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A B S T R A C T

Reinforcement learning, the process by which an organism flexibly adapts behavior in response to reward and
punishment, is vital for the proper execution of everyday behaviors, and its dysfunction has been implicated in a
wide variety of mental disorders. Here, we use computational trial-by-trial analysis of data of female rats per-
forming a probabilistic reward learning task and demonstrate that core computational processes underlying
value-based decision making fluctuate across the estrous cycle, providing a neuroendocrine substrate by which
gonadal hormones may influence adaptive behavior.

1. Introduction

Reinforcement learning is an essential mechanism for organisms to
adapt to a dynamic environment, by allowing flexible alterations in
behavior in response to positive and negative feedback, for example
during foraging and social encounters (Sutton and Barto, 1998). As
such, deficits in reinforcement learning have been implicated in several
psychiatric conditions, including addiction and schizophrenia (Maia
and Frank, 2011). Given the large gender differences in the prevalence
of mental disorders, and the existence of cyclic changes in the severity
of schizophrenia and sensitivity to drugs in women (Hendrick et al.,
1996), we sought to determine how the estrous cycle of females affects
the computational processes that underlie reinforcement learning. To
this aim, we tested a cohort of female rats on a probabilistic reversal
learning paradigm (Bari et al., 2010; Verharen et al., 2018), used
computational modeling to extract the subcomponents of value-based
decision making, and assessed how these components were affected by
the estrous cycle.

2. Methods

2.1. Animals

Female, nulliparous Long-Evans rats (bred in-house; background
Rj:Orl, Janvier labs, France; n=30) weighing 180–220 g were used for
the experiment. Animals were tested for 10 consecutive days, to ensure
that we had at least one measurement of every cycle stage per animal.
Eventually, 5 animals had to be excluded because the cycle could not

reliably be estimated or not all stages of the cycle were captured due to
unreliable vaginal smears, leaving a final group of n=25. Animals
were socially housed in groups of 2–4 and kept on a reversed day/night
cycle (lights on at 8 A.M.), and behavioral experiments took place be-
tween 9 A.M. and 1 P.M.. During the training phase of the experiment,
animals were kept on a food restriction regimen of 5 g chow per 100 g
body weight, and during the 10 experimental days the animals were
food restricted for 16 h prior to the behavioral task. For the male group
of animals (n=18), that is included for comparison, Long-Evans rats
(bred in-house; background Rj:Orl, Janvier labs, France) of roughly the
same age, weighing 310–390 g, were used. Animals had ad libitum ac-
cess to water, except during behavioral experiments. The experiments
were carried out in accordance with Dutch legislation (Wet op de
Dierproeven, 2014), European Union guidelines (2010/63/EU), and
approved by the Animal Welfare Body of Utrecht University and the
Dutch Central Animal Testing Committee.

2.2. Behavioral task

The probabilistic reversal learning task (Fig. 1a) took place in op-
erant conditioning chambers (Med Associates Inc., USA) equipped with
a food receptacle (with infra-red entry detection) flanked by two re-
tractable levers and two cue lights, a house light and an auditory tone
generator. One lever was randomly assigned as the high-probability
lever, responding on which was reinforced (i.e., delivery of a sucrose
pellet) with an 80% probability and not reinforced (i.e., a time-out)
with a 20% probability. The other lever was assigned as the low-
probability lever, responding on which had a 20% chance of being
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reinforced. Every single response on the high-probability and low-
probability lever was reinforced with a 80% or 20% probability, re-
spectively, irrespective of the outcome of the previous trials.

The session lasted for 60min, and animals were constrained in the
number of trials they could make only by the length of the session
(maximum ∼600 trials per session possible). A trial commenced by the
illumination of the house light and the presentation of the two levers
into the operant cage. After a lever press by the animal, the levers re-
tracted and the house light was turned off. For reinforced trials, a 45mg
sucrose pellet (5TUL, TestDiet, USA) was delivered into the food port,
and both cue lights that flanked the food receptacle were illuminated,
and an auditory tone was played for 0.5 s. A new trial commenced di-
rectly when the animal entered the food port (detected by the infra-red
movement detector); this was signaled to the animal by extinction of
the cue lights, illumination of the house light and presentation of the

two levers. On non-reinforced trials, no additional cues were presented,
leaving the animals in the dark during a 10 s period.

Every time the animal made 8 consecutive responses on the high-
probability lever, a reversal in reinforcement contingencies occurred, so
that the high-probability and low-probability levers switched. This re-
versal was not signaled to the animal, so it had to infer this contingency
switch from the outcomes of the trials.

The software automatically registered the responses and response
times of the animals, as well as the outcome of the trial (reinforced or
not), and the position of the high-probability lever.

2.3. Training

Animals first received lever press training, during which both levers
were continuously presented, and a lever press was reinforced under a

Fig. 1. a. Probabilistic reversal learning setup. Hungry female animals could respond on two levers, one of which delivered sucrose reward with a high probability
(80%, high-probability lever), and the other lever with a low probability (20%, low-probability lever). Every time the animal made eight consecutive responses on the
high-probability lever, a reversal in reinforcement contingencies occurred, so that the previously low-probability lever became the high-probability lever, and vice
versa. In this way, animals had to track the outcome of responding on each of the two levers over a series of trials and based hereon make a choice between them. b.
Example cytological images of samples from vaginal smears during the three stages of the estrous cycle. c. Computational model. d. Trial-to-trial data was fit to the
computational model, and best-fit parameters were estimated. e. Total trials completed by the female animals (n=25) in the 60-minute session was significantly
affected by the estrous cycle (Repeated measures ANOVA, F2,48 = 21.22, P < 0.0001). Post-hoc tests: **** P < 0.0001, *** P= 0.0002, * P= 0.0188. Male data
(n=18) is shown for illustrative purposes; these data were not included in the statistical analyses. f. The total number of reversals was not affected by the cycle
(ANOVA, F2,48 = 0.48, P= 0.6209). g. Best-fit computational model parameters per estrous cycle stage. Reward learning: ANOVA F2,48 = 3.995, P= 0.0248; post-
hoc tests met/diestrus (M/D) vs proestrus (P), P= 0.0198, M/D vs estrus (E), P= 0.9425, P vs E, P= 0.0166. Punishment learning: ANOVA F2,48 = 1.637, P=
0.2052. Perseveration: ANOVA F2,48 = 0.1349, P= 0.8741. Explore/exploit: ANOVA F2,48 = 5.201, P= 0.0090; post-hoc tests M/D vs P, P= 0.4444, M/D vs E,
P= 0.0243, P vs E, P= 0.0033. Male data is shown for illustrative purposes.
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fixed ratio-1 schedule of reinforcement. When all animals made more
than 50 lever presses in a session, the group progressed to the next
phase of lever press training, in which randomly the left lever, the right
lever, or both levers were presented to the animals, and pressing either
lever was reinforced under a fixed ratio-1 schedule. In this phase of
training, levers retracted after a response, and animals were subjected
to the same sequence of events as during a reinforced trial in the
probabilistic reversal learning task. When all animals made at least 100
responses in a session during this phase, the group received 6 training
sessions of the probabilistic reversal learning task, before the experi-
mental phase began (both females and males received these 6 training
sessions in the final stage).

2.4. Estrous cycle determination

To determine the circulating levels of female sex hormones
throughout the estrous cycle, vaginal smears were obtained for all test
days between 11 A.M. and 1 P.M., 1–2 h after each test. Vaginal smears
were collected by inserting the head of a sterile plastic smear loop (1 μL;
VWR, USA) and gently swabbing the vaginal wall. The collected cells
were transferred to a drop of water on a glass microscope slide, air-
dried and stained with 5% Giemsa (Sigma-Aldrich, The Netherlands)
dissolved in water. Microscopic evaluation of the cells present in the
vaginal smears was used to determine the phase of the estrous cycle
(Cora et al., 2015; Goldman et al., 2007) (Fig. 1b). This was performed
by a trained observer who was blind to smears from previous days and
the behavioral data, and the following four parameters were estimated:
the relative amount of cells present (on a scale from 1 to 5), and the
percentage of nucleated cells, anucleated cells and leukocytes. Based on
these four parameters and taking into account all 10 days, smears were
assigned as proestrus, estrus or metestrus-diestrus. In brief; smears
containing predominantly nucleated cells were assigned as proestrus,
smears containing predominantly anucleated cells were assigned as
estrus and smears containing leukocytes were assigned as metestrus-
diestrus. Smears containing a combination of cells indicating a transi-
tion between phases were interpreted based on smears from neigh-
boring days. Females that did not show a regular cycle over the course
of 10 days were excluded from the analysis. If a single smear was un-
reliable for a given day, but smears of neighboring days showed a
predictable pattern coherent with a regular estrous cycle, the phase of
the missing day was estimated; if not, that particular day was not in-
cluded in the analysis.

2.5. Reinforcement learning model

The trial-by-trial data of every individual session was fit to a re-
inforcement learning model, which was a modification of the classic
Rescorla-Wagner model (Rescorla and Wagner, 1972), which assumes
that the animals dynamically track the value of the outcome of re-
sponding on each of the two levers by incorporating positive (reward
delivery) and negative (reward omission) feedback (Fig. 1c, d). When
learning from feedback is high (α → 1), these lever values are strongly
dependent on the outcome of the last trial, but when learning is low (α
→ 0), lever values are based on an extended history of trials (thus the
impact of a single reward delivery or reward omission on lever value is
small). The model further incorporates the animals’ preference for the
lastly chosen lever, independent of lever values, which is captured by
perseveration parameter π. Moreover, it incorporates stochastic choice,
to distinguish between deterministic choice of the highest valued lever
(β → ∞) and a more exploratory sampling approach (β → 0). Random
effects model selection indicated that this modified Rescorla-Wagner
model was able to predict the highest amount of observed choices
compared to a set of other reinforcement learning models that we
tested, including the classic Rescorla-Wagner model (Rescorla and
Wagner, 1972), a Pearce-Hall-Rescorla-Wagner hybrid model (Li et al.,
2011), and a win-stay, lose-switch model (Posch, 1999)

(Supplementary Table 1).
The expected reward values of both levers, Qleft and Qright, ranged

from 0 (pressing the lever is never reinforced) to 1 (pressing the lever is
always reinforced). Both lever values were initiated at a value of 0.5,
and the value of the chosen lever Qchosen was updated after every trial t
based on the outcome of that trial:

=

+ ⋅

+ ⋅ −

−
+

−

−
−

−

Q
Q α δ for rewarded trials
Q α δ for time out trials

{chosen t
chosen t t

chosen t t
,

, 1 1

, 1 1

Here, α+ is the reward learning rate (learning from positive feedback),
and α− is the punishment learning rate (learning from negative feed-
back), which range from 0 (no learning) to 1 (lever value completely
determined by last outcome). δt-1 represents the reward prediction error
after the last trial t-1, so that:
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Note that reward prediction error δ is negative for non-reinforced
trials (outcome is lower than expected) and positive for reinforced trials
(outcome is higher than expected). The value of the unchosen lever was
not updated. Separate learning rates were used for learning from po-
sitive feedback (i.e., δ>0; rewarded trials) versus negative feedback
(i.e., δ<0; time-out trials), so that changes in reward or punishment
learning could be discerned.

At the start of each trial, lever values Qleft and Qright were converted
to action probabilities using a Softmax function, so that the probability
of choosing the right lever pright,t at trial t was given by the function:
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Here, β is the inverse temperature of the Softmax function, which is a
measure for the extent to which the animal consistently chooses the
highest valued lever (β →∞) or that it chooses more randomly (β → 0).
Parameter π is a stickiness parameter, which adds a certain amount of
the value of π to the value estimate of the lastly chosen lever. In this
case, positive values of π indicate a preference for the lastly chosen
lever, negative values of π indicate a preference for the lastly unchosen
lever, and π approaching 0 indicates that the side of the lastly chosen
lever does not affect the next lever choice. ϕ is a boolean that was at-
tributed the value 1 if that lever was chosen in the last trial (thus an
amount of the value of π will be added to the value function), and 0 if
that lever was not chosen in the last trial.

To obtain reliable model parameter estimates on a population level,
we used Bayesian hierarchical parameter estimation. In brief, we ap-
plied a prior distribution over the parameter values, and considered any
new evidence from the animal’s choice behavior to determine a pos-
terior probability using Bayes’ rule. These posterior probabilities were
marginalized to get a point estimate of each session’s best-fit parameter
values. The used priors were: for α+ and α− betapdf(1.5, 1.5); for π
normpdf(0.5, 0.5); for β normpdf(2, 2).

All computational analyses were performed with Matlab R2014a
(MathWorks Inc., USA).

2.6. Statistics

Statistical tests were performed in GraphPad Prism 6.0 (GraphPad
Inc., USA). On all outcome parameters, a one-way repeated measures
analysis of variance (one-way RM ANOVA) was performed, with estrous
phase as a within-subjects repeated measures factor. This test was
considered significant if P < 0.05, after which post-hoc Fisher’s tests
were performed. When data of more than one test per estrous phase was
obtained (because data was collected from more than one cycle and/or
animals were in a certain phase of the estrous cycle for more than one
day), the outcome parameter values were averaged for these days. No
statistical comparisons were made between males and females because
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the two groups were not tested in parallel and therefore equal testing
conditions could not be ensured. In all graphs: **** P < 0.0001, ***
P < 0.001, ** P < 0.01, * P < 0.05, ns not significant.

3. Results

We observed a significant effect of estrous cycle on the total number
of trials that the animals made during a session (Fig. 1e). Animals that
were in the estrus stage of the cycle made the lowest number of trials,
and animals in the metestrus/diestrus stage the highest number of
trials.

Performance in the task, measured as the total number of reversals
that the animals achieved, revealed no significant differences between
the three stages (Fig. 1f). However, the total number of reversals is a
compound measure for performance in the task, that does not ne-
cessarily inform about the underlying component processes. To gain
insight into whether these underlying processes were modulated by the
cycle, we fit the trial-by-trial data in the session to a computational
reinforcement learning model (Gershman, 2016), and used Bayesian
hierarchical estimation (Daw, 2009) to determine the parameter values
that best described the behavior of the animals (Fig. 1d). After esti-
mating the value of the four model parameters for each session, and
comparing these between the different stages of the cycle (Fig. 1g), we
observed a significant decrease in reward learning parameter α+
during the proestrus stage, indicative of a lower impact of positive
feedback (i.e., reinforcement) on behavior. We further found that the
estimate of explore/exploit parameter β was significantly reduced
during the estrus stage. No significant changes were observed on the
value estimates of punishment learning parameter α- and perseveration
parameter π. We replicated these findings by fitting the data to a less
complex model that only includes α+, α- and β as free parameters
(Supplementary Fig. 1). Overall, the value estimates of the parameters
in female animals were roughly similar to those observed in males
(Fig. 1g), except that male animals made more trials in the task
(Fig. 1e).

4. Discussion

Our computational analyses reveal distinct changes in the processes
underlying value-based decision making across the rat estrous cycle.
The observed decrease in reward learning parameter α+ during the
proestrus stage is indicative of a lower impact of positive feedback (i.e.,
reinforcement) on behavior. This stage of the cycle is characterized by
peak levels of the sex hormones progesterone and estradiol, and thus
suggests a direct effect of gonadal steroids on reward processing,
especially since reward learning was higher in the estrus stage of the
cycle, when circulating hormone levels decline. This decreased focus on
recent reward might also explain the reduction in trials completed,
possibly reflecting attenuated motivation to obtain food reward
(Supplementary Fig. 2). However, the observed effect on motivation
may also be the result of cyclic changes in appetite (Tarttelin and
Gorski, 1971).

The reduction in the value estimate of explore/exploit parameter β
during estrus indicates that sexually receptive females chose more
stochastically (i.e., shifting from exploitation to exploration of the re-
sponse options) than during the non-receptive stages of the cycle,
perhaps reflecting a general increase in exploratory behavior. At the
same time, this increase in exploration may have resulted in reduced
task engagement, leading to a decrease in the number of trials com-
pleted (Supplementary Fig. 2). Whether such cyclic changes in ex-
ploration have evolutionary advantage, for example by promoting
search for a sexual partner, remains to be investigated.

Researchers are increasingly encouraged to include female animals
in preclinical experiments, with the aim to increase the translational
value of animal research. In this regard, our data provide further insight
into the complexity of value-based decision making and its sex-specific

modulation. Importantly, behavioral data from intact female animals
should be properly controlled for the estrous cycle, since many beha-
vioral tasks in neuroscience involve (food) reward, and are therefore
subject to changes in value-based learning, motivation and appetite.

In sum, we provide direct evidence that reward learning, explora-
tion and motivation, but not punishment learning and perseveration,
fluctuate during the estrous cycle in female rats. Although cyclic
changes in value-based decision making have been observed before,
which computational components underlie these changes had not yet
been elucidated. It is well known that gonadal steroids have widespread
effects on the brain, including on the mesocorticolimbic dopamine
system (McEwen and Alves, 1999), which is an important hub for value-
based learning (Verharen et al., 2018). It is therefore likely that estra-
diol and progesterone affect reinforcement learning through cortico-
limbic mechanisms, to promote adaptive survival-directed behavior in
females.
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