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Abstract
Let P be a set of nodes in a wireless network, where each node is modeled as a point in
the plane, and let s ∈ P be a given source node. Each node p can transmit information
to all other nodes within unit distance, provided p is activated. The (homogeneous)
broadcast problem is to activate a minimum number of nodes such that in the resulting
directed communication graph, the source s can reach any other node. We study the
complexity of the regular and the hop-bounded version of the problem (in the latter, s
must be able to reach every nodewithin a specified number of hops),with the restriction
that all points lie inside a strip of width w. We describe several algorithms for both
the regular and the hop-bounded versions, and show that both problems are solvable
in polynomial time in strips of small constant width. These results complement the
hardness results in a companion paper (de Berg et al. in Algorithmica, 2017).
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1 Introduction

Wireless networks give rise to a host of interesting algorithmic problems. In the tradi-
tional model of a wireless network each node is modeled as a point p ∈ R

2, which is
the center of a disk δ(p) whose radius equals the transmission range of p. Thus p can
send a message to another node q if and only if q ∈ δ(p). Using a larger transmission
radius may allow a node to transmit to more nodes, but it requires more power and is
more expensive. This leads to so-called range-assignment problems, where the goal
is to assign a transmission range to each node such that the resulting communication
graph has desirable properties, while minimizing the cost of the assignment. We are
interested in broadcast problems,where the desired property is that a given source node
can reach any other node in the communication graph. Next, we define the problem
more formally.

Let P be a set of n points inRd and let s ∈ P be a source node. A range assignment
is a functionρ : P → R�0 that assigns a transmission rangeρ(p) to each point p ∈ P .
Let Gρ = (P, Eρ) be the directed graph where (p, q) ∈ Eρ iff |pq| � ρ(p). The
function ρ is a broadcast assignment if every point p ∈ P is reachable from s in Gρ .
If every p ∈ P is reachable within h hops, for a given parameter h, then ρ is an h-hop
broadcast assignment. The (h-hop) broadcast problem is to find an (h-hop) broadcast
assignment whose cost

∑
p∈P cost(ρ(p)) is minimized. Often the cost of assigning

transmission radius x is defined as cost(x) = xα for some constant α. In R1, both the
basic broadcast problem and the h-hop version are solvable in O(n2) time [10]. In R2

the problem isNP-hard for any α > 1 [9,20], and inR3 it is even APX-hard [20]. There
are also several approximation algorithms [2,9]. For the 2-hop broadcast problem in
R
2 an O(n7) algorithm is known [3] and for any constant h there is a PTAS [3].

Interestingly, the complexity of the 3-hop broadcast problem is unknown.
An important special case of the broadcast problem is where we allow only two

possible transmission ranges for the points, ρ(p) = 1 or ρ(p) = 0. In this case the
exact cost function is irrelevant and the problem becomes to minimize the number of
active points. This is called the homogeneous broadcast problem and it is the version
we focus on. From now on, all mentions of broadcast and h-hop broadcast refer to the
homogeneous setting. Observe that if ρ(p) = 1 then (p, q) is an edge in Gρ if and
only if the disks of radius 1/2 centered at p and q intersect. Hence, if all points are
active then Gρ is the intersection graph of a set of congruent disks or, in other words, a
unit-disk graph. Because of their relation to wireless networks, unit disk graphs have
been studied extensively [1,24]. In addition, they are a fundamental graph class in
computational geometry, and their study goes back several decades [8].

Let D be a set of congruent disks in the plane, and let GD be the unit disk graph
induced by D. A broadcast tree on GD is a rooted spanning tree of GD. To send a
message from the root to all other nodes, each internal node of the tree has to send
the message to its children. Hence, the cost of broadcasting is related to the internal
nodes in the broadcast tree. A cheapest broadcast tree corresponds to a minimum-size
connected dominating set on GD, that is, a minimum-size subset Δ ⊂ D such that
the subgraph induced by Δ is connected and each node in GD is either in Δ or a
neighbor of a node in Δ. The broadcast problem is thus equivalent to the following:
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given a unit disk graph GD with a designated source node s, compute a minimum-size
connected dominated set Δ ⊂ D such that s ∈ Δ. The Connected Dominating
Set problem is recognized as a fundamental problem fro wireless network design, see
the survey [31].

Given an algorithm for the broadcast problem, one can solve Connected Dom-
inating Set in unit disk graphs by running the algorithm n times, once for each
possible source point. (In fact, we only need to run the algorithm dmin+1 times, where
dmin is the minimum degree of any vertex in the graph, since it suffices to try v and
each of its neighbors as the source.) Consequently, hardness results for Connected
Dominating Set in unit disk graphs can be transferred to the broadcast problem, and
algorithms for the broadcast problem can be transferred to Connected Dominating
Set in unit disk graphs at the cost of an extra linear factor in the running time. It is well
known that Dominating Set and Connected Dominating Set are NP-hard, even
for planar graphs [21],and they remain NP-hard in unit disk graphs [25,28]. For any
fixed d, both problems can be solved in 2O(n1−1/d ) time in unit balls graphs of Rd , and
even in more general intersection graphs [13]; this running time is tight under ETH.
The parameterized complexity of Dominating Set in unit disk graphs has also been
investigated:Marx [26] proved thatDominating Set in unit disk graphs isW[1]-hard
when parameterized by the size of the dominating set, and De Berg et al. [15] showed
that for most natural geometric intersection graphs (including unit disk graphs),Dom-
inating Set is contained in W[1]. (The definition of W[1] and other parameterized
complexity classes can be found in the book by Flum and Grohe [19].)

Knowing the existing hardness results for the broadcast problem, we set out to
investigate the following questions. Is there a natural special case or parameterization
admitting an efficient algorithm?Since the broadcast problem is polynomially solvable
in R

1, we study how the complexity of the problem changes as we go from the 1-
dimensional problem to the 2-dimensional problem. To do this, we assume the points
(that is, the disk centers) lie in a strip of width w, and we study how the problem
complexity changes as we increase w. Such a restriction can be useful both from the
applied and theoretical perspective: it may be useful to model ad-hoc networks along
a street or highway [22], while concentrating on narrow strips is a natural first step to
getting approximation algorithms using the well-known shifting technique [23,30].

An important threshold in the width of the strip is w =
√
3
2 . This specific setup

has been considered before for various problems [29,32]. Such narrow strip unit
disk graphs are a subclass of co-comparability graphs, also known as incomparability
graphs. Co-comparability graphs are graphs that can be obtained from a given partially
ordered set (P,�) by setting P as the vertex set and connecting pairs a, b ∈ P if and

only if they are not comparable. In case of a narrow stripR×[0,
√
3
2 ] one can obtain a

partial ordering on P by setting u � v if and only if u and v are not connected in the unit
disk graph and the x-coordinate of u is less than the x-coordinate of v [29]. It is routine
to check that this relation is well-defined and transitive and that the co-comparability
graph defined by (P,�) is exactly the unit disk graph of P .

Our Contributions Our first result is an algorithm for broadcasting in narrow strips
without a hop bound.
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Theorem 1 The broadcast problem inside a strip of width at most
√
3/2 can be solved

in O(n log n) time.

As remarked earlier, this result implies anO(dminn log n) algorithm forConnected
Dominating Set in narrow strip unit disk graphs, where dmin is the minimum degree
in the graph. We can compare this to O(mn), the running time that we get by applying
the algorithm for the more general class of co-comparability graphs [5]. Since m =
Ω(dminn), we get an almost linear speedup for the worst-case running time. If the
graph is dense but has a constant-degree vertex, we even get a quadratic speedup,
namely from O(n3) to O(n log n).

The key step toward getting this algorithm is a structural lemma stating that, except
in some small-diameter instances that can be handled separately, there is always an
optimal broadcast tree that induces a path in the underlying unit disk graph. In this
case, the problem boils down to computing a shortest path from the source to some
specific sets of points that are “far enough” to the right or to the left of the source.

The hop condition in the h-hop broadcast problem has not been studied yet for
co-comparability graphs to our knowledge. This condition complicates the problem
considerably. Our result here is as follows.

Theorem 2 The h-hop broadcast problem inside a strip of width at most
√
3/2 can be

solved in O(n6) time.

The overall idea here is again to characterize optimal broadcasts. In each direction—
that is, going to the right from the source, or going to the left—the optimal pathwithout
hop bound may already have at most h hops, in which case it is optimal. Otherwise,
there may be points exactly h + 1 hops from the source that make it necessary to have
multiple broadcasting points at h hops from the source. As a result, the broadcasting
points form a tree-like structure, with the source as root and of depth h. To find such a
tree, we use an adaptation of the Dreyfus–Wagner algorithm [17] for Steiner trees. For
the case when the unit disk graph has a small diameter, our algorithm uses a subroutine
for 2-hop broadcast, which may be of independent interest. Our subroutine is based
on an algorithm by Ambühl et al. [3] for the non-homogeneous case, which runs in
O(n7) time. We improve the running time of that algorithm for the homogeneous case
to O(n4).

Finally, we investigate what happens for wider strips.

Theorem 3 The broadcast problem and Connected Dominating Set in unit disk
graphs can be solved in nO(w) time on a strip of width w.

The algorithm is a fairly straightforward dynamic programming using a sliding
window of constant width.

As we show in a companion paper [11], this is likely best possible: we prove
a matching lower bound of nΩ(w), conditional on the Exponential Time Hypothesis
(ETH), and prove that the problem isW[1]-complete when parameterized by the width
w. As we show in the companion paper, we cannot hope to get such an algorithm for
the h-hop broadcast problem, unless P = NP.
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Fig. 1 A point p and its core. The set Q+ of right-covering points—note that p ∈ Q+, since all points to
its right lie inside δ(p)—is indicated by small circles, the other points are indicated by small (filled) disks

2 Algorithms for Broadcasting Inside a Narrow Strip

In this section we present polynomial algorithms (both for broadcast and for h-hop
broadcast) for inputs that lie inside a strip S := R × [0, w], where 0 < w �

√
3/2

is the width of the strip. Without loss of generality, we assume that the source lies on
the y-axis. Define S�0 := [0,∞) × [0, w] and S�0 := (−∞, 0] × [0, w].

Let P be the set of input points. We define x(p) and y(p) to be the x- and y-
coordinate of a point p ∈ P , respectively, and δ(p) to be the unit-radius disk centered
at p. Let G = (P, E) be the graph with (p, q) ∈ E iff q ∈ δ(p), and let P ′ := P\δ(s)
be the set of input points outside the source disk. We say that a point p ∈ P is left-
covering if pp′ ∈ E for all p′ ∈ P ′ with x(p′) < x(p); p is right-covering if p′ p ∈ E
for all p′ ∈ P ′ with x(p′) > x(p); see Fig. 1. We denote the set of left-covering and
right-covering points by Q− and Q+ respectively. Finally, the core area of a point
p, denoted by core(p), is [x(p) − 1

2 , x(p) + 1
2 ] × [0, w]. Note that core(p) ⊂ δ(p)

because w �
√
3/2, i.e., the disk of p covers a part of the strip that has horizontal

length at least one. This is a key property of strips of width at most
√
3/2, and will be

used repeatedly.
We partition P into levels L0, L1, . . . Lt , based on hop distance from s in G. Thus

Li := {p ∈ P : dG(s, p) = i}, where dG(s, p) denotes the hop-distance. Let L−
i and

L+
i denote the points of Li with negative and nonnegative coordinates, respectively.

We will use the following observation multiple times.

Observation 4 Let G = (P, E) be a unit disk graph on a narrow strip S.
(i) Let π be a path in G from a point p ∈ P to a point q ∈ P. Then the region

[x(p) − 1
2 , x(q) + 1

2 ] × [0, w] is fully covered by the disks of the points in π .
(ii) The overlap of neighboring levels is at most 1

2 in x-coordinates: max{x(p)|p ∈
L+
i−1} � min{x(q)|q ∈ L+

i } + 1
2 for any i > 0 with L+

i �= ∅; similarly,
min{x(p)|p ∈ L−

i−1} � max{x(q)|q ∈ L−
i } − 1

2 for any i > 0 with L−
i �= ∅.
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(iii) Let p be an arbitrary point in L+
i for some i > 0. Then the disks of any path

π(s, p) cover all points in all levels L0 ∪ L1 ∪ L+
2 ∪ · · · ∪ L+

i−1. A similar
statement holds for points in L−

i .

Proof For (i), note that for any edge (u, v) ∈ E , we have that core(u) and core(v)

intersect. Thus the union of the cores of the points of π is connected, and contains
core(p) and core(q). Consequently, it covers [x(p) − 1

2 , x(q) + 1
2 ] × [0, w].

To prove (ii), consider a point p ∈ L+
i−1. Any shortest path π(s, p) must contain a

point p′ ∈ P with 0 � x(p′) � x(p) − 1. By (i) the disks of the points in the subpath
π(s, p′) together cover the region [− 1

2 , x(p
′) + 1

2 ] × [0, w]. Hence, the level of any
point in this region is at most level(p′) + 1 � i − 1, and so a point q ∈ L+

i must
have x(q) > x(p′) + 1

2 � x(p) − 1
2 . Note that the term

1
2 is tight, as can be seen by

considering the set P = {(0, 0), (1, 0), ( 12 + ε,
√
3/2)}.

Statement (iii) follows from (i) and (ii): the disks of π(s, p) cover δ(s)∪[− 1
2 , x(p)

+ 1
2 ] × [0, w], and L0 ∪ L1 ∪ L+

2 ∪ · · · ∪ L+
i−1 is contained in this set. ��

2.1 MinimumBroadcast Set in a Narrow Strip

A broadcast set is a point set D ⊆ P that gives a feasible broadcast, i.e., a connected
dominating set of G that contains s. Our task is to find a minimum broadcast set inside
a narrow strip. Let p, p′ ∈ P be points with maximum and minimum x-coordinate,
respectively. Obviously there must be paths from s to p and p′ in G such that all points
on these paths are active, except possibly p and p′. If p and p′ are also active, then
these paths alone give us a feasible broadcast set: by Observation 4(i), these paths
cover all our input points. Instead of activating p and p′, it is also enough to activate
the points of a path that reaches Q− and a path that reaches Q+.

Lemma 5 If there is a minimum broadcast set with an active point on L2, then there
is a minimum broadcast set consisting of the disks of a shortest path π− from s to Q−
and a shortest path π+ from s to Q+. These two paths share s and they may or may
not share their first point after s.

Proof We begin by showing that there is a minimum broadcast that intersects both
Q+ and Q−. Without loss of generality, we may assume that L+

2 has an active point.

Claim There is a minimum broadcast set D′ containing a point in Q+.

Proof of Claim Let D be a minimum broadcast set. The active point in L+
2 has a

descendant leaf a ∈ L+
�2 in the broadcast tree (the tree one gets by performing

breadth first search from s in the graph spanned by D). Note that δ(a) does not
cover any points in S�0\δ(s), since a /∈ core(s) and core(s) has width 1.

Suppose that D ∩ Q+ = ∅. Since a /∈ Q+, there is a point b̄ with a larger x-
coordinate than a which is not covered by δ(a), but covered by another disk δ(b)
for some b ∈ D. Similarly, there must be a point ā ∈ δ(a)\δ(b)with x(ā) > x(b)
(see Fig. 2 for an example). Since δ(b) covers core(b), we have x(ā) > x(b)+ 1

2 ,
and similarly x(b̄) > x(a) + 1

2 .
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Fig. 2 A swap operation. The edges of the broadcast tree are solid lines

Fig. 3 If D′ ∩ L−
2 = ∅, we can still do swaps

Note that x(b̄) � x(b) + 1, so x(b̄) − x(ā) < 1
2 . The other direction yields

x(b̄) − x(ā) > − 1
2 , thus ā ∈ δ(b̄), or in other words, any point covered by δ(a)

to the right of δ(b) can be covered by replacing δ(a) with δ(b̄). We call such a
replacement a swapoperation. This operation results in a newminimumbroadcast
set, because the size of the set remains the same, and no vertex can become
disconnected from the source on either side: the right side remains connected
along the broadcast tree, and the left is untouched since δ(a) ∩ S�0 ⊆ δ(s).
Repeated swap operations lead to a minimum-size broadcast set D′ that contains
at least one point from Q+. (The procedure terminates since the sum of the
x-coordinates of the active points increases.) ��
The resulting minimum broadcast set D′ contains a path π+ from s to Q+. Let

a+ be the last point on π+ that falls in L1. Since a+ ∈ L1, we can remove any other
vertices from π+ that are between s and a+, and step directly from s to a+. That is,
without loss of generality, we can assume that the first two points of π+ are s and a+.
Let q+ = Q+ ∩ π+. By part (iii) of Observation 4, the disks around the points of π+
cover all points with x coordinates between 0 and x(q+) + 1

2 ; and q
+ ∈ Q+ implies

that it covers all input points with x-coordinate higher than x(q+)+ 1
2 . Consequently,

there are no active points in the right part outside this path—that is, no active points in
S�0\

(
δ(s) ∪ π+)

)—since those could be removed while maintaining the feasibility
of the solution.

Claim There is a minimum broadcast set D′ containing a point in Q+ and one
in Q−.

Proof of Claim Consider a minimum broadcast set D′ that has a point in Q+,
which exists by the previous claim. If there is a disk in D′∩L−

2 , thenwe can reuse
the previous argument for the other side, and get a broadcast set that contains a
path π− from s to Q−. Otherwise, we need to be slightly more careful with our
swap operations: we need to make sure not to remove a+. If a+ /∈ Q−, then we
can again use the previous argument: it is possible to find another disk b, and
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corresponding uniquely covered points ā+ and b̄ (see Fig. 3). Note that b ∈ δ(s)
since we are in the case D′ ∩ L−

2 = ∅. We argue that b can be replaced with
ā+: removing b can not disconnect anything from s on either side, and δ(ā+)

covers all points covered by δ(b). Repeated swap operations lead to a minimum
broadcast set D′′ that contains points from both Q+ and Q−. ��
Let π− and a− be defined analogously to how π+ and a+ were defined above. Note

that a+ and a− might coincide. Since π+ ∪π− is connected and covers all points, we
have D′′ = π+ ∪ π−. To finish the proof, it remains to argue that we can take π+ and
π− to be shortest paths to Q+ and Q−. Suppose π+ is not a shortest path to Q+. (The
argument for π− is similar.) Then we can replace π+ ∪ π− by π+ ∪ π−, where π+
is a shortest path from s to Q+. Since π+ and π− share at most one point besides s,
this replacement does not increase the size of the solution. ��

Lemma 6 below fully characterizes optimal broadcast sets. To deal with the case
where Lemma 5 does not apply, we need some more terminology. We say that the
disk δ(q) of an active point q in a feasible broadcast set is bidirectional if there
are two input points p− ∈ L−

2 and p+ ∈ L+
2 that are covered only by δ(q). See

points p and p′ in Fig. 5 for an example. Note that q ∈ core(s), because core(s) =
[− 1

2 ,
1
2 ] × [0, w] is covered by δ(s), and our bidirectional disk has to cover points

both in (−∞,− 1
2 ] × [0, w] and [ 12 ,∞) × [0, w]. Active disks that are not the source

disk and not bidirectional are called monodirectional.

Lemma 6 For any input P that has a feasible broadcast set, there is a minimum
broadcast set D that has one of the following structures.

(i) Small: |D| � 2.
(ii) Path-like: |D| � 3, and D consists of a shortest path π− from s to Q− and a

shortest path π+ from s to Q+; π+ and π− share s and may or may not share
their first point after s.

(iii) Bidirectional: |D| = 3, and D contains two bidirectional disk centers and s.

Proof Let opt be the size of a minimum broadcast set. First consider the case opt � 4.
By Lemma 5 it suffices to prove that there is an active point in L2. If L3 �= ∅ this is
trivially true, so assume that L3 = ∅. Since opt � 4, it follows that L+

2 �= ∅ otherwise
activating the shortest path from s to the point withminimum x-coordinate is a feasible
broadcast set of size at most 3. Similarly, L−

2 �= ∅.
If Q+ ∩ L1 �= ∅, then there is a minimum broadcast set with an active point in L2:

we take s, a point from Q+ ∩ L1, and a shortest path from s to the leftmost point (at
most two more points). Thus we may assume that Q+, and similarly, Q− are disjoint
from L1.

Let {s, p1, p2, p3} be a subset of a minimum broadcast set. If δ(pi ) is monodirec-
tional, then let p̄i ∈ L2 be a point uniquely covered by pi ; suppose that p̄i ∈ S+
(the proof is the same for the left side). Since pi /∈ Q+, there is a point q ∈ L1
that uniquely covers another point q̄ ∈ L2. We can swap pi for q̄ and get the desired
outcome.

If all of δ(pi ) are bidirectional, then we can do a double swap operation: deactivate
both δ(p1) and δ(p2), and activate δ(a−) and δ(a+), where a− and a+ are points
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Fig. 4 A double swap operation. The edges of the broadcast tree are solid lines

Fig. 5 A bidirectional broadcast

uniquely covered by δ(p3) on the left and right part of the strip (see Fig. 4). Note
that δ(a+) covers both S�0 ∩ (δ(p1)\δ(s)) and S�0 ∩ (δ(p2)\δ(s)), as we have seen
this happen for regular swap operations in Lemma 5 – similarly, δ(a−) covers both
S�0 ∩ (δ(p1)\δ(s)) and S�0 ∩ (δ(p2)\δ(s)).

Therefore, the new broadcast set obtained after the double swap is feasible, and the
size remains unchanged, so it is a minimum broadcast set. Notice that a single swap
or double swap results in a minimum broadcast set that has an active point in L2.

If the minimum broadcast set has size three, containing {δ(s), δ(p1), δ(p2)}, then
either both δ(p1) and δ(p2) are bidirectional, or at least one of them ismonodirectional,
so a single swap operation results in a minimum broadcast set with an active disk in
L2, so there is a path-like minimum broadcast set by Lemma 5. ��

As it turns out, the bidirectional case is the most difficult one to compute efficiently.
(It is similar toConnected Dominating Set in co-comparability graphs, where the
case of a connected dominating set of size at most 3 dominates the running time.)

Lemma 7 In O(n log n) time we can find a bidirectional broadcast if it exists.

Proof Let P− := {u1, u2, . . . , uk} be the set of points to the left of the source disk δ(s),
where the points are sorted in increasing y-order with ties broken arbitrarily. Similarly,
let P+ := {v1, v2, . . . , vl} be the set of points to the right of δ(s), again sorted in order
of increasing y-coordinate. Define P−

�i := {u1, . . . , ui }, and define P−
>i , and P+

�i

and P+
>i analogously. Our algorithm is based on the following observation: There is

a bidirectional solution if and only if there are indices i, j and points p, p′ ∈ core(s)
such that δ(p) covers P−

�i ∪ P+
� j and δ(p′) covers P−

>i ∪ P+
> j ; see Fig. 5.

Now for a point p ∈ core(s), define Z−
�(p) := max{i : P−

�i ⊂ δ(p)} and Z−
>(p) :=

min{i : P−
>i ⊂ δ(p)}, and Z+

�(p) := max{i : P+
�i ⊂ δ(p)}, and Z+

>(p) := min{i :
P+

>i ⊂ δ(p)}. Then the observation above can be restated as:

There is a bidirectional solution if and only if there are points p, p′ ∈ core(s)
such that Z−

�(p) � Z−
>(p′) and Z+

�(p) � Z+
>(p′).

123



Algorithmica (2019) 81:2934–2962 2943

Next we show how to find such a pair—if it exists—in O(n log n) time, once we
have computed the values Z−

�(p), Z−
>(p), Z+

�(p), and Z+
>(p) for all points p ∈

δ(s). For each point p ∈ core(s), define ξ(p) := (Z−
�(p), Z+

�(p)) and ψ(p) :=
(Z−

>(p), Z+
>(p′)). Thus we are looking for a pair of distinct points p, p′ such that

ξ(p) lies to the north-east of ψ(p′). We can find such a pair (if it exists) with a
plane-sweep algorithm that sweeps a vertical line from right to left over the plane and
maintains the highest point ξ(p) encountered so far.

It remains to show that these values can be computed in O(n log n) time.
Consider the computation of Z−

�(p); the other values can be computed sim-
ilarly. Let T be a balanced binary tree whose leaves store the points from P−
in order of their y-coordinate. For a node ν in T , let F(ν) := {δ(ui ) :
ui is stored in the subtree rooted at ν}. We start by computing at each node ν the inter-
section of the disks in F(ν). More precisely, for each ν we compute the region I (ν) :=
core(s) ∩ ⋂

F(ν). Notice that I (ν) is y-monotone and convex, and each disk δ(ui )
contributes at most one arc to ∂ I (ν). (Here ∂ I (ν) refers to the boundary of I (ν) that
falls inside S.) Moreover, I (ν) = I (left-child(ν)) ∩ I (right-child(ν)). Hence, we can
compute the regions I (ν) of all nodes ν in T in O(n log n) time in total, in a bottom-up
manner. Using the tree T we can now compute Z−

�(p) for any given p ∈ core(s) by
searching in T , as follows. Suppose we arrive at a node ν. If p ∈ I (left-child(ν)),
then descend to right-child(ν), otherwise descend to left-child(ν). The search stops
when we reach a leaf, storing a point ui . One easily verifies that if p ∈ δ(ui ) then
Z−

�(p) = i , otherwise Z−
�(p) = i − 1.

Since I (ν) is a convex region, we can check if p ∈ I (ν) in O(1) time if we can
locate the position of py in the sorted list of y-coordinates of the vertices of ∂ I (ν).
We can locate py in this list in O(log n) time, leading to an overall query time of
O(log2 n). This can be improved to O(log n) using fractional cascading [7]. Note that
the application of fractional cascading does not increase the preprocessing time of the
data structure. We conclude that we can compute all values Z−

�(p) in O(n log n) time
in total. ��

In order to compute a minimum broadcast, we can first check for small and bidirec-
tional solutions. To find path-like solutions, we first compute the sets Q− and Q+, and
compute shortest paths starting from these sets back to the source disk. The path com-
putation is very similar to the shortest path algorithm in unit disk graphs by Cabello
and Jejčič [6].

Lemma 8 Let P and Q be two point sets in R
2. Then both Q ∩ (⋃

p∈P δ(p)
)
and

Q ∩ ( ⋂
p∈P δ(p)

)
can be computed in O((|P| + |Q|) log |P|) time.

Proof A point q ∈ Q lies in
⋃

p∈P δ(p) if and only if the distance from q to its nearest
neighbor in P is at most 1. Hence we can compute Q ∩ (⋃

p∈P δ(p)
)
by computing

the Voronoi diagram of P , preprocessing it for point location, and performing a query
with each q ∈ Q. This can be done in O((|P|+ |Q|) log |P|) time in total [14,18]. To
compute Q∩(⋂

p∈P δ(p)
)
we proceed similarly, except that we use the farthest-point

Voronoi diagram [14]. ��
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Lemma 9 We can compute the sets Q+ and Q− in O(n log n) time.

Proof We show how we can compute Q+, the algorithm for Q− is analogous. Let
p be an input point with the highest x-coordinate. Notice that all input points in
[x(p)− 1

2 , x(p)]×[0, w] belong to Q+ since their core contains all points with higher
coordinates. Points in [x(p) − 3

2 , x(p) − 1) × [0, w] cannot belong to Q+, since they
cannot cover p. It remains to find the points inside the regionR = [x(p) − 1, x(p) −
1
2 ) × [0, w] that belong to Q+. The core of a point inR coversR, so it is sufficient to
check whether any given point covers all points in R′ = [x(p) − 1

2 , x(p)] × [0, w].
Thus we need to find the set (R∩ P) ∩ ( ⋂

p∈R′∩P δ(p)
)
, which can be computed in

O(n log n) time by Lemma 8. ��
Proof (of Theorem 1) The algorithm can be stated as follows. It is best to read this
pseudocode in parallel with the explanation and analysis below.

Broadcast- In- Narrow- Strip(s, P)

1. Check if there is a small or bidirectional solution. If yes, report the solution and
terminate.

2. Compute Q+ using Lemma 9. Set i := 1, Q+
1 := Q+, and P ′ := P\Q+

1 .
3. Repeat the following until Q+

i ∩ δ(s) �= ∅ or Q+
i = ∅.

(a) Set i := i + 1 and determine Ti := {t ∈ P ′ : x(t) � minp∈Q+
i−1

x(p) − 1}.
(b) Compute Q+

i := Ti ∩
( ⋃

p∈Q+
i−1

δ(p)
)
using Lemma 8, and set P ′ := P ′\Q+

i .

4. If Q+
i = ∅, return failure.

5. Compute Q− using Lemma 9. Set j := 1, Q−
1 := Q−, and P ′ := P\Q−

1 .
6. Repeat the following until Q−

j ∩ δ(s) �= ∅ or Q−
j = ∅.

(a) Set j := j + 1 and determine Tj := {t ∈ P ′ : x(t) � maxp∈Q−
j−1

x(p) + 1}.
(b) Compute Q−

j := Ti ∩
( ⋃

p∈Q−
j−1

δ(p)
)
using Lemma 8, and set P ′ := P ′\Q−

j .

7. If Q−
j = ∅, return failure.

8. If Q+
i ∩ Q−

j = ∅ then report a solution of size i + j + 1, namely the points of a

shortest path from s to Q+
i and a shortest path from s to Q−

j . Otherwise report a

solution of size i + j : take an arbitrary point p in Q+
i ∩ Q−

j , and report s plus a

shortest path from p to Q+
i and a shortest path from p to Q−

j .

In order to execute step 1, we first check whether there is a minimum broadcast set
of size one or two. This is very easy for size one: we just need to check whether the
source disk covers every point or not in O(n) time. For size two, we can compute the
intersection of all disks centered outside δ(s), and check whether any input point in
δ(s) falls in this intersection. This requires O(n log n) time by Lemma 8. Finally, we
need to check whether there is a feasible minimum broadcast with the bidirectional
structure. Lemma 7 shows that this is also possible in O(n log n) time.

In steps 2 and 3, we compute a shortest s → Q+ path backwards. We start from
Q+, and put the points into different sets Q+

i according to their hop distance to Q+:
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Fig. 6 The levels Q+
i computed

by the algorithm

we put p into Q+
i if and only if the shortest path from p to Q+ contains i − 1 hops.

Notice that in step 3 it is indeed sufficient to consider points from Ti , since a point
from the level Q+

i must be at distance at most 1 from points of Q+
i−1, so it has x-

coordinate at least minp∈Q+
i−1

x(p) − 1.

If Q+
i = ∅, then there is no path from Q+ to s—the graph is disconnected—so

there is no feasible broadcast set. Otherwise, after the loop in step 3 terminates the
shortest s → Q+ path has length exactly equal to the loop variable, i . Moreover, the
set of possible second vertices on an s → Q+ path is δ(s) ∩ Q+

i . The same can be
said for the next two steps: the shortest s → Q− path has length j , and the set of
possible second vertices is δ(s)∩Q+

i . In the final step, we check if Q
+
i ∩Q−

j is empty
or not. If it is empty, then by our previous observation, there are no shortest s → Q+
and s → Q− paths that share their second vertex, so the two paths can only share
s, resulting in a minimum broadcast set of size i + j + 1; otherwise, any point in
Q+

i ∩ Q−
j is suitable as a shared second point, resulting in a minimum broadcast set

of size i + j .
It remains to argue that steps 2–8 require O(n log n) time. We know that a single

iteration of the loop in step 3 takes O
(
(|Q+

i−1| + |Ti |) log |Q+
i−1|

)
time by Lemma 8.

We claim that Ti ⊆ Q+
i ∪ Q+

i+1 ∪ Q+
i+2, from which the bound on the running time

follows. To prove the claim, let p ∈ Q+
i−1 be a point with minimal x-coordinate (see

Fig. 6). All points p′ with x(p′) � x(p) − 1
2 are in Q+

�i . Thus any point p′′ ∈ Q+
i+1

has x(p′′) < x(p)− 1
2 . But then any point with x-coordinate at least x(p)−1 also has

x-coordinate at least x(p′′) − 1
2 , which means it is in Q+

�i+2. Thus both loops require
O(n log n) time. Finally, we note that we can easily maintain some extra information
in steps 2–7 so the shortest paths we need in step 8 can be reported in linear time. ��

3 The 2-Hop Broadcast Problem

To compute a minimum-size broadcast set inside a narrow strip in the hop-bounded
case, we will need a subroutine for the special case of two hops. For this we provide an
algorithm that does not need that the points are inside a strip of width at most

√
3/2.

Since this result is of independent interest, we provide it in a separate subsection.
Our algorithm is a modification of the O(n7) algorithm by Ambühl et al. [3]. Their

algorithm works for the case where one can use different radii for the disks around
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the points. For the homogeneous case that we consider (where a point is either active
with unit radius or inactive) we obtain a better bound.

Theorem 10 There is an algorithm that finds a minimum 2-hop broadcast set in O(n4)
time.

The proof of this theorem uses a slightly different approach, and the theorem itself
is referenced only once; the reader may want to skip the rest of this section on the first
reading.

Proof We start by testing if there is a solution consisting of a single disk (namely δ(s))
or two disks (δ(s) and δ(p) for some p �= s). This takes O(n2) time. If we do not find
a solution of size one or two, we proceed as follows.

Let Q := {q1, . . . , qm} be the subset of points in P that are not covered by δ(s),
where the points are numbered in counterclockwise order around s. We define [i, j]
to be the set of indices {i, . . . , j} if i � j , and we define [i, j] to be the set of indices
{i, . . . ,m, 1, . . . , j} if i > j . Furthermore, we define Q[i, j] to be the set of points
with indices in [i, j]. LetΔ be the set of disks (excluding the source disk δ(s)) thatmay
be useful in a minimum 2-hop broadcast. Obviously any point p ∈ P with δ(p) ∈ Δ

must lie inside δ(s), because the broadcast is 2-hop. Moreover, δ(p) must contain at
least one point qi ∈ Q to be useful.

We start by making sure that there is a feasible solution, so by checking that Q ⊆⋃
Δ. The rest of the algorithm is a dynamic program, but we need several notations

to describe it. The values A[i, j] of our subproblems are defined as follows:

A(i, j) := the minimum number of disks from Δ needed to cover all points in
Q[i, j].

We will prove later that the size of an optimal broadcast set (not counting the source
disk, and assuming that we need at least two disks in addition to the source disks) is
given by

opt = min
i, j

(
A(i, j) + A( j + 1, i − 1)

)
. (1)

Define Δi to be the set of disks that can be used to cover a point qi ∈ Q, that is,

Δi := {δ ∈ Δ : qi ∈ δ}.
Let next(i) be the first index in the sequence [i, i−1] such that Q[i, next(i)] cannot be
covered by a single disk fromΔi . (Such an indexmust exist since the solution size is at
least three.) Furthermore, for a disk δ ∈ Δ, let next(i, δ) be the first index in [i, i − 1]
such that Q[i, next(i, δ)] cannot be covered by δ. Thus next(i) = maxδ∈Δ next(i, δ).

We now wish to set up a recurrence for A(i, j). To this end, consider a disk δ ∈ Δ

and the point set δ∩Q[i, j]. The points in δ∩Q[i, j] need not be consecutive in angular
order around s: the disk δ may first cover a few points from Q[i, j] (until qnext(i,δ)−1),
then there may be some points not covered, then it may cover some points again, and
so on; see Fig. 7 where the angular ranges containing covered points are indicated in
gray. We can thus define a set of maximal intervals that together form δ ∩ Q[i, j]:

δ ∩ Q[i, j] = Q[i, next(i, δ) − 1] ∪ Q[a1, b1] ∪ Q[a2, b2] · · · ∪ Q[at , bt ].

123



Algorithmica (2019) 81:2934–2962 2947

Fig. 7 Definition of the intervals [ai , bi ]

Now define I(i, j, δ) as

I(i, j, δ) := [a1 − 1, b1 + 1] ∪ [a2 − 1, b2 + 1] · · · ∪ [at − 1, bt + 1].

We claim that we now have the following recurrence:

A(i, j)

=

⎧
⎪⎨

⎪⎩

1 if i = j

1+min
{
A(next(i), j), min

δ∈Δi
(a,b)∈I(i, j,δ)

(A(next(i, δ), a)+A(b, j))
}

otherwise.

(2)

We need to establish some key properties to prove the correctness of this recurrence.
Let D be the set of active points in a minimum-size 2-hop broadcast. We call a disk
δ(p) of an active point p an active disk. Let U(D) := ⋃{δ(p) : p ∈ D} be the union
of the active disks. ��
Observation 11 The region U(D) is star-shaped with respect to the source point s,
that is, for any point z in U , the segment sz is inside U(D).

Proof Let p ∈ D be a point such that z ∈ δ(p). Suppose for contradiction that there
is a point t ∈ sz that lies outside U(D), and let  be the perpendicular bisector of t z.
Since t /∈ δ(p), point p lies on the same side of  as z. Note that since t /∈ δ(s), the
disk δ(s) is entirely covered by the other half plane of . Thus p /∈ δ(s), which is a
contradiction since in a 2-hop broadcast set we have D ⊂ δ(s). ��

Let ∂U(D) be the boundary of U(D). By the previous observation, ∂U(D) is con-
nected for 2-hop broadcast sets. Note that a point q ∈ Q can be covered by multiple
active disks. We will assign a unique point pred(q) ∈ D whose disk covers q to each
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Fig. 8 Illustration for the proof
of Lemma 13

q ∈ Q, as follows. We call pred(q) the predecessor of q (in the given solution D)
because pred(q) can be thought of as the predecessor of q in a broadcast tree induced
by D. Let ray(q) be the ray emanating from s and passing through q, and consider
the point z where ray(q) exits U(D). Then we define pred(q) to be the point that is
the center of the active disk δ on whose boundary z lies (with ties broken arbitrarily,
but consistently).

Recall that the points in Q are numbered in angular order around s, and consider the
circular sequence σ(D) := 〈pred(q1), . . . , pred(qm)〉. We modify σ(D) by replacing
any consecutive subsequence consisting of the same point by a single occurrence of
that point. For example, we would modify 〈p, p, p, q, q, p, p, r , r , r , p〉 to obtain
〈p, q, p, r , p〉.
Observation 12 In a 2-hop broadcast set D, the boundary sequence σ(D) has no
cyclic subsequence . . . p . . . p′ . . . p . . . p′ with p �= p′.

Proof Between two adjacent occurrences of p and p′ on the boundary, there must be
an intersection between p and p′. Since there can be at most two intersections between
two circles, the sequence . . . p . . . p′ . . . p . . . p′ cannot occur in σ . ��
Lemma 13 In a 2-hop broadcast set D, any point p ∈ D can appear in σ(D) at most
twice.

Proof Consider the part of the boundary ∂δ(p) lying outside the source disk δ(s).
This boundary part, which we denote by γ , can be partitioned into arcs where ∂δ(p)
defines ∂U(D) and arcs where it does not. Assume for a contradiction that there are
three arcs where ∂δ(p) defines ∂U(D)—obviously this is necessary for p to appear
three times in σ(D). Then there must be two arcs, γ1 and γ2, where ∂δ(p) does not
define ∂U(D) and such that γ1 and γ2 lie fully in the interior of γ . Let α(γ ) denote
the opening angle of the cone with apex p defined by γ , and define α(γ1) and α(γ2)

similarly; see Fig. 8. It is easy to see that α(γ ) � 240◦. Since γ1 and γ2 do not cover
γ completely then one of them, say γ1, must be less than 120◦. We will show that this
leads to a contradiction, thus proving the lemma.

Let δ(p′) be a disk covering (part of) γ1. Since δ(p′) covers less than 120◦ of γ1,
its center p′ must lie outside δ(p). On the other hand, p′ must lie inside δ(s), since we
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have a 2-hop broadcast and p′ ∈ D. Now observe that p′ lies on the ray ρ starting at
p that goes through the midpoint of the arc γ1 ∩ δ(p′). This is a contradiction because
ρ is disjoint from δ(s)\δ(p). ��

We are now ready prove the correctness of our algorithm.
First consider Eq. (1). It is clear that

opt � min
i, j

(A(i, j) + A( j + 1, i − 1))

since the union of the best covering of Q[i, j] and Q[ j+1, i−1] is a feasible covering.
To prove the reverse, let D be a minimum-size 2-hop broadcast set. Suppose some

point, p, appears only once in σ(D). Let i, j be such that {q ∈ Q : pred(q) =
p} = Q[i, j]. Then A(i, j) = 1 and there is a covering of Q[ j + 1, i − 1] with
|D| − 1 disks. Hence, mini, j (A(i, j) + A( j + 1, i − 1)) � opt in this case. If all
points appear twice in σ(D) then we can argue as follows. Consider a point p ∈ D,
and let i1, j1 and i2, j2 be such that {q ∈ Q : pred(q) = p} = Q[i1, j1] ∪ Q[i2, j2].
Then the set of disks used by D in the covering of Q[i1, j2] is disjoint from the set
of disks used by D in the covering of Q[ j2 + 1, i1 − 1] by Observation 12. Hence,
(A(i1, j2) + A( j2 + 1, i1 − 1)) � opt.

Next, we prove that the recursive formula (2) holds. We prove this by induction on
the length of [i, j]. If i = j , then A(i, j) = 1 is correct since our initial feasibility
check implies that there is at least one disk δ ∈ Δ that can cover qi . Now consider the
case i �= j . First we note that

A(i, j) � 1 + min
{
A(next(i), j), min

δ∈Δi
(a,b)∈I(i, j,δ)

(A(next(i, δ), a) + A(b, j))
}
.

Indeed, there is a disk covering Q[i, next(i) − 1] by definition of next(i) and we can
cover Q[next(i), j] by A(next(i), j) disks by induction. Similarly, the definition of
I(i, j, δ) implies that any disk δ ∈ Δi covers Q[i, next(i, δ)−1] and Q[a+1, b−1].
By induction we can thus cover Q[i, j] by 1 + A(next(i, δ), a) + A(b, j) disks.

To prove the reverse, let D be a minimum-size 2-hop broadcast for Q[i, j] and
let p := pred(qi ). If p appears in the covering of Q[i, j] only once, then A(i, j) =
1 + A(next(i), j). Otherwise p appears twice by Lemma 13. Let qa be the last point
before the second appearance of p in σ(D), and let qb be the first point after the
second appearance of p in σ . By Observation 12, the coverings of Q[next(i, δ), a]
and Q[b, j] are disjoint in D. Hence, 1 + (A(next(i, δ), a) + A(b, j)) � |D|. We
conclude that

A(i, j) � 1 + min
{
A(next(i), j), min

δ∈Δi
(a,b)∈I(i, j,δ)

(A(next(i, δ), a) + A(b, j))
}
.

It remains to analyze the running time. The algorithm works by first computing
next(i), next(i, δ) and I(i, j, δ) for each i, j and δ ∈ Δ. This can easily be done in
O(n4) time. Running the dynamic program using the recursive formula (2) then takes
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O(n4) time, as we have O(n2) entries A(i, j) that each can be computed in O(n2)
time. Finally, computing the optimal solution using Eq. (1) takes O(n2) time. Hence,
the overall time requirement is O(n4), while the space required is O(n2). Computing
an optimal solution itself, rather than just the value of opt, can be done in a standard
manner, without increasing the time or space bounds. ��

4 Minimum-Size h-hop Broadcast in a Narrow Strip

In the hop-bounded version of the problem we are given P and a parameter h, and
we want to compute a minimum broadcast set D such that every point p ∈ P can be
reached in at most h hops from s. In other words, for any p ∈ P , there must be a path
in G from s to p of length at most h, all of whose vertices, except possibly p itself,
are in D. We start by investigating the structure of optimal solutions in this setting,
which can be very different from the non-hop-bounded setting.

As before, we partition P into levels Li according to the hop distance from s in
the graph G. Recall that L+

i and L−
i are the subsets of points at level i with positive

and nonnegative x-coordinates, respectively. Let Lt be the highest non-empty level.
If t > h then clearly there is no feasible solution.

If t < h then we can safely use our solution for the non-hop-bounded case, because
the non-hop-bounded algorithm gives a solution which contains a path with at most
t + 1 hops to any point in P . This follows from the structure of the solution; see
Lemma 6. (Note that it is possible that the solution given by this algorithm requires
t + 1 hops to some point, namely, if Q+ ∪ Q− ⊆ Lt .) With the t < h case handled
by the non-hop-bounded algorithm, we are only concerned with the case t = h.

We deal with one-sided inputs first, where the source is the leftmost input point. Let
G∗ be the directed graph obtained by deleting edges connecting points inside the same
level of G, and orienting all remaining edges from lower to higher levels. A Steiner
arborescence of G∗ for the terminal set Lh is a directed tree rooted at s that contains a
(directed) path πp from s to p for each p ∈ Lh . From now on, whenever we speak of
arborescence we refer to a Steiner arborescence in G∗ for terminal set Lh . We define
the size of an arborescence to be the number of internal nodes of the arborescence.
Note that the leaves in a minimum-size arborescence are exactly the points in Lh :
these points must be in the arborescence by definition, they must be leaves since they
have out-degree zero in G∗, and leaves that are not in Lh can be removed.

Remark 1 In the minimum Steiner Set problem, we are given a graph G and a vertex
subset T of terminals, and the goal is to find a minimum-size vertex subset S such
that T ∪ S induces a connected subgraph. This problem has a polynomial algorithm in
co-comparability graphs [5], and therefore in narrow strip unit disk graphs. However,
the broadcast set given by a solution does not fit our hop bound requirements. Hence,
we have to work with a different graph (e.g. the edges within each level Li have been
removed), and this modified graph is not necessarily a co-comparability graph.

Lemma 14 below states that either we have a path-like solution—for the one-
sided case a path-like solution is a shortest s → Q+ path— or any minimum-size
arborescence defines a minimum-size broadcast set. The latter solution is obtained by
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Fig. 9 Two different arborescences, with vertices labeled with their level. The red arborescence does not
define a feasible broadcast for h = 3, since it would take four hops to reach the top right node (Color figure
online)

activating all non-leaf nodes of the arborescence.We denote the broadcast set obtained
from an arborescence A by DA.

Lemma 14 Any minimum-size Steiner arborescence for the terminal set Lh defines a
minimum broadcast set, or there is a path-like minimum broadcast set.

Proof Let A be a minimum Steiner arborescence for the terminal set Lh . Suppose that
the broadcast set DA defined by the internal vertices of A is not an h-hop broadcast
set. (If it is, it must also be minimum and we are done.) By the properties of the
arborescence every point in DA can be reached in at most h − 1 hops. Hence, if there
is a point p ∈ P that cannot be reached within h hops via DA then p cannot be reached
at all via DA. Let i be such that p ∈ Li . Since Lh ⊂ A, we know that i < h. Take any
path from s to any point in Lh−1 inside the arborescence. By Observation 4(iii), this
path covers all lower levels. Hence, i � h − 2, which implies p ∈ Lh−1.

Without loss of generality, suppose that p has the highest x-coordinate among
points not covered by A. Let q be the point in P with the largest x-coordinate. If
q ∈ L�h−1, then a shortest s → q path is a feasible broadcast set of size at most |A|
that is path-like. Therefore, we only need to deal with the case q ∈ Lh . Let p′ ∈ A be
an internal vertex of the arborescence whose disk covers q. The arborescence contains
an s → p′ path, which, by Observation 4(i), covers everything with x-coordinate up
to x(p′) + 1

2 . Since p /∈ δ(p′), we have x(p) > x(p′) + 1
2 � x(q) − 1

2 . Since q has
the maximum x coordinate, Observation 4(i) shows that the disks of a shortest s → p
path form a feasible broadcast set, which is a path-like solution. ��

Notice that a path-like solution also corresponds to an arborescence. However, it
can happen that there are minimum-size arborescences that do not define a feasible
broadcast; see Fig. 9. Lemma 14 implies that if this happens, then there must be an
optimal path-like solution. The lemma also implies that for non-path-like solutions we
can use theDreyfus–Wagner dynamic-programming algorithm to compute aminimum
Steiner tree [17], and obtain an optimal solution from this tree.1 Unfortunately the
running time is exponential in the number of terminals, which is |Lh | in our case.
However, our setup has some special properties that we can use to get a polynomial
algorithm.

We define an arborescence A to be nice if the following holds. For any two arcs
uu′ and vv′ of A that go between the same two levels, with u �= v, we have: y(u′) <

1 The Dreyfus–Wagner algorithm minimizes the number of edges in the arborescence. In our setting the
number of edges equals the number of internal nodes plus |Lh | − 1, so this also minimizes the number of
internal nodes.
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y(v′) ⇒ y(u) < y(v). Intuitively, a nice arborescence is one consisting of paths that
can be ordered vertically in a consistent manner, see the left of Fig. 10. We define
an arborescence A to be compatible with a broadcast set D if D = DA. Note that
there can be multiple arborescences—that is, arborescences with the same node set
but different edge sets—compatible with a given broadcast set D.

Observation 15 In a minimum broadcast set on the strip, the difference in x-
coordinates between active points from a given level Li (i � h − 1) is at most 1

2 .

Proof Let p and q be active points from Li , and suppose for contradiction that x(p) >

x(q) + 1
2 . By Observation 4(i), all points to the left of p are covered by the active

points, so we only need to show that there are no points in Li+1 whose hop distance
becomes longer by removing δ(q) from the solution. Indeed, consider a point v ∈
Li+1 ∩ (δ(q)\δ(p)). Since δ(q)\δ(p) lies to the left of p, x(v) < x(p). So v has a
path of at most i +1 hops. Hence we still have a feasible solution after removing δ(q),
which contradicts the optimality of the original solution. ��
Lemma 16 Let p ∈ Li be a point in an optimal broadcast set D. Then there is a path
of length i from s to p in G[D], the graph induced by D.

Proof We say that a vertex p ∈ Li ∩ D is bad if the shortest path in G[D] has more
than i hops. Let p be a bad vertex of highest level among the bad vertices. If i = h,
then the broadcast set is infeasible, thus i � h − 1. If p ∈ Lh−1, then the shortest
s → p path in G[D] must have length h, consequently, p cannot be used in an h-hop
path to any other point. Therefore, p can be deactivated. (Note that p itself remains
covered since it was reachable in the first place.)

If p is on a lower level, then let πq be a shortest path in G[D] going to the last level,
and let q ∈ πq ∩ Lh−1. Let πp be the shortest s → p path in G[D]. Note that πq

covers all lower levels L�h−2 using at most h hops. Since i is the highest level with
a bad point, all points v ∈ D ∩ L�i+1 have a shortest path in G[D], and such a path
cannot pass through p.

Since p is a necessary point in this broadcast, and it is already covered by the disks
of πq in at most h hops, there must be a point p′ to which all covering paths of length
at most h pass through p. Since all points of Lh are covered by D ∩ Lh−1 and L�h−2
is covered by πq , the level of p′ has to be h − 1. A covering path to p′ has only bad
vertices after p, so its point in Lh−2 is bad. By the choice of p, we have p ∈ Lh−2,
and since p′ is reached in exactly h hops, it also follows that p′ ∈ δ(p).

Note that p′ cannot be to the left of δ(q), since then πq would cover it in at most h
hops; therefore, x(p′) > x(q) + 1

2 . It follows that x(p) � x(q) − 1
2 , so δ(p) covers

q. Since q is an arbitrary point in D ∩ Lh−1, we have D ∩ Lh−1 ⊆ δ(p). Let D′ be
the broadcast obtained by replacing D ∩ L�h−2 with a shortest s → p path π ′

p. We
claim that D′ = π ′

p ∪ (D ∩ Lh−1) is a feasible broadcast: it covers Lh since points
of Lh could only be covered by D ∩ Lh−1, and it is easy to check that all points
are covered in at most h hops. We arrived at a contradiction since D′ is smaller than
πp ∪ (D ∩ Lh−1) ⊆ D. ��

Lemma 17 Every optimal broadcast set D has a nice compatible arborescence.
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Fig. 10 Left: A nice Steiner arborescence. Note that arc crossings are possible. Right: Defining the pred
function

Proof To find a nice compatible arborescence we will associate a unique arborescence
with D. To this end, we define for each p ∈ (D ∪ Lh)\{s} a unique predecessor
pred(p), as follows. Let ∂∗

i be the boundary of
⋃ {δ(p)|p ∈ Li ∩ D}. It follows from

Observation 15 that the two lines bounding the strip S cut ∂∗
i into four parts: a top

and a bottom part that lie outside the strip, and a left and a right part that lie inside the
strip. Let ∂i be the part on the right inside the strip.

We then define the function pred : (D∪Lh)\{s} → D the following way. Consider
a point p ∈ (D ∪ Lh)\{s} and let i be its level. Let ray(p) be the horizontal ray
emanating from p to the right; see the right of Fig. 10. Let pred(p) be the center of
the disk that contains the point z := ray(p) ∩ ∂i−1. If there are multiple such disks,
we can break ties by choosing pred(p) to be the point with the highest y-coordinate
in Li ∩ D whose disk passes through z. It follows from Observation 4(iii) that ray(q)

cannot enter any disk from level i − 1. Since any point p ∈ D ∩ Lh is contained in a
disk from the preceding level, the point pred(p) is well-defined for these points. The
edges pred(p)p for p ∈ D ∩ Lh thus define an arborescence. We can prove that it is
nice by showing that the y-order of the points in a level Li corresponds to the vertical
order in which the boundaries of their disks appear on

⋃{δ(p) : p ∈ Li ∩ D}.
Let A be the directed graph defined by the edges pred(p)p for each p ∈ (D ∪

Lh)\{s}. We show that A is a nice arborescence. By definition of the pred-function,
each edge is between points at distance at most 1 that are in subsequent levels. Hence,
the edges we add define an arborescence A on G∗ with terminal set Lh . It remains to
prove that A is nice.

Consider the edges of A going between points in Li−1 and points in Li . By drawing
horizontal lines through each of the breakpoints of ∂i−1, the strip S is partitioned into
horizontal sub-strips, such that two points from Li are assigned the same predecessor
iff they lie in the same sub-strip. Number the sub-strips S1,S2, . . . in vertical order,
with S1 being the bottommost sub-strip. Let u j ∈ D ∩ Li−1 be the point that is the
predecessor of the points in the sub-strip S j . To show that A is nice, it is sufficient to
demonstrate that the sequence u1, u2, . . . is ordered by the y-coordinates of the points.

Suppose for a contradiction that this is not the case. Then there are points u j and
u j+1 such that y(u j ) > y(u j+1). Let z be the breakpoint on ∂i−1 between the arcs
defined by δ(u j ) and δ(u j+1). Since z is in the right half circle of both δ(u j ) and
δ(u j+1), we have max{x(u j ), x(u j+1)} < x(z). Since |u j z| = |u j+1z| = 1, the
point z lies on the perpendicular bisector of u ju j+1 to the right of u j and u j+1. Since
y(u j ) > y(u j+1), the outer circle below the bisector is δ(u j+1) and the outer circle
above the bisector is δ(u j ). This contradicts the ordering of the sub-strips. ��
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Let q1, q2, . . . , qm be the points of Lh in increasing y-order. The crucial property of
a nice arborescence is that the descendant leaves of a point p in the arborescence form
an interval of q1, q2, . . . , qm . Using the above lemmas, we can adapt the Dreyfus–
Wagner algorithm and get the following theorem.

Theorem 18 The one-sided h-hop broadcast problem inside a strip of width at
most

√
3/2 can be solved in O(n4) time.

Proof By our lemmas, we know that our solution can be categorized as path-like or as
arborescence-based. We compute the best path-like solution by invoking the second
part of our narrow strip broadcast algorithm,which runs in O(n log n) time. The output
of this algorithm is a path with t or t + 1 hops (where t is the number of levels); thus,
it is a minimum h-hop broadcast set if t < h, or if t = h and the path has length
h. Otherwise there is no path-like h-hop broadcast set, so an arborescence defines a
minimum h-hop broadcast set by Lemma 14. By Lemma 17, it is sufficient to look for
a nice Steiner arborescence, and take the broadcast set defined by it.

The algorithm tofindaniceSteiner arborescence is basedondynamicprogramming.
A subproblem is defined by a point p ∈ P and an interval of the last level (that is, an
interval of the sequence q1, q2, . . . , qm , the points of Lh ordered by y-coordinates).
The solution of the subproblem M(p, [i, j]), for 1 � i � j � m, is the minimum
number of internal vertices in a nice arborescence which is rooted at p and contains
qi , qi+1, . . . , q j as leaves. Recall that dG∗(p, q) denotes the hop distance function in
G∗, where dG∗(p, q) = ∞ if there is no path from p to q. We claim that the following
recursion holds:

M(p, [i, j])

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dG∗ (p, qi ) − 1

if i = j,

min
(
1 + minp′∈P∩δ(p)

p′ �=p

M(p′, [i, j]), mini≤t≤ j−1
(
M(p, [i, t]) + M(p, [t + 1, j]))

)

if i < j .

(3)

The number of subproblems is O(n3), each of them requires computing the mini-
mum of at most O(n) values. This results in an algorithm that runs in O(n4) time. The
minimum broadcast set size isM(s, [1,m]); if we keep track of a representing arbores-
cence for each subproblem, we can also return a minimum broadcast set without any
extra runtime cost.

To prove correctness, we need to show that Eq. (3) is correct. The base case, i = j ,
is obviously correct, so now assume i < j . It is easily checked that M(p, [i, i]) is
at most the right-hand side of the equation. For the reverse direction, consider a nice
optimal Steiner arborescence A for M (p, [i, j]). If p has exactly one outgoing arc
in A, that arc must end in a point p′ ∈ P ∩ δ(p)\{p}. Then A\{p} is an arborescence
rooted at p′ that spans [i, j], so it has at least M(p′, [i, j]) internal vertices. If p has
at least two outgoing internal vertices, then let p′ be the child of p with the lowest y-
coordinate. Since the arborescence is nice, the descendant leaves of p′ in A form a sub-
interval of [i, j] that starts at i . Let qt be the leaf with the highest y-coordinate among
the descendants of p′. If A had strictly fewer internal vertices than M(p, [i, t]) +
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M(p, [t + 1, j]), then it would need to include a nice sub-arborescence with fewer
internal vertices for at least one of the subproblems M(p, [i, t]) or M(p, [t + 1, j]),
but that would contradict the optimality in the definition of the subproblems. ��

In the general (two-sided) case, we can have path-like solutions and arborescence-
based solutions on both sides, and the two side solutions may or may not share points
in L1. We also need to handle “small” solutions—now these are 2-hop solutions—
separately. We now analyze the possible structures of an optimal solution.

Lemma 19 For any input P inside small strip that has a feasible h-hop broadcast set,
there is a minimum h-hop broadcast set D that has one of the following structures:

– 2-hop: A solution D that does not not contain any active points from L2. (Note
that such a solution might be optimal even if h > 2.)

– Path-like: A solution D that consists of two shortest paths, one from s to Q+ and
one from s to Q−, possibly sharing their first vertex after s.

– Mixed: A shortest path on one side, and a nice arborescence on the other side,
where the shortest path may share its L1-vertex with the arborescence.

– Arborescence-based: A single arborescence for Lh, which is nice on both sides.

Proof Suppose that there is no optimal 2-hop solution for P . Thus any optimal solution
has active points on L�2. Letπ+ andπ− be shortest paths to Q+ and Q−, respectively.
If both π+ and π− have at most h−1 edges then everything can be reached in h hops.
Hence, this is an optimal path-like solution (since it is minimal even for the non-hop-
bounded version).

If π+ has h + 1 hops and π− has at most h hops (note that the other case is
symmetric), then there is no path-like h-hop broadcast for the right side of the input,
that is, for the set P∗ := {P∩(δ(s)∪S�0)}. By Lemmas 14 and 17, anyminimum-size
nice arborescence of P∗ gives a minimum h-hop broadcast set for P∗. Either there is a
shortest s → Q− path whose L1-vertex is also in some minimum-size arborescence,
or there isn’t. In both cases, the resulting mixed solution must be optimal. Thus, if
exactly one of π+ and π− has h + 1 hops and the other has fewer hops, then there is
a mixed optimal solution.

Now suppose both paths have h + 1 hops. We now now consider an optimal solu-
tion D and extend the definition of the pred function (as described below) to conclude
that D defines a nice arborescence. Let pred+ be the previously defined function in
L�1∪L+

i , and letpred
− be the same function for the left side L�1∪L−

i .Note that points
in L1 belong to both sides, but for a point p ∈ L1 we have pred−(p) = pred+(p) = s,
so this is not an issue. The arborescence defined by this function is nice on both sides
byLemma 17. In addition, since there is no path-like h-hop broadcast set on either side,
the active points corresponding to this arborescence form a minimum h-hop broadcast
set: by applying Lemma 14 on both sides, we see that the broadcast set corresponding
to this arborescence covers all points.

Proof (of Theorem 2) The best 2-hop solution can be found using our 2-hop broadcast
algorithm from Theorem 10. The best path-like solution can be found by invoking
the narrow-strip broadcast algorithm from Theorem 1, and checking if it satisfies the
hop-bound. It remains to describe how to find the best mixed and arborescence-based
solutions.
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Claim The best mixed solution can be found in O(n5) time.

Proof of Claim Suppose that Q− can be reached in t � h hops. Recall from the
one-sided case that Q−

i is the set of points p such that the shortest path from p
to Q− has i − 1 hops. Thus the set B− of potential second points of a shortest
s → Q− path is equal to B− := δ(s) ∩ Q−

t . (This set can be computed using
our algorithm from Theorem 1.) We need to be able to find the potential second
points of a nice arborescence. First, we run the one-sided dynamic programming
algorithm on the set P∗ := {P ∩ (δ(s) ∪ S�0)}, which takes O(n4) time. Let
M(·, [·, ·]) be the resulting dynamic-programming table. We claim that p ∈ L1
is a potential second point if and only if there is an interval [i, j] such that

M(s, [1,m+]) = M(s, [1, i −1])+M(p, [i, j])+M(s, [ j +1,m+])−1, (4)

where m+ = |L+
h |.

To prove the claim, first assume that Equality (4) holds. Then the arborescences
corresponding to eachM-value on the right side are nice minimum arborescences
rooted at s, p and s respectively—the fact that s is counted twice explains the
-1 term—and so their union together with the edge sp is a minimum arbores-
cence that uses p as as second point. On the other hand, if there is a minimum
arborescence using p, then there is a nice one and the set of ancestors of p is
an subsequence qi , . . . , q j of L

+
h . The points q1, . . . , qi−1 and q j+1, . . . , qm+

are covered by two nice arborescences rooted at s, and the niceness implies that
these subtrees only share s. Thus, Equality (4) holds.

Hence, after filling in all entries in the tableM(·, [·, ·]), we can find all potential
second points in O(n3) time by checking all values i, j for each point p ∈ L1. If
there is such a point p in B−, then the bestmixed solution has size A(s, [1,m+])+
t − 1, otherwise it has size A(s, [1,m+]) + t . With standard techniques, an h-
hop broadcast set realizing this optimum can be computed within the same time
bound. ��
Claim The best arborescence-based solution can be found in O(n6) time.

Proof of Claim In order to find the best arborescence-based solution, we modify
the one-sided algorithm the followingway. For all p ∈ L1∪

( ⋃h
i=2 L

+
i

)
wedefine

the subproblems A+ (p, [i, j]) as previously, where [i, j] refers to an interval in
the last right side level L+

h . Similarly, we define an ordering on the last left level

based on y-coordinates, and define for all p ∈ L1 ∪ ( ⋃h
i=2 L

−
i

)
the subproblems

A− (p, [i, j]). We can compute these values using the one-sided algorithm on
both sides.

It will be convenient to generalize the definitions above as follows. First of
all, we extend the definition of A+ (p, [i, j]) to include all points p ∈ P—
not only the points in L1 ∪ ( ⋃h

i=2 L
+
i )—by setting A+ (p, [i, j]) := ∞ for

p ∈ L−
�2. The definition of A− (p, [i, j]) is extended similarly. Finally, we

define A+ (p, [i, j]) := 0 and A− (p, [i, j]) := 0 for j = i − 1.
We also need a third kind of subproblem. Define A(p, [i, j], [k, ]) as the

number of internal vertices in an optimum arborescence rooted at p that has
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leaves q−
i , . . . , q−

j in the last left level and from q−
k , . . . , q−

 on the last right
level. If p �= s, this can be easily expressed:

A
(
p, [i, j], [k, ]) = A−(

p, [i, j]) + A+(
p, [k, ]) − 1. (5)

Note that on the right side of this formula, at least one of the summands is ∞
if p ∈ L�2, and possibly for some points in L1 as well. Since the formula is so
simple, we do not need to compute these values explicitly. The only computation
for this kind of subproblem is required at the source, for which we require a new
notation. Let

sep(i, j, k, )

:= {
(t, u) : i − 1 � t � j and k − 1 � u � 

}\{(i − 1, k − 1), ( j, )
}
.

The set sep(i, j, k, l) is a shorthand for the set of pairs (t, u) that sepa-
rate the interval pair [i, j], [k, l] into proper sub-interval-pairs [i, t], [k, u] and
[t + 1, j], [u + 1, l]. Our formula for the source is the following:

A
(
s, [i, j], [k, ])

= min

(

min
(t,u)∈sep(i, j,k,)

(
A
(
s, [i, t], [k, u]) + A

(
s, [t + 1, j], [u + 1, ]) − 1

)
,

min
p∈L1

(
A−(

p, [i, j]) + A+(
p, [k, ])

))

,

where the first line represents the case when there is an optimal solution where
s has at least two active neighbors, while the second line corresponds to the
situation where s has only one active neighbor p. The initialization of the values
is straightforward:

A
(
s, [i, i − 1], [k, k − 1]) = 0

A
(
s, [i, i], [k, k − 1]) = dG∗(s, q−

i )

A
(
s, [i, i − 1], [k, k]) = dG∗(s, q+

k )

Once the one-sided subproblem values are computed, the above dynamic pro-
gram can be initialized and computed in increasing order of ( j− i)+(−k). The
number of subproblems that we need to compute is O(n4), each of which requires
taking the minimum of O(n2) values. This enables a running time of O(n6). To
prove the correctness of the algorithm, we only need to show that our formulas
for L1 and the source are correct. Again, the inequality A

(
s, [i, j], [k, ]) � . . .

is trivial, so we only need to show that there is an optimal solution which has the
desired structure.

We start with an optimal arborescence that is nice when restricted to both
L1 ∪ (⋃h

i=2 L
−
i

)
and L1 ∪ ( ⋃h

i=2 L
+
i

)
. For a point p ∈ L1, if the subproblem

has a non-empty interval on both sides, then there is a branching at p. The
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arborescence can be partitioned into a left and right sub- arborescence, so Eq. (5)
holds.

At the source, we only need to explain the case when there is a branching at
s, the other case is trivial. Let p ∈ L1 be the child of s that has the smallest
y-coordinate. Since the left and right sub-arborescences are nice, the descendant
leaves of p on the left form a starting slice [i, t] of the last level on the left, and
the descendant leaves on the right form a starting slice [k, u] of the last level on
the right. The rest of the intervals are descendants of the other branches. This
demonstrates that the cost of the optimal arborescence can be written as

(
A
(
s, [i, t], [k, u]) + A

(
s, [t + 1, j], [u + 1, ])

)
− 1. ��

The overall algorithm computes the best feasible broadcast set of each type, if
it exists: 2-hop, path-like, mixed (for both sides), and arborescence-based Since the
minimum broadcast set must have one of these types, the minimum among these is a
minimum h-hop broadcast set. The overall running time is O(n6). ��

5 Broadcasting in aWide Strip

We show that the broadcast problem remains polynomial in a strip of any constant
width, or more precisely, it is in XP for the parameter w (the width of the strip). We
begin by showing the following key lemma.

Lemma 20 Let D be the disk centers of a minimum connected dominating set of a unit
disk graph on a strip of width w, and let R be an axis parallel rectangle of size 2×w.
Then the number of points in D ∩ R is at most 32w√

3
+ 14.

Proof Let R′ be the set of points inside the strip that are at distance at most 1 from R;
thus R′ is a 4×w rectangle. We subdivide R′ into cells of diameter 1 by introducing a
rectangular grid with side lengths 1/2 and

√
3/2. Overall, we get 8� w√

3/2
� < 16w√

3
+ 8

cells in R′. Let G be the unit disk graph spanned by the centers that fall in R′. The
points that fall into a grid cell form a clique in G. Let G ′ be the graph that we get
if we contract the vertices of G in each cell. Let T be a spanning tree of G ′. We can
represent T in the original graph in the following way. For each edge uv ∈ E(T )

select vertices u′, v′ of distance at most 1 from the cell of u and v respectively. We
know that there are such points since otherwise uv could not be an edge in G ′. Since
T has at most ( 16w√

3
+ 8) − 1 vertices, this selection gives us a point set H of size at

most 2( 16w√
3

+ 7) = 32w√
3

+ 14.

Suppose for contradiction that R∩D > 32w√
3

+14. We argue that D′ = (D\R)∪H

defines a connected dominating set of smaller cost. By our analysis above, we see that
the cost is indeed smaller, so we are left to argue that D′ is connected and dominating.
Notice that D ∩ R can only dominate vertices that are inside R′, so it is sufficient
to argue that all vertices of G are dominated. This is easy to see because D′ has at
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least one point in each non-empty cell, and the points in each cell form cliques. It
remains to argue that D′ is connected. Notice that the set of points in R′ ∩ D that had
a neighbor in D which is outside R′ all lie in R′\R, so these points are part of D′. So
it is sufficient to argue that V (G) ∩ D′ is connected. This follows from the fact that T
is connected and the points of each cell form a clique in G. ��
Proof (of Theorem 3) For the sake of simplicity, we start with the one sided case. It is
a dynamic programming algorithm that has subproblems for certain 2×w rectangles,
and for each rectangle, all the possible dominating subsets with various connectivity
constraintswill be considered.More specifically, let k ∈ N, letU ⊆ P∩[k−1, k+1]×
[0, w], and let ∼ be a binary relation on U . The value of the subproblem A(k,U ,∼)

is the minimum size of a set D of active points inside [0, k + 1] × [0, w] for which
– D ∩ [k − 1, k + 1] × [0, w] = U
– D dominates [0, k] × [0, w]
– u1 ∼ u2 if and only if they are connected in the graph spanned by D
– every equivalence class of ∼ has a representative in [k, k + 1] × [0, w]
By Lemma 20, it is sufficient to consider subproblems where |U | � 32w√

3
+ 14. Let

μ = ⌊ 32w√
3

+14
⌋
. For any value of k, there are at most

(n
1

)+(n
2

)+· · ·+(n
μ

) = O(nμ+1)

such subsets. The relevant values of k are integers between 0 and 2n. Finally, for any
subset U , the number of equivalence relations on U is the number of partitions of U ,
which is the Bell number B|U |. This can be upper bounded by Bμ < μμ = wO(w).
Thus, the total number of subproblems is O(nμ+2wO(w)) = nO(w).

For all subsets U of P ∩ [0, 1] × [0, w] with size at most μ, we can compute the
equivalence relation ∼U . For all such sets U , we define A(0,U ,∼U ) = |U |. For
higher values of k, we can compute the subproblems the following way.

When computing A(k,U ,∼) (for which there is a representative of each equiv-
alence class of ∼ in [k, k + 1] × [0, w]), we first need to find the subproblems
A(k−1,U ′,∼′) for whichU ′ ∩ [k−1, k]× [0, w] = U ∩[k−1, k]× [0, w]. We can
only extend this subproblem if ∼′ is compatible with ∼, i.e., is s1, s2 ∈ U ∩U ′, then
s1 ∼′ s2 ⇒ s1 ∼ s2. We can find these potential subproblems by going through all
subproblems A(k − 1, ., .), and for each of these, we can decide in polynomial time
whether it is compatible with A(k,U ,∼). Overall, computing the solution of a single
subproblem takes nO(w) time, so finding the optimal broadcast set in the one sided
case can be done in nO(w) time.

For the two sided case, we need to include in the subproblem description the set of
active points on both ends. Let k ∈ N, letU− ⊆ P∩[−k−1,−k+1]×[0, w],U+ ⊆
P ∩[k−1, k+1]×[0, w], and let∼ be a relation onU− ∪U+. Let B(k,U−,U+,∼)

be the minimum size of a set D of active points inside [−k − 1, k + 1] × [0, w] for
which

– D ∩ [−k − 1,−k + 1] × [0, w] = U− and D ∩ [k − 1, k + 1] × [0, w] = U+
– D dominates [−k, k] × [0, w]
– u1 ∼ u2 if and only if they are connected in the graph spanned by D
– every equivalence class of ∼ has a representative in

([−k − 1,−k] ∪ [k, k + 1])×
[0, w].
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The number of subproblems is still nO(w), so the running time is also nO(w). ��
Surprisingly, aswe show in the companionpaper, theh-hopversionhas no algorithm

with running time nO(w), unless P = NP.

Remark 2 The goal of our paper is to study the dependency of the complexity of the
broadcast problem on the width w of the strip containing the point set P , and so the
algorithm presented above is parameterized by w. When k, the size of the solution,
is the parameter then one can get nO(

√
k) running time by adapting an algorithm of

Marx and Pilipczuk [27]. Their algorithm decides, given a set of n disks and a set Q
of n points, if one can cover all the given points by a subset of k of the given disks.
This algorithm can be used for Dominating Set on a unit disk graph, by letting the
set Q coincide with the centers of the disks and scaling each disk by a factor 2. The
algorithm of Marx and Pilipczuk is a separator-based divide-and-conquer algorithm.
To turn it into an algorithm for Connected Dominating Set, we need to track the
connectivity through the recursive calls. This can be done by using partitions on the
vertices in the “boundary” of the current recursive call, as in [4,12,16]. Doing this does
not increase the running time. Finally, we need to turn the algorithm for Connected
Dominating Set into an algorithm for the broadcast problem. To this end we just
need to make sure that when the separator contains the source s, then our guess for part
of the solution in the separator includes the source point. This gives us an algorithm
with running time nO(

√
k) for the broadcast problem.

6 Concluding Remarks

We have presented algorithms for several variants of the broadcast problem, focusing
on the dependency of the running time on the width of the smallest strip containing
the points. In a companion paper [11] we complement our results by lower bounds.
At the end of that paper we also discuss some directions for further research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alzoubi, K.M., Wan, P., Frieder, O.: Message-optimal connected dominating sets in mobile ad hoc
networks. In: Proceedings of the 3rd ACM Interational Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc 2002, 9–11 June 2002, Lausanne, Switzerland, pp. 157–164. ACM (2002).
https://doi.org/10.1145/513800.513820

2. Ambühl, C.: An optimal bound for the MST algorithm to compute energy efficient broadcast
trees in wireless networks. In: ICALP, Proceedings, pp. 1139–1150 (2005). https://doi.org/10.1007/
11523468_92

3. Ambühl, C., Clementi, A.E.F., Ianni, M.D., Lev-Tov, N., Monti, A., Peleg, D., Rossi, G., Silvestri, R.:
Efficient algorithms for low-energy bounded-hop broadcast in ad-hoc wireless networks. In: STACS,
Proceedings, pp. 418–427 (2004). https://doi.org/10.1007/978-3-540-24749-4_37

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/513800.513820
https://doi.org/10.1007/11523468_92
https://doi.org/10.1007/11523468_92
https://doi.org/10.1007/978-3-540-24749-4_37


Algorithmica (2019) 81:2934–2962 2961

4. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algo-
rithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

5. Breu, H.: Algorithmic aspects of constrained unit disk graphs. Ph.D. thesis, University of British
Columbia (1996)
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