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PREFACE

In 2018 an estimated number of 18 million people worldwide were diagnosed 

with cancer and, in the same year, an estimated 9.6 million people died as a 

consequence of the disease.1 Given the high mortality and incidence of cancer, 

extensive efforts are increasingly being made to develop new and better drugs and 

to improve treatment with existing drugs. Data and data analysis are essential 

for the drug development process, and even beyond registration and clinical 

use of the drug, collection and analysis of data continue, to further optimize 

treatment. Data on pharmacokinetic (PK) and pharmacodynamic (PD) properties 

of a drug provide information on the dynamics of drug concentrations in the body 

over time (PK) and on both the desired and undesired (toxic) effects of a drug 

(PD). Identification and quantification of PK-PD relationships is the cornerstone 

of quantitative clinical pharmacology research, also known as pharmacometrics. 

In the field of pharmacometrics, mathematical and computational sciences 

are intertwined with pharmacology, biology and physiology. It entails the 

development of mathematical and statistical models to describe, characterize 

and predict (simulate) the PK and PD properties of drugs in different populations.2 

Pharmacometrics is being used increasingly to improve the clinical application 

of drugs and support drug development decision making.3 

In this thesis the application of modeling and simulation methods to support 

drug development and to improve application of existing therapies in the area of 

oncology is described. 

Chapter 1 describes different aspects of treatment optimization of tamoxifen, 

an anti-estrogenic drug, used to treat estrogen receptor-positive breast cancer. 

The focus of this research is on how tamoxifen doses can be individualized using 

Therapeutic Drug Monitoring (TDM) of its active metabolite endoxifen. Chapter 

1.1 provides an introduction to the subject and an overview of available literature 

regarding the effects of pharmacogenetics on the PK and PD of tamoxifen. In 

chapter 1.2 an anti-estrogenic activity score is developed and presented to 

evaluate whether endoxifen can serve as a proxy for the anti-estrogenic effect 

of tamoxifen and three of its metabolites. In chapter 1.3 we share our view 
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on therapy individualization of tamoxifen treatment, where genotyping of 

metabolizing enzymes is compared to TDM of endoxifen. Chapter 1.4 gives insight 

into the feasibility of observational and randomized controlled trials, aiming to 

prospectively validate TDM of endoxifen, by conducting clinical trial simulations 

to determine study power.

Chapter 2 demonstrates how PK-PD modeling can be used to support decision 

making in drug development. The PK-PD modeling of a bispecific monoclonal 

antibody (MCLA-128) in development to treat solid tumors expressing HER2 

and HER3, is described. Chapter 2.1 describes the preclinical PK-PD modeling 

framework, which was utilised to determine a safe and efficacious starting dose 

for a First-in-Human trial. Chapter 2.2 reports on the clinical PK characteristics 

of MCLA-128 in patients included in the First-in-Human clinical phase I/II trial, 

including the evaluation of the predictive value of the preclinical PK model.

Chapter 3 focusses on modeling toxicity of classical cytotoxic and newer anti-

cancer drugs. Chapter 3.1 is an introduction to the subject of toxicity modeling 

and provides a perspective of how adverse effects of anti-cancer drugs can be 

quantified in mathematical models. It also reports on several model structures of 

adverse effect models that describe relationships between drug concentrations 

and toxicity. In Chapter 3.2 the kinetics and exposure-response relationships of 

left ventricular ejection fraction (LVEF) and troponine T in breast cancer patients 

receiving both anthracyclines and trastuzumab are quantified, to identify patients 

that are more likely to exhibit an LVEF decline during trastuzumab treatment. 

Chapter 3.3 and chapter 3.4 focus on the toxicity of docetaxel in metastatic 

castration-resistant prostate cancer (mCRPC) patients. More specifically,  

chapter 3.3 describes the difference in exposure to docetaxel and incidence 

of neutropenia in patients with mCRPC compared to patients with other solid 

tumors. Chapter 3.4 reports the differences in docetaxel-induced hematological 

toxicity in elderly patients compared to younger patients with mCRPC.

This thesis represents the application of pharmacometrics to optimize treatment 

and support drug development of new drugs in oncology. 
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ABSTRACT

Introduction

The antiestrogenic drug tamoxifen is widely used in the treatment of estrogen 

receptor-α-positive breast cancer and substantially decreases recurrence 

and mortality rates. However, high interindividual variability in response is 

observed, calling for a personalized approach to tamoxifen treatment. Tamoxifen 

is bioactivated by cytochrome P450 (CYP) enzymes such as CYP2B6, CYP2C9, 

CYP2C19, CYP2D6 and CYP3A4/5, resulting in the formation of active metabolites, 

including 4-hydroxy-tamoxifen and endoxifen. Therefore, polymorphisms in the 

genes encoding these enzymes are proposed to influence tamoxifen and active 

tamoxifen metabolites in the serum and consequently affect patient response 

rates. To tailor tamoxifen treatment, multiple studies have been performed 

to clarify the influence of polymorphisms on its pharmacokinetics and 

pharmacodynamics. Nevertheless, personalized treatment of tamoxifen based 

on genotyping has not yet met consensus. 

Methods 

This article critically reviews the published data on the effect of various genetic 

polymorphisms on the pharmacokinetics and pharmacodynamics of tamoxifen, 

and reviews the clinical implications of its findings. For each CYP enzyme, 

the influence of polymorphisms on pharmacokinetic and pharmacodynamic 

outcome measures is described throughout this review. 

Results 

No clear effects on pharmacokinetics and pharmacodynamics were seen for 

various polymorphisms in the CYP encoding genes CYP2B6, CYP2C9, CYP2C19 and 

CYP3A4/5. For CYP2D6, there was a clear gene-exposure effect that was able to 

partially explain the interindividual variability in plasma concentrations of the 

pharmacologically most active metabolite endoxifen; however, a clear exposure-

response effect remained controversial. 
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Conclusion 

These controversial findings and the partial contribution of genotype in 

explaining interindividual variability in plasma concentrations of, in particular, 

endoxifen, imply that tailored tamoxifen treatment may not be fully realized 

through pharmacogenetics of metabolizing enzymes alone.
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INTRODUCTION

Tamoxifen is an antiestrogenic drug, widely used for the treatment of estrogen 

receptor-α (ERα)-positive breast cancer. Adjuvant tamoxifen treatment 

substantially reduces breast cancer relapse and mortality rates.1 Recently, the 

Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) and adjuvant Tamoxifen-To 

offer more? (aTTom) trials have suggested the extension of tamoxifen treatment 

duration from 5 years to 10 years for a subpopulation of premenopausal 

patients, to further lower recurrence rates.2,3 Both pre- and postmenopausal 

patients are treated with tamoxifen; however, in postmenopausal patients or 

patients who underwent ovarian ablation, treatment with aromatase inhibitors 

is effective, either in a sequence, before or after tamoxifen, or for 5 years.4 

Aromatase inhibition does not work in women with active ovarian function, like in 

premenopausal women.5 Inhibition of aromatase reduces feedback of estrogens 

to the hypothalamus-pituitary-ovary axis, leading to an increased stimulation of 

the ovaries via gonadotropin secretion.6 This stimulation overrules the effect of 

aromatase inhibitors. Therefore, tamoxifen is currently the only drug of choice in 

this subpopulation. Even though a differentiation between ERα-positive and ERα-

negative tumors is made prior to treatment, a high interindividual variability in 

response to adjuvant treatment with tamoxifen is observed.7 Tailoring tamoxifen 

therapy was the main focus of an extensive number of studies with emphasis 

on germline genotyping as a tool to guide treatment. Bioactivation of tamoxifen 

is mediated by polymorphic cytochrome P450 (CYP) enzymes and may therefore 

be an important process causally involved in response variability.8 Bioactivation 

of tamoxifen results in the formation of metabolites that have different affinity 

and potency towards ERα.9,10 The ERα receptor is known to be the main target 

in anti-estrogen therapy, while the role of ERβ is still under investigation.11 The 

formation of the two major primary metabolites of tamoxifen, N-desmethyl-

tamoxifen and 4-hydroxy-tamoxifen, is predominantly catalyzed by CYP3A4/5 

and CYP2D6, respectively. The formation of the secondary metabolite 4-hydroxy-

N-desmethyltamoxifen (endoxifen) is generated from N-desmethyl-tamoxifen by 

CYP2D6, and less substantially from 4-hydroxy-tamoxifen by CYP3A4/5.8  Endoxifen 

and 4-hydroxy-tamoxifen are potent antiestrogenic metabolites, with a 100-fold 

higher affinity for ER and a 30- to 100-fold higher potency in suppressing cell 

proliferation compared with tamoxifen, pointing towards key roles for CYP2D6 
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and CYP3A4/5 in the bioactivation of tamoxifen.9,10 Since plasma concentrations 

of endoxifen exceed plasma concentrations of 4-hydroxy-tamoxifen, endoxifen 

is proposed to be the most important metabolite of tamoxifen.9 Nevertheless, 

tamoxifen metabolism has shown to be more complex than solely transformation 

to endoxifen via CYP2D6, depending on other factors such as serum abundance 

and the activity of other CYP enzymes such as CYP2B6, CYP2C9, CYP2C19 and 

CYP3A4/5, as depicted in Fig 1.8

Currently, only CYP2D6 genotyping is proposed to guide tamoxifen treatment, 

and an AmpliChip® CYP450 test for determination of the genotype has been 

approved by the US Food and Drug Administration (FDA). The FDA Advisory 

Committee recommended including pre-treatment genotyping in the drug label 

of tamoxifen12; however, such a recommendation is not included in the current 

label. Determination of the genotype is suggested to make treatment decisions 

for both postmenopausal and premenopausal women. Postmenopausal women 

with low metabolic activity are expected to have lower exposure to an active 

tamoxifen metabolite and could therefore derive more benefit from either 

aromatase inhibitors or a higher dose of tamoxifen, as opposed to the standard 

dose of 20 mg/day. Likewise, premenopausal patients can benefit from a higher 

dose of tamoxifen when experiencing low metabolic activity since tamoxifen is 

currently the only drug of choice in the premenopausal setting.

However, controversial findings of various studies, to be discussed in this review, 

have led to conflicting views on pharmacogenotyping as a tool to guide tamoxifen 

treatment. Therefore, this article critically reviews the published data regarding 

the effect of various genetic polymorphisms on the pharmacokinetics and 

pharmacodynamics of tamoxifen, and aims to review the clinical implications of 

these findings.
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Figure 1 Part of the tamoxifen metabolic pathway. Bold enzymes illustrate a higher extent 
of contribution to the formation of the metabolite.8 CYP cytochrome P450

LITERATURE SEARCH

A literature search was performed using the PubMed/MEDLINE database. The 

following terms were searched in October and November 2014: [(Tamoxifen AND 

CYP2B6) OR (Tamoxifen AND CYP2C9) OR (Tamoxifen AND CYP2C19) OR (Tamoxifen 

AND CYP3A4) OR (Tamoxifen AND CYP3A5) OR (Tamoxifen AND CYP2D6)]. Studies 

including patients with ERα-positive breast cancer undergoing adjuvant 

treatment with tamoxifen for early-stage breast cancer and investigating an 

effect of polymorphisms in genes encoding the metabolizing enzymes CYP2B6, 

CYP2C9, CYP2C19, CYP3A4, CYP3A5, and/or CYP2D6 on pharmacokinetic and/or 

pharmacodynamic outcome measures were selected. Pharmacokinetic outcome 

measures included steady-state plasma concentrations of tamoxifen and its 

metabolites and/or associated metabolic ratios. 
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Pharmacodynamic outcome measures included survival outcomes such as 

overall survival (OS), (distant or invasive) disease-free survival (DFS), (distant) 

recurrence-free survival (RFS), (distant) recurrence-free interval (RFI), breast 

cancer-free interval (BCFI), or any other measurement of breast cancer recurrence 

risk. 

Search results were limited to studies conducted in humans and full-text articles 

available in the English language. Various characteristics of studies and study 

populations were identified, such as number of patients, dose, concomitant 

use of CYP2D6 inhibitors and if this was accounted for, deviation from Hardy–

Weinberg equilibrium, DNA derived tissue, and menopausal status.

RESULTS OF THE LITERATURE SEARCH

The described search terms identified 451 papers, 36 of which were found to 

be eligible for inclusion. Of 451 papers, 102 were reviews, 10 investigated effects 

in animals, 60 studies were in vitro studies or investigated the metabolism of 

tamoxifen, 104 studies did not investigate previously described pharmacokinetic 

or pharmacodynamic outcome measurements, 6 studies were on bioanalytic 

methods, 23 studies investigated genotyping methods or tumorgenetics, 30 

studies investigated drugs other than tamoxifen, and 52 hits consisted of author 

replies, comments, errata, or editorials. The remaining 64 studies analyzed 

an effect of polymorphisms on pharmacokinetics and/or pharmacokinetics. 

Eleven studies investigated effects in non-adjuvant-treated patients, in three 

studies it was unclear if receptor status was accounted for, and 13 studies did 

not investigate previously described pharmacokinetic or pharmacodynamic 

outcome measurements after reading full texts, were of poor methodological 

quality, or provided an insufficient amount of information; these studies were 

excluded from the review. Survival outcomes included mainly DFS, RFS and RFI, 

which were specified as time from surgery or randomization to recurrence. Event-

free survival (EFS) was defined as the time from surgery or randomization to 

occurrence of a defined event; events were specified differently among studies. 

Characteristics of the 36 included studies are depicted in Table 1.13–48
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Table 1 Characteristics of included studies

REFE-
REN-

CE

YEAR PK/PD STUDY 
TYPE

N MENOPAUSAL 
STATUS

DOSE 
(MG)

CYP2D6

INHI-
BITORSA

HWQ DNAB

14 2006 PK Cohort 158 Both 20 ++ - G
15 2013 PD Ca-Co 57 Both 20 ++ ++ G
16 2013 PK Cohort 135 Both 20 ++ ++ G
17 2005 PD Cohort 223 Post 20 -- - G +T
18 2013 PD Ca-Co 319 Post 20 -- ++ G +T
19 2005 PK Cohort 80 Both 20 ++ + G
20 2008 PD Cohort 67 Both 20 ++ - G
21 2010 PK/PD Cohort 282 Both 20 ++ ++ G
22 2011 PD Ca-Co 494 Post - ++ ++ G
23 2011 PK Cohort 165 Both 20 ++ ++ G
24 2011 PK Cohort 1370 Both - ++ ++ G
25 2011 PD Cohort 190 Post 20 ++ ++ T
26 2011 PK Cohort 236 Post 20 ++ + G
27 2014 PD Cohort 99 Both - - ++ G
28 2005 PD Cohort 162 Both - -- - T
29 2009 PD Cohort 173 Both 20 ++ - G
30 2012 PD Cohort 588 Post 20 ++ + T
31 2012 PD Cohort 1243 Post 20 -- - T
32 2014 PK/PD Cohort 548 Pre 20 - ++ G
33 2007 PD Cohort 206 Both - -- + T
34 2009 PD Cohort 1325 Both 20 -- - T
35 2013 PD Cohort 30 Both - ++ ++ G
36 2013 PK/PD Cohort 132 Both - ++ ++ G
37 2005 PK/PD Cohort 98 Post 20 -- ++ G
38 2005 PD RCT 50 Post 40 - - T
39 2007 PD Cohort 119 Post 20/40 ++ - T
40 2008 PK/PD Ca-Co 152 Both 20 ++ - G
41 2013 PK Cohort 90 Both 20 ++ ++ G
42 2008 PK Cohort 151 Both 20 ++ ++ -
43 2009 PD Cohort 156 Both 20 -- ++ T
44 2010 PD Cohort 493 Both 20 -- ++ G
45 2010 PD Cohort 3155 Both 20 ++ + G
46 2012 PK/PD Cohort 716 Both 20 - - G
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Table 1 continued 
47 2011 PD Cohort 110 Both 20 ++ - G
48 2011 PK Cohort 117 Both 20 ++ ++ G

PK = pharmacokinetic outcomes, PD = pharmacodynamic outcomes, RCT = randomized controlled trial,  

Ca–Co = case–control study, Post = postmenopausal, Pre = premenopausal, Both = postmenopausal and pre-

menopausal, CYP = cytochrome P450, HWQ = Hardy–Weinberg equilibrium, G = germline DNA, T = tumor tissue 

extracted DNA, ++ indicates yes, + indicates  in part, − indicates unknown, −− indicates not, AAccounted for 

CYP2D6 inhibitors, BSource of DNA

Study Designs

As depicted in Table 1, a variety of study designs were used to determine the 

effects of polymorphisms in metabolic enzymes on pharmacokinetic and 

pharmacodynamic outcomes. Studies investigating the effect of polymorphisms 

on plasma concentrations were mostly well-designed, prospective cohort studies, 

while studies investigating the effect of polymorphisms on survival outcome 

were predominantly designed as retrospective cohort studies and, to a lesser 

extent, as case–control studies. Cohort studies solely included patients treated 

with tamoxifen and analyzed whether polymorphisms had an impact on survival 

in this patient group. Case–control studies compared incidences of recurrences 

in patients carrying variant alleles (cases) and patients carrying the wild-type 

genotype (controls) or compared hazard ratios (HRs) of both groups. Cases and 

controls were both treated with tamoxifen. Since prognosis can differ between 

patients, most analyses were multivariate analyses correcting for nodal status 

and tumor grade and stage because these factors are known to influence survival 

outcome. What is not known is whether CYP variant alleles can also influence 

prognosis. In most studies described throughout this review, only tamoxifen-

treated patients have been studied. This precludes any definitive conclusion 

regarding either prognostic or predictive value of the CYP variant because 

outcome after tamoxifen is a combination of prognosis and treatment effect 

(prediction). In studies where the CYP variant group had a multivariate corrected, 

poorer outcome than the CYP wild-type group after tamoxifen treatment, any 

conclusion that this CYP variant was causal in lower endoxifen concentrations 

and therefore reduced efficacy of tamoxifen is premature. To discern the 

predictive effect from the prognostic effect of polymorphisms in CYP enzymes 

on survival outcome, a randomized controlled trial (RCT) or case–control design 

should be used, with four patient subgroups49: patients with and without the 
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CYP polymorphism of interest, and patients with and without the treatment of 

interest. Studies by Beelen et al. and Wegman et al.13,38 investigated the prognostic 

value of the CYP2C19*2 and CYP2D6*4 variant alleles, respectively. Interestingly, the 

CYP2C19*2 variant conferred an adverse prognosis in the absence of treatment, 

while patients with this variant allele derived significantly more benefit from 

adjuvant tamoxifen than patients without this variant.13 While reading this 

review, it is crucial to keep in mind that if the four subgroups are not included 

in the study design, conclusions regarding prognosis and/or prediction will not 

have any influence on patient care.

Effect of Polymorphisms on Pharmacokinetic and Pharmacodynamic  

Outcome Measures

For each CYP enzyme, the effect of various polymorphisms on pharmacokinetic 

and pharmacodynamic outcome measures will be described.

CYP2B6

CYP2B6 plays a role in the formation of the primary metabolites 4-hydroxy-

tamoxifen. CYP2B6 enzymes can show different metabolic activities based on 

their polymorphic state.8 Over 50 allelic variations of CYP2B6 are described, but 

not all associated metabolic activities are known. CYP2B6*4 shows an increased 

in vivo metabolic activity, and CYP2B6*6, *16 and *26 allelic variations show a 

decreased metabolic activity.50 Regarding pharmacokinetic outcome measures, 

no association between the CYP2B6*6 genotype and endoxifen concentrations, 

4-hydroxy-tamoxifen concentrations, or the metabolic ratio of tamoxifen 

concentration over 4-hydroxy-tamoxifen concentration (MR
TAM/4OHT

) was found.26,36 

Additionally, CYP2B6*6 polymorphism was not associated with significantly 

different relapse-free time (RFT).27 

The definition of RFT was in line with the definition of RFI, as described by Hudis 

et al.51 In addition, no association was found between the CYP2B6 genotype and 

EFS or OS.11
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CYP2C9

CYP2C9 contributes to the formation of the primary tamoxifen metabolites 

N-desmethyl-tamoxifen and 4-hydroxy-tamoxifen, albeit to a lesser extent than 

CYP2D6 and CYP3A5 isoforms.52 The metabolic activity of CYP2C9 can be normal 

(*1A), decreased (*3, *5, *8, *11A, *13), or absent (*6).50

Regarding pharmacokinetics, in the studies by Teft et al. (no p-values reported) 

and Jin et al. (p-values >0.05) no significant difference was found in mean plasma 

concentrations of tamoxifen or its metabolites between patients carrying two 

wild-type alleles or carriers of either heterozygous or homozygous variant alleles 

of CYP2C9*2 and CYP2C9*3.19,36 Lim et al.23 found similar results regarding CYP2C9*3 

and the influence on tamoxifen and metabolite concentrations. In contrast, a 

significant difference in the formation of 4-hydroxy-tamoxifen from tamoxifen  

(p = 0.007) between homozygous wild-type carriers and carriers of CYP2C9*2 and/

or *3 alleles and significant lower plasma concentrations of 4-hydroxy-tamoxifen 

(p = 0.0006) and endoxifen (p = 0.0024) were found.26,32

Regardless of the significant difference in formation of 4-hydroxy-tamoxifen 

and endoxifen and 4-hydroxy-tamoxifen concentration, no association between 

genotypes and treatment outcome, survival, or RFT has been reported.27,33 The 

definition of RFT was in line with the definition of RFI, as described by Hudis et al.51

CYP2C19

CYP2C19 activity could alter tamoxifen metabolism and exposure to its metabolites 

via catalyzation of the conversion of tamoxifen into 4-hydroxy-tamoxifen.8 

CYP2C19*2 and *3 variant alleles showed no metabolic activity, whereas CYP2C19*17 

showed increased metabolic activity due to increased transcriptional activity.50

No significant correlation between CYP2C19 genotypes and concentrations of 

tamoxifen or its metabolites (p > 0.05) were found by Lim et al.23 Mürdter et al.26 

underlined these results, finding no correlation between CYP2C19*3 or CYP2C19*17 

and plasma concentrations of endoxifen and 4-hydroxy-tamoxifen or associated 

metabolic ratios.



26

CHAPTER 1.1   | Pharmacogenetics of tamoxifen

Regarding survival outcome measures, Okishiro et al.29 found no significant 

difference between genotypes of CYP2C19 and RFS in Japanese patients with 

breast cancer treated with adjuvant tamoxifen [HR 0.37, 95 % confidence interval 

(CI) 0.08–176; p = 0.19]. In addition, no significant impact on RFT was found for 

CYP2C19 variant allele carriers27, and heterozygous carriers of a CYP2C19 variant 

allele did not significantly impact DFS (HR 0.93 95 % CI 0.47–1.84; p = 0.82).14 In 

addition, Moyer et al.25 did not find a significant difference between the CYP2C19*17 

genotype and DFS.

The study by Schroth et al.33 investigated the impact of single nucleotide 

polymorphisms (SNPs) on RFT, EFS, and OS, but found no significant correlations 

between CYP2C19*2 and/or *3 carriers and these survival outcomes. However, in 

carriers of CYP2C19*17, improvement in RFT was found (HR 0.45, 95 % CI 0.21–0.92; p 

= 0.03) but this was not significant for EFS (HR 0.58, 95 % CI 0.32–1.01; p = 0.05) and 

OS (HR 0.61, 95 % CI 0.29–1.26; p = 0.18).

Beelen et al.13 investigated the prognostic value of the CYP2C19*2 variant allele, 

comparing patients using tamoxifen with patients not using tamoxifen 

for both CYP2C19*2 carriers and patients with wild-type genotype. Patients 

carrying at least one CYP2C19*2 variant allele showed an improved RFI  

(HR 0.26; p = 0.001), while patients without this allele derived less benefit  

(HR 0.68; p = 0.18). Interestingly, breast-cancer patients carrying the CYP2C19*2 

variant allele had a poor prognosis in the absence of adjuvant tamoxifen  

(HR 2.5) compared with patients without a variant allele. As explained by the 

authors, CYP2C19 exposure affects the metabolism of tamoxifen as well as 

estrogen catabolism. The non-functional CYP2C19*2 causes higher exposure 

to estrogens, leading to a possible higher susceptibility to tumors that are 

dependent on estrogen signaling. 

Therefore, these patients could be more sensitive to estrogen-inhibiting therapy, 

explaining the more beneficial HR in the CYP2C19*2 subgroup.
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CYP3A4/5

CYP3A4/5 enzymes catalyze the formation of tamoxifen into different active 

metabolites, of which transformation into N-desmethyl-tamoxifen from 

tamoxifen and endoxifen from 4-hydroxy-tamoxifen are the most important.8 The 

CYP3A4*22 polymorphism shows decreased metabolic activity, and CYP3A5*3 and 

CYP3A5*6 polymorphisms show no metabolic activity; therefore, lower endoxifen 

and N-desmethyl-tamoxifen concentrations leading to decreased response are 

expected to be associated with these polymorphisms.50

Regarding the influence of CYP3A4/5 polymorphisms on the pharmacokinetics 

of tamoxifen, various studies have been conducted. Teft et al. unexpectedly 

found higher endoxifen (p < 0.05) concentrations for CYP3A4*22 carriers, as well 

as higher concentrations of tamoxifen (p < 0.0001), N-desmethyl-tamoxifen,  

4-hydroxy-tamoxifen and other, less relevant, metabolites. Since CYP3A4*22 

polymorphism shows a decreased metabolic activity, higher metabolite 

concentrations are not expected; however, tamoxifen concentrations were also 

elevated. Therefore, it is suggested that intestinal CYP3A4 activity was decreased, 

leading to reduced first-pass metabolism, increasing the concentration of 

tamoxifen and subsequently its metabolites. The study also investigated the 

combination of CYP2D6 and CYP3A4 polymorphisms. In patients with low CYP2D6 

metabolic activity, the CYP3A4*22 allele carriers had endoxifen concentrations 

above a set threshold of 6.72 ng/ml compared with subtherapeutic concentrations 

in patients with low CYP2D6 metabolic activity and CYP3A4 wild-type. These 

findings indicate that CYP3A4*22 polymorphism is more important in CYP2D6 

poor metabolizer.36 This threshold was based on the 20th percentile of endoxifen 

concentrations in the enrolled patients because, in the study by Madlensky et al., 

patients with endoxifen concentrations in the lowest quintile were at the highest 

risk of recurrence.24,36

In the study by Tucker et al.37 no significant differences were seen for tamoxifen, 

N-desmethyl-tamoxifen, or 4-hydroxy-tamoxifen concentrations in patients 

carrying at least one variant CYP3A5*3 or CYP3A5*6 allele. The influence of CYP3A5 

polymorphisms on endoxifen concentrations was not investigated and possible 

other polymorphisms were not taken into account. 
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Although the study by Jin et al.19 found higher steady-state mean plasma 

concentrations of endoxifen in patients with at least one functional allele (82.0 nM; 

range 56.2–107.8) compared with patients with no functional alleles (58.1 nM; range 

49.3–66.9), no significant associations were found between CYP3A5*3 homozygous 

carriers and any of the metabolite concentrations (tamoxifen, p = 0.98; 4-hydroxy-

tamoxifen, p = 0.57; N-desmethyl-tamoxifen, p = 0.99). Additional studies did not 

find a correlation between carriers of CYP3A5*3 alleles and tamoxifen or tamoxifen 

metabolite steady-state concentrations or their metabolic ratios.8,22,29

Considering pharmacodynamic survival outcomes, the study by Goetz et al.17 found 

that the CYP3A5*3 variant was not associated with RFS, DFS, or OS. Furthermore, 

no associations between the CYP3A5*3 variant allele and treatment outcome or 

survival were found in the study by Schroth et al.33

Both multivariate and univariate analyses by Wegman et al.39 showed unexpected 

improved RFS (multivariate: HR 0.13, 95 % CI 0.02–0.86; p = 0.03) in homozygous 

carriers of CYP3A5*3 treated with tamoxifen for 5 years.

The gene-exposure effect for CYP3A4/5 polymorphisms and tamoxifen is less clear 

than that for CYP2D6. The study by Teft et al.36 investigated the relevance of the 

CYP3A4*22 polymorphism in different CYP2D6 genotype groups, indicating that the 

CYP3A pathway becomes more relevant if CYP2D6 metabolic activity is decreased.

CYP2D6

Two of the most potent metabolites of tamoxifen, 4-hydroxy-tamoxifen and 

endoxifen, are predominantly generated by CYP2D6.8 More than 100 allelic variants 

of CYP2D6 with different metabolic activities are currently known. 

Metabolic activity can either be normal (*1, *2, *33, *35), decreased (*9, *10, *17, *29,*41, 

*69), absent (*3, *4, *6, *7, *8, *11–*15, *18–*21, *31, *38, *40, *42, *44) or increased (*2XN, 

*35X2).50 To facilitate comparison, the predicted phenotype is derived from the 

genotype, enabling classification of metabolizers into four different groups: poor 

metabolizer (PM), intermediate metabolizer (IM), extensive metabolizer (EM), or 
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ultrarapid metabolizer (UM).

Study results regarding the effect of CYP2D6 polymorphisms on pharmacokinetic 

and pharmacodynamic parameters are depicted in Tables 2 and 3, respectively.

Table 2 Results for CYP2D6 polymorphisms and their effect on pharmacokinetic parameters.

VARIANT ALLELES REF OUTCOME COMPARISON SIGNIFICANCE

3-8,11,14A, 
15,19,20,40,4x

24 C
ss

 T + M
1-3

EM/EM vs. Various comb

T (NS); M
1-3

 (p < 0.001)

M
3 

45% explained by 
genotype

3,4,5,6 19 C
ss

 T+M
1-3

wt/wt vs. wt/* or */* M
3
 (p=0.003)

3,4,6,7,8,9, 10,41 26 C
ss

 T+M
1-3

 
MR

DMTAM/END

EM/EM vs. Various comb

M: 39% explained by 
genotype

M: 9% explained by 
genotype

3-6,9,10,41,14,15,17 32 MR
DMTAM/END

CYP2D6 ac-
tivity score

p < 10-77

3,4,8,10,41 36 C
ss

 T+M
1-3

EM/EM vs. Various comb M
3
 significant

5, 10, 41 23 C
ss

 T+M
1-3

wt/wt vs.
wt/*5, wt/*10 : 
*10/*10,*5/*10

M
1
 (p=0.077) and 

(p=0.006)

M
3
 (p<0.001); M

1
(*10)

(p=0.011) 

wt/* vs. *5/*10 M
3
 (p=0.001)

2-6,10,41 41 C
ss

 T+M
1-3

EM vs. PM M
1,3

 (p < 0.001)

3-6, 9,10,17,41 16 C
ss

 T+M
1-3

EM/EM vs. PM/PM M
3
 (p < 0.001)

33 alleles 14 MR
END/DMTAM

wt/wt vs. wt/* vs */* (p < 0.001)

4,5,10,36,41,21 21 C
ss 

T+M
1-3

wt/wt vs. wt/* or */* M
2,3

 ( p < 0.01) both

2-6 42 C
ss

 T+M
1-3

EM/EM vs.
EM/* vs.PM 
vs.UM

M
1
 (p=0.001); M

3
 

(p=0.001) 

5,10,41 46 C
ss

 T+M
1-3

wt/wt, wt/* vs. */* M
2,3

 (p < 0.001)

2,2A,2AxN,4-6,9,10, 
17,41

48 M
1-3

CYP2D6  
activity 
score

M
3
 (p = 0.0009), 

Z-endoxifen 

(p < 0.0001)

CYP = cytochrome P450, C
ss

 = steady-state concentration, comb = combinations, T = tamoxifen, M = tamoxifen 

metabolite; M
1 
= N-desmethyl-tamoxifen, M

2
 = 4-hydroxy-tamoxifen, M3 = endoxifen, MR = metabolic ratio, EM = 

extensive metabolizer, PM = poor metabolizer, UM = ultrarapid metabolizer, NS = not significant, MR
DMTAM/END

 = 

metabolic ratio of N-desmethyl-tamoxifen concentration over endoxifen concentration, MR
END/DMTAM

 = metabolic 

ratio of endoxifen concentration over N-desmethyl-tamoxifen concentration, wt/wt = two wildtype alleles, wt/* 

= one wildtype allele and one polymorphic allele, */* = two polymorphic allele
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All 13 reports investigating the associations between CYP2D6 polymorphisms 

and pharmacokinetics found a significant effect of genotype on endoxifen 

concentrations and/or the formation of endoxifen from N-desmethyl-tamoxif

en.14,16,19,21,23,24,26,32,36,41,42,46,48 For N-desmethyl-tamoxifen and 4-hydroxy-tamoxifen 

a significant effect of CYP2D6 variant alleles was indicated by four and three 

studies, respectively.21,23,24,41,42,46 None of the studies indicated a correlation 

between genotype and tamoxifen concentrations.

Four studies24,26,32,36 estimated to what extend CYP2D6 polymorphisms could 

explain the variability in endoxifen concentrations by testing CYP2D6 activity as a 

covariate using linear models. Mürdter et al.26 found that CYP2D6 polymorphisms 

explained 39% of variability in endoxifen concentrations. Teft et al.36 found a 

similar contribution of 30%, Saladores et al.32 found a contribution of 53%, and 

Madlensky et al.24 indicated that the CYP2D6 genotype, together with age and body 

mass index (BMI), explained 46% of the variability in endoxifen concentrations.

Madlensky et al. indicated a threshold of 5.97 ng/ml for endoxifen. Patients 

with endoxifen concentrations above 5.97 ng/ml had lower recurrence rates (HR 

0.74, 95% CI 0.55–1.00) based on patient plasma concentrations of endoxifen 

and associated DFS times. Even though the majority of PMs had low endoxifen 

concentrations, 24% were still able to generate endoxifen concentrations 

above the threshold of 5.97 ng/ml.24 The study by Teft et al.36 used a comparable 

threshold of 6.72 ng/ml. This threshold was based on the 20th percentile of 

endoxifen concentrations in enrolled patients, since patients with endoxifen 

concentrations in the lowest quintile were at highest risk of recurrence in the 

study conducted by Madlensky et al. The majority of PMs failed to generate an 

endoxifen concentration above a threshold of approximately 6.72 ng/ml.

With regard to pharmacodynamic outcomes, findings are more controversial. 

Various studies were conducted to clarify the influence of different polymorphisms 

of CYP2D6 on the pharmacodynamics of tamoxifen. The results of these studies 

are categorized and presented in Table 2. The first 11 studies showed no significant 

association between CYP2D6 polymorphisms and different types of survival 

outcome.17,22,27–29,39,43–47 
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In contrast, seven studies indicated a significant association between CYP2D6 

polymorphisms and different survival outcomes.15,20,21,32,33,38,40

Only six studies investigated an effect of CYP2D6 polymorphisms on OS; however, 

none of these studies showed significant results.17,28,33,43,45,47

Four trials and a meta-analysis were of great importance in settling the 

controversy between positive and negative findings for an effect of CYP2D6 

polymorphisms on clinical outcome: the Breast International Group (BIG)1-98 

trial31, the Armidex, Tamoxifen, Alone or in combination (ATAC) trial30, the Austrian 

Breast and Colorectal cancer Study Group (ABCSG) 8 trial18, and the International 

Tamoxifen Pharmacogenomics Consortium (ITPC) meta-analysis.53 The BIG1-98 

trial31 and the ATAC trial30 demonstrated no evidence for an association between 

CYP2D6 genotype and recurrence. However, both studies have been criticized: 

the BIG1-98 trial showed strong deviation from Hardy–Weinberg equilibrium, 

and the ATAC trial had a lack of statistical power since less than 19% of patients 

randomized to tamoxifen were analyzed. However, the relevance of meeting 

Hardy–Weinberg equilibrium in a study reflecting clinical practice is questioned 

in an editorial by Berry.54 In contrast, the ABCSG 8 trial showed that CYP2D6 PMs 

had a significantly higher rate of recurrence and death in patients treated with 

tamoxifen monotherapy for 5 years. For patients carrying two PM alleles this 

effect was significant (odds ratio [OR] 2.45, 95% CI 1.05–5.73; p = 0.04), and for 

patients carrying one PM allele (OR 1.67, 95% CI 0.95–2.93; p = 0.07) a trend was 

observed.18 Schroth et al. found similar results; patients with reduced CYP2D6 

activity, carrying either one or two PM alleles, had significantly shorter time to 

recurrence (HR 1.40, 95% CI 1.04–1.90, and HR 1.90, 95% CI 1.10–3.28, respectively). 

In addition, the effects on EFS (HR 1.33, 95% CI 1.06–1.68) and DFS (HR 1.29, 95% CI 

1.03–1.61) showed significance, but the effect on OS was not significant (HR 1.15, 

95% CI 0.88–1.51), comparing EMs with heterozygous and homozygous carries 

of PM alleles together.34 The ITPC meta-analysis by Provence et al. defined three 

groups of inclusion criteria, of which criteria 1 was the most restrictive (including 

ER-positive breast-cancer patients receiving tamoxifen 20 mg daily for 5 years). 

In this subgroup, CYP2D6 PM status was associated with shorter DFS (HR 1.25, 

95% CI 1.06–1.47; p = 0.009). 
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However, when tamoxifen duration, menopausal status, and annual follow-up 

were not specified, no significant association was seen (HR 1.17, 95% CI 0.90–1.52; p = 

0.25) [criteria 2] and non-significance remained when no exclusions were applied 

(HR 1.07, 95% CI 0.92–1.26; p = 0.38) [criteria 3]. The meta-analysis concluded that 

high restrictiveness of patient groups validates CYP2D6 genotyping53; however, 

the credibility of this study has been questioned, in part due to the lack of 

prospectively defining the endpoint, selection bias, and omitting OS.55

The study by Wegman et al.38 investigated whether or not the CYP2D6*4 variant 

allele was of prognostic value. Patients carrying at least one CYP2D6*4 allele had 

significantly improved benefit from tamoxifen treatment (p = 0.0089); for the 

wild-type CYP2D6, this benefit was not significant.

Thus, based on these studies it can be concluded that CYP2D6 activity has a 

clear effect on endoxifen concentrations, advocating a gene-exposure effect. 

However, interindividual variability in endoxifen concentrations can only, in part, 

be explained by CYP2D6 genotypes or predicted phenotypes. Whether this also 

translates into less efficacy of tamoxifen in CYP2D6 PMs remains controversial. 

As depicted in Tables 1 and 3, included studies investigating the effect of 

polymorphisms on survival outcome had various weaknesses and differences 

regarding characteristics, statistical power, methodological quality, and study 

design. Therefore, combining results of different studies and drawing a clear 

conclusion is challenging. Potential biases in a subset of studies are more 

extensively described in a previous review.56

DISCUSSION

Review of the published data on the effect of various genetic polymorphisms 

shows that interindividual variability in response to tamoxifen treatment cannot 

sufficiently be explained by genotype variability. A conclusive answer to whether 

genotyping is of clinical value for patients to be treated with tamoxifen is currently 

not available, which is mainly caused by the controversial outcomes of multiple 

studies, partially explained by high interstudy heterogeneity and methodological 

flaws in different studies.
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Different factors contribute to interstudy heterogeneity, such as differences in 

quantification of tamoxifen and metabolites, registration of co-medication, 

administered dose, time on tamoxifen treatment, compliance, genotype 

comparison, tissue used for genotyping, deviation from Hardy–Weinberg 

equilibrium, specification of survival outcome, statistical power, methodology, 

and study design. Additionally, studies are selective on what polymorphisms are 

taken into account, leading to potential misclassification of phenotypes.

Regardless of the extensive heterogeneity between studies, none of the 

conducted trials reported consistent evidence for an effect of polymorphisms 

in CYP2B6, CYP2C9, and CYP2C19 encoding genes on the pharmacokinetics and/or 

pharmacodynamics of tamoxifen. For CYP3A5 polymorphisms, there was no clear 

gene-exposure effect, but CYP3A4*22 showed significantly higher concentrations 

of endoxifen, probably attributed to higher tamoxifen concentrations. In 

addition, CYP2D6 PMs benefited from CYP3A4*22, resulting in higher endoxifen 

concentrations compared with CYP2D6 PMs lacking this genomic variation. 

No studies linked CYP3A4 polymorphisms to outcome. No association between 

CYP3A5 polymorphisms and survival outcome was found, except for the 

unexpected association between CYP3A5*3 homozygous carriers and improved 

RFS.39 Nevertheless, further investigation is needed to determine if the CYP3A4/5 

pathway in tamoxifen metabolism, and therefore its polymorphic state, becomes 

more important with decreasing CYP2D6 activity.

For CYP2D6, all indicated studies clearly show a significant gene-exposure effect. 

However, interindividual variability in endoxifen concentrations can only, in part, 

be attributed to the CYP2D6 genotype. This partial contribution might be a reason 

for the controversy seen in trials aimed at finding an association between variant 

allele carriers of CYP2D6 and survival outcomes. In addition, CYP enzymes are 

also known to play a role in estrogen metabolism. CYP3A4, for example, catalyzes 

the conversion of estradiol to 2-hydroxyestradiol (E2). E2 inhibits cellular 

proliferation, therefore SNP-induced alterations in CYP3A4 activity can affect 

tumor development itself, apart from its effect on tamoxifen metabolism and 

outcome.57,58 CYP2C19 polymorphisms are also known to affect estrone (E1) and E2 

catabolism. 
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High concentrations of E1 were seen in patients carrying either one or two CYP2C19*2 

variant alleles, and low E2 concentrations were associated with the CYP2C19*17 

genotype.59 CYP2C19*2 variant allele carriers have been shown to be at a higher risk 

of developing breast cancer, and the prognosis in these patients in the absence 

of treatment is poor. However, these tumors are more sensitive to anti-estrogen 

treatment, rendering their prognosis after adjuvant tamoxifen treatment similar 

to breast-cancer patients with wild-type CYP2C19.13

While the debate continues on whether or not genotyping of CYP2D6 prior to 

adjuvant treatment with tamoxifen should be implemented, further validation 

for genotyping and other approaches to personalize treatment with tamoxifen 

should be explored.

To truly settle controversy on whether or not to use genotyping, previously 

described factors contributing to interstudy heterogeneity should be addressed 

in future attempts. Some selected points to consider are discussed shortly. 

For pharmacokinetic-oriented studies, discrepancies in quantitative analysis 

of tamoxifen and metabolite concentrations should be addressed. Lack 

of bioanalytical method selectivity can result in misinterpreting plasma 

concentrations. A selective liquid chromatography–tandem mass spectrometry 

(LC–MS/MS) method for the quantification of tamoxifen and metabolites is 

preferred.60 Coadministration of CYP2D6 inhibitors, such as antidepressants, 

can alter exposure to active metabolites of tamoxifen and subsequently alter 

survival outcomes.61 Therefore, patients using medication that interferes with 

CYP2D6 metabolism should be excluded, or co-medication should be registered. 

In addition, it is not preferable to use tumor tissue as a source for germline 

DNA since loss of heterozygosity at the CYP2D6 locus in breast tumors has been 

described.62 Using an insensitive technique to analyse tumor tissue-derived DNA 

can cause misclassification of genotypes.62 In order to prevent misclassification 

through incomprehensive allele coverage, validated tests should be used to 

ensure accurate CYP2D6 genotyping.63 A major drawback for all studies testing an 

effect of polymorphisms on clinical outcome is the retrospective study design. 

Prospective studies, with prospectively defined endpoints and sufficient sample 

size, are needed to validate further recommendations.55,64 Post hoc analyses of 
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prospective RCTs and case–control studies including four subgroups can be a 

valuable alternative for prospective studies. Since polymorphisms in metabolic 

enzymes can also be of prognostic value, a distinction between the prognostic 

and predictive value of a polymorphism in a metabolic enzyme should be made. 

A post hoc analysis of an RCT including an untreated control group can identify 

such a distinction. Once a prognostic biomarker is identified, it can be corrected 

for in a multivariate analysis.49

In addition to optimization of future trials, two effects should be validated to 

decide upon the clinical value of genotyping: (1) a clear gene-exposure effect, 

and (2) a clear exposure-response effect. For CYP2D6, a clear gene-exposure effect 

is reported for endoxifen, as described in this review. However, the variability in 

plasma concentrations of endoxifen can be partially attributed to the CYP2D6 

genotype, and the residual variability remains unexplained. Therefore, genotyping 

of CYP2D6 might not sufficiently predict exposure and, consequently, might not 

be applicable as a biomarker for tamoxifen treatment response. Other factors, 

contributing to metabolite concentration variability, should be identified and 

quantified. Subsequently, these factors, and the genotype, could be of clinical 

value to tailor tamoxifen treatment. In addition, tamoxifen and other active 

metabolites have different pharmacological activities and could contribute, in 

other extents, to treatment outcomes.48

An exposure-response effect can be validated by studies linking tamoxifen 

or metabolite concentrations to clinical outcome. This has been investigated 

retrospectively by Madlensky et al.24 where endoxifen concentrations below 5.97 

ng/ml correlated with more recurrences, while Saladores et al.32 indicated that 

patients with endoxifen concentrations below a threshold of approximately 5.30 

ng/ml were at higher risk for distant relapse or death. Additional prospective 

research is preferred to further validate an exposure-response relationship; 

however, conducting a prospective trial in the adjuvant setting is nearly 

impossible. Therefore, evidence from different trial settings, such as post hoc 

analyses of RCTs, prospectively collected cohort data in the metastatic setting, 

and case–control studies, should be combined in order to support an exposure-

response effect.



38

CHAPTER 1.1   | Pharmacogenetics of tamoxifen

Since there is, as yet, no conclusive predictor for exposure, measurement of 

plasma concentrations of tamoxifen and active metabolites could be suggested 

to establish exposure, ensuring the true phenotype of patients. Therapeutic Drug 

monitoring (TDM) has advantages over the measurement of factors contributing 

to endoxifen exposure, such as genotype. TDM can identify EMs, or even UMs, 

with endoxifen concentrations below the threshold, which would have stayed 

unexposed using genotyping. On the other hand, not all PMs have endoxifen 

concentrations under the proposed threshold. This is supported by Madlensky 

et al.24 who indicated that 24% of the PMs were still able to generate therapeutic 

concentrations of endoxifen, and Teft et al.36 who indicated that PMs were able to 

generate endoxifen, despite the lack of metabolic activity of CYP2D6. Therefore, 

a risk of unnecessarily high dosing might exist if treatment is only based on 

genotyping. In addition, TDM could identify non-compliance. However, endoxifen 

steady-state concentrations are only met after 1–4 months of treatment. Since 

steady-state endoxifen plasma concentrations are used to tailor tamoxifen 

treatment, a risk-period of suboptimal treatment exists between the start of 

treatment and the time of steady state. This short timeframe of risk will not be of 

clinical relevance since tamoxifen is indicated to reduce recurrence and mortality 

rates after years of treatment. Nevertheless, this problem could potentially be 

addressed by using a population pharmacokinetic model to predict steady-state 

plasma concentrations of endoxifen in an early stage of tamoxifen treatment.65 

Moreover, a population pharmacokinetic model could guide tamoxifen dosing 

from an early stage.

Both genotyping and TDM rely on the assumption that exposure is correlated 

with survival outcome. To anticipate either low concentrations or low metabolic 

activities of CYP2D6, a dose-exposure effect needs to be validated. Previous studies 

provide evidence for such a dose-exposure effect. An increase of tamoxifen dose 

from 20 mg daily to 30 or 40 mg daily, increases endoxifen concentrations.48,66,67 

In addition, endoxifen concentrations in CYP2D6 PMs and IMs treated with 40 

mg of tamoxifen were comparable to CYP2D6 EMs treated with 20 mg, outlining 

the feasibility of dose adjustment based on TDM measurements.68 Regardless of 

its feasibility, safety of dose adjustments should also be investigated. Several 

studies have investigated the toxicity of a dose increase of tamoxifen, but no 

data on long-term toxicity were included.69,70
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CONCLUSIONS

No clear effects on pharmacokinetics and pharmacodynamics were seen for 

various polymorphisms in the CYP encoding genes CYP2B6, CYP2C9, CYP2C19, 

and CYP3A4/5, based on the reviewed data. For CYP2D6, there was a clear gene-

exposure effect that was able to partially explain the interindividual variability 

in endoxifen plasma concentration; however, a clear exposure-response effect 

remained controversial. Even though the effects of polymorphisms on the 

pharmacokinetics and pharmacodynamics of tamoxifen are rationalized by its 

well-understood metabolism, the genotype remains a surrogate parameter for the 

plasma concentration of tamoxifen and its metabolites, hampering the clinical 

applicability of genotyping. Based on existing evidence for a link between exposure 

and response to tamoxifen, TDM seems to be the best approach for tailored 

tamoxifen treatment at the moment. However, to truly validate genotyping or 

any other tailored treatment of tamoxifen, additional studies linking metabolite 

concentrations to clinical outcome, as well as studies on toxicity, are needed, in 

addition to studies investigating to what extent tamoxifen and other metabolites 

contribute to the antiestrogenic effect of tamoxifen.
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ABSTRACT

Purpose 

Endoxifen concentrations have been associated with breast cancer recurrence in 

tamoxifen-treated patients. However, tamoxifen itself and other metabolites also 

show antiestrogenic anti-tumor activity. Therefore, the aim of this study was to 

develop a comprehensive Antiestrogenic Activity Score (AAS), which accounts for 

concentration and antiestrogenic activity of tamoxifen and three metabolites. An 

association between the AAS and recurrence-free survival was investigated and 

compared to a previously published threshold for endoxifen concentrations of 

5.97 ng/mL. 

Patients and methods 

The antiestrogenic activities of tamoxifen, (Z)-endoxifen, (Z)-4-hydroxytamoxifen 

and N-desmethyltamoxifen were determined in a cell proliferation assay. The 

AAS was determined by calculating the sum of each metabolite concentration 

multiplied by an IC
50

 ratio, relative to tamoxifen. The AAS was calculated for 

1370 patients with estrogen receptor alpha (ERα)-positive breast cancer. An 

association between AAS and recurrence was investigated using Cox-regression 

and compared with the 5.97 ng/mL endoxifen threshold using concordance 

indices. 

Results 

An AAS threshold of 1798 was associated with recurrence-free survival, hazard ratio 

(HR) 0.67 (95% confidence interval (CI) 0.47-0.96), bias corrected after bootstrap 

HR 0.69 (95%CI: 0.48-0.99). The concordance indices for AAS and endoxifen did not 

significantly differ, however using the AAS threshold instead of endoxifen led to 

different dose recommendations for 5.2% of the patients.
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Conclusions 

Endoxifen concentrations can serve as a proxy for the antiestrogenic effect of 

tamoxifen and metabolites. However, for the aggregate effect of tamoxifen and 

three metabolites, defined by an integrative algorithm, a trend towards improving 

treatment is seen and moreover, is significantly associated with breast cancer 

recurrence. 
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INTRODUCTION

Five years of adjuvant treatment with the antiestrogenic drug tamoxifen lowers 

estrogen receptor alpha (ERα)-positive breast cancer recurrence and mortality 

rates.1 Results from the Adjuvant Tamoxifen, Longer Against Shorter (ATLAS) trial 

and the Adjuvant Tamoxifen Treatment offers-more (aTTom) trial indicate that 

further decrease of recurrence and mortality rates can be achieved for a subset 

of patients by prolongation of tamoxifen treatment to up to 10 years.2,3 In the 

postmenopausal setting, aromatase inhibitors lower recurrence if given for 5 

years or in sequence for 2-3 years, before or after tamoxifen.4 In premenopausal 

woman, aromatase inhibitors alone do not work.5 The combination of aromatase 

inhibition and ovarian suppression (either ablation or pharmacological 

suppression) has shown to improve disease-free survival compared to tamoxifen 

treatment.6,7 However, ovarian suppression can cause substantial side effects 

and the combination of an aromatase inhibitor and ovarian ablation did not 

show a difference in overall survival.6 Therefore, tamoxifen remains an important 

treatment option. Despite tamoxifen’s effectiveness in reducing recurrence 

and mortality rates, resistance to tamoxifen often occurs and remains a major 

clinical challenge.8 Multiple studies have investigated variability in response 

to tamoxifen by focusing on patient-related factors to tailor treatment, such as 

cytochrome P450 (CYP) genotypes and serum concentrations of metabolites.9–14 

Tamoxifen is bioactivated by CYP enzymes, such as CYP2D6 and CYP3A4/5 (Fig 

1).15 CYP2D6 has most extensively been investigated, since it is responsible for 

bioactivation of tamoxifen’s most important metabolite, endoxifen.15 Both the 

CYP2D6 genotype and endoxifen concentrations have been proposed as patient-

related factors correlated with breast cancer outcome.13,14,16 However, publications 

that correlate CYP2D6 genotype with breast cancer outcome have reported 

conflicting results.16 Even though a clear association between CYP2D6 genotype 

and endoxifen concentration is reported, variability in plasma concentration 

of endoxifen could only partially be attributed to CYP2D6 polymorphisms.13,14,17–19 

Therefore, Therapeutic Drug Monitoring (TDM) of endoxifen seems the best way 

forward to tailor tamoxifen treatment, ensuring the true phenotype of patients.16,20 
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A threshold of 5.97 ng/mL endoxifen has been identified previously and could be 

applied to tailor tamoxifen treatment, recommending an increase in tamoxifen 

dose if endoxifen concentrations are below 5.97 ng/mL.13 The results of that study 

indicated that patients with an endoxifen concentration above 5.97 ng/mL had 26% 

lower risk of developing an invasive breast cancer recurrence or new primary breast 

cancer compared to patients with a lower endoxifen concentration. However, TDM 

of endoxifen assumes that the antiestrogenic effect of tamoxifen is attributed 

solely to endoxifen, ignoring the possible contribution of other metabolites and of 

tamoxifen itself. Tamoxifen and metabolites have varying antiestrogenic activity 

towards the ERα and occur in different concentrations in patients, each potentially 

contributing to a different extent to the total antiestrogenic effect. The in vitro 

inhibitory potential of tamoxifen and many of its metabolites was previously 

evaluated, in ERα binding competition assays, as well as gene transcription and 

breast cancer cell growth assays.17,21,22 Endoxifen and 4-hydroxytamoxifen are 

reported to be the most potent metabolites, with both exhibiting IC
50

 values in the 

low nanomolar range, while tamoxifen and N-desmethyltamoxifen are equally less 

potent with IC
50

 values in the micromolar range.17,21,22 Previous studies reporting 

tamoxifen and metabolite concentrations indicate that endoxifen concentrations 

exceed 4-hydroxytamoxifen concentrations in human serum by approximately 

6 fold.23–27 Tamoxifen and N-desmethyltamoxifen are less potent than endoxifen, 

but have around 10 and 14 fold higher concentrations, respectively.23–27 Therefore, 

it is plausible that the total antiestrogenic effect of tamoxifen depends on a 

cumulative, intrinsic effect of tamoxifen and active metabolites and their relative 

concentrations in blood.

To our knowledge, an aggregate effect of tamoxifen together with its active 

metabolites on breast cancer outcome has never been investigated to date. The 

aim of this study was, therefore, to investigate if an aggregate Antiestrogenic 

Activity Score (AAS), which takes into account both concentration and 

antiestrogenic activity of tamoxifen and multiple active tamoxifen metabolites, 

is associated with breast cancer outcome. 
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To have a more accurate comparison, the relative activities of tamoxifen, 

N-desmethyltamoxifen, (Z)-4-hydroxytamoxifen and (Z)-endoxifen were assessed 

in vitro, using the same experimental setup. 

The calculated relative activities were then used to determine the AAS and tested 

for correlation with outcome. 

Figure 1 Part of the biotransformation of tamoxifen15
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METHODS

Determination of in vitro relative antiestrogenic activity of tamoxifen and 

three metabolites

The antiestrogenic activities of tamoxifen, N-desmethyltamoxifen, (Z)-4-

hydroxytamoxifen and (Z)-endoxifen were determined using cell proliferation 

experiments. MCF-7 breast adenocarcinoma cells were regularly maintained 

in phenol-red free DMEM supplemented with l-glutamine and 10% fetal bovine 

serum. At 24 h prior to the experiment, cells were plated in clear bottom 384 well 

plates at a density of 600 cells per well. The cells were allowed to adhere for 24 h 

before an equal volume of two times the final concentration of the appropriate 

tamoxifen metabolite was added. Following compound addition, cell proliferation 

in the individual wells was monitored for 14 days using cell imaging for confluency 

assessment (IncuCyte®, Essen Bioscience). 

For each biological replicate a metabolite serial dilution was carried out in 

DMSO, leading to a final range of tamoxifen (and metabolite) concentrations 

between 10-6 M to 10-11 M (10-6 M, 10-7 M, 10-8 M, 10-9 M, 10-10 M and 10-11 M). For the 

control wells an equivalent dilution of DMSO was applied (1:1000). The percentage 

growth inhibition versus metabolite concentration was plotted, sigmoidal dose-

response curves were fitted and the IC
50

 values were calculated using SigmaPlot 

(Systat Software, San Jose, CA). Calculation of the IC
50

 ratio was done for three 

independent biological replicates and the average value was used for the AAS 

calculation. The AAS calculation was based on the antiestrogenic activity ratios 

relative to tamoxifen.

Patients

The analysis conducted in this study was based upon data from 1370 patients 

with ERα-positive breast cancer who were selected from the Women’s Healthy 

Eating and Living (WHEL) study.28 This data set was previously analyzed by 

Madlensky et al.13 At study entry, the participants had been diagnosed with breast 

cancer <4 years earlier and had completed primary therapy without recurrence 

or development of a second primary breast cancer at onset of the study. A blood 

sample was taken from each patient at study entry. Data included quantifications 
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of tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen serum 

concentrations and recurrence-free survival time. To ensure steady-state blood 

concentrations, the patients included in the analysis had been taking tamoxifen 

for at least 4 months before the baseline survey. Recurrence-free survival was 

defined as time from diagnosis of the original breast cancer to recurrence 

(including local and distant recurrences, metastatic disease or new invasive 

primary breast cancer). The data are more extensively described elsewhere.13

Calculation of AAS

We incorporated concentrations of tamoxifen and metabolites, corrected 

for antiestrogenic activity, into an algorithm. IC
50

 ratios for each metabolite 

(ICR
metabolite

) were calculated by dividing the IC
50

 value of tamoxifen by the IC
50 

values of each metabolite using the following equation: 

=ICR
IC tamoxifen
IC metabolitemetabolite

50

50

 (1)

For example the ICR
endoxifen

 is calculated by dividing the IC
50

 of tamoxifen by the 

IC
50 

of endoxifen. For each patient, the Antiestrogenic Activity Score (AAS) was 

subsequently calculated as follows:

= ⋅ + ⋅ + ⋅ + ⋅AAS tam ICR NDMtam ICR OHtam ICR endox1 [ ] [ ] [4 ] [ ]NDMtam OHtam endox4

(2)

where [tam], [NDMtam], [4OHtam] and [endox] represent tamoxifen, 

N-desmethyltamoxifen, (Z)-4-hydroxytamoxifen and endoxifen concentrations, 

rspectively. Concentrations were reported in ng/mL, however converted to 

nmol/L (nM) for calculating the AAS, since an addition component is used in 

the algorithm. ICR
NDMtam

, ICR
4OHtam

 and ICR
endox

, represent the calculated IC
50

 ratios, 

respectively. Tamoxifen and metabolite concentrations were measured in serum 

for each patient. The AAS was defined as the amount of tamoxifen antiestrogenic 
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activity equivalents in nM, but was further treated as a dimensionless score. 

Development of this algorithm was based on a previously described comparable 

algorithm.29 

Statistical analysis

Patients in this analysis were selected based on the criterion that they had been 

taking tamoxifen for at least 4 months before the baseline survey. Time zero for an 

individual patient was defined as the date of the first tamoxifen administration. 

Patients who died or were lost to follow up before completing 4 months of tamoxifen 

were not included in this analysis. The data were therefore left truncated and were 

handled as such in Cox-regression analysis, to assess the association between 

the AAS and recurrence-free survival. The AAS was first entered as a continuous 

variable and then as dichotomous, where (since a martingale residual plot did 

not show any particular pattern) the threshold was determined by dichotomizing 

potential optimal cutoff points and chosen such that the partial likelihood was 

maximal. Additionally, a bootstrap with replacement was performed (n = 1000) 

to validate the hazard ratio (HR) using the threshold obtained from the original 

dataset. The concordance index was calculated for both AAS and endoxifen. Data 

handling and statistical analyses were conducted using R (v.3.0.1).30

RESULTS

Antiestrogenic activity of tamoxifen and metabolites

The results from the in vitro experiments are depicted in Table 1 and Fig 2. 

To determine the effects of tamoxifen and three of its metabolites ((Z)-4-

hydroxytamoxifen, (Z)-endoxifen and N-desmethyltamoxifen) on general ERα 
activity without limiting analysis to single reporter genes, proliferation of the 

ERα-driven breast cancer cell line MCF-7 was used as a readout. As expected, (Z)-

4-hydroxytamoxifen and (Z)-endoxifen were most potent at inhibiting MCF-7 cell 

proliferation. Tamoxifen and N-desmethyltamoxifen were far less potent. The IC
50 

ratios for each of the tamoxifen metabolites were calculated for each experiment 

and averaged, resulting in 0.38, 21.8 and 74.4 for N-desmethyltamoxifen, (Z)-4-
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hydroxytamoxifen and (Z)-endoxifen, respectively. The IC
50

 ratio for tamoxifen was 

1 by definition. The IC
50

 ratios were entered into Eq. (2) resulting in the following 

algorithm for AAS:

= ⋅ + ⋅ + ⋅ + ⋅AAS tam NDMtam OHtam endox1 [ ] 0.38 [ ] 21.8 [4 ] 74.4 [ ] ( 3 ) 

Table 1 Results of in vitro growth experiments, IC50 values, calculated IC50 ratios and average 

EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3 AVERAGE

IC
50

 (nM)
IC

50
 

ratio 
IC

50
 (nM)

IC
50 

ratio
IC

50
 

(nM)
IC

50
 

ratio 
IC

50
 ratios

Tamoxifen 106 1 88 1 188 1 1

N-desmethyl-
tamoxifen

189 0.56 573 0.15 430 0.44 0.38

(Z)-4-
hydroxytamoxifen

18 5.89 7 12.6 4 47 21.8

(Z)-Endoxifen 8 13.3 4 22 1 188 74.4

IC
50 

= half maximal inhibitory concentration

Figure 2 Dose-response curves for tamoxifen, N-desmethyltamoxifen, (Z)-4-
hydroxytamoxifen, and (Z)-endoxifen.
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Implementation of the AAS score and association with outcome

The 1370 patients from the Madlensky analysis were included in the current 

study.13 Boxplots for tamoxifen and metabolite concentrations are included in 

the Supplementary files (S1). Tamoxifen concentrations were around 10 times 

higher than endoxifen with median values of 129 ng/mL [interquartile range 

(IQR): 74.8] and 12.9 ng/mL [IQR: 11.9], respectively. Endoxifen concentrations 

were 6.7 fold higher than 4-hydroxytamoxifen with median 1.9 ng/mL [IQR: 1.2] for 

4-hydroxytamoxifen. N-desmethyltamoxifen concentrations exceeded tamoxifen 

concentrations by 1.9 fold and endoxifen concentrations by approximately 18 

fold, with median 240 ng/mL [IQR: 121] for N-desmethyltamoxifen. These findings 

were in line with concentrations reported by previous publications.23–27 As 

expected from the metabolic pathway of tamoxifen (Fig 1), correlations between 

tamoxifen concentrations and concentrations of its primary metabolites 

4-hydroxytamoxifen and N-desmethyltamoxifen were seen, with correlation 

coefficients of 0.63 and 0.83 respectively. However, a weaker correlation 

between tamoxifen and endoxifen, a secondary metabolite of tamoxifen, was 

found (correlation coefficient 0.44). In addition, a stronger correlation between 

4-hydroxytamoxifen and endoxifen concentrations was found, with a correlation 

coefficient of 0.86. A figure showing the correlations between tamoxifen and 

the three different metabolites is included in the Supplementary files (S1). Fig 

3 shows the relative contribution of each compound to the AAS. The endoxifen 

concentration contributed to the largest extent to the AAS, followed by tamoxifen, 

N-desmethyltamoxifen and lastly 4-hydroxytamoxifen.
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Figure 3 Boxplots for the concentration of each metabolite multiplied by its IC
50

 ratio 
representing the relative contribution to the AAS. Values greater than 1.5 times the upper 
value of the interquartile range are considered as outliers and removed from the plot. 

Menopausal status and breast cancer stage and grade were significantly 

associated with recurrence-free survival and were included in the Cox model as 

covariates. Out of 1370 patients, 178 patients experienced a recurrence, the median 

follow up time was 7.3 years. No association between the AAS as a continuous 

variable and recurrence-free survival was found, HR 1.00 (95% confidence interval 

(CI) 0.99-1.00). The partial likelihood method identified a relevant threshold of 

1798 for the AAS. In the Cox model, patients with an AAS≥1798 had 33% lower risk 

at developing a secondary breast cancer event, HR of 0.67 (95%CI 0.47-0.96). 
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The Kaplan-Meier curves for patients with AAS≥1798 and AAS<1798 are depicted 

in Fig 4. After bootstrap resampling with replacement this result remained 

significant, HR 0.69 (95%CI 0.48-0.99). A table containing the type of recurrences 

per AAS group is added to the Supplementary files (S2). 

The in vitro cell proliferation experiments showed some variability. 

Therefore, a sensitivity analysis was conducted. For 4-hydroxytamoxifen, 

N-desmethyltamoxifen and endoxifen the IC
50

 ratios were multiplied by 1, 1.5 and 

0.5, while for tamoxifen the IC
50

 ratio remained 1. Combining the multiplied IC
50 

ratios gave 26 different integrative algorithms to calculate the AAS, in addition to 

the algorithm defined in Eq. (3). For all these 26 algorithms the AAS calculation, 

including threshold finding and HR calculation, was performed. HRs were 

compared to the above reported HR based on the calculation of AAS with Eq. (3). 

All 26 HRs were significant, ranging between 0.60 and 0.69 indicating that the 

findings of this study were robust.

Figure 4 Kaplan-Meier curves for AAS. Dotted line: patients with AAS ≥ 1798, solid line: 
patients with AAS < 1798; p-value = 0.031; AAS Antiestrogenic Activity Score; + = censored
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AAS score versus endoxifen

The AAS was compared to the endoxifen threshold in an additional analysis 

(Table 2). Of the 1370 patients included in the analysis, 1298 patients would be 

classified as above and below the threshold, either using the AAS or the endoxifen 

concentration threshold. Of the remaining 72 patients, 48 were identified with 

an AAS value above 1798, but would have been identified with an endoxifen 

concentration below 5.97 ng/mL (14.5% experienced recurrence). In addition, the 

remaining 24 patients were identified with an AAS below 1798, but would have been 

identified with an endoxifen concentration above 5.97 ng/mL (16.7% experienced 

recurrence). The concordance indices for AAS and endoxifen concentrations were 

similar, both with a value rounded to 0.71. 

Table 2 Threshold discriminatory value: comparison between endoxifen threshold and AAS 

threshold

AMOUNT OF PATIENTS (% OF 1370)

Endoxifen ≥ 5.97 ng/mL Endoxifen < 5.97 ng/mL 

AAS ≥ 1798 1083 (79.1) 48 (3.5)

AAS < 1798 24 (1.7) 215 (15.7)

AAS = Antiestrogenic Activity Score

DISCUSSION

In this study a novel measure for antiestrogenic efficacy for tamoxifen treatment 

was developed, showing that an integrative algorithm taking into consideration 

tamoxifen together with three active metabolites is associated with breast 

cancer outcome. The corrected HR of 0.69 (95%CI: 0.49-0.99) implies that patients 

with an AAS ≥ 1798 are at 31% lower risk of developing a secondary breast cancer 

event, as compared to patients with an AAS < 1798. The data used for this analysis 

have been reported previously by Madlensky et al., who identified a threshold for 

endoxifen concentrations of 5.97 ng/mL, HR = 0.70 (95%CI 0.52-0.94), bias corrected 

HR = 0.74 (95%CI 0.55-1.00)13. The corrected HR of 0.74 implies that patients with 

endoxifen concentrations above 5.97 ng/mL have 26% lower risk at developing 

a secondary breast cancer event. After bootstrap correction the HR for the AAS 

threshold remained significant (this report), whereas the endoxifen threshold did 
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not.13 However, this difference might be the result of different bootstrap methods. 

The AAS threshold resulted in a lower HR, but the concordance indices for AAS and 

endoxifen were both 0.71. This suggests that AAS and endoxifen concentrations 

alone have similar discriminating ability. 

However, the cumulative effect of metabolites can theoretically be explained by 

comparing risk groups, identified by either the AAS or the endoxifen concentration 

threshold. In the 48 patients with an AAS above the threshold and an endoxifen 

concentration below the threshold, the low endoxifen concentration is compensated 

by the antiestrogenic effect of N-desmethyltamoxifen, 4-hydroxytamoxifen and 

tamoxifen. In the 24 patients with an AAS below the threshold and an endoxifen 

concentration above the threshold, the antiestrogenic activity according to the 

AAS score is insufficient, regardless of an endoxifen concentration above 5.97 ng/

mL. This suggests that endoxifen antiestrogenic activity can, to some extent, be 

mutually compensated by tamoxifen and different metabolites. 

An additional finding was the low contribution of 4-hydroxytamoxifen to the AAS. 

The IC
50

 ratio for 4-hydroxytamoxifen was almost 22 and 58 times higher than the 

IC
50

 ratios for tamoxifen and N-desmethyltamoxifen, respectively. However, the 

AAS demonstrates that this high antiestrogenic activity is compensated by the 

low concentrations of 4-hydroxytamoxifen. Therefore, it can be concluded that 

4-hydroxytamoxifen is far less important than previously expected. 

Interpretation of our results should take into account several limitations. The 

antiestrogenic activities of tamoxifen and metabolites can be different when 

investigated in different cell lines, or in the presence of estrogen concentrations31,32. 

However, the in vitro experiments were conducted to obtain the relative 

antiestrogenic activities of tamoxifen and three metabolites. Therefore, the ratios 

implemented in the AAS are not expected to be different in other cell lines or in 

presence of estrogen. Second, estrogen concentrations can be associated with 

breast cancer outcome 7. Estrogen concentrations were not included in the analysis, 

since these measurements were not available for a substantial part of the cohort. 

However, menopausal status was significantly associated with recurrence-free 

survival and included in the Cox regression. Thirdly, the analysis described is a 
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post hoc analysis of the Madlensky study, based on a subset of patients included 

in the WHEL study. Thus, this study was not primarily designed to investigate 

the effect of tamoxifen and metabolite concentrations on breast cancer outcome. 

However, the data consisted of 1370 patients with ERα-positive breast cancer of 

whom breast cancer endpoints and metabolite concentrations were available, 

therefore, the data are suitable for the current analysis. Additionally, the study 

is limited because patients in the WHEL study were enrolled up to 4 years after 

diagnosis, therefore, patients who experienced recurrence soon after diagnosis 

are not taken into account in our analyses. The AAS does not take into account 

potential other metabolites that could contribute to the total antiestrogenic 

effect of tamoxifen. However, the major metabolites of tamoxifen are included, 

with endoxifen and 4-hydroxytamoxifen as the most potent metabolites and 

N-desmethyltamoxifen as the most abundant metabolite. Additionally, the in vitro 

experiments showed variability in IC
50

 values. This variability was addressed by 

conducting a sensitivity analysis, which showed robust results. In addition, a 

selective bioanalytical method is pivotal to quantify tamoxifen and metabolite 

concentrations and to avoid overestimation of concentrations. Therefore, the 

absolute value of the AAS could deviate when using bioanalytical assays that lack 

high selectivity.33 Lastly, the threshold was chosen such that the partial likelihood 

of the Cox model was maximal. A different threshold may be found by weighing 

a desired increase in recurrence-free survival time against the side effects of 

increasing the dose of tamoxifen. 

In summary, this is the first analysis to demonstrate an aggregate effect of 

tamoxifen and three active metabolites on breast cancer outcome. Clinical 

decisions regarding dose adjustments based on either the AAS threshold or 

the endoxifen concentration threshold would be the same for 94.8% of patients. 

This implies, once again, that endoxifen is the most important metabolite. The 

results of this analysis demonstrate that endoxifen can serve as a proxy for the 

antiestrogenic effect of tamoxifen and three metabolites and that the AAS does 

not provide additional information, since the contribution of endoxifen is major 

and concordance indices are comparable for endoxifen and the AAS. However, 

for the AAS a trend towards improving treatment by measuring tamoxifen and 

three metabolites in comparison to measuring endoxifen, is seen. Moreover, 

a threshold for the tamoxifen metabolite profile is identified at an AAS of 1798 
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with a corresponding HR of 0.67 (95%CI 0.47-0.96). In future prospective cohort 

studies, it would be evident to measure tamoxifen and metabolites in addition to 

endoxifen, in order to further elucidate this effect. 
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ABSTRACT

Different strategies have been proposed to individualize tamoxifen treatment 

in order to improve recurrence-free survival in estrogen receptor (ER)-positive 

breast cancer. To date, the debate remains on which strategy should be used. 

The objective of this viewpoint is to highlight Therapeutic Drug Monitoring (TDM) 

of endoxifen, the active tamoxifen metabolite, as the preferred methodology 

compared to CYP2D6 genotyping for individualizing tamoxifen therapy for ER-

positive breast cancer patients treated in the adjuvant setting.
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INTRODUCTION

Individualization of tamoxifen treatment to improve recurrence-free survival in 

estrogen receptor (ER)-positive breast cancer patients has been investigated for 

years. The use of genotyping of metabolizing enzymes (mainly CYP2D6) to predict 

exposure to endoxifen, the most important active metabolite of tamoxifen, has 

widely been advocated. The underlying assumption of genotyping is, that it 

predicts endoxifen concentrations and that the exposure to endoxifen is related 

to breast cancer treatment outcome. However, the individual genotype is just 

one of many factors that explains variability in endoxifen exposure. Therefore, 

we propose to measure endoxifen concentrations for therapy individualization 

instead of genotyping. 

CYP2D6 GENOTYPING

The association between the CYP2D6 genotype and breast cancer outcome has 

extensively been researched resulting in conflicting results. In order to find a 

conclusive answer, results of multiple studies have been analyzed in a meta-

analysis1, which demonstrated no association between CYP2D6 genotype and 

breast cancer outcome. However, a further analysis of this meta-analysis 

demonstrated that the CYP2D6 genotype is associated with disease-free survival 

in a subset of patients who received tamoxifen as adjuvant therapy at a dose 

of 20 mg/day for 5 years. This analysis, in turn, has been criticized because it 

excluded the ABCSG8, ATAC and BIG1-98 trials, three large prospective clinical 

studies, and lacked a-priori specified criteria for the sub analysis.2 Thus, to 

date, no conclusive answer on the predictive value of the CYP2D6 genotype in 

tamoxifen treatment for breast cancer outcome exists. Nevertheless, genotyping 

has been proposed as a strategy to individualize tamoxifen therapy. Recently, a 

guideline by the Clinical Pharmacogenetics Implementation Consortium (CPIC) 

has been published that provides therapeutic recommendations based on the 

CYP2D6 genotype for ER-positive breast cancer patients who are indicated to 

receive adjuvant tamoxifen for 5 years.3 In this guideline, the CYP2D6 genotype 

is classified into five different metabolizer phenotypes with activity scores (AS; 

in brackets) namely CYP2D6-ultrarapid (>2.0), -normal (1.5 and 2.0), -normal or 
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intermediate (1.0), -intermediate (0.5) and -poor metabolizers (0). The AS are 

supposed to reflect systemic exposure to endoxifen and with that the expected 

clinical endpoints of recurrence and event-free survival. Patients with an AS >1.5 

are expected to reach therapeutic endoxifen concentrations and start with 20 mg 

tamoxifen daily. Alternative hormonal therapy is advised for all patients with an 

AS of 1.0 or lower. Tamoxifen dose should only be increased to 40 mg if AS is 1.0 or 

lower and if aromatase inhibitor use is contraindicated, according to the drafters 

of the guideline.3 

THERAPEUTIC DRUG MONITORING OF ENDOXIFEN CONCENTRATI-
ONS

The predictive value of endoxifen plasma concentrations has been substantiated 

by a large retrospective analysis. An endoxifen threshold concentration of 5.97 ng/

mL was identified and demonstrated that patients above this target had a 26% 

lower risk of getting recurrent disease.4 A similar threshold has been identified by 

Saladores et al.5 Contrary to these aforementioned findings, a recent prospective 

study showed no significant relation between endoxifen concentrations and 

objective response rate, progression free survival or clinical benefit.6 Of note, the 

patients in this trial were treated in a neo-adjuvant- and metastatic setting and 

can therefore not be compared to adjuvantly treated patient cohorts. In addition, 

a threshold of endoxifen concentrations was not evaluated.

Based on the findings of Madlensky et al.4, Therapeutic Drug Monitoring (TDM) 

of endoxifen has been implemented in certain hospitals to improve treatment 

outcomes. Patients treated in our hospitals indicated to receive tamoxifen in 

the adjuvant setting initiate treatment with 20 mg tamoxifen daily. After every 

three months, when endoxifen concentrations are at steady state, a blood sample 

is drawn and analyzed. Patients continue with 20 mg tamoxifen daily when the 

endoxifen concentration is above 6 ng/mL. If the concentration is below 6 ng/mL, 

a dose increment to 40 mg tamoxifen daily is prescribed and re-evaluated after 

three months. In case this threshold level of endoxifen is not reached with the 

proposed dose increment, physicians consider a switch to alternative hormonal 

therapy, like aromatase inhibitors. Aromatase inhibition in postmenopausal 
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women with ER-positive early breast cancer has demonstrated to be superior 

to tamoxifen treatment. Besides, the combination of aromatase inhibition and 

ovarian suppression (pharmacologically or by ablation) has shown to improve 

disease-free survival compared to tamoxifen treatment in premenopausal 

women.7,8 Therefore, a proposed switch to these therapies in case of sub endoxifen 

concentrations has clinical validation. However, ovarian suppression can 

cause substantial side effects and the combination of an aromatase inhibitor 

and ovarian ablation did not show a difference in overall survival compared to 

tamoxifen for premenopausal women.8 Additionally, it is well known that some 

patients tolerate tamoxifen better than aromatase inhibitors and vice versa. As a 

consequence, not all patients are able to switch to aromatase inhibitors, making 

correct identification of patients at risk even more pivotal.

The question now can be raised whether it may be better to measure endoxifen 

levels rather than performing CYP2D6 genotyping in patients treated with adjuvant 

tamoxifen.

ADVANTAGES OF THERAPEUTIC DRUG MONITORING OF ENDOXIFEN

As previously described, studies that have linked CYP2D6 genotype with clinical 

outcome yielded conflicting results and have been heavily criticized.2 Not all 

CYP2D6 poor and intermediate metabolizers have defined suboptimal levels of 

endoxifen and not all extensive or ultra-rapid metabolizers reach therapeutic 

concentrations of endoxifen.4,9 In other words, CYP2D6 genotyping does not fully 

explain variability in endoxifen concentrations: only 34-52% of the variability in 

endoxifen concentrations is explained by the CYP2D6 genotype.10 The residual, 

unexplained variability is thus high and may be attributed to a long list of other 

non-CYP2D6 genotype dependent factors including co-medication, organ function, 

life style, other genetic factors (e.g. drug transporters), patient characteristics 

(age, gender, body size), adherence and those factors that are still unknown and 

may all vary over time. Periodic measurement of endoxifen concentrations has 

many advantages and can be regarded as a better defined outcome measure of 

all these effects than the static CYP2D6 genotype alone. TDM will identify patients 

with low endoxifen levels that otherwise go unnoticed by genotyping, e.g. non-
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adherence and unrecognized concomitant use of CYP2D6 inhibitors. The latter, 

undetected by genotyping, may even turn an ultra rapid metabolizer into a 

poor metabolizer with all clinical consequences which may also be the case for 

patients carrying rare genomic variants, that are not included in the genotype 

test. Other limitations of genetic testing are the inadequacy to detect de novo 

variants and that uncertainty exists on which single nucleotide polymorphisms 

need to be evaluated. In addition, the translation from genotype to phenotype has 

not been standardized. Measurement of endoxifen concentrations overcomes 

these challenges. 

Feasibility of TDM of endoxifen has been demonstrated by the TADE study, where 

a dose increment was applied in patients with sub optimal concentrations of 

endoxifen, leading to therapeutic concentrations in most patients.11 TDM can also 

evaluate the effect of tamoxifen dose increments on the endoxifen concentration. 

It has been demonstrated that endoxifen serves as a proxy for the anti-estrogen 

effect of tamoxifen and metabolites12, therefore only the endoxifen concentration 

is required for TDM.

It can be argued that dose adjustments based on TDM of endoxifen can only 

be applied after approximately three months of treatment, when endoxifen 

concentrations are at steady state. However, this short timeframe of potential 

sub optimal dosing is not expected to be clinically relevant, since tamoxifen 

treatment is indicated to reduce recurrence and mortality rates after years of 

treatment. Another obstacle for implementation faced by TDM of endoxifen is lack 

of bioanalytical method selectivity, which can result in misinterpreting plasma 

concentrations. However, an established selective bioanalytical method for the 

quantification of endoxifen is easy to implement and available.13 
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CONCLUSION AND PERSPECTIVE

In conclusion, we believe, that TDM of endoxifen allows for better identification 

of patients with low endoxifen concentrations compared to the CYP2D6 genotype 

or related activity score. Eventually, patients could start on an individualized 

dose based on genotyping results until steady state is reached and TDM can be 

performed. Subsequently, patients with an indication for adjuvant treatment with 

20 mg tamoxifen daily for 5 years but low endoxifen concentrations should get a 

dose increment to 40 mg daily. If sub therapeutic concentrations remain, patients 

can switch to treatment with aromatase inhibition or aromatase inhibition with 

ovarian suppression. 

We do recognize that both TDM of endoxifen and CYP2D6 genotyping, lack 

prospective validation and that the irrefutable proof for a target level has not 

been provided for adjuvant tamoxifen ER-positive breast cancer treatment. 

Randomized, prospective TDM trials should fill this gap and provide proof for 

therapy adjustments based on endoxifen concentration and/or CYP2D6 genotypes. 

Such studies, however, require an extremely large sample size and a lengthy follow 

up. Therefore, prospective validation is not likely to be established on short-term. 

Even if such a study would be initiated now, debates about tamoxifen therapy 

improvement remain important, since the question remains: how do we treat our 

patients best in the meantime?
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ABSTRACT

Therapeutic Drug Monitoring (TDM) of endoxifen as a strategy to improve survival 

in patients with estrogen receptor (ER)-positive breast cancer using adjuvant 

tamoxifen is controversial, because the exposure-response relationship has not 

definitively been established and, additionally, the benefits of TDM have not been 

shown prospectively. Appropriately designed prospective clinical trials will be 

necessary to eventually demonstrate the potential benefits of TDM. We explored 

whether such trials are feasible and which design would be needed. A parametric 

time-to-event model was developed and different trial designs were simulated 

aiming (1) to demonstrate an exposure-response relationship between endoxifen 

concentrations and breast cancer recurrence and (2) to study the benefits of TDM 

over conventional dosing. To demonstrate the exposure-response relationship, 

at least 1500 patients and a follow-up of 15 years are needed assuming a 29% 

reduction in the hazard of recurrence for patients with an endoxifen concentration 

>5.97 ng/ml compared to patients with lower endoxifen concentrations. The most 

feasible approach to validate TDM of endoxifen is randomizing patients with 

low endoxifen concentrations to continuation of 20 mg/day or a dose increment 

to 40 mg/day (1:1). For this design a total of 3200 patients with low endoxifen 

concentrations and 15 years follow up are needed. The simulations in this study 

demonstrate that prospective validation of TDM of endoxifen could be feasible, 

though it would require a larger sample size and longer follow up time than 

previously conducted trials have reported so far.
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INTRODUCTION

Tamoxifen is an anti-estrogenic drug that has been used to treat estrogen 

receptor (ER)-positive breast cancer for decades. Five years of adjuvant 

treatment with tamoxifen lowers ER-positive breast cancer recurrence and 

mortality rates.1 Despite the proven efficacy of tamoxifen, 25 to 30% of patients 

experience recurrence within 10 years.1 Variability in response has been attributed 

to variability in pharmacokinetics, more specifically to variability in endoxifen 

concentrations, the most important active metabolite of tamoxifen. 

Both endoxifen concentrations and the CYP2D6 genotype, a gene encoding the 

enzyme CYP2D6, predominantly responsible for bio-activation of tamoxifen into 

endoxifen, have been proposed as predictive markers for recurrence. Therapeutic 

Drug Monitoring (TDM) of endoxifen seems the best way forward to tailor tamoxifen 

treatment, since variability in concentration of endoxifen can only partially be 

attributed to the CYP2D6 genotype.2–5 An endoxifen concentration >5.97 ng/ml has 

been associated with 26% lower risk of breast cancer recurrence (hazard ratio 

(HR) 0.74 (95% confidence interval (CI) 0.55-1.00) as reported by a retrospective 

analysis5. This target can be applied to tailor tamoxifen treatment, recommending 

an increase in tamoxifen dose from 20 mg to 40 mg daily if endoxifen 

concentrations are below this PK target. However, TDM of endoxifen is currently 

not common clinical practice. Arguments for not applying TDM of endoxifen is the 

lack of prospective validation of the exposure-response relationship and the lack 

of prospective validation of applying TDM to improve breast cancer recurrence 

rates. Prospective validation of the exposure-response relationship is aimed at 

by two recently published prospective observational trials, both of which did 

not find a relationship between endoxifen concentrations and breast cancer 

recurrence. A prospective multicenter trial by Neven et al., did not find a relation 

between endoxifen concentrations and objective response rate or progression 

free survival (PFS) in 247 postmenopausal ER-positive breast cancer patients 

treated with tamoxifen 20 mg daily in the neoadjuvant or metastatic setting.6 

The median follow-up time for PFS was 32.5 months. However, it is difficult to 

extrapolate these findings to early breast cancer and adjuvant treatment where 

recurrences tend to occur much later after initiating treatment with tamoxifen. 
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The CYPTAM trial is another prospective observational trial including 667 

patients with early ER-positive breast cancer.7 No relation between endoxifen 

concentrations (continuous, categorical or at a PK target of 5.97 ng/mL) and 

relapse-free survival was found. The average follow up time for this trial was 6.4 

years (range 0.10 to 9.30 years).

Recurrence under tamoxifen occurs in around 25 to 30% of patients treated in 

the adjuvant setting and can take place years after initiating treatment.1 This 

relatively low incidence of events and long time-to-event, indicates that a long 

follow up time and a large sample size is warranted to have sufficient power 

to detect a difference in events between patients with high and low endoxifen 

concentrations. Such a long follow up time is additionally complicated by dropout, 

switch to alternative therapies (censoring) and adherence. All these factors 

contribute to an inherent decrease in power of observational or randomized trials. 

Time-to-event modelling provides a way to quantify the changes in hazard over 

time by estimating a parametric model which allows simulation of different trial 

scenarios. In this analysis, a time-to-event model was developed and different 

trial designs were simulated aiming to (1) demonstrate an exposure-response 

relationship between endoxifen concentrations and breast cancer recurrence and 

(2) to study the benefits of TDM over conventional dosing, by conducting clinical 

trial simulations. This analysis was based on TDM data from clinical practice and 

time-to-event data from a previous published analysis.

METHODS

Data

Endoxifen concentrations from breast cancer patients treated with tamoxifen 

in the adjuvant setting and for whom TDM of endoxifen was applied in the 

Netherlands Cancer Institute, were available. Blood samples were drawn at least 

3 months after start of treatment with 20 mg tamoxifen daily, to ensure steady 

state concentration of endoxifen. Endoxifen concentrations were determined 

using a selective liquid chromatography–tandem mass spectrometry (LC–MS/

MS) method.8 If the dose was increased based on a low endoxifen concentration 

(<5.97 ng/mL) a second sample was drawn at least 3 months after dose adaptation. 
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A parametric time-to-event model was developed based upon recurrence-free 

survival data from patients selected from the Women’s Healthy Eating and Living 

(WHEL) study.9 This dataset has been used in a previous analysis.5 The dataset 

contained 1370 patients with ER-positive breast cancer indicated to use tamoxifen 

20 mg/day for 5 years and whom were followed for an average time of 7.3 years 

after inclusion and an average of 9.1 years after diagnosis. Information on tumor 

status, tumor grade and menopausal status was available in addition to one 

endoxifen concentration. The data have extensively been described elsewhere.5 

Software

Time-to-event modeling and simulation analyses were performed in NONMEM 

(version 7.3.0, ICON Development Solutions, Ellicott City, MD, USA) and Perl-speaks-

NONMEM (version 4.4.8).10,11 Laplacian estimation method was used for parameter 

estimation. Data handling, graphical evaluation and power calculations were 

performed using R (version 3.3.1).12 

Parametric time-to-event model development

A parametric time-to-event model was developed to be able to perform Monte 

Carlo simulations, which is not possible with the previously published Cox 

proportional hazards model.

Different time-to-event models were evaluated, including Gompertz, Weibull 

and exponential distribution hazard functions.13 Tumor grade, tumor stage, 

menopausal status and endoxifen concentrations were evaluated as predictors 

of recurrence-free survival. Endoxifen concentrations were classified as above or 

below the PK target of 5.97 ng/mL. Model evaluation was performed using visual 

predictive checks, evaluation of objective function value change (dOFV) and 

evaluation of the plausibility of the parameter estimates. 

Trial simulations

Firstly, simulations were conducted to evaluate the optimal design of a 

prospective observational trial to evaluate the exposure-response relationship 

between endoxifen concentrations and breast cancer recurrence. Secondly, 
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simulations were conducted to evaluate the optimal design of a randomized 

controlled trial (RCT), to determine the benefits of endoxifen TDM to improve 

breast cancer outcome. Eligibility and intervention for each design was described 

as follows (Figure 1): 

Observational design: Patients with early ER-positive breast cancer that initiate 

treatment with tamoxifen with 20 mg/day were included. No TDM was applied 

and only follow up was performed. 

Breast cancer recurrence was compared between patients with an endoxifen 

concentrations below the PK target to patients with endoxifen concentrations 

above the PK target. Different PK target levels were evaluated: 5.97 ng/mL, 4 ng/

mL and 8 ng/mL.

RCT design 1: Patients with early ER-positive breast cancer that initiate treatment 

with tamoxifen with 20 mg/day were included and randomized (1:1) to either the 

control arm or the intervention arm. In the control arm, no TDM was applied and 

only follow up was performed. In the intervention arm, TDM was applied after three 

months. Patients with endoxifen concentrations ≤5.97 received a dose increment 

to 40 mg/day. Follow-up was performed until recurrence or up to 15 years.

RCT design 2: Patients with early ER-positive breast cancer that initiate 

treatment with tamoxifen with 20 mg/day were eligible for inclusion. After three 

months endoxifen concentrations were determined in all patients. Patients with 

endoxifen concentrations ≤5.97 were randomized (1:1) to either the control arm 

or the intervention arm. Patients in the control arm continued with tamoxifen 

20 mg/day, the intervention arm received tamoxifen 40 mg/day. Follow-up of 

randomized patients was performed until recurrence or up to 15 years.
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Figure 1 Randomized controlled trial designs to determine feasibility of therapeutic drug 
monitoring of endoxifen for estrogen receptor positive breast cancer. ER + = estrogen 
receptor-positive, TDM = Therapeutic Drug Monitoring.

Proportions of tumor grade, stage and menopausal status imputed in the 

simulation dataset, were comparable to reported by the Madlensky trial.5 Tumor 

grade and stage were sampled from the Madlensky trial data as pairs. Different 

proportions of patients above and below the PK target were sampled for the 

observational design and for the control arm vs.versus the intervention arm in 

the RCTs, based on proportions evaluated in the clinical TDM data. Each design 

was simulated with varying number of patients, with n ranging from 500 to 

3000 patients for the observational design, 1000 to 25,000 patients per arm for 

RCT design 1 and 100 to 2300 patients per arm for RCT design.2 Each study was 

simulated 1000 times and for each trial the hazard ratio between the intervention 

and the control arm was determined using a Cox proportional hazards model. 

This model was also corrected for tumor grade, stage and menopausal status. The 

power was determined by the percentage of trials with a significant difference in 

recurrence-free survival between the control and the intervention arm, with a p < 

0.05. 
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For the observational design, power was determined by the fraction of trials with 

a significant difference in recurrence-free survival between patients below and 

above the PK target value. Time to recurrence was simulated up to 15 years, to 

determine the most feasible design. Subsequently, a sensitivity analysis was 

performed to investigate the effect of shorter follow up times. In addition, the 

uncertainty in the effect of the PK target on the hazard was evaluated by assuming 

a factor 2 increase or decrease of this effect on the hazard.

RESULTS

Pharmacokinetics

Proportions of patients with endoxifen concentrations below and under the PK 

target were imputed in the simulation datasets based on proportions observed in 

the clinical TDM data. In total, 976 samples of 713 patients were available, of which 

658 patients had a first sample taken during treatment with 20 mg tamoxifen 

daily. In this group, 213 patients (32.4%) did not reach the target concentration 

of 5.97 ng/ml, 113 had a concentration below 4 ng/mL (17.2%) and 313 had a 

concentration below 8 ng/mL (47.6%). 

 Of 213 patients with concentrations below 5.97 ng/ml, 117 patients received a dose 

increment to 30 or 40 mg depending on the measured endoxifen concentration, 

of which 89 patients (76.1%) reached the target at the second sample. In total, in 

the TDM group, 92.2% of patients reached the PK target of 5.97 ng/ml compared to 

67.6% if no TDM is applied.

Proportions of patients below and under the PK target of 5.97 ng/ml were imputed 

in the simulation datasets for the RCT designs as follows. The control arm of 

RCT design 1 had 32.4% of patients below and 67.6% of patients above the target 

concentration. The intervention arm had 92.2% of patients above and 7.8% of 

patients below the target concentrations. The control arm of RCT design 2 had 

100% of patients below the target concentrations and the intervention arm 23.9% 

(corresponding to the fraction of patients not reaching the target after TDM 

guided dose increase) below the target concentration. 
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Parametric time-to-event model development

The baseline hazard was best described by a Weibull distribution model where 

the hazard increased over time (Table 1). A higher tumor grade or stage was 

associated with an increased risk of recurrence. Tumor stage IIB and IIIC had 

a similar effect on the hazard and were, therefore, imputed in the model as a 

single group. Patients for whom tumor grade data was missing (9.4%), were 

assumed to have a tumor grade 1. In addition, postmenopausal patients had a 

decreased risk of recurrence compared to premenopausal patients. Having an 

endoxifen steady-state concentration above 5.97 ng/mL resulted in a decreased 

hazard of recurrence compared with patients not attaining this PK target, though 

not significantly in the parametric time-to-event model in contrast to the Cox 

proportional hazards model previously published (dOFV -3.64). The Weibull model 

was described as follows:

λ= ⋅ ⋅α β β β− ⋅ + ⋅ + ⋅h t t e( ) 1 cov cov covn n1 1 2 2

Where λ is the hazard coefficient, α the shape parameter, β
n
 the covariate effects 

and cov
n
 the binary covariate (either 1 or 0). Visual predictive checks, stratified on 

endoxifen concentrations below and above a PK target of 5.97 ng/mL are depicted 

in Figure 2. Visual predictive checks stratified on other covariates are depicted 

in Supplementary files 1 (Figure S1.1-Figure S1.3). Censoring or dropout occurred 

randomly in 94% of the cases between 6 and 15 years after diagnosis. This random 

dropout was taken into account in all of the subsequent simulations. 
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Table 1 Parameter estimates Weibull model for recurrence-free survival.

PARAMETER ESTIMATE RSE (%) COVARIATE EFFECT

Hazard coefficient (λ) (/year) 0.0345 21 -

Shape (α) 1.68 6 -

Stage IIB & IIIA 1.01 16 2.75

Stage IIIC 2.06 12 7.85

Grade 2 0.438 46 1.55

Grade 3 0.718 30 2.05

Postmenopausal status -0.810 32 0.44

Endoxifen ≥5.97 ng/mL -0.348 51 0.71

RSE = relative standard error derived from the NONMEM omega matrix. Covariate effect on hazard is calculated 

as follows: exp(estimate). For example, postmenopausal patients have 0.44 times decreased hazard of experi-

encing breast cancer recurrence compared to premenopausal patients.

Figure 2 Kaplan-Meier plots for recurrence-free survival data stratified by above and 
below the endoxifen PK target value of 5.97 ng/mL (solid lines) and 95% prediction 
intervals (shaded area), based on 500 simulations.
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Trial simulations

Results of the clinical trial simulation of the observational study are shown in 

Figure 3. These simulations demonstrated that 1500 patients and an intended 

follow up time of 15 years are needed to demonstrate that patients with endoxifen 

steady-state concentrations above a PK target of 5.97 ng/ml have a 29% reduction 

in the hazard of recurrence compared to patients not achieving this PK target (HR 

0.71, power of 80% and significance level p <0.05). The number of required parti-

cipants to identify the exposure-response relationship would be 2200 and 3000 

patients, for 10 and 8 years follow up, respectively. The estimated PK target effect 

was a 29% reduction in hazard of recurrence for patients with endoxifen concen-

trations above the PK target in accordance with the published estimate. However, 

if this effect is actually twice as large, indicating a decreased hazard of 50% for 

patients above the PK target (HR 0.50), approximately 750 patients and at least 

8 years of intended follow up are needed. In case the PK target effect is actually 

2-fold lower, indicating a decreased hazard of 16% for patients above the PK target 

(HR 0.84), approximately 6000 patients or more are needed to find this difference 

in hazard (Figure 3).

Sensitivity analysis of the PK target using a PK target value of 4 ng/mL, 

demonstrated that 2300 patients and an intended follow-up time of 15 years are 

needed to find a similar effect (HR 0.71), while a PK target of 8 ng/mL endoxifen 

demonstrated that 1400 patients and 15 years of follow up are needed to find a 

similar effect (HR 0.71). More detailed results are reported in the Supplementary 

files 1 (Figure S1.4 and Figure S1.5).



92

CHAPTER 1.4   | Clinical trial simulations for evaluation of Therapeutic Drug Monitoring of endoxifen

Figure 3 Power calculation for observational designs with follow up times of 8, 10 and 15 
years and effect size differences between patients below and above a PK target of 5.97 
with corresponding assumed hazard ratios (HR) of 0.71, 0.50 and 0.84. The dotted red line 
is the estimated power of the CYPTAM study (n=700)7 and the dotted darkblue line is the 
estimated power of the Madlensky trial (n=1370).5

In order to prospectively validate application of endoxifen TDM to improve breast 

cancer outcome (assuming the previously estimated HR of 0.71), using a design 2 

study demonstrated to be more feasible than a design 1 study (Figure 4). Design 1 

needs 25,000 patients per study-arm to reach a power of 79.8% (n=50,000 patients 

in total). Design 2 needs 1600 patients per arm to demonstrate the same effect 

(power of 82.9%). For design 2, three-fold more patients are needed to identify the 

32.5% of patients with low endoxifen concentrations. 
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A design with 1600 patients per arm (n=3200) would therefore need screening 

of approximately 9600 patients. Additionally, a 1:2 design was evaluated for 

design 2 (Supplementary files 1, Figure S1.6). In total 3450 patients (1150 in the 

control arm and 2300 in the intervention arm) are needed to detect a significant 

difference between the control and the intervention arm with a power of 80%. 

In total, 10,350 patients need to be screened to identify 3450 patients with low 

endoxifen concentrations. A sensitivity analysis was performed for design 2 with 

a randomization ratio of 1:1, with 1600 patients per arm to evaluate the impact of 

a decrease in follow-up time and a difference in PK target effect on the power of 

this trial. Decreasing the follow up time to 10 years decreases the power to 63.9%, 

for 8 and 5 years the power decreases to 53.3% and 31.4%, respectively. In case the 

PK target effect is 2-fold higher or 2-fold lower, the power increases to almost a 

100% or decreases to 33.1%, respectively. (Figure 5)

Figure 4 Power calculations for RCT design 1 and 2 for varying numbers of patients per 
study-arm. Simulations were performed with an intended follow up of 15 years and random 
dropout. Number of patients per arm is depicted on a log-transformed axis.
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Figure 5 Sensitivity analysis for design 2 with 1600 patients per arm. Dotted line is the 
power for 15 year follow up with random dropout and a difference in hazard of 0.71 for 
patients with an endoxifen concentration < 5.97 (82.9%), green area is power ≥ 80%.

DISCUSSION

The clinical trial simulations in this study demonstrated that a large sample 

size and long follow up time are needed to demonstrate an exposure-response 

relationship between endoxifen concentrations and breast cancer recurrence 

and to evaluate endoxifen TDM to improve breast cancer outcome. If an exposure-

response relationship with a PK target value of 5.97 ng/ml and a difference in 

hazard of 29% (HR 0.71) exists, 1500 patients and an intended follow up of 15 

years are needed to find this effect in an observational design with a power of 

approximately 80%. As this assumed PK target may be debatable, we performed a 

sensitivity analysis using PK target values of 4 ng/mL and 8 ng/mL. If the PK target 

values would be actually 8 ng/mL, less patients are needed to find an exposure-

response relationship. However, TDM of endoxifen will become less effective, 

given that the currently used dose increment to 40 mg will not be sufficient for 

most patients to attain a target concentration of 8 ng/mL. If the PK target value 

is actually 4 ng/mL more patients are needed to find a difference an exposure-

response relationship. However, applying TDM becomes more feasible, since a 

dose increment to 40 mg will lead to higher percentage of patients attaining a 

target concentration of 4 ng/mL. 
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The most feasible RCT design to determine the effect of TDM on breast cancer 

outcome is a design where only patients with low endoxifen concentrations are 

randomized (design 2), and where patients are randomized 1:1. In total, 9600 

patients are needed to identify 3200 patients with low endoxifen concentrations, 

to determine if TDM of endoxifen improves breast cancer outcome with a power of 

82.9% and an assumed reduction in hazard of recurrence of 29% (HR 0.71). In design 

1, there is a risk that patients in the control arm find alternative ways to determine 

their endoxifen concentrations, since their dose is not increased. Similarly, in 

design 2 patients in the control arm know that their endoxifen concentration is 

considered below target and may seek alternative ways to increase the dose. Both 

effects may potentially lead to bias which may be circumvented by a placebo-

controlled blind design.

The feasibility of a clinical trial is determined by various factors such as willingness 

of patients to participate or to be randomized, willingness of clinicians to recruit 

participants, costs, follow up time and number of eligible patients. In this analysis 

degree of feasibility was narrowed down to number of patients and follow up time. 

Including 1500 patients in an observational trial with an intended follow up time 

of 15 years is likely to be feasible, since a previous study managed to include 1370 

patients with a follow up time from diagnosis of 10 years.5 In addition, 11 hospitals 

from the Netherlands and Belgium participated in the prospective CYPTAM study, 

including almost 700 patients.7 Therefore, in terms of inclusion, a multicenter 

observational trial is likely to be feasible, if an estimated 20 hospitals would 

participate. Moreover, in 2018, 170.000 new cases of breast cancer were reported 

for Western Europe alone, of whom approximately 80% has hormone receptor 

positive breast cancer. An international multicenter randomized controlled trial 

including 9600 patients, of whom 3200 are randomized, could, therefore, also 

potentially be feasible in terms of inclusion. 

Up to date, none of the proposed prospective clinical trials have been performed. 

Based on our simulations, the Madlensky trial had the highest probability of 

determining an effect compared to other prospective or retrospective trials6,7, 

with a power of approximately 62% to detect an exposure-response relationship. 
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The results of this trial have not led to a collective implementation of TDM of 

endoxifen because of its retrospective design. However, patients were included 

and followed in a large randomized controlled trial, where data was collected 

prospectively.9 This trial could therefore be seen as a sub analysis of a prospective 

study, which is marginally different from a prospective observational trial. The 

CYPTAM trial included little over half the patients the Madlensky trial included, 

with a shorter follow up time.7 Based on the simulations presented in this trial, it 

had an estimated power of approximately 30% to detect a significant exposure-

response relationship if it exists, assuming a follow-up of 15 years, which had not 

yet been reached in this trial. A conclusive answer on whether TDM of endoxifen 

is indicated for patients with early ER-positive breast cancer is therefore not yet 

available.

The simulations performed in this study should be interpreted in the light of 

some limitations. The estimated relative standard error of the PK target effect 

on the hazard was 51%, indicating a high uncertainty in this effect. Therefore, a 

sensitivity analysis was performed to demonstrate the impact of different effect 

sizes on the power and sample size of the different designs. 

The covariate effect of a PK target above and under the 5.97 ng/mL was imputed as 

a fixed covariate in the model. As tamoxifen improves 5, 10 and 15 year recurrence 

rates, early recurrences are not expected to be relevantly attributable to lower 

endoxifen concentrations in the first three months of treatment prior to steady-

state. The potential risk of recurrence before patients reached steady-state 

concentrations was therefore not considered in the model.

A Cox proportional hazards model was used to determine the power of each trial 

design, instead of using a parametric model to evaluate how many patients are 

needed to find a significant covariate effect in the time-to-event model. A Cox 

regression analysis calculates the relative difference in hazard between two 

groups, assuming a constant hazard over time. Using a Weibull distribution, the 

hazard can change over time. However, a Cox proportional hazard model is often 

used to analyze survival data in clinical trials. 



97

Clinical trial simulations for evaluation of Therapeutic Drug Monitoring of endoxifen

Therefore, using a Cox model to evaluate study outcome of the simulated trials 

instead of parametric time-to-event models was considered a better reflection of 

the current practice of analyzing clinical trials. 

Adherence has been described as a major issue using endocrine treatment for a 

long period of time and non-adherence has been described to increase the hazard 

of experiencing breast cancer recurrence.14 Data on adherence was not available 

in the dataset available, thwarting evaluation of adherence on study outcome in 

a sensitivity analysis. However, the model was developed based on data from a 

previously conducted clinical trial. Therefore, it was expected that patients in this 

trial are similarly adherent to patients in another observational or randomized 

trial, which makes results of our simulation reasonably realistic. 

Adjuvant endocrine therapy for postmenopausal patients with ER-positive breast 

cancer consists of sequential treatment with 2 or 3 years tamoxifen followed by 

3 or 2 years treatment with an aromatase inhibitor (or vice versa).15 This switch to 

aromatase inhibition is not considered in the trial simulations, since the model 

was developed based on patients receiving tamoxifen for 5 years. Censoring 

patients at the time of switching to aromatase inhibition would impact follow 

up time and, therefore, cause a drastic decrease in power. Therefore, if one of the 

proposed trials is initiated, patients switching to aromatase inhibition, should 

be followed up and not censored. Subsequently, a switch to aromatase inhibition 

should be accounted for in the Cox proportional hazards model. 

Currently, no prospective or retrospective trial with sufficient power and follow 

up has been performed to detect the proposed exposure-response relationship 

between endoxifen and breast cancer recurrence. Therefore, a conclusive answer 

on whether TDM of endoxifen is indicated for patients with early ER-positive 

breast cancer is not available. Our clinical trial simulations indicate that an 

observational or randomized trial where only the patients with low endoxifen 

steady-state plasma concentration are randomized could both be feasible, 

though would require an multicenter trial and international collaboration. If such 

a trial would be initiated, follow-up times of 10 to 15 years are necessary. 
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ABSTRACT

Introduction 

MCLA-128 is a bispecific monoclonal antibody targeting the HER2 and HER3 

receptors. Pharmacokinetics (PK) and pharmacodynamics (PD) of MCLA-128 have 

been evaluated in preclinical studies in cynomolgus monkeys and mice. The aim 

of this study was to characterize the PK and PD of MCLA-128 and to predict a safe 

starting dose and efficacious clinical dose for the First-In-Human study.

Methods 

A PK-PD model was developed based on PK data from cynomolgus monkeys and 

tumor growth data from a mouse JIMT-1 xenograft model. Allometric scaling was 

used to scale PK parameters between species. Simulations were performed to 

predict the safe and efficacious clinical dose, based on AUCs, receptor occupancies 

and PK-PD model simulations.

Results 

MCLA-128 PK in cynomolgus monkeys was described by a two-compartment 

model with parallel linear and nonlinear clearance. The xenograft tumor growth 

model consisted of a tumor compartment with a zero-order growth rate and 

a first-order dying rate, both affected by MCLA-128. Human doses of 10 to 480 

mg q3wk were predicted to show a safety margin of >10-fold compared to the 

cynomolgus monkey AUC at the no-observed-adverse-effect-level (NOAEL). Doses 

of ≥360 mg resulted in predicted receptor occupancies above 99% (C
max

 and C
ave

). 

These doses showed anti-tumor efficacy in the PK-PD model.

Conclusions 

This analysis predicts that a flat dose of 10 to 480 mg q3wk is suitable as starting 

dose for a First-in-Human study with MCLA-128. Flat doses ≥360 mg q3wk are 

expected to be efficacious in human, based on receptor occupancies and PK-PD 

model simulations.
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INTRODUCTION

MCLA-128 is a full length humanized IgG1 bispecific monoclonal antibody (mAb) 

with enhanced antibody-dependent cell mediated cytotoxicity (ADCC) targeting 

the HER2 and HER3 receptor tyrosine kinases. MCLA-128 is developed to overcome 

HER3-mediated resistance to EGFR and HER2-targeted therapies. Current HER2-

targeted therapies are approved for HER2-amplified breast and gastric cancers, 

either as single agents or in combination with other anti-cancer drugs.1,2 

However, a proportion of patients treated with these therapies show primary 

or acquired resistance.3,4 A major resistance mechanism is mediated via HER3 

activation. Its ligand heregulin drives dimerization of HER3 with HER2, resulting 

in potent activation of the PI3K/AKT pathway with subsequent enhanced growth 

and survival of HER2-amplified tumors. Heregulin stimulation was shown to 

mediate resistance to trastuzumab and lapatinib therapy.5–7 Alternatively, HER3 

upregulation in HER2-amplified tumors can also result in ligand-independent 

dimerization of HER3 with HER2 and enhanced cell survival (7). The simultaneous 

targeting of HER2 and HER3 by MCLA-128 could overcome this resistance. MCLA-

128 is expected to directly inhibit tumor growth by blocking HER2:HER3 signaling 

and, through the ADCC mechanism, eliminate tumor cells via recruitment of 

natural killer effector cells to tumor cells coated with MCLA-128. 

In vitro results show that MCLA-128 inhibits proliferation of HER2 over-expressing 

and HER2-low cells stimulated with heregulin. MCLA-128 shows significantly 

higher potency than lapatinib, trastuzumab alone or to the combination of 

trastuzumab and pertuzumab.8 

Preclinical in vivo research was conducted in cynomolgus monkeys and in tumor 

xenograft models in mice to understand the preclinical pharmacokinetics (PK) 

and pharmacodynamics (PD) of MCLA-128. The aim of this study was to develop a 

preclinical PK-PD model for MCLA-128 based on (i) PK characteristics of MCLA-128 

in cynomolgus monkeys and (ii) the effect of MCLA-128 on tumor growth in mouse 

xenograft models. 
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The preclinical PK model was used to predict the safe starting dose in humans, 

to support selection of the First-In-Human dose for the Phase I dose-finding trial, 

and to identify the clinical doses that reach a sufficient percentage of receptor 

occupancy. In addition, the full preclinical PK-PD model was used to evaluate the 

anti-tumor activity of the proposed clinical doses.

MATERIAL AND METHODS

Generation of MCLA-128 

MCLA-128 was engineered using proprietary CH3 technology, and is composed 

of two identical common light chains and two different heavy chains (anti-HER2 

and anti-HER3). ADCC-enhancement was achieved by low fucose glycoengineering 

using the GlymaxX® technology.8 

Data (1) PK of MCLA-128 in cynomolgus monkeys

PK data from 28 cynomolgus monkeys was combined from a single dose toxicity 

study and the first week of a repeated dose toxicity study. In the single dose toxicity 

study, 14 blood samples per animal were drawn and sampling times ranged from 

0 to 1007 hours. Each dosing regimen of 10 mg/kg, 30 mg/kg and 100 mg/kg was 

administered intravenously to one female and one male animal (total n=6). In 

the repeated dose toxicity study, 22 animals received a weekly dose of MCLA-

128 for five weeks; only data from the first week was included in the analysis. 

A dosing regimen of 10 mg/kg (n=6), 30 mg/kg (n=6) and 100 mg/kg (n=10) was 

administered with equal distribution between female and male animals. Ten 

samples per animal were drawn and sampling times ranged from 0 to 168 hours. 

MCLA-128 was quantified in serum using a validated electrochemiluminescence 

immunoassay (lower limit of quantification (LLOQ): 78 ng/mL). The experiments 

in cynomolgus monkeys were conducted at Charles River Laboratories Edinburg 

(preclinical services). All procedures were performed in accordance with the UK 

Animals (Scientific Procedures) Act, 1986, approved by institutional ethical review 

committees and conducted under the authority of the Project License. 
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Data (2): Antitumor efficacy in xenograft models.

MCLA-128 antitumor activity was evaluated in a human breast carcinoma 

model using the JIMT-1 cell line. In this experiment, 8 to 12 weeks old female 

CB.17 SCID mice were injected subcutaneously in the right flank with 5·106 JIMT-1 

tumor cells. Treatment started 8 days after tumor cell implantation, with tumor 

volumes ranging from 108 to 172 mm3. Animals (n=10 per group) received weekly 

intraperitoneal (i.p) injections of either PBS, MCLA-128 at 2.5 mg/kg or MCLA-128 

at 25 mg/kg for four weeks (4 doses in total). Mice were euthanized on day 68 or 

when tumor size reached 800 mm3. Tumors from mice were extracted 24 hours 

after the last dose. Tumor size was determined with a caliper twice weekly and 

tumor volume was calculated using the following equation: tumor volume (mm3) 

= (width2·length) · 0.5. Efficacy data were used to develop the PD model.

Mouse xenograft studies were performed by Charles River Discovery Services 

North Carolina, USA and the experimental protocol was approved by the site’s 

Institutional Animal Care and Use Committee. The facility is accredited by 

the Association for Assessment and Accreditation of Laboratory Animal Care 

International (AAALAC). 

PK modeling

The structural PK characteristics of monoclonal antibodies (mAbs) are usually 

described by a two-compartment model with either linear, nonlinear or parallel 

linear and nonlinear clearances.9 Antibodies follow primarily linear clearance 

through cellular uptake followed by lysosomal degradation, mediated by the 

neonatal Fc receptor (FcRn). In addition, the Fab region of the antibody can bind 

to the target receptor, leading to a saturable clearance pathway, known as target 

mediated drug disposition (TMDD).10,11 The starting point for model development 

in the current analysis was a two-compartment model for which different 

combinations of linear and nonlinear clearance were evaluated. The PK model 

was directly scaled to a 70 kg human using allometric scaling.
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Tumor growth modeling

Non-perturbed tumor growth models were evaluated in the untreated mice. 

Different growth models were evaluated, such as Gompertz growth, zero-order 

growth (linear) and first-order (exponential) growth.12

PK sampling was not performed in the xenograft study. Therefore, the previously 

established PK model developed based on cynomolgus monkey data was 

allometrically scaled to a 0.02 kg mouse to predict concentration-time profiles 

and assess their relation to tumor growth in the treated animals.13,14

The MCLA-128 anti-tumor effect was modeled to impact either the tumor growth 

rate (K
G
), the tumor dying rate (K

D
) or both. Different models to describe these 

effects were evaluated, such as direct effect models, indirect response models 

and use of transit and effect compartments, to establish the correct delay in 

effect, seen in the individual plots describing tumor volume over time. The drug 

effect was modeled as either a linear effect or an E
max

 model. Additionally, a tumor 

growth rate increase over time was considered.

Statistical model development

Inclusion of inter individual variability was considered for all structural model 

parameters as follows:

η= ⋅P P exp( )i pop i

Where P
i
 is the individual parameter estimate for individual i, and P

pop
 is the typical 

population parameter estimate, and where η
i
 was assumed to be distributed 

normally distributed with mean 0 and variance ω2. Residual unexplained 

variability was described as a proportional and additive error model for the PK 

model:

ε ε= ⋅ + +C C (1 )obs ij pred ij p ij a ij, , , ,
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For the PD part of the model residual variability was described by a proportional 

error model:

ε= ⋅ +C C (1 )obs ij pred ij p ij, , ,

Where C
obs,ij

 represents the observed concentration for individual i and observation 

j, C
pred,ij

 represents the individual predicted concentration, ε
p,ij

 the proportional 

error and ε
a,ij

 the additive error, both distributed following N (0,σ2).

For PK data, the first data point below the LLOQ (78 ng/mL) was fixed to LLOQ/2 

and a fixed additive error component of LLOQ/2 was included in the model to 

account for uncertainty in these observations.15

Model evaluation

Models were evaluated based on general goodness-of-fit (GOF) plots, plausibility, 

stability and precision of parameter estimates and change in objection function 

value (OFV) where a p < 0.01 was considered significant, meaning that a OFV drop 

of > 6.63 (degree of freedom = 1) was considered as a significant improvement.

Software

Data management, graphical evaluation and simulations were performed using R 

(version 3.0.1).16 Nonlinear mixed effects modeling was performed using NONMEM 

(version 7.3.0, ICON Development Solutions, Ellicott City, MD, USA) and Perl-speaks-

NONMEM (version 4.4.8).17,18 Piraña (version 2.9.2) was used as graphical user 

interface.19 All models were estimated using First Order Conditional Estimation 

method with η-ε interaction (FOCE-I). 
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Determination of the safe starting dose and clinical efficacious dose

A safe starting dose for the First-In-Human study of MCLA-128 was identified 

by calculation of safety margins based on the simulated exposure in humans 

at different dose levels. Subsequently, a clinical target exposure and dose was 

determined by calculation of receptor occupancies for different dose levels, based 

on the simulated exposures in human and the estimated K
m

 value. Doses with a 

receptor occupancy above 99%, based on the maximum and average MCLA-128 

concentration in the first cycle, were expected to have a clinical effect. In addition, 

a simulation with the tumor growth model was performed in mice, to evaluate 

the potential human anti-tumor efficacy of the proposed clinical dose regimens. 

First, the safety margins were calculated for different simulated dose levels. The 

safety margins were based on the no-observed-adverse-effect-level (NOAEL) of 

MCLA-128 in monkeys included in the multiple dose toxicity study, which was 

determined at 100 mg/kg. The mean AUC
0-inf

 of 193 g∙hr/L was calculated using the 

PK data of the monkeys included in the single dose toxicity study that received 

100 mg/kg, to assure that the exposure to MCLA-128 was not compromised by 

possible generation of anti-drug antibodies. The safety margin was calculated 

by dividing the 193 g∙hr/L AUC
0-inf

 by the predicted model-based AUC
0-inf

. The AUCs 

were computed using a non-compartmental analysis of both the observed and 

simulated data. Second, the receptor occupancies based on the maximal, trough 

and average concentrations (C
max

,
 
C

trough
 and C

ave
, respectively) were calculated, 

using the same simulated exposure data as used for obtaining the safety margins. 

The receptor occupancies were calculated based on the estimated K
m 

value, using 

the following equation:

= ⋅
+

RO
C

K C
% 100 maxor troughor average

m maxor troughor average

Lastly, to evaluate the potential human anti-tumor efficacy the proposed clinical 

dose regimens for MCLA-128 were evaluated with the preclinical PK-PD model in 

mice. 
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Tumor stasis at day 21 was evaluated after applying a regimen of a weekly dose 

for three weeks. The dose input was chosen so that the total exposure (AUC) of 

the three doses, mimicked the exposure of proposed clinical doses administered 

once in a 21-day cycle. 

Figure 1 Visual Predictive Checks (VPCs) for PK data from cynomolgus monkeys stratified 
on dose group (10 mg/kg, 30 mg/kg, 100 mg/kg). The solid line represents the median, the 
dashed line represents the 95% prediction interval of the observed MCLA-128 observations. 
The shaded areas show the 95% confidence interval around the prediction interval (n=500).
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Table 1 Allometrically scaled PK parameters describing MCLA-128 concentration-time data in 
cynomolgus monkeys and mice. Parameters estimated for a 70 kg human and scaled to 0.02 
kg mice.

UNITS ESTIMATES RSE (%) SHRINKAGE (%)
SCALED

PARAMETERS 
MICE

Parameter

CL L/h 0.0125 9.4 - 2.75∙10-5

V
1

L 3.17 2.9 - 9.06∙10-4

Q L/h 0.0313 6.5 - 6.88∙10-5

V
2

L 3.51 14.7 - 1.00∙10-3

V
max

mg/h 0.500 10.3 - 1.10∙10-3

K
m

mg/L 0.219 Fixed - 0.219

Between-subject variability (%)

CL CV 13.2 12.6 -

V
1

CV 14.6 3.8 -

Residual variability

Prop SD 0.108 1 10.6 -

Add SD 0.039 Fixed -

CL
L 

= linear clearance, V
1
 = volume of distribution in the central compartment, Q = distributional clearance,  

V
2
 = volume of distribution in the peripheral compartment, V

max 
= maximum velocity, when all drug-targets 

are saturated, K
m 

= concentration at which half the drug-targets are occupied, Prop = proportional error,  

Add = additive error, CV = coefficient of variation, SD = standard deviation.

RESULTS 

PK model

A two-compartment model with parallel linear and nonlinear clearances from 

the central compartment described the data best. The nonlinear clearance 

was described using Michaelis-Menten kinetics. The final model structure was 

defined by the following differential equations:

= − ⋅ −
⋅
+

− ⋅ + ⋅
d A
d t

CL
V

A
V C
K C

Q
V

A Q
V

A
( )
( )

max

m

1

1
1

1

1 1
1

2
2

(1)

= ⋅ − ⋅
d A
d t

Q
V

A Q
V

A
( )
( )
2

1
1

2
2 (2)
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Where CL represents the linear clearance, Q the intercompartmental clearance, 

V
1
 the volume of distribution in the central compartment and V

2
 the volume of 

distribution in the effect compartment, A
1
 the amount of drug in the central 

compartment, V
max

 the maximum elimination rate, C
1
 the drug concentration 

in the central compartment, K
m

 the drug concentration at which half the drug-

targets are occupied and A
2
 the amount in the peripheral compartment. Scaling of 

the model to a 70 kg human or 0.02 kg mouse was performed using the following 

equations, respectively:

θ= ⋅P WT
70monkey pop human pop

factor

_ _

θ= ⋅P 0.02
70mouse pop human pop

factor

_ _

On CL, Q, and V
max 

a factor of 0.75 was used and on V
1
 and V

2
 a factor of 1 was 

used. MCLA-128 is fully cross-reactive with cynomolgus monkey HER2 and HER3 

receptors and mice were implanted with human HER2 and HER3 expressing 

tumors. Therefore, K
m

 was not scaled and fixed to the parameter estimate in 

cynomolgus monkeys (0.219 mg/L) for both human and mice.20,21 Parameter 

estimates for a 70 kg human and the calculated scaled parameters for a 0.02 kg 

mouse are depicted in Table 1. The visual predictive checks (VPCs) demonstrate 

that the model accurately describes the observed PK data in cynomolgus monkeys 

for each dose-group (Figure 1). 
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Figure 2 Schematic structure of the PK-PD model in mice. CL
L
 linear clearance, CL

NL 

nonlinear clearance, V
1
 volume of distribution central compartment, V

2
 volume of 

distribution peripheral compartment. K
G
 zero-order tumor growth rate, K

D
 tumor dying rate, 

K
io

 production and loss of drug effect on K
G
, E

max 
maximum effect of MCLA-128 on Kio (fixed 

to 1). EC
50 

MCLA-128 concentration with 50% of maximum effect on K
io

, EC
50_KD 

concentration 
MCLA-128 with 50% of maximum effect on K

D
. Dotted lines drug effects.

PK-PD model 

The preclinical PK-PD model was based on the scaled PK model from cynomolgus 

monkeys to mice and the xenograft experiments conducted in mice. First, the 

non-perturbed tumor growth in the vehicle-treated mice was modelled. This was 

best described by a zero-order growth rate (K
G
). The MCLA-128 anti-tumor effect in 

this experiment was modeled to target the proliferation and dying rate (K
G 

and K
D
) 

of the tumor. The effect on K
G
 was described by an indirect response model, where 

the in-rate (K
io

) in the indirect effect compartment was affected by the predicted 

MCLA-128 concentration using an inhibitive E
max

 equation. 
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The effect of the predicted MCLA-128 concentrations on K
D
 was modeled directly 

with an E
max

 model. An indirect response model and effect compartment model 

were evaluated to investigate a delay of the effect on K
D
, but this could not be 

identified. Addition of an increasing tumor growth rate over time (modelled 

by inclusion of the λ term) led to a significant increase of model fit and was 

implemented in the final model. The structural model is depicted in Figure 2 and 

the estimated PD model parameters are depicted in Table 2. Goodness of fit plots 

and a plot demonstrating observed tumor volume versus predicted population 

mean, demonstrated adequate fit of the model (Figure 3 and 4).

Table 2 Population parameter estimates for the preclinical PK/PD modela: the effect of MCLA-128 
on tumor growth in JIMT-1 xenograft models.

PARAMETER UNITS PARAMETER 
ESTIMATES

RSE

(%)

SHRINK-
AGE (%)

Population PD parameters in mice

Tumor baseline value (Base) mm3 177 6.7 -

Zero order tumor growth rate (K
G
) hr-1 0.338 22.2 -

First order tumor dying rate (K
D
) mm3/hr 0.004 15.9 -

Production and loss of drug effect 
on K

G
 (K

io
)

hr-1 0.143 18.3 -

MCLA-128 concentration with 50% 
of maximum effect on K

io
 (EC

50
) 

mg/L 2.60 47.7 -

MCLA-128 concentration with 50% 
of maximum effect on K

D
 (EC

50_KD
)

µg/L 0.0102 25.1 -

Progression factor week-1 0.172 23 -

Between-subject variability (%)

Baseline CV 20.6 16.8

K
G

CV 55.1 1.10

K
D

CV 35.5 24.8

Residual variability

Proportional residual error tumor 
compartment

CV 25.6 7.4 5.9

aPopulation PK parameters were scaled to mice to drive the tumor growth model, parameters reported in Table 1.  

RSE = relative standard error, CV = coefficient of variation, SD = standard deviation
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Figure 3 Goodness of fit plots tumor growth model, CWRES = conditional weighted 

residuals.

Safe starting dose and clinical efficacious dose

The safety margins and percentages receptor occupancies at predicted maximum, 

trough and average concentrations were calculated for the anticipated clinical 

doses. Results are depicted in Table 3. Clinical doses ranging from 10 to 480 mg 
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flat dose MCLA-128 showed a safety margin > 10-fold and doses ≥ 360 mg had an 

expected receptor occupancy higher than 99% for both C
max

 and C
ave

. In addition, 

a sensitivity analysis for the K
m

 was conducted for K
m

 values ranging from 0.0219 

mg/L to 2.19 mg/L, since this parameter showed a high relative standard error 

(RSE) of 74% value in the monkey estimation. The sensitivity analysis showed 

permanent adequate receptor occupancies for varying K
m

 values and values of 

higher than 99% for doses starting from 160 mg (K
m

 of 0.0219 mg/L) and 750 mg 

(K
m

 of 2.19 mg/L). Subsequently, the tumor volumes over time in 0.02 kg mice 

were simulated with the established preclinical PK-PD model for dose levels of 9.5 

mg/kg, 20 mg/kg and 24 mg/kg given once every week (q1wk) for 3 weeks (Figure 

5). These dose levels had AUCs corresponding to the 360 mg, 750 mg and 900 mg 

flat dose of MCLA-128 given q3wk in the First-In-Human study, and demonstrated 

profound tumor stasis at day 21. 

Figure 4 Individual tumor volume over time curves for each dose group (vehicle, 2.5 mg/
kg and 25 mg/kg). Blue dots and lines observed tumor volumes, red line = population 
prediction. 
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Table 3 Simulation results of MCLA-128 exposure (AUC) and predicted receptor occupancy (RO) 
for different flat doses of MCLA-128 administered to humans once every 3 weeks.

FLAT DOSE 
(MG)

AUC

(g∙hr/L)

SAFETY 

Margin

CMAX

%RO

CAVE

%RO

CTROUGH

%RO

10 0.031 6226 93.5 22.6 0.021

20 0.10 1930 96.6 48.8 0.074

40 0.33 585 98.3 75.1 0.253

80 1.00 193 99.1 90.2 0.874

160 2.97 65 99.6 96.4 3.29

240 5.57 35 99.7 98.1 8.12

360 10.4 19 99.8 99.0 23.8

480 16.0 12 99.9 99.3 75.7

600 22.4 9 99.9 99.5 96.5

750 31.4 6 99.9 99.6 98.4

900 41.1 5 99.9 99.7 99.0

1000 47.9 4 99.9 99.7 99.2

1200 62.0 3 99.9 99.8 99.3

C
max

= maximum concentration, C
ave

= average concentration, RO = receptor occupancy, RO = 100 · C
max

 or C
trough

 or 

C
average

 / (K
m

 + C
max

 or C
trough

 or C
average

)

DISCUSSION

In this analysis, the preclinical PK characteristics of MCLA-128 were quantified in 

cynomolgus monkeys and subsequently predicted for humans. The PK profiles 

were well described by a two-compartment model with parallel linear and 

nonlinear clearance pathways. Predicted parameters were in accordance with 

previously published PK characteristics of different therapeutic mAbs in human, 

with a median (range) of V
1
 and V

2
 of 3.1 L (2.4-5.5) and 2.8 L (1.3-6.8), respectively, 

and for linear clearance (CL
L
) 0.013 L/h (0.003-0.223).9 Estimates for V

max
 and K

m
 

varied widely among the different IgG mAbs, but the Michaelis Menten estimates 

for MCLA-128 were within this wide range.9 Cynomolgus monkeys are considered 

to be the most relevant species to predict PK of monoclonal antibodies in human.22 

In addition, healthy cynomolgus monkeys express HER2 and HER3 receptors 

with binding epitopes for MCLA-128 that are conserved between human and 

cynomolgus monkeys. This is a requirement to determine the nonlinear (target 

mediated) clearance pathway. 
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Moreover, the design of MCLA-128 using the CH3 engineering and the low fucose 

glycoengineering technologies did not alter the IgG PK characteristics of the 

compound, since PK parameters were in the range of previously published 

parameters of other therapeutic IgG mAbs.

Figure 5 Simulation of tumor growth in mice, with administered doses of 9.5, 20 and 24 
mg/kg q1wk for three weeks, corresponding with AUCs after 360, 750 and 900 mg flat dose 
of MCLA-128 given q3wk to humans.

Subsequently, the established PK model was used to predict safety in humans. 

Dose levels of 10 to 480 mg flat dose of MCLA-128 given q3wk have predicted AUCs 

that are at least 10-fold lower than the NOAEL corresponding AUC in monkeys. Doses 

of 10 to 480 mg were, therefore, considered suitable as a First-In-Human starting 

dose. However, following the CHMP guideline on identifying and mitigating risk 

for such studies23, other non-clinical safety pharmacology and toxicology data 

should also be taken into account to determine the optimal starting dose for the 

Phase I dose-escalation trial, including the identification of the factors of risk. 
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Concerns may be derived from particular knowledge or lack thereof regarding 

the mode of action, the nature of the target, and/or the relevance of animal 

models. Obtaining the exposures in humans using a PK modeling and simulation 

approach is preferred over traditional calculation of the human equivalent dose, 

since (non-linear) pharmacokinetic characteristics are taken into account.24,25 

In addition, antibodies are suitable compounds for this approach, since no 

metabolites are formed and no enzymatic metabolism is present, which might 

trouble the prediction of exposure from animal to human.9,22 

The PK model was then used to determine the pharmacological active doses 

based on receptor occupancies. Doses ≥ 360 mg flat dose of MCLA-128 given 

q3wk are expected to reach a receptor occupancy superior to 99% at C
max

 and 

C
avg

, and at C
trough

, of 24%. However, the receptor occupancies are calculated using 

the model estimated K
m

 value based on healthy cynomolgus monkeys. These 

cynomolgus monkeys did not bear HER2/HER3 expressing tumors, but only 

endogenously expressed HER3 and HER2 epitopes. It is expected that tumor-

bearing patients demonstrate higher expression of HER2 and HER3 receptors. 

Therefore, the clinical model estimate for the V
max

 and K
m

 could be different. The 

sensitivity analysis demonstrated that for a 10-fold increase in the K
m

 value, a 

750 mg flat dose MCLA-128 would attain a receptor occupancy of 99% at C
max

. In 

addition, for trastuzumab, a K
m 

value of 3.7 mg/L has been identified in patients 

with HER2-amplified advanced gastric or gastroesophageal junction cancer.26 

This K
m

 is in the same order of magnitude as the K
m

 of MCLA-128 used in the 

sensitivity analysis (2.19 mg/L). Moreover, in breast cancer, only linear PK models 

for trastuzumab have been identified potentially indicating that all target is 

saturated and, that the target mediated clearance of trastuzumab is of minor 

importance in breast cancer at therapeutic dose levels.27 

Finally, the proposed effective doses in human were evaluated using the 

preclinical PK-PD model. The final tumor growth (PD) model included an effect 

on the tumor growth rate and on the tumor dying rate. The low EC
50

 value for 

the effect on K
D
 (EC

50_KD
) suggests that the anti-tumor activity is present during 

almost the complete time course between administrations in mice for doses of 

2.5 mg/kg and higher. 
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The JIMT-1 cell line has higher HER2 expression than HER3 expression and is 

reported to overexpress the HER3 ligand heregulin.28,29 The JIMT-1 cell line is 

resistant to HER2 targeted therapies and partially dependent on autologous 

heregulin for growth which can be effectively blocked in vitro by MCLA-128.28 The 

JIMT-1 cell line was therefore considered suitable for determining the direct effect 

of MCLA-128 on tumor growth in a xenograft setting. However, this approach 

may underpredict the true anti-tumor efficacy of MCLA-128 due to the inherent 

limitations of the xenograft models: immunodeficient mice were used in the 

JIMT-1 xenograft model and therefore the ADCC-related mechanism of action 

could not be evaluated. As a result, the low EC
50_KD

 is expected to represent the 

natural dying rate of the tumor resulting from a decrease in tumor growth rate. 

On the other hand, the exposure of MCLA-128 in mice was predicted using an 

allometrically scaled PK model, the true exposure in mice is expected to be higher, 

since humanized mAbs have a high affinity for mouse and rat FcRn, resulting in 

a decrease in linear clearance, subsequently resulting in higher concentrations.30 

Therefore, it is expected that the EC
50

 parameters for anti-tumor activity are 

higher than estimated in the preclinical PK/PD model. It is unclear how these two 

findings are balanced, hence how they affect the preclinical predictions of tumor 

growth. However, we expect that the true anti-tumor efficacy is stronger than 

simulated, since lack of the ADCC effect is expected to have a stronger impact 

on predictions than an increase in the EC
50

 parameter. Nevertheless, MCLA-128 

demonstrated a profound anti-tumor activity in mice. 

Receptor occupancies based on C
max

 and C
ave

 were expected to be >99% starting 

as of 360 mg MCLA-128 given q3wk and receptor occupancies based on C
trough

 at 

the end of a 3-week dosing interval were >99% as of 900 mg (Table 3). Since the 

anti-tumor effects of MCLA-128 are mediated via receptor binding, it is expected 

that a further increase in dose will not lead to a significant increase in effect, for 

doses reaching receptor occupancies >99%. Likewise, both drug effects in the PK-

PD model were described by an E
max

 model, confirming an asymptotic approach 

of the maximum effect. However, the tumor growth model was not able to capture 

a plateau in effect starting from approximately 360 mg or 900 mg q3wk, because 

data about receptor and receptor-drug complex concentrations was lacking. 
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In general, in this analysis all available relevant PK and PD data before start of 

the First-in-Human trial were combined in a comprehensive modeling framework 

to fully evaluate the safe starting dose and predicted efficacious dose range. 

This framework can be applied similarly for the evaluation of other monoclonal 

antibodies.

CONCLUSION

A preclinical predictive PK-PD model describing the relation between MCLA-

128 exposure and tumor volume over time was developed and demonstrated 

the anti-tumor efficacy of MCLA-128. The calculation of the safety margins 

demonstrated that flat doses of 10 to 480 mg MCLA-128 given q3wk are expected 

to be safe as starting dose for a First-In-Human study with MCLA-128 based on 

the NOAEL exposure in cynomolgus monkeys. However, other non-clinical safety 

pharmacology and toxicology data should also be taken into consideration to 

determine the optimal starting dose for the Phase I dose escalation trial, including 

the identification of the factors of risk. The simulations and the estimations of 

receptor occupancy for different dose levels showed that flat doses ≥360 mg of 

MCLA-128 given q3wk are likely to be efficacious in human. 
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ABSTRACT

Introduction 

MCLA-128 is a bispecific monoclonal antibody targeting the HER2 and HER3 

receptor and is in development to overcome HER3 mediated resistance to anti-

HER2 therapies. The aims of this analysis were to characterize the population 

pharmacokinetics (PK) of MCLA-128 in patients with various solid tumors included 

in a phase I/II trial, to evaluate patient-related factors that affect the disposition 

of MCLA-128 and assess whether fixed dosing is appropriate.

Methods 

MCLA-128 concentration data following intravenous administration were collected 

in a phase I/II clinical trial. PK data were analyzed using nonlinear mixed-effects 

modeling. Different compartmental models were evaluated. Various body size 

parameters including body weight, body surface area and fat-free mass (FFM) 

were evaluated as covariates in addition to age, sex and tumor type. 

Results 

In total, 1115 serum concentration measurements were available from 116 patients. 

PK of MCLA-128 was best described by a two-compartment model with linear and 

nonlinear (Michaelis-Menten) clearance. FFM significantly affected the linear 

clearance and volume of distribution of the central compartment of MCLA-128, 

explaining 8.4% and 5.6% of inter-individual variability, respectively. No other 

significant covariate relationships were found. Simulations demonstrated that 

dosing based on body size parameters resulted in similar AUC
0-τ, maximum and 

trough concentrations of MCLA-128, compared to fixed dosing. 

Conclusions 

This analysis demonstrated that the PK of MCLA-128 exhibits similar disposition 

characteristics as other therapeutic monoclonal antibodies and that a fixed dose 

of MCLA-128 in patients with various solid tumors would be appropriate.



129

Population pharmacokinetic modeling of MCLA-128

INTRODUCTION

MCLA-128 is a full-length humanized IgG1 bispecific monoclonal antibody with 

enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). It targets the 

HER2 and HER3 transmembrane receptor tyrosine kinases. The mechanism 

of action is expected to rely on direct inhibition of tumor growth by blocking 

HER2:HER3 signaling and, via ADCC leading to elimination of tumor cells via 

recruitment of immune effector cells to tumor cells that have bound MCLA-1281. 

MCLA-128 is developed to overcome HER3-mediated resistance to epidermal 

growth factor receptor (EGFR) and HER2-targeted therapies in patients with 

HER2 overexpressing or amplified tumors. Current HER2-targeted therapies are 

approved for HER2-amplified breast and gastric cancers, either as single agent 

or in combination with other anticancer drugs.2,3 A proportion of patients treated 

with these therapies, however, show primary or acquired resistance.4,5 Resistance 

is often mediated by HER3 activation, either by upregulation of HER3 receptors in 

HER2-amplified tumors, or directly by the HER3 ligand, heregulin. Upregulation of 

HER3 in HER2-amplified tumors can result in ligand-independent dimerization 

of HER3 with HER2 and enhanced cell survival.6 Alternatively, heregulin, drives 

dimerization of HER3 with HER2, resulting in potent activation of the PI3K/AKT 

pathway leading to enhanced growth and survival of HER2-amplified tumors. 

Heregulin stimulation was shown to mediate resistance to trastuzumab and 

lapatinib therapy.6–8 The targeting of HER2 and HER3 by MCLA-128 could overcome 

this resistance. In vitro results have shown that MCLA-128 inhibits proliferation 

of HER2 over-expressing and HER2-low cells stimulated with heregulin. It also 

shows significantly higher potency than lapatinib, trastuzumab alone or to the 

combination of trastuzumab and pertuzumab.1 In vivo MCLA-128 demonstrates 

potent anti-tumor activity in relevant xenograft models.9 Previously, PK of MCLA-

128 in cynomolgus monkeys was described by a two-compartment model with 

lineair and non-linear clearance from the central compartment.9

The objectives of this analysis are to characterize the population pharmacokinetics 

(PK) of MCLA-128 in patients with various solid tumors included in a phase I/II 

trial, identify patient-related factors that potentially influence the disposition of 
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MCLA-128 and to evaluate whether fixed dosing of MCLA-128 would be appropriate. 

In addition, the appropriateness of animal-to-human PK scaling was evaluated 

for MCLA-128.

MATERIAL AND METHODS

Generation of MCLA-128 

MCLA-128 was engineered using proprietary CH3 technology, and is composed 

of two identical common light chains and two different heavy chains (anti-HER2 

and anti-HER3). ADCC-enhancement was achieved by low fucose glycoengineering 

using the GlymaxX® technology.1 

Data

This analysis was performed on data from patients in a phase I/II clinical trial 

(NCT02912949) of MCLA-128. The protocol was approved by the Ethics Committees 

of all participating centers and all patients provided written informed consent 

before study entry. Data was pooled from the dose-escalation and dose-expansion 

cohorts. Patients in the dose-escalation cohorts were treated with flat doses 

ranging between 40 mg and 900 mg MCLA-128, administered q3wk and patients 

in the dose-expansion cohort were treated with a flat dose of 750 mg MCLA-

128, administered every 3 weeks. MCLA-128 was administered i.v. as a 1-hour 

(dose levels ≤ 360 mg) or 2-hour infusion (dose levels > 360 mg). Patients with 

advanced solid tumors were included in the dose-escalation cohorts. Patients 

with selected advanced solid tumors (gastric, breast, endometrium esophagus-

gastric junction, colon and non-small-cell lung carcinoma (NSCLC)) expressing 

HER2 or HER3 receptors, were included in the dose-expansion cohort. 

For the assessment of MCLA-128 PK, samples were collected on day 1 of cycle 1 at 

pre-dose, end of infusion (EOI) and 1, 2, 4, 8 and 24 hours after EOI, any time on day 

3 or 4, 8 and 15, and on day 1 of cycle 2, 3 and 4 at pre-dose and end of infusion. 

Samples were shipped frozen on dry ice and stored at -80°C until analysis. 

MCLA-128 was quantified in serum using a validated electrochemiluminescence 

immunoassay, with a lower limit of quantification (LLOQ) of 0.05 mg/L.
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Population PK analysis

Structural model

Nonlinear mixed-effects modeling was used for the population PK analysis. 

The preclinical modeling analysis in cynomolgus monkeys identified a two-

compartment model with linear and nonlinear (Michaelis-Menten) clearance 

from the central compartment to describe PK data of MCLA-128 best.9 Such 

model structures have been well established for the pharmacokinetics of other 

monoclonal antibodies as well.10 Therefore, a two-compartment model was 

used as a starting point for the structural model building of the population PK 

analysis and the following parameters were estimated: linear clearance (CL), 

intercompartmental clearance (Q), volumes of distribution of the central and 

peripheral compartment (V
1
 and V

2
, respectively), the maximum elimination rate 

of the nonlinear clearance (V
max

) and the Michaelis-Menten constant (K
m

). One- 

and two-compartment models with only linear clearance were also evaluated.

Statistical model

Inter-individual variability (IIV) was evaluated for each of the PK parameters 

using an exponential model:

η= ⋅P P exp( )i pop i

Where P
i
 is the individual parameter estimate for individual i, P

pop
 the population 

parameter and η
i
 the individual value of IIV for subject i, with η following a 

normal distribution N(0,ω2). Off-diagonal elements of the variance-covariance 

matrix were evaluated to identify covariances between the individual random 

effects. Subsequently, correlations between the random effects were derived 

from the covariances. To account for the difference between observed MCLA-

128 concentrations and model-predicted concentrations, a proportional and 

combined proportional and additive residual error model were. Data points below 

the LLOQ were imputed as LLOQ/2 (0.025 mg/L) and additive residual variability 

was fixed to this value.11
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Covariate analysis

Continuous (age, height, body weight, body surface area (BSA) and fat-free mass 

(FFM) at baseline) and categorical (tumor type and gender) covariates were 

evaluated for inclusion in the model. For continuous covariates, missing values 

were imputed by the median value. Body weight, BSA and FFM were independently 

tested for their effect on C
L,
 V

1
 and V

max
. BSA and FFM were calculated using the 

following equations12:

= ⋅BSA WT HT
3600

=BM I WT
HT
100

2

= ⋅ ⋅
⋅ + ⋅

FFM WT
BM I

9.27 10
6.68 10 216men

3

3

= ⋅ ⋅
⋅ + ⋅

FFM WT
BM I

9.27 10
8.87 10 244women

3

3

Where WT is body weight in kilograms, HT is height in centimeters and BMI is 

body mass index.

Additionally, the magnitude of target expression (HER2 and/or HER3) is expected 

to affect the capacity of target-mediated clearance. Therefore, tumor type was 

evaluated as a covariate on V
max

. Age and gender were evaluated on CL and V
1
. 

Since body size measures are influenced by gender, gender was only evaluated 

with body size covariates already included in the model. Continuous covariates 

were implemented using the following equation:

= ⋅
θ

P P COV
Median COV( )i pop

cov
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Where P
i
 is the individual parameter, P

pop
 the population parameter, θ

cov
 is the 

covariate effect parameter, COV the continuous covariate value. The dichotomous 

covariate (gender) was implemented as follows: 

θ( )= ⋅P Pi pop cov

GENDER

Where θ
cov

 represents the fractional change in population parameter for female 

(1) compared to man (0). Tumor type was evaluated as categorical covariate 

by estimating a separate parameter for each type, for all the tumor types that 

affected at least 5% of patients. The selected covariates were evaluated using 

a forward inclusion and backward elimination method. For forward inclusion, a 

significance level of p < 0.01 was used, corresponding to a decrease of objective 

function value (OFV) of > 6.63. A significance level of p < .005 was set for backward 

elimination, corresponding to an increase of OFV of > 7.88.

Model evaluations

Models were evaluated based on general goodness-of-fit (GOF) plots, mechanistic 

plausibility, stability and precision of parameter estimates and change in OFV 

where p < 0.01 was considered significant (OFV drop of > 6.63, with 1 degree of 

freedom). In addition, visual predictive checks (VPCs) were performed to evaluate 

the performance of the model. Parameter uncertainty was obtained from 

the default covariance step in NONMEM and from the sampling importance 

resampling (SIR) method.13

Software

Nonlinear mixed-effects modeling was performed using NONMEM (version 7.3.0, 

ICON Development Solutions, Ellicott City, MD, USA) and Perl-speaks-NONMEM 

(version 4.4.8).14,15 All models were estimated using the First-Order Conditional 

Estimation method with η-ε interaction (FOCE-I). Pirana (version 2.9.2) was used 

as graphical user interface.16 Data handling, graphical evaluation and simulations 

were performed using R (version 3.3.1).17 
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Simulations 

In order to evaluate whether flat dosing of MCLA-128 is appropriate for this patient 

population, simulations were performed. First, the combinations of body weight, 

height and gender values for the simulation dataset were randomly sampled 

(with replacement) from the original dataset, with even proportions of male and 

female subjects. The combinations of weight, height and gender values were 

sampled as fixed combinations, to preclude sampling of irrational weight, height 

and gender combinations. Subsequently, concentration-time profiles of MCLA-

128 were simulated for patients receiving 750 mg flat dose, 420 mg/m2 and 11 

mg/kg MCLA-128 administered once every 3 weeks in an IV infusion of 2 hours, 

using the final model. The weight-based dosages were rounded and chosen such 

that the median BSA and weight in the study population (1.78 m2 and 68.2 kg) 

corresponded to a flat-dose of 750 mg. Each simulation dataset consisted of 3000 

patients (n=1000 per group). The AUC
0-τ, maximum concentration (C

max
), average 

concentration (C
ave

) and trough concentrations (C
trough

) on day 21 were assessed 

and compared between the flat, BSA-based and weight-based dosing groups. 

Negative simulated concentrations were fixed to 0.001 mg/L.

Additional simulations were performed to evaluate the translational and predictive 

performance of the previously developed preclinical PK model, that was based 

on data from cynomolgus monkeys and for this purpose allometrically scaled to 

human.9 A VPC was performed using the original clinical dataset including only 

observations and dose records of patients that received 750 mg flat dose MCLA-

128.

RESULTS

Data 

Pharmacokinetic data was available for 116 patients. Of these 116 patients, 93 

patients received a dose of 750 mg q3wk. The remaining patients received 40 

mg (n=1), 80 mg (n=2), 160 mg (n=1), 240, 360, 480 mg (each n=3), 600 mg (n=7) 

and 900 mg (n=3) MCLA-128. In total, 1115 observations, with median [range] of 10 

[1-10] observations per patient, were included in the analysis. Overall, 22 of the 



135

Population pharmacokinetic modeling of MCLA-128

1115 observations (2%) were below the LLOQ and fixed to a value of 0.025 mg/L 

(LLOQ/2). Patient demographics are depicted in Table 1. Height was missing for 

one female patient with a relative high weight and one male patient with a relative 

low weight, therefore the median height of the population (164 cm) was imputed. 

Figure 1 Visual Predictive Check (VPC) for MCLA-128 concentrations plotted on a log-scale, 
stratified on dose. Open circles are observed MCLA-128 concentrations in the first cycle 
of patients receiving MCLA-128 every 3 weeks, the solid line represents the median of the 
observed data, the dashed lines represent the 5th and 95th percentiles of the observed 
data, the shaded areas represent the 95% confidence interval of the simulated data for the 
corresponding percentiles (n=500). 
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Table 1 Patient demographics and characteristics of patients included in the analysis at study 
entry.

N = 116

MEDIAN [RANGE] 

Age (years) 59 [25-83]

Weight (kg) 68.2 [40.2-112]

Height (cm) 164 [147-199]

BSA (m2) 1.78 [1.30-2.33]

FFM (kg) 43.1 [28.6-72.45]

Number of patients (%)

Gender

Female 76 (65.5)

Male 40 (34.5)

Tumor type

Breast 17 (14.7)

Colorectal 9 (7.8)

Endometrium 13 (11.2)

Gastric 25 (21.5)

Lung 8 (6.9)

Ovarian 36 (31)

Others 8 (6.9)

BSA = Body Surface Area, FFM = Fat Free Mass12

PK model

A two-compartment model with parallel linear and nonlinear clearances from the 

central compartment described the data best (adding a second compartment 

to a one-compartment model with linear clearance decreased OFV with 4059 

points and adding nonlinear clearance to a two-compartment model with 

linear clearance decreased the OFV with 384 points). The nonlinear clearance 

was described using Michaelis-Menten kinetics. The final model structure was 

defined by the following differential equations:
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Where CL represents the linear clearance, Q the intercompartmental clearance, 

V
1
 the volume of distribution in the central compartment and V

2
 the volume of 

distribution in the effect compartment, A
1
 the amount of drug in the central 

compartment, V
max

 the maximum elimination rate, C
1
 the drug concentration in the 

central compartment, K
m

 the drug concentration at which half the drug-targets 

are occupied and A
2
 the amount in the peripheral compartment. A combined 

proportional and additive residual error model described residual variability best. 

Body size parameters body weight, BSA and FFM were all, univariately, identified 

as significant covariates affecting CL and V
1
, where FFM provided the best model 

fit and led to an objective function value (OFV) drop of 131. FFM explained 8.4% 

of IIV in CL and 5.6% of IIV in V
1
. After implementation of gender-specific FFM in 

the model, gender had no significant additional impact on the PK parameters of 

MCLA-128. Observed gender differences in concentration-time curves were thus 

explained by the gender-specific differences in FFM (median of 58.7 kg FFM in 

men vs. 39.8 kg FFM in women). In addition, age and the different tumor types 

had no significant effect on the PK of MCLA-128. The parameter estimates of 

the final model are depicted in Table 2. The 95% confidence intervals of the SIR 

indicated that parameter estimates were precise. In addition, the VPC, stratified 

on the different dose-groups demonstrated good model fit across the dose range 

evaluated (Figure 1).
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Table 2 Model parameters and evaluation of parameter uncertainty using sampling importance 
resampling (SIR).

BASE MODEL 

OFV 7575

COVARIATE MODEL

OFV 7444

SIR RESULTS 

Parameter Estimates (RSE%) 
[shrinkage%]

Estimates (RSE%) 
[shrinkage%]

[95%CI]

CL (L/h) 0.0322 (4) 0.0303 (4) [0.0287-0.0321]

V
1
 (L) 3.66 (2) 3.52 (2) [3.38-3.66]

Q (L/h) 0.0256 (10) 0.0253 (8) [0.0212-0.0297]

V
2
 (L) 1.69 (7) 1.65 (6) [1.43-1.86]

V
max

 (mg/h) 0.122 (11) 0.117 (15) [0.0859-0.152]

K
m

 (mg/L) 0.26 (31) 0.205 (26) [0.119-0.326]

FFM on CL - 1.20 (14) [0.934-1.46]

FFM on V
1

- 0.71 (14) [0.531-0.878]

Between-subject variability 

CLω (CV%) 46.9 (10) [2] 38.5 (7) [3] [33.7-43.9]

Vω 1 (CV%) 26.6 (6) [4] 21.0 (8) [6] [18.2-24.1]

ωVmax(CV%) 66.9 (16) [28] 67.8 (14) [28] [53.4-84.6]

Correlation CL V
aω ω~ 1 0.70 0.54 (11) [0.47-0.60]

Residual unexplained variability

Prop.error (CV%) 18.9 (7) 18.6 (3) [17.8-19.6]

Add error (SD mg/L) 0.025 fixed 0.025 fixed -

OFV = Objective function value, CL = linear clearance, V
1
 = volume of distribution central compartment,  

Q = intercompartmental clearance, V
2
 = volume of distribution peripheral compartment, V

max 
= maximum 

non-linear clearance capacity, K
m

 = Michaelis Menten constant, concentration at which 50% of the target is 

occupied, FFM = fat free mass, RSE = relative standard error, CV = coefficient of variation, Prop. = proportional,  

add =  additive, SD = standard deviation, CI = confidence interval, SIR = sampling importance resampling.
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Simulations

Simulations of the final model with flat, body weight-based and BSA-based doses 

demonstrated comparable values of AUC
0-τ, C

max
, C

ave
 and C

trough
 concentrations, 

with differences in geometric means below 5% and comparable coefficients of 

variation (Table 3 and Figure 2). This indicates that weight or BSA-based dosing 

does not lower variability in exposure between patients, compared to flat dosing 

of MCLA-128. 

Moreover, the effect of body size parameters on CL and V
1
 on exposure parameters 

is minimal. In addition, the percentage of patients with trough concentrations 

below the estimated K
m 

value (0.205 mg/L) is similar between the different 

dosing strategies, around 20% (Table 3). Approximately 3% of the simulated 

concentrations were below zero and fixed to 0.001 mg/L.

Table 3 Comparison of exposure variables between different dosing strategies (n=1000 / dosing 
group).

750 MG 

gMEAN (CV%)

420 MG/M2

gMEAN (CV%)
11 MG/KG 

gMEAN (CV%)
% dgM FLAT VS. 

BSA
% dgM FLAT VS. 

WT

C
trough

 (mg/L) 1.22 (138) 1.26 (131) 1.28 (129) 3.28 4.92

C
ave

 (mg/L) 37.2 (43) 37.8 (37) 38.1 (37) 1.61 2.42

C
max

 (mg/L) 222.5 (30) 225.9 (25) 228.1 (27) 1.53 2.52

AUC
0-τ 

(mg.hr/mL)
18.8 (43) 19.1 (37) 19.2 (37) 1.60 2.13

% C
trough

 < K
m

* 21.4% 20.2% 20.6%

*Percentage of patients with trough concentrations below the K
m

 value of 0.205 mg/L, gMean = geometric mean, 

CV = coefficient of variation, dgM = difference in geometric mean. Flat vs. BSA = flat dosing versus BSA-based 

dosing, Flat vs. WT flat = dosing versus weight-based dosing.
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Figure 2 Distribution of simulated MCLA-128 average concentration (C
ave

) for flat dosing 
(750 mg), BSA-based dosing (420 mg/m2) and WT-based dosing (11 mg/kg) with n=1000 per 
dosing strategy. BSA = body surface area, WT = body weight.

The simulations performed with the preclinical PK model, scaled from cynomolgus 

monkeys to human, were compared to the observed PK data in a VPC (Figure 3, 

left panel). Predictions based on the preclinical model were slightly higher than 

observed MCLA-128 concentrations, where at the lower concentrations high 

variability was observed, while observations appeared to be slightly overpredicted. 

In the clinical PK model IIV on V
max

 was included, to account for the differences in 

HER2 expression between patients. Including IIV on V
max

 in the preclinical model, 

showed a better prediction of the lower concentrations observed in patients with 

HER2 expressing tumors. (Figure 3, right panel). 
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Figure 3 Visual Predictive Check for MCLA-128 concentrations over time. Shaded blue area 
is the 95% prediction interval of simulated concentrations (n=1000) using the preclinical 
pharmacokinetic model (left panel) and the preclinical pharmacokinetic model with inter-
individual variability on Vmax (right panel), patients received a dose regimen of 750 mg 
MCLA-128 flat dose administered every 3 weeks; open circles are observed MCLA-128 
concentrations in the first cycle of patients participating in the 750 mg cohort of the 
clinical trial. 

DISCUSSION

The pharmacokinetics of MCLA-128 were best described by a two-compartment 

model with parallel linear and nonlinear clearance from the central compartment. 

The estimated PK parameters of the final model were in accordance with the 

general pharmacokinetic characteristics of therapeutic monoclonal antibodies 

as previously described.10,18
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The following median (range) values were reported for monoclonal antibodies: 3.1 

L (2.4-5.5) and 2.8 L (1.3-6.8) for V
1
 and V

2
 , respectively, and 0.013 L/h (0.003-0.223) 

for CL. Estimations for V
max

 and K
m

 varied widely among different monoclonal 

antibodies, with V
max

 values ranging from 0.004 to 4.38 mg/h and K
m

 values 

between 0.033 and 74 mg/L.10 The Michaelis-Menten estimates for MCLA-128 

were within this wide range. The estimate of K
m

 (0.205 mg/L) is also comparable 

to the dissociation constants for HER2 and HER3, 0.467 mg/L and 0.292 mg/L, 

respectively.19 These findings confirm the plausibility of the parameter estimates.

The different tumor types, gender and age were not identified to significantly 

impact the disposition of MCLA-128. Body size measurements (body weight, BSA 

and FFM) affected linear CL and V
1
, where inclusion of FFM led to the best model fit. 

From a physiological point of view, FFM is also expected to be more closely related 

to the distribution and linear elimination of monoclonal antibodies than total 

body weight. Distribution of monoclonal antibodies is mainly limited to blood 

plasma and extracellular fluids, due to their size and hydrophilic character. It has 

been demonstrated that blood volume correlates better with FFM or lean body 

weight, than with total body weight, since blood volume does not proportionally 

increase with body weight.20 Monoclonal antibodies are metabolized via 

proteolytic catabolism and intracellular degradation after binding to the 

target. Proteolytic catabolism is mediated via the FcRn receptor and is a linear 

process at therapeutic concentrations of monoclonal antibodies.18,21 Proteolytic 

catabolism of IgG antibodies takes place in the skin, muscle, liver and gut tissue18 

and is thus expected to be more closely related to FFM than measures relying 

on total body weight and size. In the final model, FFM explained 8.4% and 5.6% of 

between-subject variability in CL and V
1
, respectively, indicating rather limited 

clinical relevance of FFM on CL and V
1
. The estimated effect of FFM on CL and 

V
1
 was relatively high, with exponents of 1.2 and 0.8, respectively. Simulations 

demonstrated that exposure measures (AUC
0-τ, Cmax

, C
ave

 and C
trough

) and variability 

in exposure measures were comparable between flat dosing and body-size-based 

dosing strategies. In addition, the proportion of patients with a C
trough

 below the K
m 

value was around 20% for all dosing strategies, indicating that target attainment 

is similar between dosing strategies. Therefore, there appears no rationale for 

body-size-based dosing over flat dosing of MCLA-128, which is in agreement with 

the findings for other therapeutic monoclonal antibodies in oncology.22
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The observed concentration-time data of the patients in the clinical trial was 

used to evaluate the predictive value of the preclinical model.9 The preclinical 

model slightly overpredicted the observed concentrations of MCLA-128 in patients 

receiving 750 mg q3wk. The preclinical model was based on data from healthy 

cynomolgus monkeys and was allometrically scaled to human. These healthy 

cynomolgus monkeys expressed endogenous HER2. Patients were included in 

the trial based on HER2 expression on their tumors, and are expected to have 

a greater nonlinear CL capacity, potentially leading to lower concentrations of 

MCLA-128 in human, typically seen at lower concentrations. Though the estimate 

of V
max

 in the preclinical model was higher compared to the clinical model (0.500 

mg/h vs 0.117 mg/h), the variability in the clinical V
max

 was much higher. Including 

this variability in the preclinical model, demonstrated that the overprediction 

of observed MCLA-128 concentrations can be attributed to variability in target 

expression between patients included in the trial. To extrapolate the preclinical 

model, the preclinical CL, Q, V
max

, V
1
 and V

2
 parameters were allometrically scaled 

using a fixed exponent value of 0.75 for CL, Q and V
max

 and a value of 1 for V
1
 and V

2
. 

These exponents were fixed, since the weight-range of the cynomolgus monkeys 

was narrow and did not allow for appropriate estimation of the exponent value, 

this might also have contributed to the slight discrepancy between the predicted 

MCLA-128 concentrations from preclinical data and the observed concentration 

in the clinical trial. However, this post-hoc evaluation of the preclinical model 

showed that very reasonable and useful estimates of human exposure can be 

obtained from cynomolgous monkey data to support initial dose selection for 

these type of monocloncal antibodies.

Data on the generation of anti-drug antibodies (ADAs) was not available at the 

time of analysis and, therefore, not accounted for in the analysis. However, it can 

be expected that excluding the formation of ADA from the model did not affect 

our results, since only PK data of the first treatment cycle was included in the 

analysis.

In conclusion, a PK model was developed that adequately described the PK 

characteristics of MCLA-128 over a range of doses. FFM was found to significantly 

affect CL and V
1
 and explained part of the IIV in these parameters. 
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However, simulations demonstrated that the impact of body size parameters 

on the disposition of MCLA-128 was minimal and that flat dosing of MCLA-128 is 

appropriate for patients with solid tumors. It contributes to the existing evidence 

that flat dosing is to be preferred for anticancer monoclonal antibodies. 
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ABSTRACT

Purpose 

Adverse effects related to anti-cancer drug treatment influence patients quality 

of life, have an impact on the realized dosing regimen and can hamper response 

to treatment. Quantitative models that relate drug exposure to the dynamics 

of adverse effects have been developed and proved to be very instrumental to 

optimize dosing schedules. The aims of this review were (i) to provide a perspective 

of how adverse effects of anti-cancer drugs are modeled and (ii), to report several 

model structures of adverse effect models that describe relationships between 

drug concentrations and toxicities. 

Methods 

Various quantitative pharmacodynamic models that model adverse effects of 

anti-cancer drug treatment were reviewed.

Results 

Quantitative models describing relationships between drug exposure and 

myelosuppression, cardiotoxicity and graded adverse effects like fatigue, hand 

food syndrome (HFS), rash and diarrhea have been presented for different anti-

cancer agents, including their clinical applicability. 

Conclusions 

Mathematical modeling of adverse effects proved to be a helpful tool to improve 

clinical management and support decision-making (especially in establishment 

of the optimal dosing regimen) in drug development. The reported models can be 

used as templates for modeling a variety of anti-cancer induced adverse effects 

to further optimize therapy.
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INTRODUCTION

Adverse effects are a major problem in the treatment with both cytotoxic drugs and 

newer targeted therapies, resulting in dose reductions, dose delays and treatment 

cessation. Toxicity can impair quality of life, jeopardize treatment adherence 

and necessitate dose reductions and dose delays, which can negatively affect 

response to treatment and outcome.1,2 The tendency in cytotoxic anti-cancer drug 

treatment is to dose drugs around the maximum tolerated dose (MTD), which 

assumes that the highest possible dose achieves the maximum effect.3 Adverse 

effects are, therefore, frequently observed during treatment with cytotoxic drugs. 

Targeted therapies are expected to have less toxicity, mainly because of two 

reasons: (i) these therapies are specific to a tumor-target and induce less off 

target toxicity, and (ii) targeted therapies might have maximum target inhibition 

at lower concentrations than the MTD. The latter has led to the suggestion that 

targeted therapies should be dosed around the optimal biological dose (where 

target saturation is maximal) rather than the MTD. However, definition of the 

optimal biological dose is hampered by the lack of validated biomarkers for 

efficacy, lack of information on the relation between target binding and survival 

measures and yet information on the highest possible dose remains of value.4 As 

a consequence, targeted therapies are still often dosed around the MTD.2 

Adverse effects related to cancer therapy are typically graded by the National 

Cancer Institute’s Common Terminology Criteria for Adverse Events (NCI-CTC-AE). 

A conventional and common approach to analyze toxicity data, is to calculate 

the proportion of patients that experienced a certain (severe) grade of toxicity.5 

Subsequently, these proportions can be statistically related to dosing groups, area 

under the plasma concentration-time curve (AUC) or other summary variables for 

exposure.6 However, it is essential to have information on the dynamic relation 

between exposure and toxicity, which provides information on when the toxicity 

occurs, what the severity is over time and if or when the adverse effect is reversed. 

For this purpose, quantitative models are becoming increasingly important. 

These models describe the time course of toxicities related to exposure, as will be 

described throughout this review. 
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Since modeling adverse effects is becoming increasingly important in anti-

cancer drug treatment and drug development, an overview of existing modeling 

approaches can be helpful for future research. Therefore, the aim of this review 

is to give a perspective of modeling adverse effects of anti-cancer drugs and 

report several model structures that describe relationships between drug 

concentrations and toxicities, thereby focusing on the fixed effects of nonlinear 

mixed effects models. 

MODELING ADVERSE EFFECTS

Myelosuppression

Myelosuppression is the leading dose limiting toxicity in treatment with 

cytotoxic agents. Hematological toxicity consists of low leukocyte, thrombocyte 

and platelet counts, potentially leading to life-threatening infections, anemia 

and bleeding. Neutropenia, a subtype of leucopenia, is the most common and 

serious hematologic toxicity observed during treatment with cytotoxic anti-

cancer drugs.7 Myelosuppression can necessitate dose reductions and dose 

delays, potentially resulting in suboptimal drug exposure. Early approaches 

to describe hematological toxicity aimed at finding correlations between 

summary variables of exposure and summary variables of myelosuppression, 

not taking into account the complete time course of either drug concentration 

or myelosuppression. Survival fraction of blood cells or percentage change in 

blood count were typically used as summary variables for myelosuppression, 

whereas average drug concentration, AUC or peak drug concentration were used 

to summarize exposure.8–10 These models have major limitations such as poor 

predictive value and lack of description of the dynamics of toxicity.
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Empirical models

The first models describing the complete time-course of myelosuppression 

were empirical models. One model described the time course of leucopenia in 

patients treated with etoposide, and used a lag-time to account for the delay 

in the myelosuppressive effect, and a cubic spline function, which represented 

the deviation of white blood cell (WBC) count from baseline.11 An E
max

 model 

described the decline in WBC count from baseline, which was dependent on the 

effective concentration of etoposide. A similar empirical model was published for 

paclitaxel induced leucopenia.12 

Semi-mechanistic models 

Currently, a more mechanistic modeling approach is used. Mechanistic models 

mimick the physiological processes of haematopoiesis. Generally, this improves 

the predictive value of the model, since the mechanism related parameters 

represent actual physiological processes. Haematopoiesis is characterized 

by proliferation of progenitor cells in the bone marrow, followed by maturation 

and degradation of blood cells.13 To make useful models for pharmacokinetic 

and pharmacodynamic (PK-PD) analysis, several simplified semi-mechanistic 
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models have been developed (Table 1).14–19 These semi-mechanistic models are all 

characterized by a proliferation cell compartment or progenitor compartment 

containing cells that have self-renewing capacity and a compartment representing 

circulating cells. In order to account for the maturation process, that delays the 

effect of the drug, either lag-time or one to multiple transit compartments are 

added to the model structure. In some of the semi-mechanistic models a feedback 

loop is incorporated to describe the rebound of blood cells, exceeding the blood 

count at baseline, which occurs when drug concentrations decrease. Typically, 

this feedback effect is driven by the amount of circulating blood cells, which 

affect the rate of proliferation in the progenitor compartment. Drug effects were 

modeled to affect the proliferation rate or the amount of progenitor cells. Model 

characteristics of five published semi-mechanistic models are summarized in 

Table 1. A general model structure for myelosuppression is depicted in Figure 1. 

The first semi-mechanistic model developed used a two compartment indirect 

response model to describe the time course of leucopenia in paclitaxel and 

etoposide treated patients 14. The drug inhibited the proliferating cells only during 

a sensitive stage. This model is the only model that used lag time to mimicking 

the maturation process instead of using transit compartments. 

In 2000 Friberg et al. published a semi-mechanistic model, modelling the absolute 

neutrophil counts (ANC) in 2’-deoxy-2’-methylidenecytidine (DMDC) treated 

patients.15 This model contained three additional proliferating compartments 

and five non-mitotic compartments. The first order elimination from the first 

progenitor compartment was proportional to the DMDC concentration. A fraction 

of the effect of DMDC on the first progenitor compartment was added to the other 

proliferating compartments. The non-mitotic compartments were not affected by 

DMDC concentration. Cytotoxic anti-cancer drugs only affect proliferating cells, 

therefore this is a more elegant way of incorporating the maturation chain and 

the delay in drug effect as compared to using lag time. 
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Table 1 Semi mechanistic models describing blood count over time.

REFERENCE DRUG
OBSERVED

VARIABLE
PARA TRB KPROLC

DRUG 

EFFECT

Minami 
1998

[14] Paclitaxel WBC 4 Lag time Zero order E
max

 

Friberg 
2000

[15] DMDC ANC 7 9 Zero order E
max

Zamboni 
2001

[16] Topotecan ANC 4 1 Zero order E
max

Friberg 
2002

[17]
Docetaxel 
Etoposide 
Paclitaxel

ANC WBC 5 3 First order Linear

Panetta 
2003

[18] TMZ ANC 5 2 First order E
max

Bulitta 
2009

[19]

Paclitaxel

Paclitaxel 
EL

ANC 5 1D Zero order Linear

WBC = white blood cell count, ANC = absolute neutrophil count, TMZ = temozolomide

A Number of parameters estimated in pharmacodynamic model 

B Number of transit compartments or if lag time is used

C Proliferation rate constant;

D Maturating pool of cells.

The most well-known semi-mechanistic model for myelosuppression by Friberg 

et al. published in 2002, is often referred to as the golden standard for modeling 

the time-course of myelosuppression.17 Development was based on data from 

docetaxel, etoposide and paclitaxel treated patients in whom ANC and WBC was 

measured. The model structure is described by the following equations:

= ⋅ − ⋅dTransit
dt

k P k Transit1 1tr cells tr

= ⋅ − ⋅dTransit
dt

k Transit k Transit2 1 2tr tr

= ⋅ − ⋅dTransit
dt

k Transit k Transit3 2 3tr tr

= ⋅ ⋅ − ⋅ − ⋅
γ

dProl
dt

k P E
Circ
Circ

k P(1 )in cells drug tr cells
0



158

CHAPTER 3.1   | Pharmacodynamic modeling of adverse effects of anti-cancer drug treatment

= ⋅ − ⋅dCirc
dt

k Transit k Circ3tr circ

Where k
in

 represents the first-order proliferation input, P
cells 

the amount of cells in 

the proliferation compartment and E
drug

 the drug effect. The feedback mechanism 

was described by (Circ
0
/Circ)γ. Where Circ

0
 was the ANC or WBC blood count at 

baseline, Circ the amount of circulating blood cells and γ the parameter estimate 

to determine the impact of the feedback. Transit1-3 represent the amount of cells 

in the transit compartments and k
tr
 the rate constant between compartments. 

Degradation of circulating cells is described by the rate constant k
circ

. The first-

order proliferation input is different from previously described models, which 

used a zero-order rate constant of proliferation. It was assumed that the 

proliferation, maturation and degradation rate constants were equal. Therefore, 

only three system-related parameters were estimated. An analysis was conducted 

to evaluate the consistency of the system-related parameters, by fixing them and 

re-estimating the drug-related parameters. The drug-related parameter estimates 

were comparable. Additionally, the system-related parameter estimates were 

similar for different drugs, enabling interchangeability of the model between 

drugs. In 2003 a model with similar characteristics was published.18

The most recent model for myelosuppression is a multiple-pool lifespan model 

for neutropenia.19 This model estimates the lifespan of cells staying in a certain 

stage, starting with duration of the cells in the progenitor compartment, followed 

by duration in the maturation compartment and lastly by duration in the 

circulation until degradation of the neutrophils. The model requires extensive 

computing with use of 17 differential equations.

In conclusion, the model published by Friberg et al. in 2002 is most frequently 

used and has several advantages above the other models.17 This model has a 

clear separation between drug-related and system-related parameters, making 

the model applicable to different drugs. Additionally, the model only estimates 

few system-related parameters, allowing it to model sparse data sets. Four of the 

reported models in this review have been compared to the model by Friberg et al. 

using ANC data from patients treated with a Plk-1 inhibitor.20 
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The results of this analysis implicated that none of the models showed superior 

performance to the model by Friberg et al.17,20 Lastly, this model has been used 

in multiple studies with different drugs and research aims and has also been 

modified and applied to describe thrombocytopenia in patients treated with 

cytotoxic anti-cancer drugs or targeted therapies.21–33 The extensive application, 

the limited number of system-related parameters and the overall experience with 

this model, makes it the best starting point for modeling myelosuppression.

Cardiovascular adverse effects

For both cytotoxic and targeted therapies cardiovascular toxicity has been 

reported. Anthracyclines can cause arrhythmias during or after administration 

and chronic cardiac toxicity, resulting in irreversible left ventricular dysfunction 

and congestive heart failure (CHF).34 Anthracycline-induced CHF has been related 

to dose, where patients receiving a cumulative dose of 550 mg/m2 doxorubicin 

were at increased risk of developing CHF.35 Trastuzumab has also been associated 

with cardiac complications, inducing (reversible) left ventricular systolic 

dysfunction, which can result in CHF.36 Additionally, tyrosine kinase inhibitors, 

targeting the vascular-endothelial growth factor receptor (VEGFR), have been 

associated with hypertension and cardiac arrhythmias as well as other systemic 

anti-cancer drugs.37–39 

Hypertension 

Pharmacodynamic models have been developed for lenvatinib and sunitinib 

induced hypertension, describing the change in blood pressure (BP) over time in 

relation to treatment (Table 2).40,41 The relationship between lenvatinib exposure 

and increase of diastolic (d) and systolic (s) BP was best described by an indirect 

response model with two effect models for dBP and sBP. The plasma concentration 

of lenvatinib at the time point of BP measurement was used as input rate for the 

indirect effect model with a linear function.40 Additionally, this model included the 

effect of anti-hypertensive therapy on blood pressure. A similar indirect response 

model is used to describe the increase of dBP in sunitinib treated patients.41 
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Table 2 Pharmacodynamic models describing continuous and categorical adverse 
effect. 

REFERENCE  DRUG  AEA OBSERVED 
VARIABLE

PARB DRUG 
EFFECT

Continuous adverse effects

van Hasselt 
2011

[42] Trastuzumab Cardiotoxicity LVEF 3 E
max

Keizer 2010 [40] Lenvatinib Hypertension BP 3 Linear

Hansson 2013 [41] Sunitinib Hypertension
dBP and 

sBP
3 Linear

Marostica 2015 [43] Moxifloxacine QT prolongation QTc 4 Linear

Categorical adverse effects

Keizer 2010 [40] Lenvatinib Proteinuria CTC 6 Linear

Hénin 2008 [48] Capecitabine HFS CTC 10 E
max

Hansson 2013 [41] Sunitinib HFS and fatigue CTC 12 E
max

Suleiman 2015 [49] Erlotinib Rash and diarrhea CTC 6 Linear

HFS = hand foot syndrome, CTC NCI-CTC-AE, LVEF = left ventricular ejection fraction, BP = blood pressure, 

d = diastolic, s = systolic, QTc = heart rate-corrected QT interval.

AAdverse effect

BNumber of model parameters estimated in structural pharmacodynamic model (fixed effects excluding drug 

effect parameters).

Cardiotoxicity

Cardiotoxicity as expressed as decline in left ventricular ejection fraction (LVEF) 

was used to develop a pharmacodynamic with an effect compartment model 

to describe the decrease in LVEF over time, related to trastuzumab exposure.42 

Recovery of the LVEF was implemented in the model. Additionally, the model 

incorporated the prior cumulative anthracycline dose as a covariate and found 

that this dose was an important determinant for the sensitivity to LVEF decline. 

The relation between exposure and increase in BP and decrease of LVEF, as reported 

in both papers, are empirical models.40,42 It is, therefore, difficult to extrapolate 

these models directly between different drugs that might induce hypertension. 
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QT interval prolongation

Anti-cancer drugs, such as anthracyclines and tyrosine kinase inhibitors, can 

prolong the QT interval, which can lead to severe cardiac arrhythmias, such 

as Torsade de Points.38 Concentration-QT modeling can provide important 

information on the relation between exposure and heart rate-corrected QT interval 

(QTc).43,44 However, these models are mainly developed for anti-arrhythmic drugs 

and not for anti-cancer drugs. A recent publication investigated the effect of 

moxifloxacine, a compound that prolongs the QT interval, by developing a PK-PD 

model for translational purposes.43 The time course of the QT interval is described 

by three components: the individual heart rate correction, the circadian rhythm 

and the drug effect:

π= ⋅ + ⋅ − +
α

QT QT RR
RR

A t ø Eco s 2
24
( )

ref
drug0

Where QT
0
 represents the QT interval at baseline, RR is heart rate and RR/RR

ref 

is multiplied by QT
0
 to correct for individual heart rate. A and ø represent the 

amplitude and the phase of the circadian rhythm and E
drug

 represent the drug 

effect. Subsequently, the probability of QT-prolongation above a critical threshold 

(e.g. >10 ms or >20 ms) can be derived. An effect compartment can be considered 

for modeling the ECG time course.45 Similar model structures could be used to 

model QT prolongation induced by anti-cancer drugs. 

Ordered categorical adverse effects

Typically, cancer therapy related adverse effects are graded using the ordered 

NCI-CTC-AE scale, ranging from 0-5. This range represents, no adverse effects (0) 

to, mild, moderate, severe, life-threatening adverse effects and lastly death (5). 

Adverse effects such as vomiting, diarrhea, rash, fatigue and hand foot syndrome 

are solely described by this ordered categorical scale. A conventional approach 

to describe the relation between exposure and the occurrence of a certain grade, 

is by statistically comparing the incidence of grades between different dose 

groups. Early models for these type of adverse effects used ordered logistic 

regression or proportional odds models.46,47 Both comparing the incidence of 
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adverse effects and the ordered logistic regression approach have shortcomings. 

In these analyses, only the most severe grade of the adverse effect observed 

in a patient is used. By comparing incidences, the already categorized data is 

dichotomized, leading to substantial loss of information and ignoring the time 

course of the effect. Furthermore, the dependency of the previous observed grade 

in predicting the probability of the occurrence of the next graded adverse effect 

is not taken into account. This problem can be addressed by implementing a 

Markov process in the model. First-order Markov models take into account the 

value of the preceding observation. The proportional odds model can be extended 

with a first order Markov model.48 In this way the probability of transition between 

severity grades of adverse effects depends on de preceding grade. Typically, the 

logit transformation is used to constrain values of probabilities between 0 and 

1, similar to the logistic regression approach. This approach has been used for 

modeling different anti-cancer induced graded adverse effects (Table 2). 

HFS has been described by a proportional odds model with a Markov process to 

model the cumulative probabilities of getting a grade 0, 1 or ≥2 for HFS related to 

accumulation of capecitabine.49 HFS and fatigue in sunitinib treated patients has 

been modeled using a first-order Markov model, that was similar to the extension 

of the proportional odds model.41 Vascular endothelial growth factor receptor 3 

(sVEGFR-3) was identified as biomarker and its relative change over time was 

modeled as predictor of the occurrence and severity of fatigue and HFS. 

Keizer et al. used a Markov transition model to describe proteinuria in patients 

treated with the VEGFR-inhibitor lenvatinib.40 Using a compartmental structure, 

each adverse event grade is represented with a compartment, which in turn 

is denoted with its own differential equation. The probability of experiencing a 

certain grade is represented by the corresponding compartment amount. The 

amounts in all compartments sum up to 1 at any time. At each observation, these 

amounts are reset to a full probability for the observed state and 0 for all other 

states, and hence a first-order Markov property is introduced. The rate constants 

for the movement of these amounts (i.e. probabilities) between compartments, 

which reflect the transitions between the different grades, are then estimated 

(Figure 2). 
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As Markov models potentially allow transition between all states in the model, 

assumptions can be made to reduce the number of parameters to be estimated. 

For this reason, in the analysis of Keizer et al. only the transitions between 

neighboring grades were estimated. The following differential equations were 

used:

= ⋅ − ⋅
dP Gr
dt

k P k P
( )

(1) (0)0
10 01

= ⋅ + ⋅ − ⋅ − ⋅
dP Gr
dt

k P k P k P k P
( )

(0) (2) (1) (1)1
01 21 10 12

= ⋅ + ⋅ − ⋅ − ⋅
dP Gr
dt

k P k P k P k P
( )

(1) (3) (2) (2)2
12 32 21 23

= ⋅ − ⋅
dP Gr
dt

k P k P
( )

(2) (3)3
23 32

Recently, a modeling and simulation framework for erlotinib induced rash and 

diarrhea in patients with NSCLC was published.50 The model structure was similar 

to the model used by Keizer et al., which was a continuous-time Markov model. 

The use of Markov processes is preferred over use of the proportional odds model 

for modeling ordered graded adverse effects. Markov models allow use of total 

longitudinal data on graded toxicities over time. Furthermore, these models 

take the preceding grade observed into account, which enables the precise 

characterization of the dynamics of toxicity. The Markov models currently 

published are empirical models. More mechanistic elements can easily be 

introduced in these models for instance using latent variables describing the 

underlying pharmacodynamic effects. However, this underlying mechanism is in 

most cases unknown. The major drawback of analyzing graded or categorical data 

is the fact that information is lost by using categories. In some cases, there is not 

a sufficient number of observations of severely graded adverse effects. Therefore, 

grades are sometimes merged together, leading to loss of already categorized 

information. However, if the clinical relevance between merged grades is not 
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profound, this is an acceptable approach. Though, if available the underlying 

observations might be better than the use of grades (e.g. blood pressure, instead 

of grades for hypertension).

Figure 2 General structure Markov model. Amount in compartment probability, kxx rate 
constants between probabilities.40,50

APPLICATION OF ADVERSE EFFECT MODELS

Developed models for adverse effects have been applied to support decision-

making regarding treatment optimization and clinical development. Ideally PK-

PD modeling frameworks are developed that integrate data on pharmacokinetics, 

adverse effects and efficacy. An example of such a framework is available 

for sunitinib.41 This paper did not only include modeling of ANC, fatigue, blood 

pressure and HFS, but also investigated if adverse effects were predictive for 

overall survival. Hypertension and neutropenia were found predictive for overall 

survival, functioning as biomarkers for treatment response. 

Adverse effect models can additionally support decision-making regarding 

dose adjustments and dose individualizations, using simulation methods. The 

previously described modeling and simulation framework for erlotinib-induced 

rash and diarrhea investigated the safety of high-dose erlotinib pulses (1600 mg/

week + 50 mg/day remaining week days) proposed, compared to the standard 

dose (150 mg/day) and different other dosing regimens.50 Based on a simulation 

analysis using the framework developed, severe rash was predicted to occur 

in 20% of patients treated with the pulsed dosing regimen, compared to 12% in 

patients treated with the standard dosing regimen. 
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In contrast with the common perception, radiotherapy was found to attenuate 

erlotinib-induced rash significantly, which advocates for using erlotinib and 

radiotherapy together. The framework also included a survival model, finding that 

experiencing rash at any grade was associated with improved clinical efficacy 

in terms of survival, albeit not significantly. Another example demonstrated 

that modeling can be helpful for determining individual dose adjustment of 

capecitabine to reduce severe grade HFS while maintaining efficacy.51 The paper 

reports a clinical trial simulation in which the proportional odds Markov model 

was used on individual patient data.49 Intolerable HFS (grade ≥ 2) was predicted 

for the next treatment cycle, based on the previous cycle for each patient. Dose 

adjustments were made accordingly. Individualized dose adjustments using the 

Markov model were compared to using standard dose adjustments and found to 

reduce the duration of intolerable HFS by 10 days without loss of efficacy. Both 

modeling frameworks are examples of how a modeling approach can support 

dose adjustments and dose individualizations using predictive simulation 

methods. 

Lastly, modeling and simulation of adverse effect models can optimize treatment 

and support clinical trial designs. The hypertension model, discussed in this 

review, has been used to optimize treatment with lenvatinib.52 This paper 

investigated four strategies to clinically manage lenvatinib induced hypertension 

to maximize both the number of patients on treatment and the average dose level 

during treatment, with use of simulations. An adverse effect-guided dose titration 

could potentially increase drug exposure without additional toxicity. Additionally, 

a design where anti-hypertensive treatment was followed by lenvatinib dose 

reduction proved to keep a large number of patients on treatment. This approach 

aimed at minimizing treatment cessation due to toxicity in order to improve 

response to treatment. The intervention designs were supportive of development 

of a phase II clinical trial design.
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DISCUSSION 

This review reports several structural models for modeling adverse effects of 

anti-cancer drugs. Firstly, the best modeling approach depends on the type of 

data available and secondly, on whether or not prior knowledge of the underlying 

mechanism of the adverse effect is available. If the adverse effect is reported 

as continuous variable and prior knowledge on the mechanism behind the 

effect, the best approach is to develop a mechanism or semi-mechanism based 

model. Mechanistic models generally have a better predictive performance and 

potentially allow for extrapolation beyond the conditions on which the model was 

developed. The model by Friberg et al., published in 2002, proves to be the best 

starting point for modeling hematologic toxicity, with only few pharmacodynamic 

parameters to be estimated and the mechanistic approach makes the model 

interchangeable between different anti-cancer drugs.17 If no prior mechanistic 

knowledge is available or implementation in the model is impossible, data can 

be modeled using generic pharmacodynamic effect models. This more empirical 

approach can give insight in how an adverse effect evolves over time, if data is 

continuous. In some cases, the underlying continuous measurement is graded 

using the NCI-CTC-AE scale. For example, hypertension can be graded as such, 

however, the underlying continuous measurement, blood pressure, is needed to 

grade this toxicity. Therefore, blood pressure measurement itself can be used to 

develop PK-PD models. In conclusion, if an underlying continuous measurement is 

available, this longitudinal continuous data is preferred over ordered graded data, 

since it is less prone to loss of information. In subsequent simulation studies, 

the clinically well accepted graded score can still be derived from the continuous 

data. Adverse effects like diarrhea, vomiting and HFS are difficult to quantify and 

are described by ordered categorical grades. In this case, the best approach is to 

model the probabilities using a proportional odds model with a Markov process. 

The probability of a certain grade will then depend on the previously observed 

grade, which is true for almost all observed effects in oncology.
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Modeling and simulation methods for adverse effects are preferred over the 

conventional comparison of adverse effect incidences between dosing groups. 

Quantitative models consider the variability between patients, allowing 

integration of patient characteristics that might be important in predicting the 

safety profile. Patient characteristics can alter systemic exposure to the drug 

and may lead to differences in onset, severity and duration of adverse effects. 

Typically, physiological factors such as age, body size, gender, kidney function 

and liver function can alter exposure, as well as pharmacogenetic factors and 

administration of other drugs.53 Integration of these patient characteristics can 

be helpful in managing individual dose adaptations. In addition, proposed models 

can be used to model adverse effects driven by combination therapy, which is 

often applied in the oncology setting. 

Established PK-PD models can predict different clinical scenarios. These 

simulations are particularly helpful in finding the optimal relationship between 

exposure and safety. Ideally, a PK-PD modeling framework is developed, that 

integrates data on exposure, efficacy and toxicity, to assess the optimal balance 

between safety and efficacy.41,54 Modeling tumor growth as a biomarker for efficacy 

can be of added value in assessing this balance.55 

In conclusion, mathematical modeling of adverse effects can provide insight in 

how toxicities evolve over time and if or what patient related factors can impact 

this time course. In addition, a modeling approach includes all available data, 

minimizing loss of information as is typically the case using more conventional 

methods of analyzing toxicity data. At last, modeling and simulation frameworks 

have been proved to support clinical trial designs, to optimize treatment and to 

guide dose adjustments or dose individualizations. Therefore, modeling adverse 

effects proves to be a helpful tool for both improvement of clinical management 

and support of decisions regarding drug development.
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ABSTRACT

Objectives 

Trastuzumab is associated with cardiotoxicity, manifesting as a decrease of the 

left-ventricular ejection fraction (LVEF). Administration of anthracyclines prior 

to trastuzumab increases risk of cardiotoxicity. High-sensitive troponin T and 

N-terminal-pro-brain natriuretic peptide (NT-proBNP) are molecular markers 

that may allow earlier detection of drug-induced cardiotoxicity. In this analysis 

we aimed to quantify the kinetics and exposure-response relationships of LVEF, 

troponin T and NT-proBNP measurements, in patients receiving anthracycline 

and trastuzumab.

Methods 

Repeated measurements of LVEF, troponin T and NT-proBNP and dosing records 

of anthracyclines and trastuzumab were available from a previously published 

clinical trial. This trial included 206 evaluable patients with early breast cancer. 

Exposure to anthracycline and trastuzumab was simulated based on available 

dosing records and by using a kinetic-pharmacodynamic (K-PD) and a fixed 

pharmacokinetic (PK) model from literature, respectively. 

Results 

The change from baseline troponin T was described with a direct effect model, 

affected by simulated anthracycline concentrations, representing myocyte 

damage. The relationship between trastuzumab and LVEF was described by an 

indirect effect compartment model. The EC
50 

for LVEF decline was significantly 

affected by the maximum troponin T concentration after anthracycline treatment, 

explaining 15.1% of inter-individual variability. In this cohort, NT-proBNP changes 

could not be demonstrated to be related to anthracycline or trastuzumab 

treatment.
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Conclusions 

Pharmacodynamic models for troponin T and LVEF were successfully developed, 

identifying maximum troponin T concentration after anthracycline treatment as 

a significant determinant for trastuzumab-induced LVEF decline. These models 

can help identify patients at risk of drug-induced cardiotoxicity and optimize 

cardiac monitoring strategies.
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INTRODUCTION

Trastuzumab is a monoclonal antibody that targets the human epidermal growth 

factor receptor 2 (HER2) and is used to treat HER2-positive metastatic and early 

breast cancer and metastatic gastric cancer.1–3 Despite improvement in overall and 

progression free survival, application of the drug is hampered by cardiac adverse 

effects, leading to dose reductions, dose-delays and treatment interruption or 

withdrawal with an increased recurrence risk as a consequence.4 Trastuzumab-

induced cardiotoxicity is manifested as an asymptomatic decrease of the left-

ventricular ejection fraction (LVEF) and development of congestive heart failure.5 

The mechanism behind this cardio-toxic effect is not completely elucidated, though 

it has been demonstrated that trastuzumab causes structural and functional 

changes to contractile proteins in the heart muscle.6,7 These changes rarely lead to 

cell death, that might explain why the decrease in LVEF values is partly reversible 

when trastuzumab treatment is discontinued.5 In addition, patients treated 

with trastuzumab are often pretreated with anthracyclines. Anthracyclines can 

irreversibly damage myocytes, possibly by generation of reactive oxygen species 

and lipid peroxidation of the cell membrane of cardiomyocytes.8 A cumulative 

lifetime dose exceeding 550 mg/m2 for doxorubicin and 950 mg/m2 for 

epirubicin has been associated with increased incidence of heart failure.9,10 These 

cumulative dose thresholds are therefore clinically applied to limit the risk for 

cardiac damage. Since both trastuzumab and anthracyclines can lead to cardiac 

dysfunction, it is not surprising that a higher incidence of cardiac dysfunction 

has been reported for patients treated with anthracyclines concomitantly or prior 

to trastuzumab.11 However, a high variability in susceptibility to cardiotoxicity is 

seen for patients treated with anthracyclines and trastuzumab. 

Cardiac function can be monitored during treatment using echocardiography 

or Multiple Gated Acquisition (MUGA) scan to determine the LVEF. Attempts 

have been made to optimize cardiac monitoring strategies, allowing for a 

better identification of patients that experience cardiotoxicity and decrease 

the number of LVEF measurements in low-risk patients.12 Cardiac biomarkers 

such as troponin T and N-terminal-pro-brain natriuretic peptide (NT-proBNP) 

are molecular markers suggested to allow earlier detection of drug-induced 

cardiotoxicity compared to LVEF measurement.13 Cardiac troponins are indicative 
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of myocyte damage and are suggested to predict patients at risk of cardiotoxicity 

during trastuzumab treatment who are pretreated with anthracyclines.14 In 

addition, elevated baseline concentrations of troponin I and troponin T have been 

related to an increased risk of LVEF decrease.13 NT-proBNP is a marker for heart 

failure. Currently, troponins and NT-proBNP are used as cardiac biomarkers for 

prognosis and diagnosis of myocardial infarction and heart failure, respectively.15 

However, no evidence exists for anti-cancer drug management based on 

abnormal cardiac biomarker concentrations. Development of a pharmacokinetic-

pharmacodynamic (biomarker) model can give insight in the time course of 

cardiac biomarkers during treatment and help identify the optimal time point 

of cardiac biomarker assessment. In this analysis, we aim to quantify the 

kinetics and exposure-response relationship of LVEF, troponin T and NT-proBNP 

measurements, in patients with early breast cancer receiving anthracyclines 

followed by trastuzumab. Ultimately, the quantification of cardiac biomarkers 

could help identify patients at increased risk of developing cardiotoxicity and 

optimize clinical management of trastuzumab-induced cardiotoxicity.

METHODS

Patients and data

The analysis conducted in this study was based upon data from patients with 

HER2-positive early breast cancer from a previously conducted randomized, 

placebo-controlled clinical trial, investigating protection for trastuzumab-

induced cardiotoxicity with angiotensin II-receptor inhibitor candesartan. 

All patients received adjuvant treatment with anthracycline-containing 

chemotherapy, either doxorubicine or epirubicine, followed by trastuzumab 

treatment for 52 weeks. Patients were randomized to receive candesartan or 

placebo (1:1) daily, starting from the first trastuzumab administration until 26 

weeks after the last trastuzumab administration. The trial demonstrated that 

concomitant candesartan treatment did not protect against decreases in LVEF 

during trastuzumab treatment.16
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Repeated measurements for LVEF were available for all patients. LVEF was 

determined with MUGA scan or echocardiography. Autologous red blood cells 

(400 MBq Tc-99m labelled) were injected and acquisition was performed in 

6 minutes with a large-field-of-view gamma camera with a low energy all-

purpose parallel-hole collimater. Troponin T and NT-proBNP concentrations were 

available for 92% of patients and were measured in plasma samples using a 

sandwich immunoassay (Modular E system, Roche Diagnostics). The lower-limit 

of quantification (LLOQ) for NT-proBNP was 5 pg/mL and for (high sensitive) 

troponin T 3 ng/L. Troponin T and NT-proBNP measurements were scheduled at 

the following visits: before starting anthracycline treatment, at baseline before 

starting trastuzumab treatment and 3, 12, 24, 36, 52, 64, 78 and 92 after starting 

trastuzumab treatment. LVEF was evaluated at the same time points, except for 

the 3 week and 64 week visit since start trastuzumab treatment. Additionally, 

individual patient dosing records, including time of administration and dosages 

of anthracycline and trastuzumab were available. None of the patients received a 

cumulative dose above 550 mg/m2 or 950 mg/m2 for doxorubicin and epirubicin, 

respectively.

Modeling cardiac biomarkers

Structural models 

Exposure to anthracyclines and trastuzumab were predicted using individual 

dosing records of the drugs and simulated using different approaches. A K-PD 

approach was applied for the anthracyclines (doxorubicin and epirubicin).17 The 

trastuzumab PK profiles were obtained using fixed effect parameters from a 

previously published PK model for HER2-positive breast cancer patients.18 

Exploratory plots were used to determine pharmacodynamic modeling starting 

points for the three cardiac biomarkers. The plots demonstrated an increase in 

troponin T during anthracycline treatment, and a gradual decrease of troponin T 

during trastuzumab treatment. Therefore, troponin T changes were assumed to 

be related to anthracycline treatment only. Troponin T samples were taken before 

anthracycline treatment, approximately 21 days after the last anthracycline 

dose and during trastuzumab treatment, with limited samples available during 
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anthracycline treatment. Therefore, direct and indirect effect models were 

evaluated to identify if the troponin T peak concentration occurred right after the 

last administration of anthracyclines or if the peak was delayed after treatment.

A previously published model by our group was used as a starting point for 

modeling trastuzumab-induced LVEF decrease.19 In this model the LVEF decline 

was described by an effect compartment, demonstrating cardiac damage induced 

by trastuzumab treatment. The delay in LVEF decline in relation to trastuzumab 

treatment (the cardiac damage onset rate) was kept equal to the rate of recovery.

NT-proBNP changes were evaluated during anthracycline and trastuzumab 

treatment separately. A model that described NT-proBNP concentrations to be 

inversely associated with LVEF values was evaluated. In addition, NT-proBNP 

baseline values prior to initiation of either anthracycline or trastuzumab 

treatment were evaluated as covariates. 

Statistical models

Between subject variability (BSV) was evaluated for all structural model 

parameters using an exponential error model:

η= ⋅P P exp( )i pop i

where P
i
 is the individual parameter estimate for individual i, P

pop
 the population 

parameter estimate and η
i
 the individual value of between-subject variability 

for subject i, where η
i
 was assumed to be normally distributed with mean 0 and 

variance ω2. Off-diagonal elements of the variance-covariance (omega) matrix, 

were evaluated to identify covariances between the individual random effects. 

These covariances were used to derive the correlations between the random-

effects. Residual unexplained variability was described as a proportional error 

model for all cardiac biomarkers:

ε= ⋅ +C C (1 )obs ij pred ij p ij, , ,
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where C
obs,ij

 represents the observed concentration for individual i and observation 

j, C
pred,ij

 represents the individual predicted concentration, ε
p,ij

 the proportional 

error distributed following N (0,σ2).

Covariate analysis

Different covariates were included in the covariate analysis, based on 

physiological plausibility and clinical relevance. The following covariates were 

evaluated for the anthracycline-troponin T model and the trastuzumab-LVEF 

model: age, hypertension diagnosis and status, radiotherapy of the chest, 

laterality of radiotherapy and type of anthracycline administered. Additionally, 

type of anthracycline (epirubicin or doxorubicin) was evaluated as a covariate 

for the anthracycline-troponin T model, and baseline LVEF values (prior to 

initiation of trastuzumab) and time between last anthracycline dose and 

first trastuzumab dose for the trastuzumab-LVEF model. Since patients in 

this cohort were randomized to receive either placebo or candesartan to 

prevent or alleviate trastuzumab-induced cardiotoxicity, treatment group was 

evaluated as a covariate. In addition, the dose normalized cumulative dose of 

anthracycline and the predicted maximum concentration of troponin T reached 

by the previous anthracycline treatment were evaluated as a covariates. Binary 

covariates (previous radiotherapy, hypertension diagnosis, type of anthracycline 

administered) were implemented using the following equation:

θ= ⋅P P ( )i pop cov
COV

Where θ
cov

 is the covariate effect parameter and COV the covariate value. Continuous 

covariates (COV
cont

) (time between last anthracycline dose and initiation of 

trastuzumab, maximum concentrations of troponin T) were normalized to the 

median value of the covariate (COV
median

) and implemented as follows:

= ⋅
θ

P P
COV
COVi pop

cont

median

cov
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Categorical covariates (laterality of radiotherapy and hypertension status) were 

implemented by estimating a separate parameter for each category. The selected 

physiologically plausible and clinically relevant covariates were evaluated using 

a forward inclusion and backward elimination method. A significance level of p < 

0.01 was set for the forward inclusion, corresponding to a decrease of OFV of > 6.63. 

For backward elimination, a significance level of p <0.005 was set, corresponding 

to an increase of OFV of > 7.88.

Model evaluation

Models evaluation was performed using general goodness-of-fit (GOF) plots, 

plausibility, stability and precision of parameter estimates and change in 

objection function value (OFV).20 A p < 0.01 was considered significant, meaning 

that an OFV drop of > 6.63 for hierarchical models (degree of freedom = 1, chi-

squared distribution) was considered as a significant improvement. Since 

troponin T samples were taken predominantly before anthracycline treatment 

and approximately 21 days after the last anthracycline dose, predicted troponin 

T concentrations at day 21 after the last anthracycline administration were also 

evaluated as a covariate. In addition, the final model for LVEF was evaluated for 

the placebo and the candesartan group, separately, in order to identify possible 

differences related to study treatment. 

Software

Data management and graphical evaluation were performed using R (version 

3.0.1).21 Nonlinear mixed effects modeling was performed using NONMEM (version 

7.3.0, ICON Development Solutions, Ellicott City, MD, USA) and Perl-speaks-

NONMEM (version 4.4.8).22,23 Piraña (version 2.9.2) was used as graphical user 

interface.24 Models were estimated using First Order Conditional Estimation 

method with η-ε interaction (FOCE-I). 
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Table 1 Patient characteristics 

MEDIAN [RANGE] N

Age at randomization (years) 50 [25-69] -

Number of anthracycline cycles 4 [2-6] -

Absolute doses of anthracyclines 

Doxorubicin (mg) 110 [75-150] -

Epirubicin (mg) 170 [100-200] -

Number of trastuzumab cycles 23 [5-46] -

Trastuzumab doses

3 weekly schedule 8 mg/kg – 6 mg/kg 62

weekly schedule 4 mg/kg – 2 mg/kg 144

Time between last anthracycline dose 
and first trastuzumab dose (days)

21 [14-217]

No. of patients
n=206 %

Measurements

LVEF measurements available 206 100

LVEF baseline – before anthracycline 173 84.0

LVEF baseline – before trastuzumab 205 99.5

Troponin T measurements available 190 92.2

NT-proBNP measurements available 190 92.2

Type of anthracycline treatment

Doxorubicin 181 87.9

Epirubicin 25 12.1

Clinically relevant decline in LVEF*

Yes 37 18

No 169 82

Medical history

Previous radiotherapy

Yes 112 45.6

No 94 54.4
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Table 1 continued

Laterality of radiotherapy

Left 58 28.2

Right 54 26.2

No radiotherapy 94 45.6

Hypertension ever diagnosed

Yes 24 11.7

No 182 88.3

Hypertension status

Past 5 2.4

Dormant 12 5.8

Active 7 3.4

No hypertension 182 88.3

*A decline in LVEF was assumed clinically relevant if LVEF values decreased with 15% or more from baseline or 

if a value of <45% was reached.

RESULTS

Patients and data

In the final analysis, 206 patients were included. A total of 1444 LVEF measurements 

(96% by MUGA scan) were available for 206 patients with a median [range] of 

8 [2-9] measurements per patient. Troponin T and NT-proBNP measurements 

were available for 190 patients, with a total of 1230 troponin T measurements,7 

[1-11] measurements per patient, and 1028 NT-proBNP measurements, 6 [1-10] 

measurements per patient. Concentrations below the LLOQ were divided by two 

in the final dataset (4.6% of the troponin T observations and 2.5% of NT-proBNP 

were below the LLOQ). Part of the patient characteristics are depicted in Table 1. 

The clinical data have been extensively described elsewhere.16

Data and models for the cardiac biomarkers troponin T, LVEF, and NT-proBNP were 

explored separately in relation to the anthracycline concentration-time profiles 

(troponin T and NT-proBNP) and to the trastuzumab concentration-time profiles 

(LVEF and NT-proBNP). The final model parameter estimates are summarized in 

Table 2. 
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Figure 1 Structural models for anthracycline and troponin T (K-PD) and trastuzumab 
and LVEF (PK-PD), K

e
 = elimination rate constant, A

ant
= amount of anthracyclines, C

eff
 = the 

concentration in the effect compartment, K
rec

= recovery rate constant, T
1/2rec

 = recovery half-
life.

Troponin T

Troponin T changes were best described by a direct effect model, where the 

troponin T concentration increased proportionally with the increment of 

simulated anthracycline concentrations (Figure 1A). The model was described by 

the following equations:

= − ⋅
dA
dt

K Aant
e ant

= ⋅ + ⋅TRP TRP SLOPE A(1 )ant0

where A
ant

 is the amount of anthracyclines, K
e
 the elimination rate constant, TRP is 

troponin T, TRP
0
 is troponin T at baseline, before starting anthracycline treatment, 

SLOPE is the parameter that describes the proportional increase of troponin T from 

baseline. The goodness of fit plots (Figure 2A and Online Resource 1 Figure S1) 

showed that the anthracycline-troponin T underpredicted some of the observed 
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higher concentration of troponin T. However, the individual predictions were 

considered adequate. The VPC showed a slight overprediction of the declining 

troponin T concentrations in the 95th percentile (Figure 3), nevertheless, the 

higher concentrations are described adequately. NPDE plots did not show 

significant trends. In addition, an indirect effect model was evaluated. However, 

this model underpredicted the observed concentrations around day 21 post last 

anthracycline dose and also underpredicted the recovery rate of the troponin T 

peak.

Figure 2 Diagnostic plots for a. troponin T and b. left ventricular ejection fractions (LVEF), 
including individual and population predictions and normalized prediction distribution 
error (NPDE) over predictions and time.
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Table 2 Parameter estimates for cardiac biomarker models anthracycline-troponin T and 

trastuzumab-LVEF.

PARAMETER UNIT
PARAMETER 

ESTIMATE
RSE (%) SHRINKAGE (%)

Anthracycline - troponin T model

Troponin T baseline (TRP
0
) ng/L 4.72 3.5 -

Elimination rate constant K-PD model 

(K
e
)

day-1 8.49∙10-3 4.0 -

Proportional effect (anthracyclines-

troponin T) (SLOPE)
ng-1·L 8.84∙10-3 7.0 -

Proportional anthracycline-type effect 
on SLOPE

0.524 17.5 -

Between-subject variability (%)

Slope effect on TRP
0
 (SLOPE) CV 57.7 23.3 31.0

Troponin T baseline (TRP
0
) CV 39.2 9.9 12.6

Residual variability

Proportional residual error 

troponin T
% 30.1 4.2 11.2

Trastuzumab – LVEF model -

LVEF baseline value (LVEF
0
) 0.599 0.6 -

Recovery half-life (T
1/2rec

) day 67.9 17.2 -

Sensitivity to LVEF decline (EC
50

) mg/L 2.18∙105 23.4 -

Maximum troponin T effect on EC
50

-1.16 23.4 -

Between-subject variability (%)

LVEF baseline value (LVEF
0
) CV 7.07 16.7 9.9

Sensitivity to LVEF decline (EC
50

) CV 82.9 43.1 26.0

Correlation ωLVEF
0 -

~ ωEC
50

a - 0.585

Residual variability

Proportional residual error LVEF % 7.8 2.9 8.3

CV = coefficient of variation, SD = standard deviation, RSE = relative standard error. 

aCorrelation derived from the variance-covariance matrix of the random effects. 



189

Pharmacodynamic modeling of cardiac biomarkers

LVEF

The previously published LVEF model, used as a modeling starting point, described 

the data well.19 However, different models were evaluated to separate the delay 

in cardiac damage after trastuzumab administration and the recovery rate. In 

the final model, the cardiac damage was generated by cumulative trastuzumab 

concentrations and the recovery half-life was estimated. The structural model is 

depicted in Figure 1B. The model was described by the following equations:

= − ⋅
dC
dt

C
T

Cln (2 )eff
trastuzumab

rec
eff

1/2

= ⋅ −
+

LVEF LVEF
C

C EC
1 eff

eff
0

50

where C
eff

 is the effect compartment concentration, C
trastuzumab

 the trastuzumab 

concentration in the central compartment, T
1/2rec

 the recovery half-life (where ln 

(2) /T
1/2rec

 represents the recovery rate constant), LVEF
0
 the LVEF baseline value 

before the first administration of trastuzumab and EC
50

 the concentration at 

which 50% of the drug effect occurs. LVEF decline recovered after cessation of 

trastuzumab treatment with a recovery half-life of 68 days (RSE 17.2%). The BSV 

for both EC
50

 and recovery could not be identified, therefore the BSV on recovery 

was not included in the final model. The BSV in baseline LVEF was moderately 

positively correlated with the EC
50

 parameter (r=0.585), indicating that patients 

with a low baseline LVEF tend to have a higher sensitivity to trastuzumab-induced 

LVEF decline (lower EC
50

). The model described the data adequately, however a 

slight underprediction was seen for the lower LVEF values (Figure 2B, Figure 3 and 

Online Resource 1 – Figure S1). This is expected to be the result of discontinuation 

of treatment in patients experiencing a significant decrease in LVEF, for whom 

follow up LVEF measurements were not available (e.g. Figure 4A and 4C). Therefore, 

the recovery to baseline in these patients was not supported by observations, but 

was predicted by the model. 



190

CHAPTER 3.2   | Pharmacodynamic modeling of cardiac biomarkers

A decrease in LVEF was classified as significant if LVEF dropped below 45% or 

when a decrease of 15% from baseline occurred. The final model was evaluated for 

the candesartan and placebo group separately. No mayor differences were found 

in magnitude of parameter estimates or model fit, as expected (data not shown). 

Figure 3 Prediction corrected Visual Predictive Checks (pcVPCs) for troponin T and left 
ventricular ejection fractions (LVEF). The solid line represents the median of the observed 
data, the dashed lines represent the 5th and 95th percentiles of the observed data, 
the shaded areas represent the 95% confidence interval of the simulated data for the 
corresponding percentiles (n=500).

NT-proBNP

NT-proBNP did not demonstrate a clear trend over time during anthracycline or 

trastuzumab treatment and NT-proBNP concentrations did not increase before 

LVEF decline occurred and did not behave as an inverse of LVEF decline. Therefore, 

the NT-proBNP baseline concentrations were evaluated as covariates in the LVEF 

model. These models were also evaluated for each treatment group separately 

(candesartan and placebo), leading to similar results. 
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However, high relative increases of NT-proBNP, approximately 27 weeks after 

the lowest LVEF value, were observed in 4 patients with a significant decline in 

LVEF and in 3 patients with no significant decline in LVEF (Online Resource 1, 

Figures S2 and S3). NT-proBNP increment could, therefore, be a delayed effect of 

previous LVEF decline, a sign of other underlying cardiac disease or a forecast of 

development of congestive heart failure, since these patients did not report an 

increase in heart failure symptoms (NYHA) at the time of the peak. Therefore, NT-

proBNP was not included in the LVEF model.

Figure 4 Panels of individual plots for observed (solid line) and individual predicted 
(dotted line) left ventricular ejection fractions (LVEFs) over time for 4 different patients. 
Vertical dashes represent the trastuzumab administrations A. patient with maximum 
troponin T values in the higher range, relatively high baseline and a significant decline in 
LVEF value. B. patient with lower maximum concentration of troponin T, normal baseline 
and no significant decline in LVEF. C. patient with maximum troponin T values in the 
higher range, relatively low LVEF baseline and a significant decline in LVEF D. patient 
with maximum troponin T values in the lower range, relatively high LVEF baseline and no 
significant decline in LVEF.
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Covariates

The covariates were evaluated on the SLOPE parameter (anthracycline-troponin 

T model) and on the EC
50

 and recovery half-life parameter (trastuzumab-LVEF 

model). No covariates were identified that significantly improved model fit of 

the anthracycline-troponin T model, except for type of anthracycline on the 

SLOPE parameter. The SLOPE-parameter, was significantly affected by the type of 

anthracycline administered, as illustrated by 2-fold lower estimate for epirubicin 

compared to doxorubicin (anthracycline-type effect estimate of 0.524 (relative 

standard error (RSE) 17.5%). This means that, for example, administration of one 

dose of 100 mg doxorubicine leads to an increase in troponin T from 3 ng/L to 5.6 

ng/L, where an equivalent dose of epirubicin would increase troponin T from 3 

ng/L to 4.3 ng/L. Considering the LVEF-trastuzumab model, the sensitivity for LVEF 

decline (EC
50

 parameter) was significantly affected by the predicted maximum 

concentration of troponin T after anthracycline treatment. Sensitivity for LVEF 

decline was higher (decreased EC
50

 parameter) for patients with a high maximum 

concentration of troponin T, resulting in a more pronounced decline in LVEF during 

trastuzumab treatment (Figure 4), described by the following equation:

= ⋅
−

EC EC
TRP
18i pop
max

50 50

1.16

where TRP
max

 is the peak concentration of troponin T. According to this equation, 

a peak concentration of 31 ng/L troponin T, would increase the sensitivity to 

LVEF decrease by a 2-fold (2-fold decrease in EC
50

). The maximum troponin T 

concentration reduced the between subject variability in sensitivity for LVEF 

decline from 98.0% in the base model (Online Resource 1, Table S1) to 82.9% in 

the covariate model. The sensitivity analysis demonstrated that the predicted 

concentration of troponin T at 21 days after the last anthracycline dose was an 

equally significant covariate on the EC
50

 parameter (Online Resource 1, Table S1). 

The other tested covariates did not significantly improve the model. 
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DISCUSSION

The pharmacodynamics of troponin T and LVEF changes during anthracycline 

and trastuzumab treatment, respectively, were successfully described by the 

reported models. The maximum concentration of troponin T was a significant 

determinant of sensitivity to trastuzumab-induced cardiotoxicity, defined as a 

decline in LVEF values.

Baseline troponin T concentrations were directly affected by anthracycline 

concentrations. The type of anthracycline significantly affected the linear 

SLOPE parameter, showing that epirubicin had an approximately 2-fold lower 

proportional effect on baseline troponin T concentrations compared to 

doxorubicin. This finding is expected, since at equivalent doses, epirubicin 

demonstrates less cardiotoxicity than doxorubicin. Moreover, the cumulative 

lifetime anthracycline dose threshold, associated with increased incidence of 

heart failure, is also almost a 2-fold higher for epirubicin (950 mg/m2) compared 

to doxorubicin (550 mg/m2).9,10 The anthracycline-troponin T model predicted 

maximum troponin T concentration at the day of the last anthracycline infusion. 

However most of the troponin T samples were drawn at approximately 21 days 

after the last anthracycline dose. To delay the troponin T peak to 21 days, a turnover 

model was evaluated. However, the recovery rate of troponin T was estimated to 

be slower than observed, indicating that the peak of troponin T occurs earlier 

after administration. This is supported by literature, reporting that myocyte 

damage induced by anthracyclines occurs within hours after administration.25 

In addition, an increase of troponin T within 1-3 days after doxorubicin infusion 

has been reported in the pediatric setting and an increase in troponin I within 

hours after high-dose chemotherapy has been reported for adults.26,27

The trastuzumab-LVEF model demonstrated a decline in LVEF values that 

improved after treatment cessation, demonstrated by a recovery of LVEF towards 

baseline. This analysis prospectively validated the model for LVEF developed in a 

previously published PK-PD analysis.19 A high variability in susceptibility to LVEF 

decline and development of congestive heart failure has been reported in various 

clinical trials for patients treated with anthracyclines and trastuzumab. 
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High peak troponin T levels were proved to be predictive for this high sensitivity 

towards trastuzumab induced LVEF decline. The sensitivity analysis demonstrated 

that the concentration of troponin T at 21 days after the last anthracycline dose 

is predictive of sensitivity to trastuzumab-induced cardiotoxicity. In addition, 

the baseline value of LVEF showed to be moderately positive related to the EC
50 

parameter, indicating that patients with a low LVEF baseline tend to be more 

sensitive to trastuzumab-induced LVEF decrease.

Repeated NT-proBNP measurements were not integrated in the model, since NT-

proBNP showed high variability. However, some patients experienced high relative 

increases of NT-proBNP, approximately 27 weeks after their nadir of the LVEF value. 

An increment in NT-proBNP could therefore possibly be a delayed effect of a prior 

decline in LVEF, which could be a sign of other cardiac comorbidities or a forecast 

of development of congestive heart failure. However, early time course data 

for NT-proBNP, during anthracycline treatment, was lacking for most patients, 

which could be a reason why NT-proBNP was not identified as an early cardiac 

biomarker in this cohort. Additionally, NT-proBNP baseline concentrations were 

not significantly related to anthracycline-induced troponin T increase nor to LVEF 

decline during trastuzumab treatment. 

Age, cardiac history and interval between anthracycline treatment and initiation 

of trastuzumab treatment have been previously reported as risk factors for 

trastuzumab-induced cardiotoxicity.28 In addition, age and pre-existing cardiac 

disease have been related to anthracycline-induced cardiotoxicity.29 In this 

analysis none of these factors could be identified as covariates influencing either 

trastuzumab-induced cardiotoxicity or anthracycline-induced cardiotoxicity. This 

could be related to in- and exclusion criteria of the study, since only patients with 

favorable cardiac history and relatively low age were included, with a maximum 

age of 69 years and only 13% of patients being older than 60 years. In addition, 

for only 6% of patients the length of the interval between end of anthracycline 

and initiation of trastuzumab treatment was longer than 30 days, explaining why 

time between treatments could not be identified as a covariate in this analysis. 

Patients in this study were randomized to receive candesartan or placebo, 

initiated on the first day of trastuzumab treatment. 
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Therefore, we do not expect that the randomization affects the anthracycline-

troponin T model. Candesartan showed no cardio-protective effects in the original 

study. Nevertheless, to evaluate potential differences between candesartan 

and placebo for the trastuzumab-LVEF model, treatment group was evaluated 

as a covariate on the EC
50

 and found not significantly different. In addition, no 

differences in parameter estimates or model fit were seen when the trastuzumab-

LVEF model was evaluated for each treatment group separately.

The biomarker models were not estimated simultaneously. However, 

anthracyclines induce troponin T release by damaging cardiac cells, where 

trastuzumab is hypothesized to cause functional changes in contractile proteins, 

not associated with cell damage or troponin T changes.5–7 Therefore, we do not 

expect that the LVEF changes affect the estimation of the anthracycline-troponin 

T model. In addition, we used the peak troponin T concentration as a covariate, 

because the amount of troponin T is expected to be a marker for the amount of 

damage caused by anthracyclines.

The established models can help evaluate the feasibility of using a cardiac 

biomarker (e.g. troponin T) to identify patients at risk of trastuzumab-induced 

LVEF decline. However, clinical applicability is challenged by unstandardized 

analytical assays for determination of cardiac biomarkers and algorithms to 

calculate LVEF, definition of the optimal sampling time point, identification of 

a cut-off value and subsequently determination of a proper strategy in case of 

identification of an abnormal cardiac value. In addition, subclinical LV dysfunction 

can be estimated using alternative methods, such as determination of LV 

diastolic dysfunction and myocardial strain. These parameters give insight in 

early changes in LV remodeling and have been recommended to monitor patients 

treated with cardio-toxic anti-cancer drugs.30 

Although prospective validation is warranted, the developed models can be 

applied to evaluate cardiac monitoring strategies, such as previously described 

for LVEF.12 Simulation of troponin T and LVEF profiles could aid development 

of adaptive cardiac monitoring protocols, possibly integrating troponin T as 

a potential biomarker and determination of optimal sampling time points. 
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Risk-stratified protocols could optimize adaptive dosing in high-risk patients, 

ensuring maximum possible exposure to trastuzumab, and reduce amount of 

LVEF measurements in low-risk patients.

In conclusion, to our knowledge this is the first PK-PD analysis that integrated 

longitudinal data of two cardiac biomarkers during anthracycline and trastuzumab 

treatment. In this cohort, changes in NT-proBNP could not be demonstrated to 

be related or predictive of anthracycline- or trastuzumab-induced cardiotoxicity. 

The analysis identified maximum troponin T concentration after anthracycline 

treatment as a significant determinant of subsequent trastuzumab-induced 

LVEF decrease.
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ABSTRACT

Background 

The incidence of neutropenia in metastatic castration-resistant prostate cancer 

(mCRPC) patients treated with docetaxel has been reported to be lower compared 

to patients with other solid tumors treated with a similar dose. It is suggested 

that this is due to increased clearance of docetaxel in mCRPC patients, resulting 

in decreased exposure. The aims of this study were to i) determine if exposure in 

mCRPC patients is lower versus patients with other solid tumors by conducting a 

meta-analysis, ii) evaluate the incidence of neutropenia in patients with mCRPC 

versus other solid tumors in a clinical cohort and iii) discuss potential clinical 

consequences.

Methods 

A meta-analysis was conducted of studies which reported areas under the plasma 

concentration-time curves (AUCs) of docetaxel and variability. In addition, grade 

3/4 neutropenia was evaluated using logistic regression in a cohort of patients 

treated with docetaxel.

Results 

The meta-analysis included 36 cohorts from 26 trials (n=1150 patients), and 

showed that patients with mCRPC had a significantly lower mean AUC versus 

patients with other solid tumors (fold-change [95% confidence interval (CI)]: 1.8 

[1.5-2.2]), with corresponding AUCs of 1.82 and 3.30 mg∙h/L, respectively. Logistic 

regression, including 812 patients, demonstrated that patients with mCRPC had 

a 2.2-fold lower odds of developing grade 3/4 neutropenia compared to patients 

with other solid tumors (odds ratio [95%CI]: 0.46 [0.31-0.90]).

Conclusion 

These findings indicate that mCRPC patients have a lower risk of experiencing 

severe neutropenia, possibly attributable to lower systemic exposure to docetaxel. 
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INTRODUCTION

Docetaxel is a chemotherapeutic agent, currently approved for the treatment 

of various solid tumors, including breast cancer, head and neck cancer, gastric 

adenocarcinoma, non-small-cell lung cancer (NSCLC) and metastatic castration-

resistant prostate cancer (mCRPC). The pharmacokinetic (PK) profile of docetaxel 

is best described by a three-compartment model with a rapid distribution of the 

drug and longer elimination half-life.1 Docetaxel is for more than 90% protein-

bound and binds mainly to α1-acid glycoprotein, albumin and lipoproteins. 

Docetaxel is metabolized in the liver by the CYP3A4 enzyme and eliminated via 

biliary excretion.2 The clearance of docetaxel is affected by hepatic impairment, 

α1-acid glycoprotein and body surface area (BSA), explaining part of the variability 

in clearance.3 Nevertheless, relatively high remaining unexplained variability 

in PK exists.1 affecting both response and toxicity rates. Lower exposure to 

docetaxel has been related to shorter time to progression in patients with NSCLC.4 

Additionally, a 50% decrease in clearance has been related to a 4.3-fold increase 

in odds of developing grade 3/4 (severe/life-threatening) neutropenia.4 

It has been reported that mCRPC patients experience less grade 3/4 neutropenia 

compared to patients with other solid tumors. Proportions of 32% and 16% 

have been reported for mCRPC patients treated with 75 mg/m2 and 60-70 mg/

m2 docetaxel.5,6 compared to 65% reported for patients with NSCLC receiving a 

comparable dose. Percentages between 61% and 68% have also been reported 

in different studies including non-castrated prostate cancer patients, receiving 

doses of 70-75 mg/m2.7–9 A study by Franke et al. demonstrated a 2-fold lower area 

under the plasma concentration-time curve (AUC) in mCRPC patients compared to 

non-castrated prostate cancer patients10, which may explain the lower incidence 

of hematological toxicity in mCRPC patients treated with standard doses of 

docetaxel.

Extensive PK analyses have been conducted before docetaxel was approved for 

mCRPC in 2004.4 In recent years, many independent clinical trials have been 

published, reporting PK characteristics of docetaxel in both mCRPC patients and 

patients with other solid tumors, enabling us to perform this meta-analysis.



204

CHAPTER 3.3   | Neutropenia and exposure to docetaxel in mCRPC patients

In this study we aim i) to determine if mCRPC patients demonstrate lower exposure 

to docetaxel compared to patient with other solid tumors, by including data 

from literature in a meta-analysis, ii) to evaluate the incidence of neutropenia 

in patients with mCRPC versus patients with other solid tumors treated with 

docetaxel in clinical practice and iii) to evaluate the possible clinical implications 

of our findings.

METHODS

Meta-analysis

Data

PubMed was searched using the terms: “docetaxel AND (pharmacokinetics OR 

pharmacokinetic)”. Studies were included in the meta-analysis if an AUC
0-inf

 

(hereafter AUC) was reported with a variance parameter, either standard deviation 

(SD) or coefficient of variation (CV). If AUC was not reported but clearance (L/h/

m2) was reported with a variance parameter, the study was included and the AUC 

was calculated using the following equation:

=AUC Dose
Clearance0-in f

The variance of AUC for these patients was then calculated based on the CV or SD 

of the clearance parameter, using the following equation:

= ⋅CV Standard deviation
mean

100%

Studies that reported PK parameters for other solid tumors than mCRPC, were 

excluded if the PK parameters were reported for various tumor types, including 

prostate cancer patients, or if part of the tumor types included were unspecified, 

but could potentially be mCRPC based on inclusion criteria.

Of studies that reported AUCs for two cohorts, e.g. with and without another 

drug, only the monotherapy cohort was included. Combination cohorts were only 
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included if no drug interaction was to be expected. Additionally, if the same cohort 

of patients was sampled twice, the AUC for docetaxel monotherapy was included. 

The following information was extracted from the publication: the AUC or clearance 

parameter with the corresponding variance parameter, number of patients for 

whom PK parameter was calculated, tumor type, dose level (mg/m2), time point at 

which the last sample was drawn, concurrent therapy, hepatic function, method 

used to calculate the AUC and allowance of co-medication affecting CYP3A4 

metabolism.

Tumor type (mCRPC, yes/no) was evaluated as a covariate on AUC. Other 

covariates that were expected to influence AUC were included in the model. 

Firstly, the last time point at which a PK sample was taken was evaluated, to 

correct for differences in extrapolation of AUC to infinity. Studies in which a 

Bayesian PK approach was used, were classified as extrapolating from the last 

time point on which the Bayesian estimates were based, regardless of limited 

sampling strategy. Additionally, hepatic function was included as a covariate. A 

previous analysis demonstrated that patients with transaminases levels >1.5 x 

the upper limit of normal (ULN) and alkaline phosphatase (AP) >2.5 x ULN have a 

27% reduction in docetaxel clearance 3. Studies were classified based on these 

values reported in the ex- or inclusion criteria or in the patient characteristics 

table. A study was classified as having patients with adequate hepatic function, 

if patients with elevated transaminases or AP were excluded (either both or one 

of the two). If a study allowed patients with elevated transaminases and AP, this 

was classified as possibly inadequate hepatic function. If nothing on hepatic 

function was reported, though patients with liver metastases were included, this 

was classified as having patients with possibly inadequate. If a study stated that 

patients with adequate organ or liver function were included, without reference 

values, this study was classified as adequate hepatic function. 

As previously reported, docetaxel exposure increases proportionally with dose.4 

AUC values were dose-normalized to 75 mg/m2, the corresponding SD values were 

scaled by calculation of the CV. 
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Figure 1 Flowchart of study inclusion in the meta-analysis. Mix of solid tumors = trial 
included various solid tumor types including prostate cancer patients, and/or included 
unspecified or unknown tumor types, potentially being prostate cancer; n = number of 
patients for whom pharmacokinetic (PK) parameters were reported; AUC = Area under the 
plasma concentration-time curve extrapolated to infinity, CL = clearance in L/h/m2.

Statistical analysis

The meta-analysis was conducted in R (version 3.4.3), using the metafor package 

(version 2.0-0).11,12 A random effects model was used to analyze the data. The 

normalized AUC values were log-transformed in order to estimate a fold-change 

in AUC. Additionally, the sampling variance was calculated using the reported 

SDs: 

=V SD
n

AUC/
2

2
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Where V is the sampling variance and n the number of patients. Heterogeneity 

between studies was evaluated with the I-squared statistic.

Clinical cohort

Patients treated with docetaxel between January 2006 and January 2016 at the 

Netherlands Cancer Institute or the Medical Center Slotervaart (both Amsterdam, 

the Netherlands) were eligible for inclusion. Docetaxel was either administered 

as monotherapy or in combination with chemotherapy or targeted therapies. 

All docetaxel-containing regimens were administered according to standard 

treatment protocols. Patients were excluded if neutrophil measurements were 

not available, BSA or per protocol dosage was not recorded or if the patient 

was enrolled in a clinical trial in which docetaxel treatment was part of the 

intervention. Patients >70 years were also excluded from the analysis, since 

increased neutropenia in elderly patients is more related to a deprived bone 

marrow reserve or increased sensitivity to docetaxel treatment, and not solely 

to exposure to docetaxel.4,13 Patient characteristics, neutrophil counts at cycle 

1, and underlying malignancies were extracted from patients’ medical records. 

Neutropenia was graded according to the Common Terminology Criteria for 

Adverse Events (CTCAE) Version 4.03.14 

Statistical analysis

A multivariable logistic regression model was used to assess if grade 3/4 

neutropenia was associated with mCRPC. Dose (classified as: <60 mg/m2, 60-75 

mg/m2 and 100 mg/m2) and concomitant administration of other chemotherapy 

(yes/no) were evaluated as predictors. Logistic regression was performed using R 

(Version 3.4.3), a two-sided p-value of <0.05 was considered significant.
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RESULTS

Meta-analysis

Data

The search identified 1100 studies. In total, 26 studies were included in the meta-

analysis, reporting PK of docetaxel for 36 patient cohorts (n=1150).3,10,15–38 A large 

number of papers were available for the other solid tumor group, where some 

reported PK for small patient cohorts. Therefore, cohorts of less than 10 patients 

were excluded from the analysis. The inclusion-overview is depicted in Figure 1. 

Main trial characteristics were extracted from the articles and reported per cohort 

(Table 1). The dose-normalized AUCs and their confidence intervals are depicted 

in Figure 2.

Figure 2 Forest plot for all studies included in the meta-analysis; n amount of patient in 
cohort. AUC area under the plasma concentration-time, extrapolated to infinity and dose-
normalized to 75 mg/m2.
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Statistical analysis

In the final model (Figure 3), patients with mCRPC had a 1.8-fold, 95% confidence 

interval (CI)[1.5-2.2] lower AUC than patients with other solid tumors (p<0.0001). 

Corresponding AUCs were 1.82 mg∙h/L versus 3.30 mg∙h/L extrapolated from 24 

hours with adequate liver function, respectively. Patients for whom the AUC was 

extrapolated from a time point of 504 hours had a 2.4-fold higher AUC compared 

to extrapolation from 24 or 48 hours (p<0.001). There was no difference between 

extrapolation from 24 and 48 hours (1.01-fold, p>0.05). Lastly, studies that allowed 

inclusion of patients with elevated transaminases and AP had a 1.2-fold higher 

AUC than trials not including these patients, though this was not significant. 

The residual heterogeneity in the final model remained high (I2=91.7%), indicating 

that the differences in AUCs might be due to uncharacterized or unexplained 

underlying factors. Therefore, a sensitivity analysis was performed with a higher 

sampling error per cohort, which reduced the heterogeneity to low (I2=18%). 

In this analysis, mCRPC remained a significant determinant of having lower 

exposure to docetaxel, with a 1.6-fold difference and corresponding AUCs of 2.04 

mg∙h/L and 3.34 mg∙h/L, for mCRPC versus other solid tumors.
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Figure 3 Forest plot with log-transformed dose normalized AUC values and model 
predictions including covariates, n number of patients, lstp last measured time point, hep 
hepatic function (1 = only patients with normal liver enzymes included, 2 = patients with 
both normal and elevated liver enzymes included), 95% CI 95% confidence interval

Clinical cohort

In total, 812 patients were included in the analysis, 115 in the mCRPC group and 

697 in the other solid tumors group. Patient characteristics are depicted in Table 

2. 
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Table 2 Patient characteristics clinical cohort.

MCRPC 

(N=115)

SOLID TUMORS 

(N=697)

Units n (%) n (%)

Tumor type

Prostate 115 (100) -

Breast - 501 (71.9)

Lung - 62 (8.9)

Gastric/esophagus - 73 (10.5)

Head and neck - 24 (3.4)

Other - 37 (5.3)

Dose (mg/m2)

<60 5 (4.4) 84 (12.1)

60-75 109 (94.8) 578 (82.9)

100 1 (0.8) 35 (5.0)

Hospital

MC Slotervaart 4 (3.5) 72 (10.3)

Netherlands Cancer Institute 111 (96.5) 625 (89.7)

Statistical analysis

Multivariable logistic regression demonstrated that after correction for dose, 

patients with mCRPC had a significantly lower risk of developing a grade 3/4 

neutropenia than patients with other solid tumors (odds ratio [95% CI]: 0.46 [0.32-

0.90], p = 0.035). Neutropenia occurred in 16.5% of patients in the solid tumor group, 

compared to 7.8% in the mCRPC group. Patients who received a dose of 100 mg/m2 

docetaxel or more were also at increased risk of developing grade 3/4 neutropenia 

(Table 3). Including different tumor types in the logistic regression model as a 

categorical covariate instead of binary (mCRPC yes/no), did not demonstrate a 

significant different risk of developing grade 3/4 neutropenia for any of the other 

tumor types. Concomitant administration of other types of chemotherapy was 

not related to occurrence of grade 3/4 neutropenia and was excluded from the 

final model. Since most mCRPC patients were treated in the NKI, a sub-analysis 

was performed for only NKI patients. In this analysis mCRPC patients remained to 

have a significantly lower odds of developing a grade 3/4 neutropenia compared 

to patients with other solid tumors.
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Table 3 Odds ratios for experiencing grade 3/4 neutropenia.

VARIABLE ODDS RATIO [95%CI] P-VALUE

Solid tumorsA 1.00 -

mCRPCB 0.46[0.21-0.90] 0.035

Dose <60 mg/m2 0.72[0.34-1.39] 0.359

Dose 100 mg/m2 5.04[2.50-10.1] <0.0001
AReference group: patients with solid tumors receiving 60-75 mg/m2

Bmetastatic castration-resistant prostate cancer

DISCUSSION

This meta-analysis demonstrated that patients with mCRPC had a significantly 

(1.8-fold) lower AUC than patients with other solid tumors. Furthermore, the 

analysis of our clinical patient cohort demonstrated that patients with mCRPC 

had a 2.2-fold lower odds of experiencing grade 3/4 neutropenia. These findings 

indicate that mCRPC patients experiencing more severe neutropenia, potentially 

attributable to lower systemic exposure to docetaxel. 

The mechanism behind the decreased exposure to docetaxel in mCRPC patients 

remains to be elucidated. Possibly, castration levels of testosterone cause 

an increase in elimination and thus lower exposure of docetaxel. Franke et al. 

demonstrated a higher uptake of docetaxel in the liver in castrated rats. This higher 

uptake was concurrent with an increase in expression of rOat2, a transporter 

regulating the uptake of docetaxel from the circulation into hepatocytes. Several 

studies have demonstrated lack of association between castration and CYP3A4 

activity: Franke et al. did not find an association between castration and elevated 

hepatic CYP3A4 activity and another study, investigating CYP3A4 activity before 

and 8 weeks after leuprolide or goserelin treatment in prostate cancer patients, 

did not find a difference in CYP3A4 activity.39 In addition, Bruno et al. have 

previously demonstrated that α1-acid glycoprotein levels have a minor effect on 

clearance, where the free-fraction of docetaxel remained unchanged.3 Therefore, 

it is not expected that CYP3A4 activity or α1-acid glycoprotein levels, are altered in 

patients with castration-levels of testosterone. 
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Prostate cancer patients receiving docetaxel treatment concurrent with 

androgen deprivation therapy in an early phase of the disease have castration 

levels of testosterone (<50 ng/dL). However, these patient experienced more 

toxicity compared to castration-resistant prostate cancer patients that received 

docetaxel in a later phase of disease.40 Therefore, it is likely that the length of 

androgen-deprivation therapy is of importance in the mechanism behind the PK 

changes of docetaxel in mCRPC patients. 

Regarding the covariates included in the meta-analysis, patients for whom 

AUC was extrapolated from a time point of 504 hours had a significantly higher 

AUC of docetaxel compared to extrapolation from 24 or 48 hours, due to a lower 

slope of the regression line, of the latter. Since the trials included both patients 

with elevated and normal liver enzymes, a less profound effect of elevated 

liver enzymes was found, in contrast to a previously demonstrated decrease 

in clearance of 27%.3 In addition, the drug label recommends to not administer 

docetaxel to patients with elevated transaminases and AP.41 Co-administration of 

CYP3A4 inhibitors or inducers could potentially affect the PK of docetaxel. Most 

trials did not specifically report if use of these drugs was allowed. However, the 

docetaxel label advices to avoid use of concomitant strong CYP3A4 inhibitors. 

Our results should be interpreted considering several limitations. The meta-

analysis demonstrated high variability between studies, regardless of using a 

random effects model, accounting for between-study variability. However, high 

heterogeneity is expected, since the majority of studies reported AUCs for either 

mCRPC or other solid tumors, whereas only one study conducted a head-to-head 

comparison.10 The sensitivity analysis demonstrated that the differences in AUCs 

remained significant, with an increased sampling variance, that substantially 

reduced the heterogeneity and the risk of a false positive result. 

Docetaxel is typically administered in combination with prednisone for mCRPC 

patients.6 Prednisone is known to be an inducer of CYP3A4 and could therefore 

possibly increase the clearance of docetaxel. However, the TAX327 study 

demonstrated that co-administration of 5 mg prednisone administered twice 

daily did not affect the PK of docetaxel.6
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Publication bias is not expected to be an issue, since PK parameters were often 

not the endpoints of the studies. 

The absolute percentages of severe neutropenia reported in this study (7.6% 

versus 16.5%, for mCRPC and other solid tumors, respectively), were substantially 

lower than previously reported in literature (16% and 32% for mCRPC versus 61%-

68% for other solid tumors). However, neutropenia in this study was evaluated 

in the first cycle and nadir values were not specifically monitored in the NKI. A 

sub-analysis was performed for only NKI patients and demonstrated a similar 

significant difference in odds between the groups. 

A dose-response relationship for docetaxel in specifically mCRPC has not been 

previously reported. However, for patients with NSCLC the AUC in the first cycle was 

a significant predictor for the time to progression.4 In general, chemotherapeutic 

agents, like docetaxel, are dosed at the maximum tolerated dose to achieve 

maximum effect. Therefore, mCRPC patients might benefit from a dose increment. 

In conclusion, patients with mCRPC have a 1.8-fold lower docetaxel AUC compared 

to patients with other solid tumors as determined by our meta-analysis. This could 

explain the lower incidence of neutropenia reported in this patient population, 

which was confirmed in our clinical cohorts. Based on these results, patients 

with mCRPC, that are progressive on anti-androgen treatment and to be treated 

with docetaxel, could potentially benefit from a dose increment, considering that 

patients may be able to tolerate higher doses of the drug. The clinical implications 

of our findings need to be evaluated prospectively. 
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ABSTRACT

Background 

Older patients with metastatic castration-resistant prostate cancer (mCRPC) 

may be more prone to chemotherapy-induced hematological toxicity, but tailored 

docetaxel dosing guidelines in older patients are lacking because of conflicting 

data. 

Objective 

This study aims to evaluate the impact of older age on the incidence of 

hematological toxicity in mCRPC patients treated with docetaxel in daily clinical 

practice.

Methods 

mCRPC patients treated with docetaxel between January 2006-2016 at the 

Netherlands Cancer Institute and Medical Center Slotervaart were included, if 

dosing and hematological toxicity data were available from electronic patients’ 

records. Impact of age on the incidence of grade 3 and 4 hematological toxicity 

was evaluated. 

Results 

In total 175 patients treated with docetaxel were enrolled, with a median age 

of 67 years (range 47-86 years). Baseline hematological laboratory values were 

not age-related. After the first treatment cycle, hematological toxicity occurred 

significantly more frequently in the oldest age quartile (25%, p=0.02) compared 

to the younger age quartiles (9%, 11%, and 7%, respectively for age quartiles 1, 2, 

and 3). 

Conclusion 

A significantly higher risk of hematological toxicity was noted in the oldest age 

quartile compared to younger mCRPC patients treated with docetaxel in daily 

clinical practice. 
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INTRODUCTION

Docetaxel is the cornerstone of chemotherapeutic treatment of patients with 

metastatic castration-resistant prostate cancer (mCRPC). Docetaxel is a highly 

toxic chemotherapeutic agent with a small therapeutic window.1 Dose-limiting 

toxicity of docetaxel is hematological toxicity, including neutropenia and 

anemia.2,3 The aged population was well represented in the pivotal clinical trial 

of docetaxel for mCRPC, which also predominantly occurs in older men. However, 

this trial included relatively fit older patients due to its strict exclusion criteria4. 

In the selected patient cohort of this clinical trial, drug-related infections and 

anemia occurred at a more than 10% higher rate in mCRPC patients aged 65 years 

or older compared to younger mCRPC patients.1,5 The incidence of hematological 

toxicities may be even higher in routine clinical practice due to the heterogeneity 

of the treated patient population, including frail patients.6,7 

Body composition changes with increasing age, which can be expected to 

influence the pharmacokinetics of lipophilic chemotherapeutic agents, such as 

docetaxel.8,9 Moreover, multiple comorbidities and physiological changes with 

increasing age may lead to altered pharmacokinetics of docetaxel.10–12 Due to 

these potential differences in pharmacokinetics with increasing age, tolerability 

of docetaxel may be altered in older patients. Furthermore, older people may be 

more susceptible to hematological toxicity due to a reduced bone marrow reserve 

or increased sensitivity of bone marrow to docetaxel treatment.13

Neither the FDA drug label nor the EMA Summary of Product Characteristics (SmPC) 

describe the need for dose adjustments in older patients.1,5 but conflicting results 

have been published regarding the safety profile of docetaxel administered to 

the older mCRPC patient population in clinical trials and observational studies in 

routine clinical practice.14–17 Thus far, there are no specific guidelines for treatment 

of older mCRPC patients with docetaxel, because of a lack of conclusive evidence 

to support tailored advice for this heterogeneous group of patients.18 
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Therefore, the objective of this multicenter retrospective study was to evaluate 

the impact of older age on the incidence of hematological toxicity in mCRPC 

patients treated with docetaxel. Furthermore, the influence of increasing age on 

tolerability of docetaxel in mCRPC patients was assessed by evaluating treatment 

discontinuation and dose intensity over multiple treatment cycles.

PATIENTS AND METHODS

Inclusion and exclusion criteria

Patients with mCRPC who were treated with docetaxel between January 2006 

and January 2016 at the Netherlands Cancer Institute (NKI) or the Medical Center 

Slotervaart (MCS; Amsterdam, The Netherlands) were eligible for inclusion. 

Docetaxel was prescribed as monotherapy and was administered according to 

protocol, with fixed infusion rates, dose reduction guidelines, and anti-emetics 

treatment. The impact of older age was evaluated with age handled as an ordinal 

variable, divided into quartiles, and as a continuous variable. 

Patients were excluded if no hematological laboratory measurements were 

available, only baseline measurements could be obtained, the per protocol dosage 

was not recorded, the patient’s treatment period exceeded our study period, or if 

the patient was enrolled in a clinical trial in which docetaxel treatment was part 

of the intervention.

Data collection

Patient characteristics, and laboratory values were extracted from (electronic) 

patients’ records. The estimated glomerular filtration rate (eGFR) was calculated 

using the Modification of Diet in Renal Disease (MDRD) equation.19 Data on 

docetaxel administrations was collected from the (electronic) patients’ records 

and compounding protocols. Hematological toxicities were collected from 

(electronic) patients’ records and comprised total leukocyte counts, neutrophil 

counts, platelet counts, and hemoglobin measurements. 
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Study design and statistics

Hematological toxicities were graded according to the Common Terminology 

Criteria for Adverse Events (CTCAE) Version 4.0320, in which grade 3 toxicities are 

considered severe toxicities and grade 4 toxicities as potentially life-threatening 

toxicities. Primary endpoint of this study was the impact of age on the incidence 

of grade 3 and 4 hematological toxicity developed after the first treatment cycle 

of docetaxel. The risk of developing hematological toxicity was analyzed overall, 

and per type of hematological toxicity in older versus younger patients. Included 

types of toxicity were leukocytopenia, neutropenia, thrombocytopenia, and 

anemia. For these analyses, age was handled both as an ordinal variable, divided 

into quartiles, and as a continuous variable.

Secondary endpoint was treatment tolerability described as the proportion of 

patients per age quartile per received treatment cycle, dose intensity (DI), and 

relative dose intensity (RDI). The DI was defined as the actual administered 

docetaxel dose calculated in mg/m2/week. The RDI was defined as the administered 

dose intensity divided by the per protocol dose intensity, and was calculated over 

the median number of administered treatment cycles in our study cohort.21 

Descriptive statistics were used to depict patient characteristics and baseline 

laboratory values. Fisher’s exact test was used to compare the incidence of 

grade 3 and 4 hematological toxicities per age quartile, and to compare baseline 

laboratory values between age quartiles. Logistic regression was used to evaluate 

the impact of age as a continuous variable on hematological toxicity. The impact 

of age on DI and RDI was assessed using ANOVA. 

Statistical analysis was performed using R (Version 3.3.1). A two-sided p-value of 

<0.05 for the different statistical tests was considered significant.
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RESULTS

Patient population

A total of 195 patients was identified who received docetaxel between January 2006 

and January 2016 at both hospitals. During further data collection, 20 patients 

were excluded, of whom the majority was excluded due to missing hematological 

laboratory data, as depicted in Fig. 1. 

Figure 1 Flowchart of patient inclusion of both hospitals.

Median age of the 175 remaining patients was 67 years, ranging from 47 to 86 

years. There was no significant difference in the distribution of baseline laboratory 

values between age quartiles, as shown in table 1. Docetaxel was administered as 

monotherapy in a 3-weekly regimen, generally in a dose of 75 mg/m2. 
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Table 1 Baseline patients’ characteristics.

PARAMETER
AGE 

QUARTILE 1

AGE 

QUARTILE 2

AGE 

QUARTILE 3

AGE 

QUARTILE 4

P-

VALUE

Total, n (%) 44 44 43 44

Age, median [range] 59 [47-62] 65 [62-67] 69 [67-72] 76 [72-86]

Hospital, n (%)

 NKI 43 (26) 42 (26) 41 (25) 37 (23)

 MC Slotervaart 1 (8) 2 (17) 2 (17)  7 (58)

Baseline hematological values

Leukocytes (109/L), 

median [IQR]
10 [8-12] 9 [7-14] 8 [6-11] 9 [7-12]

 ≥4 (%) 100 97 98 100 1

 <4 (%) 0 3 2 0

Neutrophils (109/L), 

median [IQR]
8 [6-11] 8 [5-13] 7 [5-10] 8 [5-11]

 ≥1.8 (%) 100 100 100 100 1

 <1.8 (%) 0 0 0 0

Platelets (109/L),  

median [IQR]
264 [219-309] 257 [232-306] 263 [222-320] 278 [208-317]

 ≥150 (%) 100 97 95 92 0.34

 <150 (%) 0 3 5 8

Hemoglobin (mmol/L), 

median [IQR]
8 [8-9] 8 [7-8] 8 [7-9] 8 [7-9]

 ≥8.5 (%) 47 23 35 31 0.13

 <8.5 (%) 53 77 65 69

Baseline organ function

eGFR (mg/min/1,73 
m2), median [IQR]

95 [77-106] 95 [80-107] 97 [77-105] 82 [64-93]

 >60 (%) 92 87 85 87 0.82

 ≤60 (%) 8 13 15 13

Bilirubin total (µmol/L), 

median [IQR]
5 [4-7] 5 [4-7] 6 [4-8] 6 [4-11]

 <16 (%) 97 100 97 100 0.49

 ≥16 (%) 3 0 3 0
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Table 1 continued

Alkaline phosphatase 

(IU/L), median [IQR]
149 [104-339] 176 [113-299] 161 [114-384] 127 [83-189]

 <115 (%) 41 28 25 47 0.13

 ≥115 (%) 59 72 75 53

Albumin (109/L),  

median [IQR]
46 [42-47] 43 [42-47] 45 [42-47] 43 [39-45]

 ≥35 (%) 97 94 91 94 0.81

 <35 (%) 3 6 9 6

ALT (IU/L), median [IQR] 30 [21-39] 27 [23-38] 23 [17-28] 22 [15-30]

 <45 (%) 81 88 97 95 0.07

 ≥45 (%) 19 12 3 5

AST (IU/L), median [IQR] 26 [21-33] 29 [22-54] 25 [21-34] 28 [22-36]

 <35 (%) 78 64 74 73 0.59

 ≥35 (%) 22 36 26 27

PSA (µg/L), median [IQR] 52 [17-244] 88 [33-215] 95 [52-253] 95 [34-195]

 <4 (%) 3 0 3 5 0.80

 ≥4 (%) 97 100 97 95

Age quartiles 1-4: patients divided by age into 4 equally sized age groups, ALT = alanine aminotransferase, AST 

= aspartate aminotransferase, eGFR = estimated glomerular filtration rate, calculated using the Modification 

of Diet in Renal Disease (MDRD) equation, IQR = interquartile range 25%-75%, PSA = prostate-specific antigen.

Hematological toxicity

A trend towards more grade 3 and 4 hematological toxicity after the first 

treatment cycle was observed with age treated as an ordinal variable, divided into 

age quartiles (p=0.08). This difference was driven by the oldest age quartile (≥72 

years), in which a significantly higher risk of hematological toxicity was observed 

(25%, p=0.02), compared to younger age quartiles (9%, 11%, and 7%, respectively 

for age quartiles 1, 2, and 3). The impact of age on grade 3 and 4 hematological 

toxicities remained significant when age was handled as a continuous variable 

(p=0.02, odds ratio 1.1, 95% confidence interval 1.01-1.14). For leukocytopenia, 

the impact of age either treated as an ordinal or as a continuous variable was 

significant (p=0.001 and p=0.004, respectively). 
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For neutropenia, a trend towards a higher incidence of neutropenia was observed 

with age treated as an ordinal variable, which reached significance when age 

was handled as a continuous variable (p=0.08 and p=0.02, respectively). In these 

separate analyses, patients in the oldest age quartile had a markedly higher 

risk of developing leukocytopenia and neutropenia compared to their younger 

counterparts, as depicted in Fig. 2.

Figure 2 Incidence of Grade 3/4 hematological toxicity in mCRPC patients. Incidence of 
(A) leukocytopenia, (B) neutropenia, and (C) thrombocytopenia after the first treatment 
cycle in patients with metastatic castration-resistant prostate cancer (mCRPC). Q1-Q4: age 
quartiles 1 to 4, with patients divided by age into four equally sized groups. No metastatic 
castration-resistant prostate cancer patients developed anemia after cycle 1.
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Dose intensity

After the first administered treatment cycle 7% of patients in the oldest age 

quartile (≥72 years) discontinued treatment, whereas none in the youngest 

age quartile stopped docetaxel treatment after the first cycle (p=0.16). In the 

total cohort, a median of six cycles of docetaxel was administered. The fraction 

of patients that received this median number of six treatment cycles was not 

significantly affected by age treated as an ordinal variable (p=0.07). However, a 

significantly smaller fraction of patients in the oldest age quartile received six 

treatment cycles (45%, p<0.001) compared to the three younger age quartiles 

(64%, 66%, and 72% for age quartiles 1-3, respectively). The mean DI over the first 

treatment cycle was not age-related (p=0.56 and p=0.88 for age treated as an 

ordinal or continuous variable, respectively). 

Likewise, no age-related difference in RDI over the first treatment cycle was 

observed (p=0.97 and p=0.37 for age as an ordinal or continuous variable, 

respectively). Over the median number of six treatment cycles, mean DI and RDI 

were not significantly affected by age handled as an ordinal variable, divided into 

quartiles (p=0.16 and p=0.22, respectively). However, in the oldest age quartile 

(≥72 years) a significantly lower mean DI was observed compared to the three 

younger age quartiles (p=0.02), with 23 mg/m2/week in oldest age quartile 

compared to 24 mg/m2/week in all three younger age quartiles. This difference 

remained significant when age was handled as a continuous variable (p=0.03). 

Correspondingly, a significantly lower mean RDI over six treatment cycles was 

noted in patients in the oldest age quartile (73%, p=0.002) versus their younger 

counterparts (82%, 80%, and 86% for age quartiles 1 to 3, respectively), as shown 

in Fig. 3. The impact of age as a continuous variable on RDI nearly reached 

significance (p=0.05). 
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Figure 3 Relative dose intensity. Relative dose intensity over (A) cycle 1 and (B) cycle 1 to 
6 of docetaxel, with the crossbars representing the mean RDI per age quartile. Q1-Q4: age 
quartiles 1 to 4, with patients divided by age into four equally sized groups.

DISCUSSION

The oldest fraction of mCRPC patients (≥72 years) in our cohort developed 

significantly more hematological toxicity than their younger counterparts treated 

with docetaxel in daily clinical practice. The impact of age on hematological toxicity 

remained significant when age was handled as a continuous variable. No age-

related difference in the first administered dose was noted, but after the median 

of six treatment cycles significantly lower absolute DI and RDI were observed in 

the oldest patient group. Furthermore, a significantly higher discontinuation rate 

was observed in the oldest patient group. More than half of patients in the oldest 

age group did not receive the median number of six treatment cycles, compared 

to approximately one-third of patients in the younger age quartile groups. 
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Although various previous studies showed that docetaxel could be safely 

administered to older mCRPC patients17,22, this was balanced by multiple other 

studies showing an increased risk of docetaxel-related hematological toxicity 

in older mCRPC patients14–16,23, which is also reported in the FDA drug label 

accordingly.5 Our results support that hematological toxicity is increased in the 

oldest group of mCRPC patients treated in daily clinical practice. On the other 

hand, the relatively low incidence of hematological toxicity observed in younger 

mCRPC patients in this cohort may be caused by potentially higher clearance 

and thus lower docetaxel exposure in mCRPC patients compared to other solid 

tumors, as has previously been suggested for castrated prostate cancer patients.24 

Consequently, one may argue that instead of treating the oldest patients more 

vigilant, younger mCRPC patients may benefit from higher doses of docetaxel. 

Baseline hematological values were not age-related, suggesting that the increased 

hematological toxicity in elderly is related to increased sensitivity of bone marrow 

or myeloid precursors to chemotherapy.13 Besides, potential pharmacokinetic 

differences may partly explain why the oldest mCRPC patients have a higher risk 

of developing hematological toxicity compared to younger patients with mCRPC. 

The significantly lower absolute and relative docetaxel doses administered to 

these oldest mCRPC patients may also partly be ascribed to these lower nadirs, 

urging physicians to treat the oldest mCRPC patients more vigilant. The palliative 

intent of this highly toxic treatment may lower the threshold for dose reductions 

for all treated patients. This may explain why the observed difference in dose 

reductions over the different age quartiles is small. It should be kept in mind, 

however, that physicians’ preference may recently have shifted towards more 

aggressive treatment of patients with metastatic prostate cancer following the 

results of improved survival with earlier docetaxel treatment.25,26 

In the current analysis the impact of age was evaluated both as an ordinal 

variable, with patients divided into equally sized age groups, and as a continuous 

variable. A limitation of our study is its retrospective design. Data on performance 

status or geriatric assessments was not fully available. 
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Because we had no sound information on the administration of prophylactic 

intravenous granulocyte-colony stimulating factor (G-CSF) during docetaxel 

treatment in our cohort, only hematological toxicities after the first treatment 

cycle of docetaxel were included. Although an age of 65 years or older is considered 

a risk factor for developing neutropenia during chemotherapy treatment27, no 

prophylactic G-CSF administration was applied in either hospital during the first 

treatment cycle.

CONCLUSION

Within the limits of a retrospective study, we conclude that the oldest (≥72 years) 

mCRPC patients have a significantly higher risk of developing hematological 

toxicity than their younger counterparts treated in clinical practice. More 

prospective PK-PD research is warranted to optimize docetaxel treatment in 

mCRPC patients.
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CONCLUSIONS & PERSPECTIVES

In this thesis the application of modeling and simulation (M&S) methods to 

support drug development and to improve treatment with existing therapies in 

the area of oncology is described. 

Pharmacokinetics and pharmacodynamics: Tamoxifen

Different aspects of treatment optimization of tamoxifen in estrogen-receptor 

(ER)-positive breast cancer patients are described in the first chapter of this 

thesis. Tamoxifen has been the cornerstone treatment of endocrine breast cancer 

since the 1980s. Almost thirty years later, ways to further optimize tamoxifen 

treatment are still subject of investigation. Treatment individualization of this 

drug started by selecting patients with breast cancers expressing ERs to receive 

tamoxifen treatment. Tamoxifen is metabolized into different metabolites. The 

metabolites 4-hydroxy-tamoxifen and endoxifen have 30- to 100-fold higher 

potency in suppressing cell proliferations compared to tamoxifen itself.1,2 Of these 

two metabolites, endoxifen is the most abundant and, therefore, known as the 

most important active metabolite of tamoxifen. Nowadays, research is focussed 

on further improving breast cancer recurrence rates by evaluating predictors 

of recurrence such as variability in exposure to endoxifen and variability in the 

activity of genes encoding enzymes important in bioactivation of tamoxifen

An overview of the literature is given in chapter 1.1, evaluating the effects 

of differences in pharmacogenetics on the pharmacokinetics (PK) and 

pharmacodynamics (PD) of tamoxifen and tamoxifen metabolites. This review 

demonstrates that alterations in genes encoding metabolizing enzymes are 

of minimal impact on the exposure to metabolites of tamoxifen, except for 

CYP2D6. The CYP2D6 genotype can explain part of the variability in endoxifen 

concentrations, however, the endoxifen concentration is not solely dependent 

on this genotype. Furthermore, effects of the CYP2D6 genotype on breast cancer 

outcome (PD) show conflicting results, where some studies demonstrated that 

indeed CYP2D6 poor metabolisers had worse recurrence-free survival while other 

studies did not. 
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The review described in chapter 1.1 concludes that the CYP2D6 genotype is not 

an optimal predictor of breast cancer outcome in ER-positive breast cancer 

patients treated with tamoxifen, because it does not fully represent the exposure 

to endoxifen. Therefore, quantification of the true exposure by determination of 

endoxifen plasma concentrations is suggested to be the best way forward to 

individualize tamoxifen treatment. In this respect Therapeutic Drug Monitoring 

(TDM) of endoxifen can be applied by increasing the dose in patients with low 

endoxifen concentrations.

Chapter 1.2. evaluates whether an anti-estrogenic activity score (AAS), based on 

plasma concentrations of tamoxifen and three metabolites, is a better predictor for 

recurrence-free survival than only endoxifen concentrations. The AAS integrates 

the anti-estrogenic activity of tamoxifen and three metabolites (4-hydroxy-

tamoxifen, N-desmethyl-tamoxifen and endoxifen) with their abundancies in 

blood. The results demonstrated that the AAS is a predictor for recurrence-free 

survival, though not better than only endoxifen concentrations. Therefore, it can 

be concluded that endoxifen can serve as a proxy for the anti-estrogenic effect of 

tamoxifen and three of its metabolites. Based on the evaluation of literature and 

the evaluation of the AAS on breast cancer recurrence a viewpoint is shared in 

chapter 1.3. This viewpoint states that TDM of endoxifen is the best way forward 

to individualize tamoxifen treatment. The CYP2D6 genotype can only explain 

part of the variability in endoxifen concentrations and is, therefore, not a good 

predictor of the endoxifen concentration. The problem with implementing TDM of 

endoxifen in clinical practice is the lack of prospective validation of the endoxifen 

concentration threshold and its effect on recurrence-free survival. The relationship 

between an endoxifen concentration threshold and breast cancer recurrences 

has been reported in a retrospective trial including 1370 ER-positive breast 

cancer patients that were followed for an average of 7.3 years after inclusion. This 

analysis demonstrated that patients with endoxifen concentrations >5.97 ng/

mL have 26% decreased risk of developing breast cancer recurrence compared 

to patients with lower endoxifen concentrations.3 However, different prospective 

studies were not able to reproduce these findings, albeit with less patients and 

shorter follow up time. In clinical trial simulations, reported in the last part of this 

chapter, the feasibility of prospective observational and randomized controlled 

trials was evaluated. 
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These simulations demonstrated that for an observational design at least 

1500 patients and 15 years of intended follow up are needed to be able to detect 

a decreased risk of recurrence of 29% in patients with concentrations >5.97 

ng/mL, with a power of 80% (p < 0.05). None of the performed retrospective or 

prospective studies had this power. Therefore, a conclusive answer on whether or 

not TDM of endoxifen is indicated is not yet available. However, these simulations 

demonstrated that the retrospective trial by Madelensky et al.3 has a power of 

around 62% to detect a difference in breast cancer recurrence between patients 

with low and high endoxifen concentrations. In conclusion, TDM of endoxifen 

still seems the best way forward for individualising tamoxifen treatment. This 

simulation demonstrates the added value of using a model-based approach in 

interpreting previously conducted trials and supporting development of future 

clinical trials.

Pharmacokinetics and pharmacodynamics in drug development: MCLA-128

Population PK analysis was initially used to solve problems regarding the 

clinical application of drugs. However, it has become an important tool in drug 

development as well.4 It has been a pivotal component of many submissions to 

the Food and Drug Association, aiming to get regulatory approval for new drugs.5 

Chapter 2 demonstrates how PK-PD modeling can be useful for the translation 

from preclinical to clinical research in early drug development. These analyses 

can be used to support decision making regarding dosage and dose schedules 

for different phases in clinical drug development. In this chapter the application 

of (translational) PK-PD modeling in the development of MCLA-128, a bispecific 

monoclonal antibody targeting the HER2 and HER3 receptor, is described. 

In chapter 2.1 a preclinical PK-PD model is described, which was developed based 

on toxicity studies in cynomolgus monkeys and mice. This PK-PD model was 

able to characterize the PK and PD properties of MCLA-128 and resulted in the 

prediction of a safe starting dose and efficacious clinical dose for the First-in-

Human trial. In this analysis, all available relevant PK and PD data before start of 

the First-in-Human trial were combined in a comprehensive framework to fully 

evaluate a safe starting dose and predicted an efficacious dose range. 
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This analysis shows that translational modeling approaches are very useful for 

characterization of PK and PD properties of new drugs in animals and is able 

to make predictions for human use. Subsequently, this type of modeling can 

support the choice of dosing regimens for First-in-Human trials. 

In chapter 2.2 a clinical PK model for MCLA-128 was developed based on data 

from the First-in-Human trial. The PK model was used to characterize the clinical 

PK properties of MCLA-128 and to evaluate feasibility of a flat dose in patients 

with solid tumors. The PK model adequately described the PK characteristics 

of MCLA-128 over a range of doses. Simulations demonstrated that the effect of 

body size parameters on the disposition of MCLA-128 was minimal and that flat 

dosing of the drug is appropriate for patients with solid tumors. This analysis 

also allowed the evaluation of the predictive value of the preclinical model. The 

PK model structure for the preclinical and the clinical model were similar. The 

predictions of the preclinical model, slightly overpredicted the lower MCLA-128 

plasma concentrations observed in humans. This was mainly attributable to the 

difference in variability of target expression in humans compared to cynomolgus 

monkeys where cynomolgus monkeys express far less HER2 receptors than human 

patients with HER2 expressing tumors. This analysis illustrates that a preclinical 

PK model is able to predict clinical exposure to a new drug, not yet evaluated 

in humans. This analysis also demonstrates that usefulness of a (preclinical) 

model should always be interpreted given the underlying assumptions of a 

model, for example the quality of the data and the limitations of an animal model. 

Transparency on the impact of these assumptions is pivotal for interpreting and 

using these results to support drug development. 

Pharmacokinetics and pharmacokinetics: Toxicity

Adverse effects are a major problem in the treatment with both cytotoxic drugs 

and newer targeted therapies. Toxicity of anti-cancer drugs can cause dose 

reductions, dose delays and treatment cessation and can, therefore, negatively 

affect response to treatment and outcome. Chapter 3 describes how mathematical 

modeling of adverse effects can be a helpful tool to improve clinical management 

of anti-cancer drugs.
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Chapter 3.1 reports an overview of existing toxicity modeling approaches and 

reports several model structures that describe relationships between drug 

concentrations and toxicities, including myelosuppression, cardiovascular 

adverse effects and ordered categorical adverse effects, such as hand-foot 

syndrome, proteinuria, diarrhoea and rash. Established PK-PD models can help 

predict clinical scenarios, to find optimal relationships between exposure and 

safety. The overview in chapter 3.1 shows that mathematical modeling can 

provide insight in how toxicities evolve over time and if or what patient-related 

factors can impact this time course. A longitudinal modeling approach can make 

efficient use of all available data. For example neutropenia can be categorized 

as severe or life threatening neutropenia (grade 3 or grade 4). However, using 

longitudinal data of blood counts (multiple measurements of blood counts over 

time, per patient), includes all available data, minimizes loss of information and 

allows for evaluation of changes of toxicity over time.

Trastuzumab is associated with cardiotoxicity, manifesting as a decrease in left-

ventricular ejection fraction (LVEF). High-sensitive troponin T is a molecular marker 

that may allow for earlier detection of drug induced cardiotoxicity. In chapter 

3.2 the kinetics and exposure-response relationships of LVEF and troponine T in 

breast cancer patients receiving anthracyclines and trastuzumab, are quantified. 

Anthracycline pretreatment has previously been related to the slope of LVEF 

decline after receiving trastuzumab.6 In this analysis it was demonstrated that 

within the group of patients receiving anthracyclines, sensitivity of LVEF decline 

during trastuzumab treatment is related to peak levels of troponine T during 

anthracycline treatment. This indicates that patients with higher troponine T 

peaks during anthracycline treatments experienced more cardiac damage and 

are, therefore, more sensitive for LVEF decline under trastuzumab treatment. 

Troponine T levels could potentially be used as a biomarker to predict LVEF decline 

and improve cardiac monitoring schedules in this patient population.

Cytotoxic anti-cancer drugs are notorious for causing hematological toxicity. 

Severe neutropenia is known as the major dose limiting toxicity for many of 

these drugs, including docetaxel. In chapter 3.3, a meta-analysis is described 

to evaluate the differences in neutropenia and exposure to docetaxel between 
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patients with metastatic castration-resistant prostate cancer (mCRPC) versus 

patients with other solid tumors. The incidence of neutropenia in mCRPC patients 

treated with docetaxel has been reported to be lower compared to patients with 

other solid tumors treated with a similar dose. It has been suggested that this is 

due to increased clearance of docetaxel in mCRPC patients, resulting in decreased 

exposure.7 The current meta-analysis included 26 trials and 36 cohorts (n=1150) 

and used a random effects model to evaluate the data. Patients with mCRPC had 

a significantly (1.8-fold) lower mean area under the concentration-time curve 

than patients with other solid tumors. A logistic regression analysis showed that 

patients with mCRPC and treated with docetaxel in clinical practice had a 2.2-

fold lower odds of developing grade 3/4 neutropenia compared to patients with 

other solid tumors. These findings indicate that mCRPC patients have a lower 

risk of experiencing severe neutropenia, possibly attributable to lower systemic 

exposure to docetaxel. In chapter 3.4 the effect of age on docetaxel-induced 

neutropenia is evaluated in patients with mCRPC, and demonstrated that older 

patients (≥70 years) have a significantly higher risk of developing hematological 

toxicity than younger patients, probably due to deprived bone marrow reserve or 

increased sensitivity to docetaxel treatment and less to exposure.8,9

In conclusion, this thesis describes different examples of applying M&S methods 

to improve current treatments and support development of new drugs in oncology. 

It demonstrates that pharmacometrics provides a powerful technique to answer 

(clinical) pharmacological questions that are much more difficult to answer using 

conventional statistical methods. It allows for clinical trial simulations beyond 

the setting of an experimental design and can, therefore, contribute to efficient 

development of future clinical trials. In early drug development, population PK-

PD modeling can support translational questions from preclinical to the clinical 

setting, predicting exposure and response in humans and support selection of 

safe and efficacious clinical dose schedules. At the same time discrepancies 

between predictions based on preclinical data and eventual clinical data improve 

our understanding of and/or can confirm mechanistic and pathophysiological 

differences between animal models and humans, in a quantitative way. 
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Additionally, pharmacometric models are able to integrate all available data and 

add a time component, minimizing loss of information and allowing evaluation 

of changes over time. Model-based evaluation of PK-PD relationships is also vital 

when concentration or dose-response relationships are not straightforward, for 

example when drug response shows a delay in relation to drug exposure. 

The examples of applying pharmacometrics in this thesis, are applied to the 

therapeutic area of oncology, though can in part also be applied to pharmacological 

questions in other therapeutic fields and contribute to better and safer drug 

treatment in patients.
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SUMMARY

This thesis describes the application of pharmacometrics to optimize treatment 

with existing therapies and to support development of novel drugs in the area 

of oncology. In the field of pharmacometrics, data on pharmacokinetic (PK) and 

pharmacodynamic (PD) properties of drugs are characterized using a combination 

of mathematical and statistical models. These properties give insight in the fate 

of a drug in the body (PK) and in its desired and undesired (toxic) effects (PD). 

Quantification of PK-PD relationships in mathematical and statistical models 

allows for understanding the characteristics of a drug. Additionally, these models 

can help answer questions to improve clinical application of drugs and supports 

decision making in drug development. 

Pharmacokinetics and pharmacodynamics: tamoxifen

Different aspects of treatment optimization for tamoxifen in estrogen-receptor 

(ER)-positive breast cancer patients are described in the first chapter of this 

thesis. Tamoxifen is bioactivated by cytochrome P450 (CYP) enzymes, resulting 

in the formation of metabolites, e.g. 4-hydroxy-tamoxifen and endoxifen. 

These metabolites have a much higher anti-estrogenic activity compared to 

tamoxifen. Chapter 1.1 reviews published data on the effect of various genetic 

polymorphisms in CYP encoding genes on the PK and PD of tamoxifen. Review of 

the data demonstrated no clear associations between genetic alterations and PK 

and PD outcome measures, except for CYP2D6. A clear gene-exposure effect was 

found for alterations in the CYP2D6 genotype. This genotype explained part of the 

interindividual variability in plasma concentrations of the pharmacologically most 

active metabolite endoxifen. However, a clear gene-response effect for the CYP2D6 

genotype remained controversial. This controversy and the partial contribution 

of genotype in explaining interindividual variability in plasma concentrations of, 

in particular, endoxifen, imply that tailored tamoxifen treatment may not be fully 

realized through pharmacogenetics of metabolizing enzymes alone.

In a retrospective analysis, endoxifen concentrations of > 5.97 ng/mL have been 

associated with improved breast cancer recurrence in tamoxifen-treated patients. 
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However, as previously described, tamoxifen itself and other metabolites 

also show anti-estrogenic anti-tumor activity. Therefore, the aim of chapter 

2.2. was to develop a comprehensive Antiestrogenic Activity Score (AAS) and 

subsequently, to evaluate if this score is a better predictor for recurrence-free 

survival compared to only endoxifen concentrations. The AAS integrates the anti-

estrogenic activity of tamoxifen and three metabolites with their abundancies in 

blood. The anti-estrogenic activities of tamoxifen, endoxifen, 4-hydroxytamoxifen 

and N-desmethyltamoxifen were determined in a cell proliferation assay. 

Tamoxifen and metabolite concentrations and recurrence-free survival data 

were available from 1370 patients. The results demonstrated that the AAS is a 

predictor for recurrence-free survival, though not better than the endoxifen PK 

target concentration of 5.97 ng/mL. Therefore, it can be concluded that endoxifen 

can serve as a proxy for the anti-estrogenic effect of tamoxifen and three of its 

metabolites. 

The findings in chapter 1.1 and 1.2 support the viewpoint on treatment 

individualization of tamoxifen, described in chapter 1.3. Regardless of the 

controversial findings regarding a gene-response relationship for the CYP2D6 

genotype and recurrence-free survival, the debate on what the best strategy is for 

treatment individualisation of tamoxifen remains. In chapter 1.3 Therapeutic Drug 

Monitoring (TDM) of endoxifen is highlighted to be the preferred methodology 

for treatment optimization of tamoxifen compared to CYP2D6 genotyping. 

The CYP2D6 genotype can only explain part of the inter-individual variability 

in endoxifen concentrations and is, therefore, not an optimal predictor of the 

endoxifen concentration. TDM of endoxifen can help improve treatment outcome, 

by increasing the dose of tamoxifen from 20 mg/day to 40 mg/day for patients 

with endoxifen concentrations below the PK target concentration of 5.97 ng/mL. 

Although an exposure-response relationship between endoxifen and treatment 

outcome has been established, the challenge of implementing TDM of endoxifen 

in clinical practice remains. This is partly explained by subsequent studies where 

such a relationship could not be identified. Additionally, the benefits of TDM 

have not been shown prospectively. Appropriately designed prospective clinical 

trials will be necessary to be able to demonstrate the potential benefits of TDM. 
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In chapter 1.4 it is evaluated whether such trials are feasible and which design 

would be needed. The feasibility of prospective observational and randomized 

controlled trials was evaluated. These simulations demonstrated that for an 

observational design to detect an exposure-response relationship at least 1500 

patients and 15 years of intended follow up are needed, where patients with 

endoxifen concentrations >5.97 ng/mL have 29% lower risk of experiencing 

breast cancer recurrence, with a power of 80% (p < 0.05). None of the performed 

retrospective or prospective studies had this power. Therefore, a conclusive 

answer on whether or not TDM of endoxifen is indicated is not yet available. 

However, these simulations demonstrated that the previously reported large 

retrospective trial has a power of around 62% to detect a difference in breast 

cancer recurrence between patients with low and high endoxifen concentrations. 

The simulations in this study demonstrated that prospective evaluation of TDM 

of endoxifen could be feasible, though would require a large sample size and long 

follow up time. Additionally, these simulations demonstrate the added value of 

using a model-based approach in interpreting previously conducted trials and 

supporting development of future clinical trials.

Pharmacokinetics and pharmacodynamics in drug development: MCLA-128

Chapter 2 demonstrates how PK-PD modeling can be used to support decision 

making regarding dosage and dose schedules for different phases in clinical drug 

development. In this chapter the application of (translational) PK-PD modeling in 

drug development of MCLA-128, a bispecific monoclonal antibody targeting the 

HER2 and HER3 receptor, is described. 

In chapter 2.1 a translational PK-PD model was developed based on data from 

preclinical studies in cynomolgus monkeys and mice. The model was used to 

characterize the PK and PD properties of MCLA-128. Subsequently, the model 

allowed to predict a safe starting dose and efficacious clinical dose for the First-

In-Human study, based on area under the concentration-time curves (AUCs), 

receptor occupancies and PK-PD model simulations. This analysis predicted that 

a flat dose of 10 to 480 mg MCLA-128, administered every 3 weeks (q3wk) was 

suitable as starting dose for a First-in-Human study. Flat doses ≥360 mg q3wk 

were expected to be efficacious in human. 
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In chapter 2.2 the data from the First-in-Human trial were used to develop a 

population PK model for MCLA-128 to characterize its clinical PK properties 

and to evaluate feasibility of a flat dose of MCLA-128. The PK model adequately 

described the PK characteristics of MCLA-128 over a range of doses. Simulations 

demonstrated that dosing based on body size parameters resulted in similar AUC, 

maximum and trough concentrations of MCLA-128, compared to fixed dosing. 

This analysis demonstrated that the PK of MCLA-128 exhibits similar disposition 

characteristics as other therapeutic monoclonal antibodies and that a fixed 

dose of MCLA-128 in patients with various solid tumors would be appropriate. 

This analysis also allowed the evaluation of the predictive value of the preclinical 

model. The PK model structure for the preclinical and the clinical model were 

similar. Considering some assumptions, the preclinical PK model was able to 

predict clinical exposure to a new drug, not yet evaluated in humans.

The analyses described in chapter 2 showed that translational modeling 

approaches are very useful for characterization of PK and PD properties of new 

drugs in animals and enable predictions for human use. Subsequently, this type 

of modelling can support the choice of dosing regimens for First-in-Human trials. 

Pharmacokinetics and pharmacokinetics: toxicity

Adverse effects of treatment with both cytotoxic drugs and newer targeted 

therapies can affect patients’ quality of life. In addition, adverse effects can 

impact the proposed dosing regimen by causing dose reductions, dose delays 

and treatment cessation. Therefore, toxicity of these drugs can affect response 

to treatment and outcome. In chapter 3 quantitative models are described that 

relate drug exposure to the dynamics of adverse effects and shows how these 

models can be instrumental to optimize dosing schedules. In addition the relation 

between docetaxel exposure and toxicity for patients with metastatic castration-

resistant prostate cancer (mCRPC) is reported.
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Chapter 3.1 provides a perspective of how adverse effects of these drugs can 

be modelled and reports model structures that describe relationships between 

drug concentrations and toxicities, including: myelosuppression, cardiovascular 

adverse effects and ordered categorical adverse effects, such as hand-foot 

syndrome, proteinuria, diarrhoea and rash. Established PK-PD models can help 

predict clinical scenarios, to find optimal relationships between exposure and 

safety. A longitudinal modeling approach includes all available data, minimizes 

loss of information and allows for evaluation of changes of toxicity over time.

Chapter 3.2 reports a PD model for cardiac biomarkers in breast cancer patients 

treated with anthracycline and trastuzumab containing regimens. Trastuzumab 

is associated with cardiotoxicity, manifesting as a decrease in left-ventricular 

ejection fraction (LVEF). Administration of anthracyclines prior to trastuzumab 

increases risk of cardiotoxicity. High-sensitive troponin T and N-terminal-pro-

brain natriuretic peptide (NT-proBNP) are molecular markers that may allow 

earlier detection of drug-induced cardiotoxicity. PD models for troponin T and 

LVEF were successfully developed and identified the maximum troponin T 

concentration (an indicator for cardiac damage) after anthracycline treatment 

as a significant determinant for trastuzumab-induced LVEF decline. These 

models can help identify patients at risk of drug-induced cardiotoxicity and can 

potentially optimize cardiac monitoring strategies.

Severe neutropenia is known as the major dose limiting toxicity for many 

cytotoxic anti-cancer drugs, including docetaxel. In chapter 3.3, a meta-analysis 

is described to evaluate the differences in neutropenia and exposure to docetaxel 

between docetaxel-treated patients with mCRPC versus patients with other solid 

tumors. The incidence of neutropenia in mCRPC patients treated with docetaxel 

has been reported to be lower compared to patients with other solid tumors 

treated with a similar dose. This analysis demonstrated that patients with 

mCRPC had a significantly (1.8-fold) lower mean AUC than patients with other 

solid tumors. Additionally, patients with mCRPC treated with docetaxel in clinical 

practice had a 2.2-fold lower odds of developing grade 3/4 neutropenia compared 

to patients with other solid tumors. 
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These findings indicate that mCRPC patients have a lower risk of experiencing 

severe neutropenia, possibly attributable to lower systemic exposure to docetaxel.

Lastly, in chapter 3.4 the effect of age on docetaxel-induced neutropenia is 

evaluated in patients with mCRPC, to support selection of patients in chapter 3.3. 

The analysis in chapter 3.4 demonstrated that older patients have a significantly 

higher risk of developing hematological toxicity than younger patients in daily 

clinical practice. This is assumed to be caused by a deprived bone marrow reserve 

or increased sensitivity to docetaxel treatment.

In conclusion, this thesis describes various examples of applying modeling and 

simulation methods to improve current treatments and support development of 

new drugs in oncology. It demonstrates that pharmacometrics provides powerful 

techniques to answer (clinical) pharmacological questions that are often 

impossible to answer using conventional statistical methods. The examples in 

this thesis, are applied to the therapeutic area of oncology, though can in part 

also be applied to answer pharmacological questions in other therapeutic fields 

and contribute to improved and safer drug treatment in patients.
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NEDERLANDSE SAMENVATTING

Dit proefschrift omschrijft de toepassing van farmacometrische technieken om 

behandeling met bestaande oncologische geneesmiddelen te verbeteren en om 

geneesmiddelontwikkeling van nieuwe oncologische middelen te ondersteunen. 

Binnen de farmacometrie worden farmacokinetische en farmacodynamische 

eigenschappen van geneesmiddelen gekarakteriseerd, wiskundige en statistische 

modellen worden ontwikkeld op basis van (patiënten) data. Deze eigenschappen 

geven inzicht in de processen die een geneesmiddel ondergaat in het lichaam 

(de PK) en de effecten en bijwerkingen van een geneesmiddel (de PD). Het 

kwantificeren van deze zogenaamde PK-PD relaties in wiskundige en statistische 

modellen biedt de mogelijkheid om de karakteristieken van een geneesmiddel 

te begrijpen. Daarnaast kunnen deze modellen helpen bij het verbeteren van de 

klinische toepasbaarheid van geneesmiddelen en kunnen ze nuttig zijn voor het 

maken van beslissingen tijdens de ontwikkeling van een geneesmiddel. 

Farmacokinetiek en farmacodynamiek: Tamoxifen

Verschillende aspecten van het optimaliseren van de behandeling met tamoxifen 

voor patiënten met oestrogeen-receptor positieve borstkanker, worden beschreven 

in het eerste hoofdstuk van dit proefschrift. Tamoxifen wordt gemetaboliseerd 

door cytochroom P450 (CYP) enzymen, wat leidt tot de formatie van metabolieten 

zoals, 4-hydroxy-tamoxifen en endoxifen. Hoofdstuk 1.1 is een review van de 

gepubliceerde data naar het effect van verschillende genetische polymorfismen, 

in genen die CYP-enzymen coderen, op de PK en PD van tamoxifen. Een review van 

deze literatuur liet zien dat er geen duidelijke associatie is tussen genetische 

afwijkingen en de PK en PD uitkomstmaten, behalve voor het CYP2D6 genotype. 

Een duidelijke relatie tussen genotype en blootstelling werd gevonden voor het 

CYP2D6 genotype. Dit genotype kon een deel van de interindividuele variabiliteit in 

plasma concentraties van endoxifen, de farmacologisch meest actieve metaboliet 

van tamoxifen, verklaren. Echter, voor een relatie tussen genotype en response 

werden tegenstrijdige resultaten gevonden. 
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Deze controversie en daarnaast de partiele bijdrage van het genotype aan de 

variabiliteit van de plasma concentraties van endoxifen, impliceren dat dosis 

individualisatie van tamoxifen niet gerealiseerd kan worden met behulp van 

farmacogenetische afwijkingen van metaboliserende enzymen. 

In een retrospectieve analyse, werd aangetoond dat endoxifen concentraties 

van >5.97 ng/mL geassocieerd zijn met een verbeterde borstkanker uitkomst in 

patiënten behandeld met tamoxifen. Echter, zoals eerder beschreven, hebben 

tamoxifen zelf en andere metabolieten ook anti-oestrogene activiteit. Hoofdstuk 

2.2. beschrijft de ontwikkeling van een anti-oestrogene activiteitsscore (AAS) 

score. In dit hoofdstuk wordt onderzocht of deze score een betere predictor is voor 

recurrence vrije overleving dan endoxifen concentraties. De AAS integreert de anti-

oestrogene activiteit van tamoxifen en drie metabolieten met hun concentraties 

in bloed. De anti-oestrogene activiteit van endoxifen, 4-hydroxy-tamoxifen 

en N-desmethyltamoxifen werden bepaald in een cel-proliferatie experiment. 

Tamoxifen en metaboliet concentraties en recurrence vrije overlevingsdata waren 

beschikbaar voor 1370 patiënten. De resultaten van de analyse lieten zien dat de 

AAS een voorspeller is van recurrence vrije overleving, echter was de AAS niet 

beter in het voorspellen van recurrence dan de endoxifen target concentratie van 

5.97 ng/mL. Hieruit kan geconcludeerd worden dat endoxifen een proxy is voor het 

totale anti-oestrogene effect van tamoxifen en drie metabolieten. 

De bevindingen in hoofdstuk 1.1 en 1.2 ondersteunen de point of view m.b.t. 

dosis individualisatie van tamoxifen omschreven in hoofdstuk 1.3. Ongeacht 

de controversiële bevindingen wat betreft een genotype-response relatie voor 

CYP2D6 en recurrence vrije overleving, blijft de discussie over de beste therapie 

voor de individualisatie van tamoxifen behandeling bestaan. In hoofdstuk 1.3 

wordt omschreven waarom Therapeutic Drug Monitoring (TDM) van endoxifen 

de voorkeur heeft in vergelijking met CYP2D6 genotyperen. Het CYP2D6 genotype 

kan enkel een deel van de interindividuele variabiliteit in endoxifen concentraties 

verklaren, en is om die reden geen optimale voorspeller voor de endoxifen 

concentratie. TDM van endoxifen kan helpen om behandelingsuitkomsten te 

verbeteren door patiënten met endoxifen concentraties van 5.97 ng/mL of lager 

een dosis verhoging te geven van 20 mg/dag naar 40 mg/dag tamoxifen. 
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Ondanks de bewijsvoering voor een relatie tussen endoxifen concentraties 

en verbeterde borstkanker recurrence cijfers, blijft het een uitdaging om TDM 

van endoxifen te implementeren in de klinische praktijk. Dit komt omdat 

vervolgstudies een dergelijke relatie niet konden identificeren. Daarnaast zijn 

de voordelen van TDM niet prospectief bewezen effectief. Goed ontwikkelde 

trials zijn nodig om de voordelen van TDM aan te tonen. In hoofdstuk 1.4 wordt 

de haalbaarheid van prospectieve observationele en gerandomiseerde studies 

geëvalueerd. Simulaties lieten zien dat voor een observationele studies op zijn 

minst 1500 patiënten en een intentionele follow up van 15 jaar nodig zijn om 

een effect van endoxifen concentraties >5.97 ng/mL op borstkanker recurrence 

(hazard ratio 0.71) te laten zien met een power van 80% (p < 0.05). Geen van de 

eerder uitgevoerde retrospectieve of prospectieve studies hebben een dergelijke 

power. De simulaties lieten zien dat de eerder gerapporteerde retrospectieve 

studie een power van ongeveer 62% had om dit verschil in recurrence tussen 

patiënten met hoge en lage endoxifen concentraties te kunnen laten zien. De 

simulaties in deze studie laten zien dat de prospectieve evaluatie van TDM van 

endoxifen haalbaar is, maar dat hiervoor grote patiënten aantallen en een lange 

follow up tijd nodig zijn. Daarnaast laten deze simulaties zien dat een benadering 

op basis van modellen nuttig is in het interpreteren van uitgevoerde studies en in 

het ontwikkelen van nieuwe studies in de toekomst. 

Farmacokinetiek en farmacodynamiek: MCLA-128

Hoofdstuk 2 laat zien hoe PK-PD modeleren gebruikt kan worden om beslissingen 

te maken met betrekking tot dosering en doseringsschema’s voor verschillende 

fases van klinische geneesmiddelontwikkeling. In dit hoofdstuk wordt de 

toepasbaarheid van (translationele) PK-PD modelering in de ontwikkeling van 

MCLA-128, een bispecifiek antilichaam met de HER2 en HER3 receptoren als 

target, omschreven. 

In hoofdstuk 2.1 wordt een translationeel PK-PD model ontwikkeld gebaseerd 

op data uit preklinische studies met cynomolgus apen en muizen. Het model 

werd gebruikt om de PK en PD eigenschappen van MCLA-128 te karakteriseren. 

Vervolgens kon met dit model een veilige start dosering en klinisch effectieve 

dosering voor de First-in-Human studie worden voorspeld. 
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Deze predictie was gebaseerd op de area under the concentration-time curves 

(AUC), receptorbezetting en PK-PD model simulaties. 

Deze analyse voorspelde dat een gefixeerde dosering van 10 tot 480 mg MCLA-128, 

toegediend elke 3 weken (q3wk) geschikt was als start dosering voor de First-

in-Human studie. Gefixeerde doseringen van 360 mg of meer, q3wk zullen naar 

verwachting effectief zijn in mensen. 

In hoofdstuk 2.2 werd de data van de First-in-Human trial gebruikt om een populatie 

PK model te ontwikkelen voor MCLA-128 om de klinische PK eigenschappen te 

karakteriseren en om te evalueren of een gefixeerde dosering geschikt is. Het PK 

model kon de PK eigenschappen van MCLA-128 voor verschillende doseringen 

adequaat omschrijven. Simulaties lieten zien dat doseringen aangepast op 

gewichtsparameters resulteerde in een vergelijkbare AUC, maximale en minimale 

concentratie van MCLA-128, in vergelijking met gefixeerde doseringen. Deze 

analyse laat zien dat de PK van MCLA-18 vergelijkbare dispositie eigenschappen 

heeft als andere monoklonale antilichamen en dat een gefixeerde dosering 

gepast is voor patiënten met solide tumoren. De analyse kon ook de voorspellende 

waarde van het preklinische model onderzoeken. De structuur van het PK model 

was vergelijkbaar voor het preklinische en klinische model. Wanneer enkele 

aannames in overweging worden genomen, kan het preklinische PK model de 

klinische blootstelling aan een nieuw geneesmiddel voorspellen, zonder dat het 

daarvoor in mensen is geëvalueerd.

De analyses beschreven in hoofdstuk 2 laten zien dat translationele modellen 

nuttig kunnen zijn in het karakteriseren van PK en PD eigenschappen van nieuwe 

geneesmiddelen in dieren en dat deze modellen voorspellingen kunnen doen voor 

toepasbaarheid in mensen. Daarnaast kan dit type modelering de keus voor een 

bepaald doseringsregime voor een First-in-Human studie, ondersteunen. 
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Farmacokinetiek en farmacodynamiek: toxiciteit

Cytotoxische anti-kanker geneesmiddelen en meer target-specifieke therapieën 

hebben beiden bijwerkingen. Deze bijwerkingen kunnen de kwaliteit van leven 

van patiënten beïnvloeden. Daarnaast kunnen bijwerkingen invloed hebben op 

de voorgestelde dosering, doordat ze leiden tot dosis reducties, uitstellen van 

doseringen en stoppen van behandelingen. Toxiciteit kan daardoor het effect van 

het geneesmiddel dwarsbomen. In hoofdstuk 3 worden kwantitatieve modellen 

beschreven die de blootstelling aan een geneesmiddel linken aan de dynamiek 

van bijwerkingen. Dit hoofdstuk laat zien hoe deze modellen nuttig kunnen zijn 

in het optimaliseren van doseringsschema’s. Daarnaast wordt in dit hoofdstuk 

de relatie tussen de blootstelling aan docetaxel en toxiciteit voor patiënten 

met gemetastaseerde castratie-resistente prostaatcarcinomen (mCRPC) 

gerapporteerd.

Hoofdstuk 3.1 omschrijft hoe bijwerkingen van anti-kanker geneesmiddelen 

in een model kunnen worden gekwantificeerd. Daarnaast worden in dit 

hoofdstuk verschillende modelstructuren gerapporteerd die de relatie tussen 

geneesmiddelconcentraties en toxiciteit beschrijven, zoals: myelosuppressie, 

cardiovasculaire bijwerkingen en categorisch geclassificeerde bijwerkingen, 

zoals hand voet syndroom, proteïnurie, diarree en uitslag. Gerapporteerde PK-

PD modellen kunnen klinische scenario’s voorspellen, met als doel de optimale 

balans te vinden tussen blootstelling en veiligheid. Hierbij wordt gebruikt gemaakt 

van longitudinale data, waarbij alle beschikbare data wordt meegenomen in het 

model. Hierdoor gaat geen informatie verloren en kan er een inschatting worden 

gemaakt van de veranderingen in mate van toxiciteit over de tijd. 

Hoofdstuk 3.2 beschrijft een PD model voor cardiale biomarkers in borstkanker 

patiënten die behandeld worden met antracyclines en trastuzumab. Trastuzumab 

is geassocieerd met cardiotoxiciteit, wat zich manifesteert als een daling in de 

links-ventriculaire ejectie fractie (LVEF). Het toedienen van antracyclines voor 

start met trastuzumab heeft een verhoogd risico op cardiotoxiciteit tot gevolg. 

High-sensitive troponin T en N-terminal-pro-brain natriuretic peptide (NT-proBNP) 

zijn moleculaire markers die mogelijk in een vroeg stadium geneesmiddel-

geïnduceerde cardiotoxiciteit kunnen detecteren. 



264

CHAPTER 04   | Conclusion & Perspective

PD modellen voor troponine T en LVEF werden ontwikkeld en identificeerden 

dat de maximale troponine T concentratie (een indicatie voor hartschade) na 

behandeling met antracyclines een significante determinant is voor trastuzumab-

geïnduceerde afname in LVEF. Deze modellen kunnen patiënten identificeren die 

een risico hebben op geneesmiddel-geïnduceerde cardiotoxiciteit en kunnen 

mogelijk protocollen voor cardiale monitoring optimaliseren. 

Ernstige neutropenie is een bekende dosis-limiterende toxiciteit voor vele 

cytotoxische anti-kanker geneesmiddelen, zoals docetaxel. Hoofdstuk 3.3 betreft 

een meta-analyse waarin de verschillen in neutropenie en blootstelling aan 

docetaxel tussen patiënten met solide tumoren versus patiënten met mCRPC 

worden geëvalueerd. De incidentie van neutropenie in patiënten met mCRPC, 

behandeld met docetaxel, is lager vergeleken met patiënten met solide tumoren, 

die behandeld werden met een vergelijkbare dosering docetaxel. De analyse in 

hoofdstuk 3.3 laat zien dat patiënten met mCRPC een significant (1.8x) lagere 

gemiddelde blootstelling (AUC) hebben dan patiënten met andere solide tumoren. 

Daarnaast hadden patiënten met mCRPC, behandeld met docetaxel, een 2.2 maal 

lagere kans om graad 3/4 neutropenie te krijgen in vergelijking met patiënten 

met andere solide tumoren. Deze bevindingen indiceren dat mCRPC patiënten 

een lager risico op ernstige neutropenie hebben, wat waarschijnlijk te wijden is 

aan lagere systemische blootstelling aan docetaxel.

Tot slot, in hoofdstuk 3.4, wordt het effect van leeftijd op docetaxel-geïnduceerde 

neutropenie geëvalueerd in patiënten met mCRPC. Deze analyse ondersteund 

de selectie van patiënten in hoofdstuk 3.3. De analyse in hoofdstuk 3.4 laat zien 

dat oudere patiënten een significant hoger risico hebben op het ontwikkelen van 

hematologische toxiciteit in vergelijking met jongere patiënten, in de dagelijkse 

klinische praktijk. De resultaten suggereren dat dit verhoogde risico wordt 

veroorzaakt doordat ouderen patiënten minder reserve aan bloedcellen hebben in 

het beenmerg of dat ouderen gevoeliger zijn voor de bijwerkingen van docetaxel.
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In conclusie, dit proefschrift omschrijft verschillende voorbeelden van het 

toepassen van modelering en simulatiemethoden om huidige oncologische 

therapieën te verbeteren en geneesmiddelontwikkeling van nieuwe oncologische 

geneesmiddelen te ondersteunen. Het proefschrift laat zien dat een 

farmacometrische benadering van data een krachtige techniek is om (klinisch) 

farmacologische vragen te beantwoorden. Dit soort vragen zijn vaak onmogelijk 

om te beantwoorden met behulp van alleen conventionele statistische methoden. 

De voorbeelden in dit proefschrift zijn toegepast op de oncologische setting, echter 

kunnen deze modellen deels ook toegepast worden op andere therapeutische 

aandachtsgebieden. Deze modellen kunnen bijdragen aan verbeterde en veiligere 

therapieën voor patiënten. 
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