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Abstract
In algorithmic graph theory, a classic open question is to determine the complexity
of the Maximum Independent Set problem on Pt -free graphs, that is, on graphs
not containing any induced path on t vertices. So far, polynomial-time algorithms are
known only for t ≤ 5 (Lokshtanov et al., in: Proceedings of the twenty-fifth annual
ACM-SIAM symposium on discrete algorithms, SODA 2014, Portland, OR, USA,
January 5–7, 2014, pp 570–581, 2014), and an algorithm for t = 6 announced recently
(Grzesik et al. in Polynomial-time algorithm for maximum weight independent set
on P6-free graphs. CoRR, arXiv:1707.05491, 2017). Here we study the existence of
subexponential-time algorithms for the problem: we show that for any t ≥ 1, there is
an algorithm forMaximum Independent Set on Pt -free graphswhose running time
is subexponential in the number of vertices. Even for the weighted version MWIS,
the problem is solvable in 2O(

√
tn log n) time on Pt -free graphs. For approximation

of MIS in broom-free graphs, a similar time bound is proved. Scattered Set is the
generalization of Maximum Independent Setwhere the vertices of the solution are
required to be at distance at leastd fromeachother.Wegive a complete characterization
of those graphs H for which d-Scattered Set on H -free graphs can be solved in
time subexponential in the size of the input (that is, in the number of vertices plus the
number of edges):

– If every component of H is a path, then d- Scattered Set on H -free graphs
with n vertices and m edges can be solved in time 2O(|V (H)|√n+m log(n+m)), even
if d is part of the input.

A preliminary version of the paper, with weaker results and only a subset of authors, appeared in the
proceedings of IPEC 2016 [4].
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– Otherwise, assuming theExponential-TimeHypothesis (ETH), there is no2o(n+m)-
time algorithm for d- Scattered Set for any fixed d ≥ 3 on H -free graphs with
n-vertices and m-edges.

Keywords Independent set · Subexponential algorithms · Approximation · Scattered
set · H -free graphs

1 Introduction

There are some problems in discrete optimization that can be considered fundamental.
The Maximum Independent Set problem (MIS, for short) is one of them. It takes
a graph G as input, and asks for the maximum number α(G) of mutually nonadjacent
(i.e., independent) vertices in G. On unrestricted input, it is not only NP-hard (its
decision version “Is α(G) ≥ k?” being NP-complete), but APX-hard as well, and, in
fact, not even approximable within O(n1−ε) in polynomial time for any ε > 0 unless
P = NP, as proved by Zuckerman [30]. For this reason, those classes of graphs on
which MIS becomes tractable are of definite interest. One direction of this area is to
study the complexity of MIS on H-free graphs, that is, on graphs not containing any
induced subgraph isomorphic to a given graph H .

For the majority of the graphs H , we know a negative answer on the complexity
question. It is easy to see that if G ′ is obtained from G by subdividing each edge with
2t new vertices, then α(G ′) = α(G) + t |E(G)| holds. This can be used to show that
MIS is NP-hard on H -free graphs whenever H is not a forest, and also if H contains
a tree component with at least two vertices of degree larger than 2 (first observed in
[2], see, e.g., [20]). As MIS is known to be NP-hard on graphs of maximum degree at
most 3, the case when H contains a vertex of degree at least 4 is also NP-hard.

The above observations do not cover the case when every component of H is either
a path, or a tree with exactly one degree-3 vertex cwith three paths of arbitrary lengths
starting from c. There are no further unsolved classes but even this collection means
infinitely many cases. For decades, on these graphs H only partial results have been
obtained, proving polynomial-time solvability in some cases. A classical algorithm of
Minty [24] and its corrected form by Sbihi [27] solved the problem when H is a claw
(3 paths of length 1 in the model above). This happened in 1980. Much later, in 2004,
Alekseev [3] generalized this result by an algorithm for H isomorphic to a fork (2
paths of length 1 and one path of length 2); a weighted counterpart of this result has
been proven by Lozin and Milanic [21].

The seemingly easy case of Pt -free graphs is poorly understood (where Pt is the path
on t vertices). MIS on Pt -free graphs is not known to be NP-hard for any t ; for all we
know, it could be polynomial-time solvable for every fixed t ≥ 1. P4-free graphs (also
known as cographs) have a very simple structure, which can be used to solveMIS with
a linear-time recursion, but this does not generalize to Pt -free graphs for larger t . In
2010, it was a breakthrough when Randerath and Schiermeyer [25] stated that MIS on
P5-free graphs was solvable in subexponential time, more precisely within O(Cn1−ε

)

for any constants C > 1 and ε < 1/4. Designing an algorithm based on deep results,
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Lokshtanov et al. [20] finally proved that MIS is polynomial-time solvable on P5-free
graphs. More recently, a quasipolynomial (nlog

O(1) n-time) algorithm was found for
P6-free graphs [19] and finally a polynomial-time algorithm for P6-free graphs was
announced [14]. For P7-free graphs, a partial result is known: MWIS is polynomial-
time solvable if we additionally exclude a triangle [8]. A related result of Lozin and
Mosca [22] asserts thatMWIS is polynomial-time solvable on (K2+claw)-free graphs.

We explore MIS and some variants on H -free graphs from the viewpoint of
subexponential-time algorithms in this work. That is, instead of aiming for algorithms
with running time nO(1) on n-vertex graphs, we ask if 2o(n) algorithms are possible.
Very recently, Brause [9] and independently the conference version of this paper [4]
observed that the subexponential algorithm of Randerath and Schiermeyer [25] can
be generalized to arbitrary fixed t ≥ 5 with running time roughly 2O(n1−1/t ). Our first
result shows a significantly improved subexponential-time algorithm for every t .

Theorem 1 For every fixed t ≥ 5, MIS on n-vertex Pt -free graphs can be solved in
subexponential time, namely, it can be solved by a 2O(

√
n log n)-time algorithm.

The algorithm is based on the combination of two ideas. First, we generalize the
observation of Randerath and Schiermeyer [25] stating that in a large connected P5-
free graph there exists a high-degree vertex. Namely, we prove that such a vertex
always exists in a large connected Pt -free graph for general t ≥ 5 and it can be used
for efficient branching. Next we prove the combinatorial result that a Pt -free graph
of maximum degree Δ has treewidth O(tΔ); the proof is inspired by Gyárfás’ proof
of the χ -boundedness of Pt -free graphs [15]. Thus if the maximum degree drops
below a certain threshold during the branching procedure, then we can use standard
algorithmic techniques exploiting bounded treewidth.

While our algorithmworks for Pt -free graphswith arbitrary large t , it does not seem
to be extendable to H -free graphs where H is the subdivision of a K1,3. Hence, the
existence of subexponential-time algorithms on such graphs remains an open question.
However, we are able to give a subexponential-time constant-factor approximation
algorithm for the case when H is a (d, t)-broom. A (d, t)-broom Bd,t is a graph
consisting of a path Pt and d additional vertices of degree one, all adjacent to one of
the endpoints of the path. In other words, Bd,t is a star K1,d+1 with one of the edges
subdivided to make it a path with t vertices. For d = 2, we obtain the generalized
forks and t = 3, d = 2 yields the traditional fork. We prove the following theorem;
here d and t are considered constants, hidden in the big-O notation.

Theorem 2 Let d, t ≥ 2 be fixed integers. One can find a d-approximation to Maxi-

mum Independent Set on an n-vertex Bd,t -free graph G in time 2O(n3/4 log n).

Let us remark that on K1,d+1-free graphs, a folklore linear-time (and very simple)
d-approximation algorithm exists for Maximum Independent Set; better d/2-
approximation algorithms also exist [5,6,16,29]. On fork-free graphs, Independent
Set can be solved in polynomial time [3]. For general graphs, we do not expect that a
constant-factor approximation can be obtained in subexponential time for the problem.
Strong evidence for this was given by Chalermsook et al. [10], who showed that the
existence of such an algorithmwould violate the Exponential-Time Hypothesis (ETH)
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of Impagliazzo, Paturi, and Zane, which can be informally stated as n-variable 3SAT
cannot be solved in 2o(n) time (see [11,17,18]).

Scattered Set (also known under other names such as dispersion or distance-
d independent set [1,7,12,23,26,28]) is the natural generalization of MIS where the
vertices of the solution are required to be at distance at least d from each other; the size
of the largest such set will be denoted by αd(G). We can consider with d being part of
the input, or assume that d ≥ 2 is a fixed constant, in which case we call the problem
d- Scattered Set. Clearly, MIS is exactly the same as 2- Scattered Set. Despite
its similarity toMIS, the branching algorithm of Theorem 1 cannot be generalized: we
give evidence that there is no subexponential-time algorithm for 3- Scattered Set

on P5-free graphs.

Theorem 3 Assuming the ETH, there is no 2o(n)-time algorithm for d-Scattered
Set with d = 3 on P5-free graphs with n vertices.

In light of the negative result of Theorem 3, we slightly change our objective by
aiming for an algorithm that is subexponential in the size of the input, that is, in the
total number of vertices and edges of the graph G. As the number of edges of G can
be up to quadratic in the number of vertices, this is a weaker goal: an algorithm that is
subexponential in the number of edges is not necessarily subexponential in the number
of vertices. We give a complete characterization when such algorithms are possible
for Scattered Set.

Theorem 4 For every fixed graph H, the following holds.

1. If every component of H is a path, then d- Scattered Set on H-free graphs with
n vertices and m edges can be solved in time 2O(|V (H)|√n+m log(n+m)), even if d is
part of the input.

2. Otherwise, assuming the ETH, there is no 2o(n+m)-time algorithm for d-
Scattered Set for any fixed d ≥ 3 on H-free graphs with n-vertices and
m-edges.

The algorithmic side of Theorem 4 is based on the combinatorial observation that
the treewidth of Pt -free graphs is sublinear in the number of edges, which means
that standard algorithms on bounded-treewidth graphs can be invoked to solve the
problem in time subexponential in the number of edges. It has not escaped our notice
that this approach is completely generic and could be used for many other problems
(e.g.,Hamiltonian Cycle, 3- Coloring, and so on), where 2O(t) ·nO(1) or perhaps
2t ·logO(1) t · nO(1)-time algorithms are known on graphs of treewidth t . For the lower-
bound part of Theorem 4, we need to examine only two cases: claw-free graphs and
Ct -free graphs (where Ct is the cycle on t vertices); the other cases then follow
immediately.

The paper is organized as follows. Section 2 introduces basic notation and contains
some technical tools for bounding the running time of recursive algorithms. Section 3
contains the combinatorial results that allow us to bound the treewidth of Pt -free
graphs. The algorithmic results for Maximum Independent Set (Theorems 1 and
2) appear in Sect. 4. The upper and lower bounds for d- Scattered Set, which
together prove Theorem 4, are proved in Sect. 5.
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2 Preliminaries

Simple undirected graphs are investigated here throughout. The vertex set of graph G
will be denoted by V (G), the edge set by E(G). The notation dG(x, y) for distance,
G[X ] for the subgraph induced by the vertex set X , will have the usual meaning,
similarly as NG[X ] and NG(X) for the closed and open neighborhood respectively of
vertex set X in G. Δ(G) is the maximum degree in G. For a vertex set X in G, G − X
means the induced subgraph H := G[V − X ]. Pt (Ct ) is the chordless path (cycle) on
t vertices. Finally, a graph is H -free if it does not contain H as an induced subgraph.

A distance-d (d-scattered) set in a graph G is a vertex set S ⊆ V (G) such that for
every pair of vertices in S, the distance between them is at least d in the graph. For
d = 2, we obtain the traditional notion of independent set (stable set). For d > c, a
distance-d set is a distance-c set as well, for example, for d ≥ 2, any distance-d set is
an independent set.

The algorithmic problemMaximum Weight Independent Set is the problemof
maximizing the sum of the weights in an independent set of a graph with nonnegative
vertex weights w. The maximum is denoted by αw(G). For a weight w function that
has value 1 everywhere, we obtain the usual problem Maximum Independent Set

(MIS) with maximum α(G).
An algorithm A is subexponential in parameter p > 1 if the number of steps exe-

cuted by A is a subexponential function of the parameter p.Wewill use here this notion
for graphs,mostly in the following cases: p is the number n of vertices, the numberm of
edges, or p = n+m (which is considered to be the size of the input generally). Several
different definitions are used in the literature under the name subexponential function.
Each of them means some condition: this function (with variable p > 1, called the
parameter) may not be larger than some bound, depending on p. Here we use two ver-
sions, where the bound is of type exp(o(p)) and exp(p1−ε) respectively, with some
ε > 0. (Clearly, the second one is themore strict.) Throughout the paper, wwemean.A
problemΠ is subexponential if there exists some subexponential algorithm solvingΠ .

2.1 Time Analysis of Recursive Algorithms

To formally reason about time complexities, we will need the following technical
lemma.

Lemma 1 LetΔ : R≥0 → R≥0 be a concave and nondecreasing functionwithΔ(0) =
0, Δ(x) ≤ x for every x ≥ 1, and Δ(x) ≤ Δ(x/2) · (2 − γ ) for some γ > 0 and
every x ≥ 2. Let S, T : N → N be two nondecreasing functions such that we have
S(0) = T (0) = 0, moreover, for some universal constant c and S(1), T (1) ≤ c and
for every n ≥ 2:

T (n) ≤ 2cn log n/Δ(n) + max

(
S(n), T (n − 1) + T (n − �Δ(n)	) ,

max
1≤k≤
 n

Δ(n)
�
2k · n · T (n − �kΔ(n)	)

)
. (1)
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Then, for some constant c′ depending only on c and γ , for every n ≥ 1 it holds that

T (n) ≤ 2c
′n log n/Δ(n) · (S(n) + 1) .

Wewill useLemma1 as a shortcut to argue about time complexities of our branching
algorithms; let us now briefly explain its intuition. The function T (n) will be the run-
ning time bound of the discussed algorithm. The term 2cn log n/Δ(n) in (1) corresponds
to a processing time at a single step of the algorithm; note that this is at least polyno-
mial in n as Δ(n) ≤ n. The terms in the max in (1) are different branching options
chosen by the algorithm. The first one, S(n), is a subcall to a different procedure,
such as bounded treewidth subroutine. The second one, T (n − 1) + T (n − �Δ(n)	),
corresponds to a two-way branching on a single vertex of degree at least Δ(n). The
last one corresponds to an exhaustive branching on a set X ⊆ V (G) of size k, such
that every connected component of G − X has at most n − kΔ(n) vertices.

Proof of Lemma 1 For notational convenience, it will be easier to assume that the
functions S and T is defined on the whole half-line R≥0 with S(x) = S(
x�) and
T (x) = T (
x�).

First, let us replace max with addition in the assumed inequality. After some sim-
plifications, this leads to the following.

T (n) ≤ T (n − 1) + S(n) + 2cn log n/Δ(n) + 2n ·

 n

Δ(n)
�∑

k=1

2k · T (n − kΔ(n)). (2)

From the concavity of Δ(n) it follows that

n − i − Δ(n − i) ≤ n − Δ(n).

Furthermore, the assumptions onΔ, namely the fact thatΔ is nondecreasing, concave,
with Δ(0) = 0, implies that for any 0 < y < x we have

y

x
Δ(x) ≥ Δ(x) − Δ(x − y).

After simple algebraic manipulation, this is equivalent to

x

Δ(x)
≥ x − y

Δ(x − y)
.

That is, x �→ x/Δ(x) is a nondecreasing function.
Using the fact that S(n) and T (n) are nondecreasing and the facts above, we itera-

tively apply (2) n times to the first summand, obtaining the following.

T (n) ≤ n ·
⎛
⎝S(n) + 2cn log n/Δ(n) + 2n ·


 n
Δ(n)

�∑
k=1

2k · T (n − kΔ(n))

⎞
⎠ . (3)
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We now show the following.

Claim Consider a sequence n0 = n and ni+1 = ni − Δ(ni ). Then ni = O(1) for
i = O(n/Δ(n)). Here, the big-O-notation hides constants depending on γ .

Proof By the concavity of Δ we have Δ(n′/2) ≥ Δ(n′)/2, thus as long as ni > n0/2
we have that ni+1 ≤ ni − Δ(n)/2. Consequently, for some j = O(n/Δ(n)) we have
n j < n0/2. We infer that we obtain ni = O(1) at position

i = O
(

n

Δ(n)
+ n/2

Δ(n/2)
+ n/4

Δ(n/4)
+ · · ·

)
.

By the assumption that Δ(x) ≤ Δ(x/2) · (2 − γ ) for some constant γ > 0 and
every x ≥ 2, the sum above can be bounded by a geometric sequence, yielding
i = O(n/Δ(n)). 
�
The above claim implies that if we iteratively apply (3) to itself, we obtain

T (n) ≤ (2n)O(n/Δ(n)) ·
(
S(n) + 2cn log n/Δ(n)

)
.

This finishes the proof of the lemma. 
�

3 Gyárfás’ Path-Growing Argument

The main (technical but useful) result of this section is the following adaptation of
Gyárfás’ proof that Pt -free graphs are χ -bounded [15].

Lemma 2 Let t ≥ 2 be an integer, G be a connected graph with a distinguished vertex
v0 ∈ V (G) and maximum degree at most Δ, such that G does not contain an induced
path Pt with one endpoint in v0. Then, for every weight function w : V (G) → Z≥0,
there exists a set X ⊆ V (G) of size at most (t − 1)Δ + 1 such that every connected
component C of G − X satisfies w(C) ≤ w(V (G))/2. Furthermore, such a set X can
be found in polynomial time.

Proof Inwhat follows, a connected componentC of an induced subgraph H ofG is big
if w(C) > w(V (G))/2. Note that there can be at most one big connected component
in any induced subgraph of G.

If G − {v0} does not contain a big component, we can set X = {v0}. Otherwise,
let A0 = {v0} and B0 be the big component of G − A0. As G is connected, every
component of G − A0 is adjacent to A0, thus v0 ∈ N (B0) holds. We will inductively
define vertices v1, v2, v3, . . . such that v0, v1, v2, . . . induce a path in G.

Given vertices v0, v1, v2, . . . , vi , we define sets Ai+1 and Bi+1 as follows. We set
Ai+1 = NG [v0, v1, . . . , vi ]. IfG− Ai+1 does not contain a big connected component,
we stop the construction. Otherwise, we set Bi+1 to be the big connected component
ofG−Ai+1. During the process wemaintain the invariant that Bi is the big component
of G − Ai and that vi ∈ N (Bi ). Note that this is true for i = 0 by the choice of A0
and B0.
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It remains to show how to choose vi+1, given vertices v0, v1, . . . , vi and sets Ai+1
and Bi+1. Note that Ai+1 = Ai ∪NG [vi ] and vi ∈ N (Bi ), so Bi+1 is the big connected
component of G[(Bi\NG(vi ))]. Consequently, we can choose some vi+1 ∈ Bi ∩
NG(Bi+1) ∩ NG(vi ) that satisfies all the desired properties.

SinceG does not contain an induced Pt with one endpoint in v0, the aforementioned
process stops after defining a set Ai+1 for some i < t − 1, when G − Ai+1 does not
contain a big component. Observe that

|Ai+1| ≤ (Δ + 1) + i · Δ = (i + 1)Δ + 1 ≤ (t − 1)Δ + 1.

Consequently, the set X := Ai+1 satisfies the desired properties.
For the algorithmic claim, note that the entire proof can be made algorithmic in a

straightforward manner. 
�
A balanced separator of a set W ⊆ V (G) in a graph G is a set X ⊆ V (G) such

that every connected component C of G − X satisfies |W ∩ C | ≤ |W |/2. Note that
Lemma 2 implies that in a connected Pt -free graph G of maximum degreeΔ for every
W ⊆ V (G) there exists a balanced separator of W of size at most (t − 1)Δ + 1,
and such a balanced separator can be found in polynomial time. It is well known that
existence of such small balanced separators bounds the treewidth of the graph [13,
Theorem 11.17(2)].

Theorem 5 [13] Let G be a graph and k ≥ 1. If for every W ⊆ V (G) of size 2k + 3
there exists a balanced separator of W of cardinality at most k + 1, then G has
treewidth at most 3k + 3.

Theorem5 applied to k = (t−1)Δ implies that a connected Pt -free graph ofmaximum
degree Δ has treewidth at most 3(t − 1)Δ + 3.

Algorithmically, it is also a standard consequence of Lemma 2 that a tree decompo-
sition ofwidthO(tΔ) can be obtained in polynomial time.What needs to be observed is
that standard 4-approximation algorithms for treewidth, which run in time exponential
in treewidth, can be made to run in polynomial time if we are given a polynomial-time
subroutine for finding the separator X as in Lemma 2. This is immediate from the
proof of Theorem 11.17 in [13], but, for completeness, we sketch the proof here.

Corollary 1 A Pt -free graph with maximum degree Δ has treewidth O(tΔ). Further-
more, a tree decomposition of this width can be computed in polynomial time.

Proof We follow standard constant approximation algorithm for treewidth, as
described in [11, Section 7.6]. This algorithm, given a graph G and an integer k,
either correctly concludes that tw(G) > k or computes a tree decomposition of G of
width at most 4k + 4.

Let G be a Pt -free graph with maximum degree at most Δ. We may assume that G
is connected, otherwise we can handle the connected components separately. Let us
start by setting k := (t − 1)Δ so that any application of Lemma 2 gives a set of size
at most k + 1.

The only step of the algorithm that runs in exponential time is the following.We are
given an induced subgraphG[W ] ofG and a set S ⊆ W with the following properties:
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1. |S| ≤ 3k + 4 and W\S �= ∅;
2. both G[W ] and G[W\S] are connected;
3. S = NG(W\S).

The goal is to compute a set Ŝ such that S � Ŝ ⊆ W , |Ŝ| ≤ 4k+5 and every connected
component of G[W\Ŝ] is adjacent to at most 3k + 4 vertices of Ŝ.

The construction of Ŝ is trivial for |S| < 3k + 4, as we can take Ŝ = S ∪ {v} for an
arbitrary v ∈ W\S. The crucial step happens for sets S of size exactly 3k + 4. Instead
of the exponential search of [11, Section 7.6], we invoke Lemma 2 on the graph G[W ]
and a function w : W → {0, 1} that puts w(v) = 1 if and only if v ∈ S. The lemma
returns a set X ⊆ W of size at most k + 1 such that every connected component C
of G[W\X ] contains at most 3k/2+ 2 vertices of S. Since G[W\S] is connected and
(3k/2 + 2) + (k + 1) < 3k + 4, we cannot have X ⊆ S. Consequently, Ŝ := S ∪ X
satisfies all the requirements.

The algorithm of [11, Section 7.6] returns that tw(G) > k only if at some step it
encounters pair (W , S) for which it cannot construct the set Ŝ. However, our method
of constructing Ŝ works for every choice of (W , S), and executes in polynomial time.
Consequently, the modified algorithm of [11, Section 7.6] always computes a tree
decomposition of width at most 4k + 4 = O(tΔ) in polynomial time, as desired. 
�

4 Subexponential Algorithms Based on the Path-Growing Argument

The goal of this section is to use Corollary 2.1 to prove Theorems 1 and 2 stated in
the Introduction.

4.1 Independent Set on GraphsWithout Long Paths

We first prove the following statement, which implies Theorem 1.

Theorem 6 TheMaximum- Weight Independent Set problem on an n-vertex Pt -
free graph can be solved in time 2O(

√
tn log n).

Proof Let G be an n-vertex Pt -free graph. We set a threshold Δ = Δ(n) :=√
n log(n+1)

t . If the maximum degree of G is at most Δ, we invoke Corollary 1 to

obtain a tree decomposition of G of width O(tΔ) = O(
√
tn log n). By standard

dynamic programming techniques, on graphs of bounded treewidth (cf. [11]), adapted
to vertex-weighted graphs, we solve Maximum- Weight Independent Set on G
in time 2O(

√
tn log n).

Otherwise, G contains a vertex of degree greater than Δ. We choose (arbitrarily)
such a vertex v and we branch on v: either v is contained in the maximum independent
set or not. In the first case we delete NG [v] fromG, in the secondwe delete only v from
G. This gives the following recursion for the time complexity T (n) of the algorithm.

T (n) ≤ max
(
T (n − 1) + T (n − �Δ(n)	) + O(n2), 2O(

√
tn log n)

)
. (4)
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Observe that we have T (n) = 2O(
√
tn log n) by Lemma 1 with S(n) = 2O(

√
tn log n); it

is straightforward to check that Δ(n) =
√

n log(n+1)
t satisfies all the prerequisites of

Lemma 1. This finishes the proof of the theorem. 
�

4.2 Approximation on Broom-Free Graphs

We now extend the argumentation in Theorem 6 to (d, t)-brooms—however, this time
we are able to obtain only an approximation algorithm. Recall that a (d, t)-broom Bd,t

is a graph consisting of a path Pt and d additional vertices of degree one, all adjacent
to one of the endpoints of the path.

We now prove Theorem 2 from the introduction.

Proof of Theorem 2 Let Δ(n) = 1
2dt ·n1/4; note that such a definition fits the prerequi-

sites of Δ(n) for Lemma 1. In the complexity analysis, we will use Lemma 1 with this
Δ(n) and without any function S(n); this will give the promised running time bound.
In what follows, whenever we execute a branching step of the algorithm we argue that
it fits into one of the subcases of the max in (1) of Lemma 1.

As in the proof of Theorem 6, as long as there exists a vertex in G of degree larger
than Δ, we can branch on such a vertex v: in one subcase, we consider independent
sets not containing v (and thus delete v from G), in the other subcase, we consider
independent sets containing v (and thus delete N (v) from G). Such a branching step
can be conducted in polynomial time, and fits in the second subcase of max in (1).
Thus, we can assume henceforth that the maximum degree of G is at most Δ.

We also assume that G is connected and n > (2dt)4, as otherwise we can consider
every connected component independently and/or solve the problem by brute-force.

Later, we will also need a more general branching step. If, in the course of the
analysis, we identify a set X ⊆ V (G) such that every connected component of G − X

has size at most n − |X |n1/4
2dt , then we can exhaustively branch on all vertices of X

and independently resolve all connected components of the remaining graph. Such
a branching fits into the last case of the max in (1), and hence it again leads to the
desired time bound 2O(n3/4 log n) by Lemma 1.

We start with greedily constructing a set A0 with the following properties:G[A0] is
connected and n1/2 ≤ |N [A0]| ≤ n1/2 + Δ. We start with A0 being a single arbitrary
vertex and, as long as |N [A0]| < n1/2, we add an arbitrary vertex of N (A0) to A0
and continue. Since G is connected, the process ends when |N [A0]| ≥ n1/2; since the
maximum degree of G is at most Δ, we have |N [A0]| ≤ n1/2 + Δ < 2n1/2.

Let B be the vertex set of the largest connected component of G − N [A0]. If
|B| < n−n3/4, we exhaustively branch on X := N [A0], as X is of size at most 2n1/2,
but every connected component of G − X is of size at most n− n3/4 ≤ n− 1

2 |X |n1/4.
Hence, we are left with the case |B| > n − n3/4.

Let S = N (B). Note that A0 is disjoint from N [B]. Let A1 be the connected
component of G − S that contains A0. Since S ⊆ N (A0), we have that N [A1] ⊇
N [A0]; in particular, |N [A1]| ≥ n1/2 while, as |B| > n − n3/4, we have |N [A1]| ≤
n3/4. Furthermore, since S ⊆ N (A0) and A0 ⊆ A1, we have N (A1) = S.
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Consider now the following case: there exists v ∈ S such that N (v)∩ B contains an
independent set L of size d. Observe that such a vertex v can be found by an exhaustive
search in time nd+O(1).

For such a vertex v and independent set L , define D to be the vertex set of the
connected component of G − (N [L]\{v}) that contains A1. Note that as L ⊆ B we
have N [L]∩A1 = ∅, and thus such a component D exists. Furthermore, as N (A1) = S,
D contains S\(N (L)\{v}). In particular, D contains v, and

|D| ≥ |(A1 ∪ S)\N (L)| ≥ |N [A1]| − Δ · |L| ≥ n1/2 − dn1/4 ≥ 1

2
n1/2.

If |D| < n − n1/2, then we exhaustively branch on the set X := N [L]\{v}, as
|X | ≤ dΔ ≤ 1

2n
1/4 while every connected component of G − X is of size at most

n − 1
2n

1/2 due to D being of size at least 1
2n

1/2 and at most n − n1/2. Consequently
we can assume |D| ≥ n − n1/2.

Observe that G[D] does not contain a path Pt with one endpoint in v, as such a
path, together with the set L , would induce a Bd,t in G. Consequently, we can apply
Lemma 2 to the graph G[D] with the vertex v0 = v and uniform weight w(u) = 1
for every u ∈ D, obtaining a set XD ⊆ D of size |XD| ≤ (t − 1)Δ + 1 ≤ 1

2n
1/4

such that every connected component of G[D\X ] has size at most n/2. We branch
exhaustively on the set X = XD ∪ (N [L]\{v}): this set is of size at most n1/4, while
every connected component of G − X is of size at most n/2 due to the properties of
XD and the fact that |D| ≥ n − n1/2. This finishes the description of the algorithm in
the case when there exists v ∈ S and an independent set L ⊆ N (v) ∩ B of size d.

We are left with the complementary case, where for every v ∈ S, the maximum
independent set in N (v)∩B is of size less than d. We perform the following operation:
by exhaustive search, we find a maximum independent set IA in G − B and greedily
take it to the solution; that is, recurse on G − N [IA] and return the union of IA and
the independent set found by the recursive call in G − N [IA]. Since |B| > n − n3/4,
the exhaustive search runs in 2n

3/4
nO(1) time, fitting the first summand of the right

hand side in (1). As a result, the graph reduces by at least one vertex, and hence the
remaining running time of the algorithmfits into the second case of themax in (1). This
gives the promised running time bound. It remains to argue about the approximation
ratio; to this end, it suffices to show the following claim.

Claim If I is a maximum independent set in G and I ′ is a maximum independent set
in G − N [IA], then |I | − |I ′| ≤ d|IA|.
Proof Let J = I\N [IA]. Clearly, J is an independent set in G − N [IA], and thus
|J | ≤ |I ′|. It suffices to show that |I | − |J | ≤ d|IA|, that is, |I ∩ N [IA]| ≤ d|IA|.

The maximality of IA implies that V (G)\B ⊆ N [IA]. As IA is a maximum inde-
pendent set in G − B, we have that |I\B| ≤ |IA|. For every w ∈ I ∩ N [IA] ∩ B, pick
a neighbor f (w) ∈ IA ∩ N (w). Note that we have f (w) ∈ S. Since for every vertex
v ∈ S, the size of the maximum independent set in N (v) ∩ B is less than d, we have
| f −1(v)| < d for every v ∈ S ∩ I . Consequently,

|I ∩ N [IA] ∩ B| ≤ (d − 1)|IA ∩ S| ≤ (d − 1)|IA|.
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Together with |I\B| ≤ |IA|, we have |I ∩ N [IA]| ≤ d|IA|, as desired. 
�
This finishes the proof of Theorem 2. 
�

5 Scattered Set

We prove Theorem 4 in this section. The algorithm for Scattered Set for Pt -free
graphs hinges on the following combinatorial bound.

Lemma 3 For every t ≥ 2 and for every Pt -free graph with m edges, we have that G
has treewidth O(t

√
m).

Proof Let X be the set of vertices of G with degree at least
√
m. The sum of the

degrees of the vertices in X is at most 2m, hence we have |X | ≤ 2m/
√
m = 2

√
m.

By the definition of X , the graph G − X has maximum degree less than
√
m. Thus by

Corollary 1, the treewidth of G − X is O(t
√
m). As removing a vertex can decrease

treewidth at most by one, it follows that G has treewidth at most O(t
√
m) + |X | =

O(t
√
m). 
�

It is known that Scattered Set can be solved in time dO(w) · nO(1) on graphs
of treewidth w using standard dynamic programming techniques (cf. [23,28]). By
Lemma 3, it follows that Scattered Set on Pt -free graphs can be solved in time
dO(t

√
m) · nO(1). If d is a fixed constant, then this running time can be bounded as

2O(t
√
m)+O(log n) = 2O(t

√
n+m). If d is part of the input, then (taking into account that

we may assume d ≤ n) the running time is

dO(t
√
m) · nO(1) = 2O(t

√
m log n)+O(log n) = 2O(t

√
n+m log(n+m)).

Observe that if every component of a fixed graph H is a path, then H is an induced
subgraph of P2|V (H)|, which implies that H -free graphs are P2|V (H)|-free. Thus the
algorithm described here for Pt -free graphs implies the first part of Theorem 4.

5.1 Lower Bounds for Scattered Set

A standard consequence of the ETH and the so-called Sparsification Lemma is that
there is no subexponential-time algorithm for MIS even on graphs of bounded degree
(see, e.g., [11]):

Theorem 7 Assuming the ETH, there is no 2o(n)-time algorithm for MIS on n-vertex
graphs of maximum degree 3.

A very simple reduction can reduce MIS to 3- Scattered Set for P5-free graphs,
showing that, assuming the ETH, there is no algorithm subexponential in the number
of vertices for the latter problem. This proves Theorem 3 stated in the Introduction.

Proof of Theorem 3 Given an n-vertex m-edge graph G with maximum degree 3 and
an integer k, we construct a P5-free graph G ′ with n + m = O(n) vertices such that
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α(G) = α3(G ′). This reduction proves that a 2o(n)-time algorithm for 3- Scattered
Set could be used to obtain a 2o(n)-time algorithm for MIS on graphs of maximum
degree 3, and this would violate the ETH by Theorem 7.

We may assume that G has no isolated vertices. The graph G ′ contains one vertex
for each vertex of G and additionally one vertex for each edge of G. Them vertices of
G ′ representing the edges of G form a clique. Moreover, if the endpoints of an edge
e ∈ E(G) are u, v ∈ V (G), then the vertex of G ′ representing e is connected with the
vertices of G ′ representing u and v. This completes the construction of G ′. It is easy
to see that G ′ is P5-free: an induced path of G ′ can contain at most two vertices of the
clique corresponding to E(G) and the vertices of G ′ corresponding to the vertices of
G form an independent set.

If S is an independent set of G, then we claim that the corresponding vertices
of G ′ are at distance at least 3 from each other. Indeed, no two such vertices have a
commonneighbor: if u, v ∈ S and the corresponding twovertices inG ′ have a common
neighbor, then this common neighbor represents an edge e of G whose endpoints are
u and v, violating the assumption that S is independent. Conversely, suppose that
S′ ⊆ V (G ′) is a set of k vertices with pairwise distance at least 3 in G ′. If k ≥ 2, then
all these vertices represent vertices of G: observe that for every edge e ofG, the vertex
of G ′ representing e is at distance at most 2 from every other (non-isolated) vertex of
G ′. We claim that S′ corresponds to an independent set of G. Indeed, if u, v ∈ S′ and
there is an edge e in G ′ with endpoints u and v, then the vertex of G ′ representing e
is a common neighbor of u and v, a contradiction. 
�

Next we give negative results on the existence of algorithms for Scattered Set

that have running time subexponential in the number of edges. To rule out such algo-
rithms, we construct instances that have bounded degree: then being subexponential in
the number of vertices or the number of edges are the same.We consider first claw-free
graphs. The key insight here is that Scattered Setwith d = 3 in line graphs (which
are claw-free) is essentially the Induced Matching problem, for which it is easy to
prove hardness results.

Theorem 8 Assuming the ETH, d- Scattered Set does not have a 2o(n) algorithm
on n-vertex claw-free graphs of maximum degree 6 for any fixed d ≥ 3.

Proof Given an n-vertex graph G with maximum degree 3, we construct a claw-free
graphG ′ withO(dn) vertices and maximum degree 4 such that αd(G ′) = α(G). Then
by Theorem 7, a 2o(n)-time algorithm for d- Scattered Set for n-vertex claw-free
graphs of maximum degree 4 would violate the ETH.

The construction is slightly different based on the parity of d; let us first consider
the case when d is odd. Let us construct the graph G+ by attaching a path Qv of
	 = (d − 1)/2 edges to each vertex v ∈ V (G); let us denote by ev,1, . . . , ev,	 the
edges of this path such that ev,1 is incident with v. The graph G ′ is defined as the line
graph of G+, that is, each vertex of G ′ represents an edge of G+ and two vertices of
G ′ are adjacent if the corresponding two vertices share an endpoint. It is well known
that line graphs are claw-free. As G+ hasO(dn) edges and maximum degree 4 (recall
that G has maximum degree 3), the line graph G ′ has maximum degree 6 withO(dn)

vertices an edges. Thus an algorithm for Scattered Set with running time 2o(n)
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on n-vertex claw-free graphs of maximum degree 3 could be used to solve MIS on
n-vertex graphs with maximum degree 3 in time 2o(n), contradicting the ETH.

If there is an independent set S of size k inG, then we claim that the set S′ = {ev,	 |
v ∈ S} is a d-scattered set of size k in G ′. To see this, suppose for a contradiction that
there are two vertices u, v ∈ S such that the vertices of G ′ representing eu,	 and ev,	

are at distance at most d − 1 from each other. This implies that there is a path in G+
that has at most d edges and whose first and last edges are eu,	 and ev,	, respectively.
However, such a path would need to contain all the 	 edges of path Qu and all the 	

edges of Qv , hence it can contain at most d − 2	 = 1 edges outside these two paths.
But u and v are not adjacent inG+ by assumption, hencemore than one edge is needed
to complete Qu and Qv to a path, a contradiction.

Conversely, let S′ be a distance-d scattered set in G ′, which corresponds to a set
S+ of edges in G+. Observe that for any v ∈ V (G), at most one edge of S+ can be
incident to the vertices of Qv: otherwise, the corresponding two vertices in the line
graph G ′ would have distance at most 	 < d. It is easy to see that if S+ contains an
edge incident to a vertex of Qv , then we can always replace this edge with ev,	, as this
can only move it farther away from the other edges of S+. Thus we may assume that
every edge of S+ is of the form ev,	. Let us construct the set S = {v | ev,	 ∈ S+},
which has size exactly k. Then S is independent in G: if u, v ∈ S are adjacent in G,
then there is a path of 2	 + 1 = d edges in G+ whose first an last edges are ev,	

and eu,	, respectively, hence the vertices of G ′ corresponding to them have distance
at most d − 1.

If d ≥ 4 is even, then the proof is similar, but we obtain the graph G+ by first
subdividing each edge and attaching paths of length 	 = d/2 − 1 to each original
vertex. The proof proceeds in a similar way: if u and v are adjacent in G, then G+ has
a path of 2	 + 2 = d edges whose first and last edges are ev,	 and eu,	, respectively,
hence the vertices of G ′ corresponding to them have distance at most d − 1. 
�

There is a well-known and easy way of proving hardness of MIS on graphs with
large girth: subdividing edges increases girth and the size of the largest independent
set changes in a controlled way.

Lemma 4 If there is an 2o(n)-time algorithm for MIS on n-vertex graphs of maximum
degree 3 and girth more than g for any fixed g > 0, then the ETH fails.

Proof Let g be a fixed constant and let G be a simple graph with n vertices, m edges,
and maximum degree 3 (hence m = O(n)). We construct a graph G ′ by subdividing
each edgewith 2g new vertices.We have thatG ′ has n′ = O(n+gm) = O(n) vertices,
maximum degree 3, and girth at least 3(2g + 1) > g. It is known and easy to show
that subdividing the edges this way increases the size of the maximum independent set
exactly by gm. Thus a 2o(n

′)- time algorithm for n′-vertex graphs of maximum degree
3 and girth at least g could be used to give a 2o(n)-time algorithm for n-vertex graphs
of maximum degree 3, hence the ETH would fail by Theorem 7. 
�

We use the lower bound of Lemma 4 to prove lower bounds for Scattered Set

on Ct -free graphs.

Theorem 9 Assuming the ETH, d- Scattered Set does not have a 2o(n) algorithm
on n-vertex Ct -free graphs with maximum degree 3 for any fixed t ≥ 3 and d ≥ 2.
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Proof Let G be an n-vertex m-edge graph of maximum degree 3 and girth more than
t . We construct a graph G ′ the following way: we subdivide each edge of G with d−2
new vertices to create a path of length d−1, and attach a path of length d−1 to each of
the (d−2)m = O(dn) new vertices created. The resulting graph has maximum degree
3, O(d2n) vertices and edges, and girth more than (d − 1)t (hence it is Ct -free). We
claim that αd(G ′) = α(G)+m(d−2) holds. This means that an 2o(n

′)-time algorithm
for Scattered Set n′-vertex Ct -free graphs with maximum degree 3 would give a
2o(n)-time algorithm for n-vertex graphs of maximum degree 3 and girth more than t
and this would violate the ETH by Lemma 4.

To see that αd(G ′) = α(G)+m(d−2) holds, consider first an independent set S of
G. When constructing G ′, we attached m(d − 2) paths of length d − 1. Let S′ contain
the degree-1 endpoints of these m(d − 2) paths, plus the vertices of G ′ corresponding
to the vertices of S. It is easy to see that any two vertices of S′ have distance at least
d from each other: S is an independent set in G, hence the corresponding vertices in
G ′ are at distance at least 2(d − 1) ≥ d from each other, while the degree-1 endpoints
of the paths of length d − 1 are at distance at least d from every other vertex that can
potentially be in S′. This shows αd(G ′) ≥ α(G) + m(d − 2). Conversely, let S′ be a
set of vertices in G ′ that are at distance at least d from each other. The set S′ contains
two types of vertices: let S′

1 be the vertices that correspond to the original vertices of
G and let S′

2 be the vertices that come from the m(d − 2)d new vertices introduced in
the construction of G ′. Observe that S′

2 can be covered by m(d − 2) paths of length
d −1 and each such path can contain at most one vertex of S′, hence at mostm(d −2)
vertices of S′ can be in S′

2. We claim that S′
1 can contain at most α(G) vertices, as

S′ ∩ S′
1 corresponds to an independent set ofG. Indeed, if u and v are adjacent vertices

of G, then the corresponding two vertices of G ′ are at distance d − 1, hence they
cannot be both present in S′. This shows αd(G ′) ≤ α(G) +m(d − 2), completing the
proof of the correctness of the reduction. 
�

As the following corollary shows, putting together Theorems 8 and 9 implies
Theorem 4(2).

Corollary 2 If H is a graph having a component that is not a path, then, assuming the
ETH, d- Scattered Set has no 2o(n+m)-time algorithm on n-vertex m-edge H-free
graphs for any fixed d ≥ 3.

Proof Suppose first that H is not a forest and hence some cycle Ct for t ≥ 3 appears
as an induced subgraph in H . Then the class of H -free graphs is a superset of Ct -free
graphs, which means that statement follows from Theorem 9 (which gives a lower
bound for a more restricted class of graphs).

Assume therefore that H is a forest. Then it must have a component that is a tree,
but not a path, hence it has a vertex v of degree at least 3. The neighbors of v are
independent in the forest H , which means that the claw K1,3 appears in H as an
induced subgraph. Then the class of H -free graphs is a superset of claw-free graphs,
which means that statement follows from Theorem 8 (which gives a lower bound for
a more restricted class of graphs). 
�
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