ridge.
The soils consist mainly of Pleistocene sands and Holocene river
deposits. Pasture is the dominating landuse type in the lower parts of
the catchment, the upper parts are dominated by dry woodlands.
Large parts of the lower area are drained. The surface area sums up to
about 5000 cells with a cell length of 150 m. Two layers of variable
thickness per cell are used. Five streams, drained areas and one
pumping well in the bottom layer are included in the model.

4.2.2. Initial model section
As shown in the model script in Tables A5 and A6, a set of oper-

ations arranges the communication with the MODFLOW extension.
Settings which are not changing over time like the grid specification
and constant values are set in the initial section of a model. Varia-
tions in the stress packages are set in the dynamic section.

Specifying the grid dimensions of the discretisation package
must be the first activity after initialise presets the internal
data structures of the extension. The createBottomLayer oper-
ation defines the bottom layer and takes two maps as arguments
containing the bottom and top of the bottom layer elevation values.
An additional layer is added with the addLayer operation with
a top of layer elevation value map as argument. Both operations
calculate the thickness values per layer and hence build up the
vertical grid dimensions. The horizontal properties like ‘‘cell width
along rows’’ are derived from the information about the spatial
discretisation integrated in the provided clone.map.
The input for the block-centred flow package is set with the
setConductivity operation. The first argument is the layer type
LCON flag specifying if the layer is either confined, unconfined or
convertible, the second and third arguments are maps containing
the horizontal and vertical hydraulic conductivity values for a layer.
Transmissivity along rows is calculated automatically if the layer
type is appropriate. The wetting capability is not used in this model.

The basic package is activated afterwards. The input map
bound.map contains boundary condition values for each cell and is
set with the setBoundary operation for a specific layer. Initial
head values are set for each layer with the operation setIni-

tialHead. The setDIS operation sets units, the number of time-
steps within a stress period and the stress period to a transient
simulation. The storage characteristics that are required for a tran-
sient simulation are set for each layer with the setStorage

operation. Furthermore operations to set package specific options
such as wetting iteration intervals are available. Using a solver, here
the preconditioned conjugate-gradient package set with the
setPCG operation, a model can be started with the run operation.

The supported head-dependent packages are the river and the
drain package. The operation setRiver takes three input maps.
The map riv_l1h holds the head values and riv_l1b contains the
bottom elevation values. The map riv_l1c holds the hydraulic
conductance of the riverbed. The setDrain operation activates the
drain package and requires two input maps, drn_elev with the
drain elevation values and drn_c with the conductance values. The
last argument of both operations is the layer number the values are
assigned to.

The head-independent well and recharge packages are specified
with the operations setWell and setRecharge respectively. The
well.map contains the pumping rates of the well located in the
bottom layer. The rch.map holds the recharge values which are
applied to the highest active cells.

The properties of the layer provided by the user are stored
internally in a block structure. The values are used to create the
several input files for MODFLOW. The resulting head and boundary
values of a simulation are automatically imported and updated in the
block structure of the MODFLOW extension object. The results of the
packages can be obtained with getHeads, getRiverLeakage,
getRecharge and getDrain. The result maps can be used in
ongoing calculations or written to disk using the report operation.

4.2.3. Dynamic model section
Unlike the initial section, mainly consisting of links to the MOD-

FLOW component, the dynamic section contains both native opera-
tions and operation calls to MODFLOW. Input data includes
precipitation and reference evaporation data for one year. This data is
used to calculate the input data for the recharge package on a daily
basis as shown in line 2–7 of Table A6. The nativetimeinputscalar
operations assign for each timestep precipitation and reference
evaporation values to each cell in the catchment. The native loo-

kupscalar operations assign to each cell a direct runoff value and
a crop coefficient value (provided in the lookup tables r.tbl and
c.tbl, respectively) to different landuse types given in the land-
use.map. Those coefficients are used to calculate the runoff ro as
a fraction of direct precipitation and the evapotranspiration as
reference evapotranspiration weighted by the crop coefficient. The
recharge finally applied to MODFLOW in line 7 is calculated as
the effective precipitation diminished by the direct runoff and the
evapotranspiration. The response of the head values to the incoming
precipitation for a specific cell in the catchment is shown in Fig. A5.

The upward seepage calculated by the river package of MOD-
FLOW is retrieved with two getRiverLeakage operations, each
retrieving the seepage from a single layer number indicated by the
function argument. By selecting the negative (i.e. upward) seepage

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–1099 1093
values only, using the native max operator, this results in a map
rivcmd containing the total upward seepage for each cell.

The sum of the total upward seepage, direct runoff, and drainage
discharge obtained from the drain package are used to calculate the
total discharge of the stream ‘‘Langbroeker Wetering’’ (lines 12–16),
see Fig. A4 for the location of the stream. The native accuflux

operation calculates the total discharge (lateral flow) for each cell as
the amount of material that is transported out of the cell. For each
cell, this amount is composed of the material in the cell itself and
the material from the upstream cells. Upstream cells are derived
from the local drain direction map ldd.map. Here, the discharge is
calculated by adding up the upward seepage, direct runoff and
drainage from drains. Using three separate accuflux operations, it
can be calculated for each individual discharge component, too. The
results of this calculation are shown in Fig. A6.

5. Discussion and conclusion

In this paper we showed the necessity of integrating specialised
model components into modelling frameworks for the develop-
ment of large scale multicomponent models. We demonstrated the
capabilities of two modelling languages to link external model
components and applied this concept by means of constructing
a groundwater model. We presented here the link to one external
modelling component, while several components can be linked as
well.

In general, the selection of a link strategy between modelling
components depends on the type and quantity of the linked
components. Fig. A7 shows three different groups of external model
components. The groups shown in panel (a) and (b) of Fig. A7 can be
linked to the modelling framework using the approach described in
this paper. Fig. A7(a) depicts the situation of linking model compo-
nents without time dimension or components representing a time
interval bounded by the length of the framework timestep interval.
Such external components receive as input the current state of the
framework relevant for the component, parameters, and if required
a time interval predetermined by the modelling framework. The
component calculates the new state related to the component and
returns it to the modelling framework where it is stored or adjusted
to serve as input to the external component in the next timestep. As
components are executed each timestep and no bookkeeping of
component states is necessary, this kind of linking is adequate for
single operations or smaller components. An example for this
approach is the colMedian operation described in Section 3.1.2.

Fig. A7(b) shows the second group, where bigger components
with timeslices independent from the framework or components
keeping their states beyond time intervals given by the framework
are linked. An example of this group is the MODFLOW component
described here. The architecture of MODFLOW allows to separate
its runtime into stress periods which can be mapped to the
framework timesteps. Additionally to the framework state the
component state must be stored either by the framework or
the component. Here the state is updated each timestep in the
MODFLOW extension object. This approach is convenient for
MODFLOW because it uses the stress periods. It may also be
applicable for other model components that belong to the second
group, but only if their architecture provides a means to map the
runtime to the framework timesteps.

The approaches of linking presented here integrate components
into the modelling framework and thus allow the model developer
to use various components in a single modelling framework.
Linking external components hereby does not only enrich the
framework power of expression, but can also be used to ease
acquaintance with external components. In our case, with only
using the extension operations, one is for instance able to use the
PCRaster framework as free pre- and postprocessor for MODFLOW.
However, for both groups (Fig. A7a and b) of external model
components, the runtime of the linked components must be
separable into timeslices matching the ones given by the modelling
frameworks, and administration of states has to be considered.
Hence this technique is practicable for a small number of compo-
nents, but becomes more difficult when a large number of
components need to be linked. This increases the complexity
because administration and data transfer for a large number of
component model states need to be done, while conformity needs
to be kept of the spatial and temporal discretisation of components.

For a large number of components a different approach is more
suitable. Fig. A7(c) shows a situation of integrated modelling that is
difficult to handle with the linking approach described in this
paper. In this situation, a large number of model components need
to be integrated, where it is also difficult to map their timesteps to
the timesteps of the modelling framework. Here, it is better to use
a modelling interface such as OpenMI (2008). OpenMI is
a communication standard for linking modelling frameworks. Each
participating model has to specify its input and output require-
ments and data transfer and time flow are organised by OpenMI.
This specification eases the execution of different modelling
components. Newly developed modelling components following
a reusable and modular design (Rizzoli and Argent, 2006) can be
made OpenMI compliant with minor efforts. As OpenMI is a recent
approach originated in Europe not all model components comply to
the standard, or are as stand-alone applications easily convertible.
The drawback of our approach, the close-coupled link to PCRaster,
is diminished by the fact that OpenMI compliance of PCRcalc is
currently under development.

We also demonstrated how the two modelling languages can be
utilised to build integrated models. The tailored language PCRcalc is
appropriate for model developers without any programming
experience. Provision of operations targeted to environmental
model developers with a readable syntax allows a straightened
model development. This is advantageous for instance in teaching,
where the emphasis is on model development and replicating
environmental processes instead of programming. By contrast,
Python, being a general purpose programming language, requires
a basic proficiency of the language itself, for example error
messages can be less understandable than given in the tailored
language. In return, the model developer can use Python language
features and has the option to introduce own data types or include
modules developed by external groups (see also Karssenberg et al.,
2007). Furthermore, the object-oriented Python language enforces
a modular design of a model structure which means partitioning
sub-components of a model into different Python modules. This
results in a higher maintainability for each component and the
complete model, a potential for a re-use of sub-components and
a better overview of complex models.

The framework presented in this paper allows a model devel-
oper to construct integrated models without specialist knowledge
of low-level programming. A number of other approaches exist to
construct this type of model (Karssenberg, 2002). One approach is
to use other existing toolsets, but the model development process
with these toolsets may be subject to restrictions. Geographic
Information Systems have their focal point in spatial analysis but do
not provide sophisticated capabilities for dynamic modelling.
Storage based modelling toolsets like STELLA (2008) allow to model
temporal dependencies, but do not support to represent spatial
interactions and processes. MATLAB (2005) has its main field of
application in the engineering domain, but can be used to perform
analysis on environmental data. However, spatial and temporal
operations are not natively supported and need to be constructed.
In contrast, the PCRaster framework provides performance

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–10991094
optimised operations suitable for spatio-temporal model develop-
ment in the field of environmental and earth sciences. Furthermore,
exploratory data analysis is assisted by the framework visualisation
tool that enables prompt visualisation of spatial, temporal or
stochastic data (Pebesma et al., 2007). In addition, the framework
bindings to the object-oriented Python programming language
allow a modular design which is advantageous for structured
model development (Rizzoli and Argent, 2006).

Specialised toolsets simulating a specific component or process
in the environment, for instance VisualMODFLOW (2008) that uses
the MODFLOW modelling engine to model groundwater flow, are
not efficient tools for integrated modelling of a large environmental
system. The reason therefore is that interfaces to link them to other
modelling tools are mostly not available and need to be developed
from scratch in each project.

An implementation of a model in a system programming
language like FORTRAN, C or Cþþ allows integrated dynamic
modelling, but model construction is difficult: spatial data types,
a temporal framework, visualisation software and more must be
developed from scratch. This demands specialist programming
knowledge, is time consuming, error-prone and in most cases
beyond the scope of a model developer.

While the main focus of the framework is on the development of
research models it can also play a beneficial role in the
A B

Fig. A1. Classification of operations: (A) Point or local, (B) Direct neighbourhood or focal, (C
a given topology.

Fig. A2. Conceptual overview of a PCRaster model run. The initial section is used to establi
each timestep.
development of integrated models for different end-users like
policy makers. The framework offers a unified interface to various
component models. This eases for instance the development of
a user-friendly interface on top of the framework that enables the
end-user to specify model input scenarios (Oxley et al., 2002).

Acknowledgements

We acknowledge the financial support by the Dutch research
programme Space for Geo-Information (Ruimte voor Geo-Infor-
matie, RGI) as RGI project 228 ‘‘The OpenMI framework for access to
spatial temporal data and the linking of models’’. Furthermore we
thank Kor de Jong for developing components of the PCRaster
Python extension and valuable remarks. Arien Lam is acknowl-
edged for his feedback during the extension development. Finally,
we thank three anonymous reviewers for their useful comments to
the manuscript.

Appendix A. PCRaster Python example script

The following code shows the Python version of the PCRcalc
script given in the case study of Section 4. The binding, areamap and
timer sections are no longer necessary. Names and argument types
of the PCRasterModflow operations equal the PCRcalc version.
C D

) Entire neighbourhood or zonal, and (D) Functions with a neighbourhood defined by

sh valid starting conditions, the dynamic section performs the process descriptions for

Fig. A3. Local drain direction network map of a catchment. Flow directions are indicated from each cell to its steepest downslope neighbour. The outlet is located at the left side of
the catchment.

Fig. A4. Map showing elevation values and streams. The major stream in the south is the Amsterdam–Rhine canal with an average width of 150 m, the smaller streams have an
average width of 10 m. The box indicates the location of the basin shown in Fig. A3.

3

3.05

3.1

3.15

3.2

3.25

3.3

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

5

10

15

20

25

30

W
a
t
e
r

t
a
b
l
e

[
m
]

P
r
e
c
i
p
i
t
a
t
i
o
n

[
m
m
/
d
a
y
]

Precipitation
Water table

Fig. A5. Response of the water table to the effective precipitation for one specific cell in the catchment.

Fig. A6. Simulated total and separate fluxes in a subcatchment for September, 15 (timestep 258) after a strong rainfall event. Units in m3/day.

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–10991096

a

b

c

Fig. A7. Different approaches of linking model components. (a) Linking a single
operation (b) Link to an independent modelling component, and (c) Arbitrary linking
of modelling components.

Table A1
PCRcalc model script simulating surface runoff for one year.

binding
dem¼ dem.map;

areamap
clone.map;

timer
1 52 1;

initial
ldd¼ lddcreate(dem, 1E31, 1E31, 1E31, 1E31);

dynamic
precip¼ timeinputscalar(rain.tss, rainzone.map);
report runoff¼ accuflux(ldd, precip);

Table A2
XML manifest for an extension library specifying a single operation named colMedian.

<?xml version¼"1.0"?>
<linkInLibraryManifest xmlns¼".">
<function>
<name>colMedian</name>
<result>
<dataType><scalar/></dataType>
<spatialType>Spatial</spatialType>
</result>
<argument>
<dataType><scalar/></dataType>
<spatialType>Spatial</spatialType>
</argument>
</function>
</linkInLibraryManifest>

Table A3
Cþþ code extract from the extension library. PCRaster data types are exposed to the
extension library which executes calculations on the map values.

DLL_FUNC (char const *) pcr_LinkInExecute(
char const *xml,
LinkInTransferArray transferArray){

float *result¼ (float*)transferArray[0];
float *input¼ (float*)transferArray[1];
/* calculate new values */
return 0;

}

Table A4
The surface runoff model in the PCRaster Python language.

from pcraster import *

class RunoffModel(object):
def__init__(self, cloneMap):

setclone(cloneMap)

def initial(self):
self.ldd¼ lddcreate("dem.map", 1E31, 1E31, 1E31, 1E31)

def dynamic(self):
precip¼ timeinputscalar("rain.tss", "rainzone.map")
ro¼ accuflux(self.ldd, precip)
report(ro, "runoff")

DynamicFramework(RunoffModel("clone.map"), 52).run()

Table A5
Catchment model script in the tailored PCRcalc language up to and including the
initial section. Identical commands for layer 2 are omitted.

binding
boundaries¼ bound.map;

areamap
clone.map;

timer
1 365 1;

initial
object mf¼ PCRasterModflow::initialise();
defining the thickness of the layer
mf::createBottomLayer(bottom.map, l1_top.map);
mf::addLayer(elev.map);
hydraulic conductivity
mf::setConductivity(0, l1_k.map, l1_k.map, 1);
boundary conditions and starting values
mf::setBoundary(boundaries, 1);
mf::setInitialHead(iHead.map, 1);
mf::setStorage(storage.map, storage.map, 1);
simulation parameter and solver package
mf::setDISParameter(4, 2, 1, 24, 1, 0);
mf::setPCG(50, 30, 1, 0.001, 0.001, 1.0, 2, 1);
river package
mf::setRiver(riv_l1h.map, riv_l1b.map, riv_l1c.map, 1);
drains in the top layer
mf::setDrain(drn_elev.map, drn_c.map, 2);
single well, located in the bottom layer
mf::setWell(well.map, 1);

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–1099 1097

Table A6
Model script continued. Discharge of the streams is composed of surface runoff, river
and drain leakage and simulated for one year.

dynamic
p¼ timeinputscalar(precip.tss, clone.map) * 0.001; # mm to m
e¼ timeinputscalar(evapo.tss, clone.map) * 0.001; # mm to m
ro¼ lookupscalar(r.tbl, landuse.map) * p;
e¼ lookupscalar(c.tbl, landuse.map) * e;
applying recharge to highest active cell
mf::setRecharge(p – ro – e, 3);
calling MODFLOW executable
mf::run();
hOne¼mf::getHeads(1);
river leakage
rivtot¼mf::getRiverLeakage(2)þmf::getRiverLeakage(1);
calculating upward seapage
rivcmd¼max(0.0 – rivtot, 0.0);
flux composed of runoff, river leakage and drain leakage
report totflux¼ accuflux(ldd.map, ro * 22500 Drivcmd D mf::getDrain(1));

Table A7
Integrated catchment model written in the PCRaster Python language. Identical
commands for layer 2 are omitted.

from pcraster import *
from PCRasterModflow import *

class CatchmentModel(object):
def __init__(self, cloneMap):
setclone(cloneMap)

def initial(self):
self.mf¼ PCRasterModflow(clone())
defining the thickness of the layer
self.mf.createBottomLayer("bottom.map", "l1_top.map")
self.mf.addLayer("elev.map")
hydraulic conductivity
self.mf.setConductivity(0, "l1_k.map", "l1_k.map", 1)
boundary conditions and starting values
self.mf.setBoundary("bound.map", 1)
self.mf.setInitialHead("iHead.map", 1)
self.mf.setStorage("storage.map", "storage.map", 1)
simulation parameter and solver package
self.mf.setDISParameter(4, 2, 1, 24, 1, 0)
self.mf.setPCG(50, 30, 1, 0.001, 0.001, 1.0, 2, 1)
river package
self.mf.setRiver("riv_l1h.map","riv_l1b.map","riv_l1c.map",1)
drains in the top layer
self.mf.setDrain("drn_elev.map", "drn_c.map", 2)
single well, located in the bottom layer
self.mf.setWell("well.map", 1)

def dynamic(self):
p¼ timeinputscalar("precip.tss","clone.map") * 0.001 # mm to m
e¼ timeinputscalar("evapo.tss","clone.map") * 0.001 # mm to m
ro¼ lookupscalar("r.tbl", "landuse.map") * p
e¼ lookupscalar("c.tbl", "landuse.map") * e
applying recharge to highest active cell
self.mf.setRecharge(p – ro – e, 3)
calling MODFLOW executable
self.mf.run()
hOne¼ self.mf.getHeads(1)
river leakage
rivtot¼ self.mf.getRiverLeakage(2)þself.mf.getRiverLeakage(1)
calculating upward seepage
rivcmd¼max(0.0 – rivtot, 0.0)
flux composed of runoff, river leakage and drain leakage
report(accuflux("ldd.map", ro * 22500

þrivcmdþ self.mf.getDrain(1),"totflux")

myModel¼ CatchmentModel("clone.map")
dynModelFw¼DynamicFramework(myModel, 365)
dynModelFw.run()

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–10991098
References

ArcGIS, 2008. Environmental Systems Research Institute. URL: http://www.esri.
com/.

Argent, R.M., 2004. An overview of model integration for environmental applica-
tions – components, frameworks and semantics. Environmental Modelling &
Software 19 (3), 219–234.

Batelaan, O., De Smedt, F., 2004. Seepage, a new Modflow Drain package. Ground
Water 42 (4), 576–588.

Beck, M., Jakeman, A., McAleer, M., 1993. Construction and evaluation of models of
environmental systems. In: Beck, M., Jakeman, A., McAleer, M. (Eds.), Modelling
Change in Environmental Systems. John Wiley & Sons Ltd., New York, pp. 3–35.

Benenson, I., Torrens, P.M., 2004. Geosimulation: Automata-Based Modeling of
Urban Phenomena. Wiley, Chichester.

Boost Python, 2008. Boost Cþþ libraries. URL: http://www.boost.org/libs/python/.
Burrough, P.A., Karssenberg, D., van Deursen, W.P., 2005. Environmental modelling

with PCRaster. In: Maguire, D., Goodchild, M.F., Batty, M. (Eds.), GIS, Spatial
Analysis and Modeling. ESRI, Redlands, California.

Burrough, P., 1998. Dynamic modelling and geocomputation. In: Longley, P.,
Brooks, S., McDonnel, R., MacMillan, B. (Eds.), Geocomputation: a Primer. Wiley,
Chichester, pp. 165–191.

Carrera-Hernández, J.J., Gaskin, S.J., 2006. The groundwater modeling tool for
GRASS (GMTG): open source groundwater flow modeling. Computers & Geo-
sciences 32, 339–351.

De Vasconcelos, M.J.P., Goncalves, A., Catry, F.X., Paul, J.U., Barros, F., 2002. A working
prototype of a dynamic geographical information system. International Journal
of Geographical Information Science 16 (1), 69–91.

Gedeon, M., Wemaere, I., Marivoet, J., 2007. Regional groundwater model of north-
east Belgium. Journal of Hydrology 335 (1–2), 133–139.

GRASS, 2008. Geographic Resources Analysis Support System. URL: http://grass.
itc.it/.

Gregersen, J.B., Gijsbers, P.J., Westen, S.J., 2007. OpenMI: Open Modelling Interface.
Journal of Hydroinformatics 9 (3), 175–191.

Grimm, V., Railsback, S., 2005. Individual-Based Modelling and Ecology. Princeton
University Press, Princeton.

Harbaugh, A., Banta, E., Hill, M., McDonald, M., 2000. MODFLOW-2000, the US
Geological Survey Modular Ground-Water Model – User Guide to Modulari-
zation Concepts and the Ground-Water Flow Process. U.S. Geological Survey.

Herzog, B.L., Larson, D.R., Abert, C.C., Wilson, S.D., Roadcap, G.S., 2003. Hydro-
stratigraphic modeling of a complex, glacial-drift aquifer system for importa-
tion into MODFLOW. Ground Water 41 (1), 57–65.

Hurkens, J., Hahn, B., van Delden, H., 2008. Using the GEONAMICA software envi-
ronment for integrated dynamic spatial modelling. In: Sánchez-Marrè, M.,
Béjar, J., Comas, J., Rizzoli, A., Guariso, G. (Eds.), Integrating Sciences and
Information Technology for Environmental Assessment and Decision Making
iEMSs 2008: International Congress on Environmental Modelling and Software.

Karssenberg, D., Bridge, J.S., 2008. A three-dimensional numerical model of sedi-
ment transport, erosion and deposition within a network of channel belts,
floodplain and hill slope: extrinsic and intrinsic controls on floodplain
dynamics and alluvial architecture. Sedimentology 55, 1717–1745.

Karssenberg, D., Burrough, P., Sluiter, R., de Jong, K., 2001. The PCRaster software
and course materials for teaching numerical modelling in the environmental
sciences. Transactions in GIS 5, 99–110.

Karssenberg, D., de Jong, K., 2005. Dynamic environmental modelling in GIS: 1.
Modelling in three spatial dimensions. International Journal of Geographical
Information Science 19 (5), 559–579.

Karssenberg, D., de Jong, K., Schmitz, O., 2008a. A software environment for
stochastic spatio-temporal modelling. In: European Geosciences Union, vol. 10.
EGU General Assembly, Wien.

Karssenberg, D., de Jong, K., van der Kwast, J., 2007. Modelling landscape dynamics
with Python. International Journal of Geographical Information Science 21 (5),
483–495.

Karssenberg, D., Schmitz, O., de Vries, L., de Jong, K., 2008b. A tool for construction
of stochastic spatio-temporal models assimilated with observational data. In:
Bernard, L., Friss-Christensen, A., Pundt, H., Compte, I. (Eds.), 11th AGILE
International Conference on Geographic Information Science Girona. URL:
http://www.agile-online.org/.

Karssenberg, D., 2002. The value of environmental modelling languages for building
distributed hydrological models. Hydrological Processes 16 (14), 2751–2766.

Leavesley, G., Restrepo, P., Markstrom, S., Dixon, M., Stannard, L., 1998. The Modular
Modeling System – MMS: User’s Manual, vol. 96–151 U.S. Geological Survey
Open File Report.

MATLAB, 2005. MATLAB product website. URL: http://www.mathworks.com/.
McDonald, M., Harbaugh, A., 1984. A Modular Three-Dimensional User’s Guide for

Finite-Difference Ground-Water Flow Model, vol. 94–464 USGS OFR.
McIntosh, B.S., Jeffrey, P., Lemon, M., Winder, N., 2005. On the design of computer-

based models for integrated environmental science. Environmental Manage-
ment 35 (6), 741–752.

McIntosh, B.S., Seaton, R.A.F., Jeffrey, P., 2007. Tools to think with? Towards
understanding the use of computer-based support tools in policy relevant
research. Environmental Modelling & Software 22 (5), 640–648.

Nguyen, C.D., Araki, H., Yamanishi, H., Koga, K., 2005. Simulation of groundwater
flow and environmental effects resulting from pumping. Environmental
Geology 47 (3), 361–374.

http://www.esri.com/
http://www.esri.com/
http://www.boost.org/libs/python/
http://grass.itc.it/
http://grass.itc.it/
http://www.agile-online.org/
http://www.mathworks.com/

O. Schmitz et al. / Environmental Modelling & Software 24 (2009) 1088–1099 1099
OpenMI, 2008. Open Modelling Interface website. URL: http://www.openmi.
org/.

Osman, Y.Z., Bruen, M.P., 2002. Modelling stream – aquifer seepage in an alluvial
aquifer: an improved loosing-stream package for MODFLOW. Journal of
Hydrology 264 (1–4), 69–86.

Oxley, T., Jeffrey, P., Lemon, M., 2002. Policy relevant modelling: relationships
between water, land use and farmer decision processes. Integrated Assessment
3, 30–49.

Oxley, T., McIntosh, B.S., Winder, N., Mulligan, M., Engelen, G., 2004. Integrated
modelling and decision-support tools: a Mediterranean example. Environ-
mental Modelling & Software 19, 999–1010.

PCRaster, 2008. PCRaster internet site. URL: http://pcraster.geo.uu.nl.
Pebesma, E.J., de Jong, K., Briggs, D., 2007. Interactive visualization of uncertain spatial

and spatio-temporal data under different scenarios: an air quality example.
International Journal of Geographical Information Science 21 (5), 515–527.

Processing Modflow, 2008. Processing Modflow website. URL: http://www.pmwin.net/.
Pullar, D., 2003. Simulation modelling applied to runoff modelling using MapScript.

Tranactions in GIS 7 (2), 267–283.
Pullar, D., 2004. Simumap: a computational system for spatial modelling. Envi-

ronmental Modelling & Software 19 (3), 235–243.
Python, 2008. Python programming language website. URL: http://www.python.org/.
Repast, 2008. Recursive Porous Agent Simulation Toolkit Website URL: http://

repast.sourceforge.net/.
Rizzoli, A.E., Argent, R.M., 2006. Software and software systems: platforms and

issues for IWRM Problems. In: Sustainable Management of Water Resources: an
Integrated Approach. Edward Elgar Publishing, pp. 324–346.
Rizzoli, A.E., Donatelli, M., Athanasiadis, I.N., Villa, F., Huber, D., 2008. Semantic links
in integrated modelling frameworks. Mathematics and Computers in Simula-
tion 78 (2–3), 412–423.

STELLA, 2008. STELLA product website. URL: http://www.iseesystems.com/.
Tomlin, C.D., 1990. Geographic Information Systems and Cartographic Modeling.

Prentice Hall.
USGS, 2008. US Geologic Survey. URL: http://water.usgs.gov/nrp/gwsoftware/

modflow.html.
van der Knijff, J.M., Younis, J., de Roo, A.P.J., 2008. LISFLOOD: a GIS-based distributed

model for river basin scale water balance and flood simulation. International
Journal of Geographical Information Science. doi:10.1080/13658810802549154.

van Deursen, W., 1995. Geographical Information Systems and Dynamic Models.
Koninklijk Nederlands Aardrijkskundig Genootschap/Faculteit Ruimtelijke
Wetenschappen, Universiteit Utrecht, Utrecht.

Visser, S., Sterk, G., Karssenberg, D., 2004. Wind erosion modelling in a Sahelian
environment. Environmental Modelling & Software 20, 69–84.

VisualMODFLOW, 2008. Visual Modflow product website. URL: http://www.
visualmodflow.com/.

Wainwright, J., Mulligan, M., 2004. Environmental Modelling. Wiley, Chichester.
Wang, X., Pullar, D., 2005. Describing dynamic modeling for landscapes with vector

map algebra in GIS. Computers & Geosciences 31 (8), 956–967.
Wesseling, C., Karssenberg, D., van Deursen, W., Burrough, P., 1996. Integrating

dynamic environmental models in GIS: the development of a Dynamic
Modelling language. Transactions in GIS 1, 40–48.

Winston, R.B., 1999. Modflow-related freeware and shareware resources on the
internet. Computers & Geosciences 25 (4), 377–382.

http://www.openmi.org/
http://www.openmi.org/
http://pcraster.geo.uu.nl
http://www.pmwin.net/
http://www.python.org/
http://repast.sourceforge.net/
http://repast.sourceforge.net/
http://www.iseesystems.com/
http://water.usgs.gov/nrp/gwsoftware/modflow.html
http://water.usgs.gov/nrp/gwsoftware/modflow.html
http://dx.doi.org/doi:10.1080/13658810802549154
http://www.visualmodflow.com/
http://www.visualmodflow.com/

	Linking external components to a spatio-temporal modelling framework: Coupling MODFLOW and PCRaster
	Introduction
	Concepts of dynamic spatial modelling
	PCRaster modelling framework
	The PCRaster PCRcalc modelling language
	Native functions and model script
	Extending the PCRcalc language with external model components

	The PCRaster Python language
	The Python language
	Extending Python with model building blocks

	Catchment model case study
	Linking the MODFLOW component
	PCRaster Modflow
	Study area
	Initial model section
	Dynamic model section

	Discussion and conclusion
	Acknowledgements
	PCRaster Python example script
	References

