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Abstract
One of the main goals of meta-analysis is to test for and estimate the heterogeneity of effect sizes. We
examined the effect of publication bias on the Q test and assessments of heterogeneity as a function of true
heterogeneity, publication bias, true effect size, number of studies, and variation of sample sizes. The present
study has two main contributions and is relevant to all researchers conducting meta-analysis. First, we show
when and how publication bias affects the assessment of heterogeneity. The expected values of heterogeneity
measures H2 and I2 were analytically derived, and the power and Type I error rate of the Q test were examined
in a Monte Carlo simulation study. Our results show that the effect of publication bias on the Q test and
assessment of heterogeneity is large, complex, and nonlinear. Publication bias can both dramatically decrease
and increase heterogeneity in true effect size, particularly if the number of studies is large and population effect
size is small. We therefore conclude that the Q test of homogeneity and heterogeneity measures H2 and I2 are
generally not valid when publication bias is present. Our second contribution is that we introduce a web
application, Q-sense, which can be used to determine the impact of publication bias on the assessment of
heterogeneity within a certain meta-analysis and to assess the robustness of the meta-analytic estimate to
publication bias. Furthermore, we apply Q-sense to 2 published meta-analyses, showing how publication bias
can result in invalid estimates of effect size and heterogeneity.

Translational Abstract
Meta-analyses have become increasingly popular within psychology because they enable us to combine
the results of multiple primary studies. However, the validity of the results of meta-analytical research
is threatened by publication bias, as it is well known that publication bias results in overestimation of the
effect size in a meta-analysis. Regrettably, the impact of publication bias on estimates of heterogeneity
is still not well understood. This article investigates this impact by deriving results on measures of
heterogeneity (I2, H2) as well as on properties (Type I error rates and power) of the Q test of
homogeneity. As heterogeneity is an essential element of the output of any meta-analysis, our article and
results are relevant to all researchers applying meta-analysis. Our study shows that the effect of
publication bias on heterogeneity assessment is alarmingly high, especially when the true effect sizes are
small and there is a large amount of bias, as is often the case in psychological research. Furthermore, this
effect of publication bias is complex, as it is nonlinear and interacts with several factors such as true
effect size, true heterogeneity, study sample sizes, and variation thereof. We therefore conclude that the
Q test of homogeneity and heterogeneity measures H2 and I2 are generally not valid when publication
bias is present. We describe an easy-to-use web application, Q-sense, that helps researchers assessing the
impact of publication bias on their meta-analytic results, and we apply it to 2 published meta-analyses.

Keywords: meta-analysis, publication bias, heterogeneity, Q test, extreme homogeneity

Meta-analysis has become the most important tool for research-
ers to gain an overview of the existing literature within a specific
field (e.g., Aguinis, Gottfredson, & Wright, 2011; Head, Holman,

Lanfear, Kahn, & Jennions, 2015). Meta-analyses are a form of
systematic review that statistically combine the results from sim-
ilar studies to synthesize available evidence in a specific research
area (Rhodes, Turner, & Higgins, 2015). These quantitative sys-
tematic reviews aim to combine data across many studies or data
sets to obtain a summary estimate of the effects (Ioannidis, 2008).
In contrast to narrative reviews, meta-analyses make use of the
effect size of a study (Borenstein, Hedges, Higgins, & Rothstein,
2009). Meta-analyses are increasingly popular within many re-
search areas, including psychology. The annual number of meta-
analytic publications in PsycINFO has considerably increased over
the years. As of 2018, 2,100 meta-analyses are published every
year and take up 1.3% of all PsycINFO articles.

Meta-analyses are used both to estimate the true population
effect size (i.e., the average true effect size) and to explain heter-
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ogeneity in this effect. Primary studies will differ in their designs
and may not estimate the same true effect. Hence, differences
between the estimated effect sizes of these included studies in a
meta-analysis are inevitable (Higgins, Thompson, Deeks, & Alt-
man, 2002). If the variation between study results is greater than
that expected by chance alone (sampling error), this is called
statistical heterogeneity (e.g., Higgins & Green, 2011). Statistical
heterogeneity indicates that true study effects are influenced by
clinical factors (e.g., differences in the studied population), or
methodological factors (e.g., different study designs or measure-
ment procedures). Even when the mean of the distribution of the
true effect size is positive, it is quite possible for heterogeneity to
indicate that, in some situations, the effect size is zero or even
negative. This provides important qualifications of the average
effect. If relevant characteristics are not coded as moderators, a
researcher may conclude that the treatment does have the desired
effect when it may only work for particular subgroups of partici-
pants. In order to gain valid results, every meta-analysis should
therefore examine statistical heterogeneity (APA Publications and
Communications Board Working Group on Journal Article Re-
porting Standards, 2008; Hardy & Thompson, 1998). Consensus
seems to be growing that random-effects meta-analysis, which
incorporates and estimates statistical heterogeneity, should be pre-
ferred over fixed-effect meta-analysis that assumes homogenous
effect sizes (Viechtbauer, 2005), as the assumption of homogene-
ity often does not hold (Schmidt, Oh, & Hayes, 2009).

Different tests and measures are available to assess and test for
(statistical) heterogeneity. In the random-effects model, heteroge-
neity is represented by parameter �2, which is the variance of true
effect sizes. Because �2 is not comparable across meta-analyses, it
is not suitable for describing the impact of heterogeneity on
meta-analyses (Higgins & Thompson, 2002). Therefore, other
heterogeneity statistics have been proposed, such as the I2 statistic,
the H2 index (Higgins & Thompson, 2002), and the Q statistic that
is most commonly used to test the null hypothesis of no statistical
heterogeneity (i.e., H0: �2 � 0; Cochran, 1954). The present article
examines how statistical properties of these heterogeneity statistics
are affected by publication bias. We define publication bias as the
selective publication of studies with a statistically significant out-
come (e.g., van Assen, van Aert, & Wicherts, 2015), resulting in
the overrepresentation in the literature of studies with significant
outcomes compared with studies with null results.

The evidence for publication bias is overwhelming, particularly
in psychology. Fanelli (2012) showed that about 95% of published
articles in psychiatry and psychology contain statistically signifi-
cant outcomes, and that this percentage has been increasing over
the years (cf. Sterling, 1959; Sterling, Rosenbaum, & Weinkam,
1995). Neither the high percentage nor its increase can be ex-
plained by the studies’ statistical power, because power is gener-
ally low in psychology (e.g., Bakker, van Dijk, & Wicherts, 2012;
Ellis, 2010) and has not increased over the years (e.g., Hartgerink,
Wicherts, & van Assen, 2017; Smaldino & McElreath, 2016).
Franco, Malhotra, and Simonovits (2014) and Cooper, DeNeve,
and Charlton (1997) provided direct evidence for publication bias
in psychology and related fields. Further evidence of publication
bias in psychology was obtained by the Reproducibility Project
Psychology, which replicated 100 key effects from articles pub-
lished in three prominent and high-impact psychology journals
(Open Science Collaboration, 2015). Whereas 97% of the original

studies reported that the key effect was statistically significant,
only 36% of the replicated effects were statistically significant
(Open Science Collaboration, 2015), even though the statistical
power of the replication studies was generally higher than that of
the original studies. This indicates that published effect sizes are
often overestimated and that significant results are indeed over-
represented in the literature.

Publication bias affects estimates of effect size and between-
study variance in meta-analysis (e.g., Jackson, 2007; Lane &
Dunlap, 1978). Because evidence of publication bias is over-
whelming in psychology (e.g., Fanelli, 2012; Sterling et al., 1995),
we agree with Jackson (2006a) that publication bias is “the greatest
threat to the validity of a meta-analysis” (p. 2911). It is well known
that publication bias results in overestimated effect sizes, and that
more overestimation is associated with smaller true effect sizes,
smaller study sample sizes, and stronger publication bias (e.g.,
Borenstein et al., 2009; Nuijten, van Assen, Veldkamp, & Wich-
erts, 2015; van Assen et al., 2015). Interestingly, overestimation by
publication bias is unaffected by the number of studies in the
meta-analysis (e.g., Nuijten et al., 2015). Hence, including more
studies in a meta-analysis does not remedy overestimation when
publication bias exists and may even provide a false sense of
confidence because the precision of the (over)estimated effect size
increases (cf. van Assen et al., 2015).

Although the previously discussed literature clearly identifies
the effect of publication bias on the mean effect size in a meta-
analysis, the effect of publication bias on estimates of the between-
study variance and tests of homogeneity are less clear-cut (Thor-
lund et al., 2012). Sterne and Egger (2006) argued that it is
implausible that underdispersion (underestimated between-study
variance) will arise other than by chance. On the other hand,
Jackson (2006a, 2007) demonstrated that the estimate of hetero-
geneity depends on the amount of publication bias and the true
effect size, and can be either smaller or larger than the true amount
of heterogeneity.

As an example of how publication bias can affect heterogeneity,
consider Figure 1, showing the sampling distribution of effect sizes
of studies, with the same sample size, and an average true effect
size equal to zero (� � 0). The vertical “CV” line indicates the
critical value of statistical significance. When there is full publi-
cation bias (i.e., only statistically significant studies get published),
only the gray area on the right remains. The variance of this gray
area is only 15% of that of the original distribution, showing that
when only statistically significant studies are published, we under-
estimate the amount of variation. The striped area shows a differ-
ent scenario. Here, all statistically significant studies are published
as well as 10% of the nonsignificant studies (90% publication
bias). Here, the variance is 1.7 times larger than the variance of the
original (full) distribution as a result of the relatively large amount
of outliers in the right (gray) area.

Because publication bias can lead to either overestimation or
underestimation of the between-study variance, Jackson (2006a,
2007) concluded that it is impossible to make generalizations
about the implications of publication bias for estimating the
between-study variance. In his analyses, however, Jackson (2006a,
2007) assumed that studies estimating an effect size larger than a
cutoff point are published. Empirical evidence, however, suggests
that publication bias based on studies’ statistical significance is
more realistic, as statistically significant results are overrepre-
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sented in the literature. Moreover, whereas Jackson considered
only meta-analyses with studies with identical sample sizes in his
analyses, it is important to study the effects under varying study
sample sizes. Similarly, McShane, Böckenholt, and Hansen (2016)
recently used simulations to examine the effects of publication bias
on heterogeneity assessments for a very limited number of condi-
tions, using two levels of publication bias, five levels of the effect
size, five levels of the included number of studies (K), and one
level of heterogeneity (�). These conditions do not, and cannot,
capture the complexity of the effects of publication bias on heter-
ogeneity assessment; as they examined the effects of three contin-
uous factors (publication bias, effect size, and number of studies)
with just 2 � 5 � 5 � 50 conditions, and ignored three other
important factors (true heterogeneity, study sample sizes, and
variation of study sample sizes), the complex and nonlinear effects
on heterogeneity assessment as well as the precise conditions
under which heterogeneity estimates are (un)biased remain un-
clear. Therefore, their following conclusion is too general and
imprecise: “The standard meta-analytic approach tends to under-
estimate heterogeneity on average when there is selection; how-
ever, this result is not uniform, and indeed it sometimes demon-
strates an upward bias” (p. 742).

The present study has two main contributions and is relevant to
all researchers conducting meta-analyses. First, we show when and
how publication bias affects the assessment of heterogeneity. More
specifically, we analyze the expected value of the statistics Q, H2,
and I2 as a function of heterogeneity in true effect size, publication
bias, average true effect size, study sample size, and variation of
sample size. Compared with previous literature (Jackson, 2006a,
2007; McShane et al., 2016), our study provides results for more
realistic (based on significance rather than effect size), more com-
plex (varying sample sizes within a meta-analysis), and more
diverse conditions on more outcome variables (not only bias of the
estimate of the between-study variance but also Type I error and
statistical power). Our results on meta-analyses based on studies
with the same sample size are complete, that is, they incorporate
any true effect size, heterogeneity, and publication bias, and gen-
eralize to any sample size and number of studies. We also examine

the effects of publication bias in conditions with different sample
size variability, both in analytic and Monte Carlo simulation stud-
ies. As opposed to previous studies, we also investigate the effect
of publication bias on the Type I error rate and statistical power of
the Q test in many conditions.

In our analyses, we assume that within-study variances are
known, which is a common assumption in meta-analysis (e.g.,
Raudenbush, 2009). In our main analyses, we also assume that
average true effect size is known, which allows us to analytically
derive our results on heterogeneity, thereby bypassing the problem
of estimating heterogeneity as is needed in simulations. The prob-
lem of estimation is that although more than a dozen estimators of
heterogeneity exist, none of them performs well in all conditions,
and there is limited information concerning which estimator per-
forms best in which condition (Langan, Higgins, & Simmonds,
2017; Veroniki et al., 2016). Bypassing the estimation problem
therefore enables us to explore the “pure” effect of publication bias
on the assessment of heterogeneity in a published set of studies.
The trade-off of this analytic approach is that it requires stricter
assumptions which may affect the results. Therefore, we also
carried out four simulation studies with less strict assumptions that
do estimate the true effect size instead of assuming it to be known.
As the analytic results are more precise (i.e., there is no sampling
error in analytic results) and the four simulation studies provide
results similar to our main analyses, we only briefly describe the
results of our four simulation studies in our article (details can
be found in the additionally available materials on the Open
Science Framework [OSF], https://osf.io/qzt5z/).

Our second main contribution is to introduce a web application,
Q-sense, which can be used by meta-analysts to determine the
sensitivity of the Q test and assessment of heterogeneity to publi-
cation bias. Q-sense will increase researchers’ understanding of
their meta-analytic results, as the effect of publication bias is
complex and nonlinear. Q-sense allows researchers to determine
the degree to which their meta-analytic estimate of heterogeneity
may be affected by publication bias, thereby examining the ro-
bustness of their meta-analytic estimates to publication bias. We
illustrate the value of Q-sense in checking robustness and sensi-

Figure 1. Sampling distribution of effect size with mean true effect size � � 0 and the critical value (CV) of
testing the null hypothesis of no effect. The striped areas correspond to the sampling distribution of published
studies when only 10% of insignificant studies get published (bias 90%), and the gray area corresponds to the
sampling distribution of statistically significant studies (bias 100%).
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tivity to publication bias by applying it to two published meta-
analyses.

In the next section, we describe the random-effects meta-
analysis model, define the Q, H2, and I2 statistics, show how they
are related, and derive their distributions when all studies in the
meta-analysis have the same sample size. We then discuss the
assumptions of our analyses and the conditions that we examine,
followed by four sections presenting the effects of publication bias
on heterogeneity. The first section presents analytic results on the
effect of publication bias on the expected value of statistics Q, H2,
and I2. The second section focusses on extreme homogeneity,
when there is less variation in study results than would be
expected by chance. We discuss the circumstance in which
publication bias can create extreme homogeneity and the min-
imal amount of true heterogeneity needed to be able to detect
heterogeneity in those conditions. The third section presents the
effect of publication bias on the statistical properties (Type I
error rate and power) of the Q test. The fourth section shows the
impact of publication bias in additional conditions using sample
sizes from the field of psychology. After these four results
sections, we describe the web-application Q-sense that allows
researchers to determine the sensitivity of the meta-analytic
estimate of heterogeneity to publication bias, and apply Q-sense
to two published meta-analyses from psychology.

Assessing Heterogeneity in a Random-Effects
Meta-Analysis

The random-effects model assumes that the observed effect size
of a study (Yi) is the result of the average true effect size (�), the
deviation of the study’s true effect size from the grand mean (�i)
and the study’s sampling error (εi):

Yi � � � �i � εi. (1)

Both �i and εi are assumed to be normally distributed variables
with variances �2 and �i

2, respectively. The within study variance,
�i

2, is a function of population variance �y
2 and study sample size,

for instance, �y
2/Ni, in case of estimating one group mean. In

practice, �i
2 is estimated and then assumed to be known in meta-

analysis. We will also use �2 for �i
2 if all studies are based on the

same sample size, thereby assuming that they have a common
within-study variance.

The variance of true effect sizes �2 is independent of the number
of studies in the meta-analysis (K) and the studies’ precision
(which is the inverse of �i

2). However, �2 is not suitable for
describing the impact of heterogeneity on the meta-analysis, its
conclusions, and its interpretation (Higgins & Thompson, 2002).
Table 1 shows the statistical properties of �2 and the other heter-
ogeneity measures (Adapted from Rücker, Schwarzer, Carpenter,
& Schumacher, 2008, p. 79).

The I2 statistic (Higgins & Thompson, 2002; Higgins, Thomp-
son, Deeks, & Altman, 2003) is often used to interpret the extent
of heterogeneity and is defined as

I2 � �2

�2 � �2 . (2)

The I2 statistic is one of the most popular heterogeneity statistics
because of its ease of interpretation; it represents the proportion of
the estimated variance that results from differences in true effect

sizes. Its value is scale invariant (allowing comparison across
meta-analyses) and does not depend on the number of studies in a
meta-analysis. However, its value increases as the studies’ sample
size increases (see Table 1). I2 ranges from 0 (homogeneity; �2 �
0) to 1 (heterogeneity and infinite precision; �2 	 0 and �2 � 0).

A useful but less popular heterogeneity statistic is H2 (Higgins
& Thompson, 2002):

H2 �
var(Yi)

�2 � �2 � �2

�2 � 1
1 � I2 . (3)

Like I2, H2 is independent of the number of studies but dependent
on studies’ precision. However, H2 has an advantage over I2 and �2

in that it can detect extreme homogeneity (H2 
 1). Following
Ioannidis, Trikalinos, and Zintzaras (2006), evidence of extreme
homogeneity is obtained when there is significantly less variance
of study effect sizes than would be expected under conditions of
homogeneity (i.e., when �2 � 0). At the analytic or population
level, we have evidence of extreme homogeneity when the ex-
pected value of H2 is smaller than 1. Hence, H2 ranges from zero
to infinity, with values lower than 1 signaling extreme homoge-
neity, values equal to 1 corresponding to homogeneity, and values
larger than 1 corresponding to heterogeneity (see Table 1).

The well-known Q statistic is most commonly used to test the
null hypothesis of no statistical heterogeneity (i.e., H0: �2 � 0).
The DerSimonian and Laird estimator for the between-study vari-
ance in true effect size is based upon this Q statistic (DerSimonian
& Laird, 1986). It is defined as the squared sum of standardized
effect sizes:

Q � �
i�1

K �Yi � �

�i
�2

. (4)

Under the assumptions of the fixed-effects model, the null hypoth-
esis of homogeneity (�2 � 0), and assuming a known true effect
size, the Q statistic follows a central chi-square distribution with
degrees of freedom equal to K, and Q has an expected value equal
to K and variance 2K. In practice, the true effect size is unknown,
and the distribution has K-1 degrees of freedom. The value of Q
increases with K, and when the null hypothesis is false, Q also
increases with increases in studies’ precision. Q ranges from zero
to infinity, with expected values of Q between zero and the degrees
of freedom corresponding to extreme homogeneity, expected val-

Table 1
Properties of Statistics of Heterogeneity

Measure Range
Increasing

in K
Decreasing

in �2
Can assess extreme

homogeneity

�, �2 0–� No No No
Q 0–� Yes Yesa Yes
I2 0–1 No Yes No
H, H2 0–� No Yes Yes

Note. From “Undue Reliance of I2 in Assessing Heterogeneity May
Mislead,” by G. Rücker, G. Schwarzer, J. R. Carpenter, and M. Schum-
acher, 2008, BMC Medical Research Methodology, 8, p. 79. Copyright
[2008] by Rücker, Schwarzer, Carpenter, and Schumacher. Adapted with
permission.
a “Yes” if the null hypothesis of homogeneity is rejected; if the null
hypothesis of homogeneity is not rejected, the estimate does not increase
with precision.
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ues of Q equal to the degrees of freedom corresponding to homo-
geneity, and expected values of Q larger than the degrees of
freedom corresponding to heterogeneity (see Table 1). The hy-
pothesis of homogeneity is commonly rejected when the observed
value of Q exceeds the 90th or 95th percentile of the central
chi-square distribution (Higgins et al., 2002, 2003). We note that
the Q test has low power when there are few studies in a meta-
analysis, and that one should not rely on its result for diagnosing
heterogeneity in such situations (e.g., Higgins et al., 2003).

The expected values of statistics Q, H2, and I2 are related under
statistical heterogeneity and equal study sample sizes. For simplic-
ity, assume all studies assess one population mean � and have the
same population variance �y

2. Then, it can be shown that (Jackson,
2006b)

Q � �
i�1

K �Yi � �

�i
�2

��1 � N�2

�y
2 �	2(K) � 1

1 � I2	2(K)

� H2	2(K). (5)

In words, Q follows a central chi-square distribution with K
degrees of freedom multiplied by a constant ( 1

1�I2 or H2). This
constant equals 1 plus Precision � True heterogeneity, which
reflects that under heterogeneity Q increases with studies’ preci-
sion and true heterogeneity (see Table 1). This equation also
reveals that the distribution of Q shrinks under extreme homoge-
neity (H2 
 1) and inflates under heterogeneity (H2 	 1). Using
Equation 5, I2 can be redefined as

I2 � E(Q) � K
E(Q) (6)

whenever E(Q) 	 K (otherwise I2 � 0), because

I2 � E(Q) � K
E(Q) � K�1 � �2 ⁄ �2� � K

K�1 � �2 ⁄ �2� � �2

�2 � �2 ,

and H2 can be redefined as

H2 � E(Q)
K (7)

because

H2 � E(Q)
K � K(1 � �2 ⁄ �2)

K � �2 � �2

�2 .

In our analyses, we use Equations 6 and 7 to derive our results for
I2 and H2 under different conditions of true heterogeneity, publi-
cation bias, average true effect size, number of studies, study
sample size, and variation of sample sizes.

Analyses

Overall Design

In our analyses, we assume that all primary studies result from
a normal distribution with M � � and known standard deviation
�y � 1. Our results are derived for effect size measure Cohen’s d,
denoted by � because we analyze populations. We assume all
studies i � 1, . . . , K examine one population mean with sample
size Ni, but our results also hold exactly for a balanced independent
two-samples design, comparing two population means, where each
group has 2Ni observations (i.e., a total sample size of 4Ni). All R

code used for generating data and analysis can be found on the
OSF project page (https://osf.io/qzt5z/).

Statistical significance of a study is determined using a one-
sided test with an alpha of .05. We model publication bias with one
parameter pub between 0 and 1 representing the relative reduction
in the probability of statistically nonsignificant studies getting
published compared with statistically significant studies. For ex-
ample, pub � .2 indicates that the probability of getting published
is 5 times higher for significant than for nonsignificant studies.
Recently developed meta-analytic methods that attempt to adjust
for publication bias employ the same model (e.g., Simonsohn,
Nelson, & Simmons, 2014a, 2014b; van Assen, et al., 2015). Our
model is also comparable with selection models determining the
weight of a study as a function of the p value, such as the combined
probability model (Hedges, 1992; Hedges & Vevea, 2005; Iyengar
& Greenhouse, 1988).

Independent Factors

In order to study the effect of publication bias on heterogeneity,
we systematically varied the following factors: sample size vari-
ation, number of studies, true heterogeneity, true effect size, and
the amount of publication bias. Differences in sample sizes in our
main analyses were manipulated into three different levels: equal
sample size (1:1), a small difference in sample sizes (1:3), and a
larger difference in sample sizes (1:10). We assumed 20% and
80% of large and small published studies, respectively, because
more small studies are published within the psychology literature.
The expected value of Q then equals

�
i�1

K

NiE(Yi � �)2 � K
5 (1 � NL�2) � 4K

5 (1 � NS�
2)

� K � K�1
5NL � 4

5NS��2,

with subscripts S and L referring to small and large sample sizes,
respectively. To obtain the same expected value of Q (and H2 and
I2) for varying sample sizes as for equal sample sizes, the total
sample sizes across all studies in the meta-analysis should be
equal. We chose a total sample size that was divisible by 5 (for the
1:1 ratio: 4 � 1 � 1 � 1), 7 (for the 1:3 ratio: 4 � 1 � 1 � 3 �
7), and 14 (for the 1:10 ratio: 4 � 1 � 1 � 10 � 14), and would
result in realistic sample sizes for each study. We selected a total
sample equal to 210, which corresponds to sample sizes of 42 (5 �
42 � 210) in case of equal (1:1) sample sizes, 30 and 90 for
slightly varying (1:3) sample sizes (4 � 30 � 1 � 90 � 210), and
15 and 150 (4 � 15 � 1 � 150 � 210). As was noted before, our
results are equivalent to a balanced independent two-sample de-
sign. When comparing two groups, our results reflect group sam-
ple sizes twice as large (i.e., 84 per group, 60 or 180 per group, and
30 or 300 per group), and thus total sample sizes that are four times
as large (i.e., 840). These sample sizes are somewhat larger than
commonly used in the psychological literature (Hartgerink et al.,
2017) but are the smallest sample size values that satisfy all our
sample size constraints (keeping total sample sizes fixed, given
certain ratios of small and large studies). Using slightly larger
sample sizes will not affect the patterns of relationships we study
but only compresses or squeezes the y-axis of the Figures 3 to 6;
more precisely, increasing all sample sizes with factor C will
squeeze the y-axis of the figures with a factor 1 ⁄ �C.
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Although arbitrary and unrealistic, our choice of two differ-
ent sample sizes in our main analyses enabled us to analytically
derive the results of publication bias on heterogeneity. Because
the results of the effect of sample size variability may depend
on its specific implementation, we carried out four additional
Monte Carlo simulation studies with other and more realistic
implementations of sample size variability. One study was
almost identical to the design of our main analyses, with the
same total sample size and same sample size variability, but
now with five different sample sizes (6, 30, 42, 54, 78) rather
than two (30, 90). Comparing the results of this study with a
simulation study corresponding to our main analyses allowed us
to directly examine whether the distribution of sample size
affects the results, given the same mean and variance of this
distribution. As the distribution of sample sizes in this addi-
tional study may still be considered unrealistic, two other
simulation studies used sample size distributions of psycholog-
ical research. One of them randomly selected sample sizes from
studies in the field of social and personality psychology (Fraley
& Vazire, 2014), whereas the other study randomly selected
sample sizes from studies in one large meta-analysis on the
association between brain volume and intelligence (Pietschnig,
Penke, Wicherts, Zeiler, & Voracek, 2015). As the trends in the
Monte Carlo simulation studies and conclusions based on these
studies are similar to those of our main analyses, we only
briefly summarize their results later on. All details of the
simulation studies are described in the OSF Material A.

Two other factors that varied in our analyses are true heter-
ogeneity and the number of studies in the meta-analysis. True
heterogeneity, assessed with I2, was varied from 0 (homogene-
ity), to small (.25), medium (.5), and large (.75), with values
based on the rules of thumb by Higgins and Thompson (2002).
Using these I2 values, we calculated the number of studies (K)
for which the power of the Q test equals .80 in case of equal
sample sizes. We obtained values of K yielding a power of .8 by
solving

P�Q 
 	cv
2 (K)� � P�	2(K)

1 � I2 
 	cv
2 (K)�

� P�	2(K) 
 �1 � I2�	cv
2 (K)� � .8

for K, assuming I2 � .25, .50, and .75,  � .05, and that K is a
multitude of five published studies. These criteria yielded K � 145
and I2 � .2504, K � 25 and I2 � .4970, and K � 5 and I2 � .7884
(see OSF Material B). Note that the number of studies is relevant
for our analyses of the power of the Q test and the expected value
of Q but not for analyses of the expected value of I2 and H2 (see
Table 1).

The true effect size � varied from 0 to 1, representing a range
between null and very large effects. For � � 1, almost all indi-
vidual studies are statistically significant and get published, and
publication bias has no effect. More specifically, the probability of
a significant effect equals .9871, .99994, and .9999993, for sample
sizes 15, 30, and 42, respectively.

In our analyses, we varied both � and pub (i.e., the probability
of publication of nonsignificant studies relative to significant stud-
ies) in steps of .01, creating a grid of 101 � 101 � 10,201
combinations. For each of the 4 (heterogeneity of true effect
size) � 3 (variation of sample size) � 12 conditions, we computed

the expected heterogeneity (I2 and H2) in the grids. For 3 (number
of studies) � 3 (variation of sample size) � 9 conditions, we
computed Type I error rate and statistical power of the Q test in
grids. We now describe the dependent variables corresponding to
our three research questions in more detail.

Outcome Measures

Expected values of I2 and H2. In these analyses, the depen-
dent variable I2 is used when E(I2) 
 0, and E(H2) if E(H2) 
 1
(extreme homogeneity, where I2 is not defined). These expected
values were calculated from the expected value of Q and Equations
6 and 7. Working out the expected value of Q assuming varying
sample sizes and publication bias yields

E(Q) � K	PSHS
2 � PLHL

2 �
PSNSPLNL

PSNS � PLNL
(�S � �L)2


� K�Havg
2 � Hextra

2 �. (8)

PS and PL refer to the proportion of small and large published
studies, which are .2 and .8, respectively. HS

2 and HL
2 refer to the

expected value of H2 for small and large studies, respectively,
which combine with their corresponding proportions into the
weighted average of H2, that is, Havg

2 . As can be seen in Equation
8, Hextra

2 is a function of the proportion of small and large published
studies, their sample sizes (NS and NL), and the squared difference
of the means of the populations of published small and large
studies. In case of equal sample sizes, Hextra

2 � 0, because then
�S � �L. The expected value of a population of published studies
� is calculated as

� �
pub(1 � �)�nonsig � ��sig

pub(1 � �) � �
, (9)

with � denoting the statistical power of rejecting the null hypoth-
esis in one study, �nonsig denoting the expected effect size of
nonsignificant studies, and �sig denoting the expected effect size
of significant studies. The expected effect size, �, is calculated by
integrating the effect size distributions with mean � and standard
deviation �y

2 ⁄ Ni��2 from minus infinity to the critical value

(1.645 � �y
2 ⁄ Ni) for nonsignificant studies and from this critical

value to infinity for significant studies. HS
2 and HL

2 were calculated
as

H2 � Ni�pub(1 � �)E(Y2)nonsig � �E(Y2)sig

pub(1 � �) � �
� �2�, (10)

which is the variance of the distribution of published standardized
effect sizes, where E(Y2) is obtained by integrating the effect size
distribution from minus infinity to the critical value, and from the
critical value to infinity for nonsignificant and significant studies,
respectively (see OSF Material C).

True heterogeneity I2 required to obtain homogeneity.
Extreme homogeneity (i.e., E[Q] 
 K and E[H2] 
 1) is obtained
for many combinations of values of true effect size and publication
bias. For these combinations, we use Equations 8 to 10 to calculate
the true heterogeneity in the population of all studies (published
and unpublished) required to obtain homogeneity (i.e., E[Q] � K
and E[H2] � 1). We used the iterative bisection method (Adams &
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Essex, 2013, pp. 85–86) for �2 on interval [0, 0.2]1 to obtain
E(H2) � 1, with tolerance 1e-6. From this computed �2, we derived
the true heterogeneity I2 of all studies using Equation 6 (see OSF
Material C).

Type I error rate and power of the Q test. The statistical
properties of the Q test of homogeneity were obtained using
Monte Carlo simulations. Type I error rate and power were
estimated for I2 � 0 and the three conditions with I2 	 0 (i.e.,
I2 � .2504 and K � 145, I2 � .4970 and K � 25, and I2 � .7884
and K � 5), respectively. Note that these three heterogeneity
conditions were chosen such that the power of the Q test exactly
equals .8 when the sample sizes are equal (N � 42) and there is
no publication bias, at  � .05. We also varied the sample size
ratio as before (1:1, 3:1, and 10:1). To obtain a 95% confidence
interval (CI) of the Type I error rate and power with a width of
at most .01, we ran S � 40,000 iterations for each combination
of � and publication bias. The width of the CI equals 2 �
1.96 � �p�1�p� ⁄ S. This CI is widest when the Type I or
power (p) is equal to .5, resulting in a CI with a width of .0098.
When p �  � .05, the width is equal to .0043, and for p � .8,
it is equal to .00784. The Type I error rate and power were
estimated by computing the proportion of statistically signifi-
cant Q tests across the 40,000 iterations. The effect sizes Yi of
the small and large studies were drawn randomly from the
distributions of published studies that were also used to com-
pute Equations 8 to 10. In each iteration, Q was calculated using

Q � �
i�1

K

Ni � (Yi � �)2

with

� �
4NS�S � NL�L

4NS � NL
.

Because mean � is known exactly, we compared Q with the 95th
percentile of the chi-square distribution with K degrees of freedom.
R code used to simulate the statistical properties (Type I error rate
and power) can be found in OSF Material D.

Results

Expected Values of I2 and H2

Interpreting results, particularly when they are as complex as
in our case, is simplified when mechanisms producing these
results are grasped at least at an intuitive level. Hence, we start
by explaining the nonlinear effect of publication bias on heter-
ogeneity in a simple example, before presenting and interpret-
ing our 12 grids with complete results on the expected values of
I2 and H2.

Figure 2 depicts E(H2) of published studies as a function of
publication bias for � � 0, equal sample sizes, and four levels
of heterogeneity (I2). Each subfigure shows a horizontal dashed
line corresponding to true population values of H2 and I2 (i.e.,
of all studies). When all studies get published, E(H2) equals H2,
which can also be seen at the complete right of each plot in
Figure 2. Figure 2a illustrates the case in which there is true
homogeneity in the population of all studies (I2 � 0, H2 � 1).
When only significant studies get published, variance of effect

sizes and E(H2) is only 0.138, showing a large bias (difference
in heterogeneity of published studies and heterogeneity of all
studies) in heterogeneity. If the percentage of nonsignificant
studies published is increased, E(H2) quickly increases until it
crosses H2 � 1 at pub � .03 (no bias in heterogeneity), achieves
its maximum for pub � .07 (large bias in heterogeneity), and
then slowly decreases until H2 � 1 at pub � 1 (again no bias in
heterogeneity). An intuitive explanation for the fact that the
variance of the distribution of published effect sizes at pub �
.07 exceeds 1 is that the shape of the distribution is similar to
a normal distribution with an excessive amount of outliers at the
right tail, similar to the striped area in Figure 1. Curves for
other levels of heterogeneity may also show a nonlinear effect
of publication bias on heterogeneity of published studies, al-
though patterns may be different (e.g., maximum is achieved at
different values of pub).

Figure 3 presents the expected values of H2 and I2 for the 4
(heterogeneity; in columns) � 3 (sample size ratios; rows)
conditions. Each plot shows the value of I2 whenever its larger
than zero (solid iso-contour lines), and E(H2) otherwise (dotted
iso-contour lines). Note that the results on the x-axis (i.e., when
� � 0) of the four plots in the first row of Figure 3 were already
depicted in Figure 2. All results are independent of the number
of studies in the meta-analyses. Importantly, the plots in the
first column of Figure 3 can be generalized to any sample sizes
with the same ratio (1:1, 1:3, and 1:10) because the same plot
is obtained for sample sizes multiplied by C and the y-axis
replaced by  ⁄ �C.

The upper-left plot corresponds to homogenous true effect
size and equal sample sizes. The expected value equals the true
value (I2 � 0) (no bias in heterogeneity) when there is no
publication bias (pub � 1), and at the line running from (� � 0,
pub � .03) to (� � .25, pub � .99). Above the I2 � 0 line, there
is extreme homogeneity. This is the case for the majority of grid
values (80%), and the least variation (E[H2] � .138) is observed
when � � 0 and pub � 0. Below the I2 � 0 line, we have
heterogeneity, with a maximum of E(I2) � 0.403 (� � 0, pub �
.07), which corresponds to small to moderate heterogeneity. To
conclude, in case of a fixed population effect size, publication
bias can result in a wide range of published effect size distri-
butions that vary from being overly homogenous (an underes-
timation of heterogeneity) to moderate heterogeneity (an over-
estimation of heterogeneity).

The other plots on the first row of Figure 3 show E(H2) and
E(I2) when there is true heterogeneity for equal sample sizes.
The patterns of results are the same as for I2 � 0, with
underestimation of heterogeneity above and overestimation be-
low the “true” I2 line, respectively. Noteworthy is that for small
heterogeneity (I2 � .25) and medium heterogeneity (I2 � .497),
publication bias can still result in extremely homogenous dis-
tributions of published effect sizes (E[H2] � .208 and E[H2] �

1 The bisection method for �2 on interval [0, 0.2] is guaranteed to find
the only solution for �2 such that E(H2) � 1, if (a) E(H2) 
 1 for �2 � 0,
and (b) E(H2) 	 1 for �2 � .2. The second condition always holds, because
when homogeneity is most extreme (equal sample sizes, Ni � 42), �2 � .2
results in E(H2) � 8.538. Hence, we first checked whether the first
condition holds before applying the bisection method (if the first condition
does not hold, no solution exists).
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.359; see also the legend below the corresponding plots). Even
when there truly is strong heterogeneity (I2 � .788), publication
bias may result in a distribution of published effect sizes that
has very small heterogeneity (E[I2] � .09). Maximum expected
heterogeneity, E(I2), of published studies equals .625, .788,
.815 for true small, medium, and large heterogeneity, respec-
tively, corresponding to overestimation of heterogeneity.

The plots in the first column of Figure 3 show the results for
homogeneity and different variations in sample sizes (1:1, 1:3,
and 1:10). Similar to the results for equal sample sizes, extreme
homogeneity exists above the I2 � 0 line and heterogeneity
exists below the I2 � 0 line. The most important difference is
that the minimum E(H2) and maximum E(I2) increase when
increasing in sample size variability. More generally, extreme
homogeneity occurs less often, whereas larger variability in
sample sizes across studies resulting in a higher probability of

overestimating heterogeneity. However, small differences in
sample sizes (1:3) do not result in very different results com-
pared with equal sample sizes. The fact that the effect of
publication bias on heterogeneity depends on variation of sam-
ple size can be explained by Equation 8; the difference in
average true effect size of published studies increases when
there is greater variability in sample size, resulting in positive
values of Hextra

2 , thereby increasing heterogeneity of published
studies. The largest value of expected heterogeneity of pub-
lished studies under true homogeneity is E(I2) � .48 for sample
size ratio 1:10, � � 0, and pub � .04 (lower-left plot). The other
plots in the second and third rows show the conditions under
which both true heterogeneity and varying sample sizes are
present. The effect of true heterogeneity in case of varying
sample sizes is comparable with its effect in case of equal
sample sizes. However, bias in heterogeneity gets lower for

Figure 2. Expected values of H2 (y-axis), when � � 0, as a function of publication bias (x-axis, 0 and 1
correspond to none and all nonsignificant studies published, respectively), for four levels of heterogeneity: I2 is
(a) zero, (b) small, (c) medium, and (d) large. The horizontal gray lines show the true heterogeneity population
values (in H2).
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higher true heterogeneity and large differences in sample sizes;
bias is lowest in the lower-right plots (fewest isolines). This
trend is also apparent when comparing the minimum and max-
imum heterogeneity across conditions (see legends below the
plots). But even in the condition with the least bias (sample
ratio 1:10 and I2 � .788), publication bias may result in much
lower heterogeneity (minimum E[I2] � .464, for � � 0.00 and
pub � 0.00).

True Heterogeneity Required to Obtain Homogeneity
of Published Studies

For many combinations of � and publication bias under true
homogeneity, the value of E(H2) indicated extreme homogeneity
(E[H2] 
 1; upper-left plot of Figure 3). For these combinations,
one may wonder how much true heterogeneity is needed to obtain
E(H2) � 1. For these or lower values of heterogeneity, the hy-
pothesis of �2 � 0 will be infrequently rejected for any number of
studies, because E(Q) � K 
 QCV, with QCV denoting the critical
value of the Q test. That is, these are the values of true heteroge-

neity that because of publication bias will very likely go unde-
tected even when increasing the number of studies.

Figure 4 presents the values of true heterogeneity required to
observe homogeneity of published studies (E[Q] � K) for the three
different sample size ratios. These results are generalizable to any
sample sizes with the same ratios (i.e., the same plots are obtained
for sample sizes multiplied by X and the y-axis replaced by �/�X).
High values of heterogeneity are required for some values of pub
and �, particularly for equal sample sizes and for ratio 1:3. For
instance, for (pub � 0, � � 0) under equal sample size (first plot),
a distribution of effect sizes of all studies with large heterogeneity
I2 � .774 will still result in a homogenous distribution of published
effect sizes. Even if the meta-analysis contained hundreds of
studies, large heterogeneity would go undetected by the Q test. For
most combinations of effect size and publication bias, the effects
of publication bias are less severe. There are many pub-� combi-
nations for which small true heterogeneity (I2 � 25%) would go
undetected. When sample sizes differ more strongly (1:10), ex-
treme homogeneity decreases (last row of Figure 3) and lower

Figure 3. Contour plots of expected values of H2 and I2 for different values of true heterogeneity (columns)
and different sample size ratios (rows) as a function publication bias (x-axis: 0 and 1 correspond to none and all
nonsignificant studies published, respectively) and effect size (�, y-axis). The text above each column gives the
values of true heterogeneity, whereas the text before each row gives the studies sample sizes. The text below each
plot gives the minimum E(I2) (or E[H2] if E[I2] 
 0) and maximum E(I2) in the plot.
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values of true heterogeneity are required to obtain homogeneity of
published studies (last plot of Figure 4).

Type I Error Rate and Power of the Q Test

The first row of Figure 5 presents the Type I error rate as a function
of true effect size and publication bias. For equal sample sizes (first
row), the distribution of Q is known (see Equation 5), and the .05 line
corresponds to the E(H2) � 1 line in the upper-left plot of Figure 3.
At the top and right edge of each plot, we see Type I error rate clusters
of .05 with small deviations in between (deviating from .045 to .055),
indicating the Type I error rate approximates .05. The Type I error rate
exceeds .05 below the .05 line, and the Type I error rate is lower than
.05 above the line. When more studies are included in a meta-analysis,
differences in the Type I error rate increase. This can be explained by
the fact that E(Q) and bias in Q increase linearly in K, whereas the
variance of Q only increases with �2K, resulting in Type I error rates
that differ more from .05 as K increases. For instance, the maximum
Type I error rate equals .217 for (pub � .07, � � 0) and five studies
but increases to .658 and .9999 for 25 and 145 studies, respectively;
the minimum Type I error rate equals zero for all three levels of K. For
large values of K, the Type I error rate quickly converges to 0 or 1
away from the .05 line, and the result of the Q test (rejection of the
null hypothesis of homogenous effect size) is determined by the value
of pub and �.

When sample sizes vary, the distribution of the Q test follows a
mixture of two chi-square distributions, so the .05 line no longer
coincides with the E(H2) � 1 line. Variation in sample sizes causes
both the minimum and maximum values of the Type I error rate to
increase compared with equal sample sizes. Otherwise, patterns of
results on the Type I error rates are similar to those for equal sample
sizes.

The results for statistical power of the Q test are presented in Figure
6. For equal sample sizes, the distribution of Q is known when no
publication bias is present. The statistical power of the Q test is .80,
in which expected heterogeneity equals the I2 line in the correspond-
ing plots of Figure 3. Again, increasing K results in larger differences
from .8, because bias increases linearly in K but variance of Q
increases only with �2K. Note how statistical power can be very low,
even when there truly is a large amount of heterogeneity, but there are
only five studies included in a meta-analysis. For a large number of
studies, power quickly converges to 0 or 1 away from the .8 line. For
instance, when K � 145, power equals 0 at pub � 0 and � � 0 and
1 at pub � .07 and � � 0. To conclude, if heterogeneity is small and
the number of studies is large, such that statistical power of the Q test
is .8 in the absence of publication bias, the result of the Q test is
determined by the values of pub and � when there is publication bias.

We mentioned earlier that Q follows a mixture of two chi-square
distributions when sample sizes vary. This also has consequences
for the power of the test: the E(H2) � 1 line in Figure 3 does not
coincide with power � .8 line in the plots in the second and third
rows of Figure 6. The first column of Figure 6 shows that increas-
ing variation in sample sizes results in three major changes. First,
statistical power decreases to approximately .70 when there is no
publication bias and sample sizes differ substantially (1:10). Sec-
ond, when the variation in sample sizes increases, differences in
statistical power across different values for pub and � decrease,
and third, minimum statistical power increases when there is more
variation in sample sizes. These effects of increasing sample size

Figure 4. Values of population I2 needed to obtain homogeneity.
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variation can be explained by increases in Hextra
2 (see Equation 8),

which increases the expected value of Q. These three trends
resulting from an increasing variation in sample sizes (decrease of
power in absence of bias, smaller differences in power due to
publication bias and true effect size, larger minimum statistical
power) persist through the second and third columns, that is, for
I2 � .75 and K � 5, I2 � .5 and K � 25, and I2 � .25 and K �
145.

Results of Four Simulation Studies: Other
Implementations of Sample Size Variability

We briefly discuss the results on the expected values of H2 and
I2 based on simulations with 25 studies (K � 25). For Type I error
rates and power, we present results for exactly the same conditions
as in the previous result section. All the result plots can be found
on the OSF (Material A).

min α = 0.018 max α = 0.307 min α = 0.004 max α = 0.844 min α = 0.0 max α = 1

min α = 5e−05 max α = 0.233 min α = 0.004 max α = 0.694 min α = 0 max α = 0.99995

Figure 5. Contour plots of the Type I error rate of the Q test of homogeneity when I2 � 0, for different sample
sizes (columns) and ratios (rows), as a function publication bias (x-axis: 0 and 1 correspond to none and all
nonsignificant studies published, respectively) and effect size, delta (�, y-axis). The text below each plot gives
the minimum and maximum expected value of  in the plot.
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The conditions of the first simulation study are identical to the
1:3 sample size ratio condition in the analytic section in the
previously described sections. Unsurprisingly, the simulation re-
sults are almost identical to the analytic results, with minor dif-
ferences caused by estimation and the different number of degrees
of freedom while estimating (K-1 instead of K for the analytic
section; see the OSF materials for more details). As the only
difference between the first and second additional simulation study

is the sample size distribution (30-30-30-30-90 corresponding to
those of the main analyses, and 6-30-42-54-78 in the second study,
which have same mean and standard deviation of sample sizes),
comparing their results allows for a direct and unbiased evaluation
of the effect of the sample size distribution on the effects of
publication bias. The similarities of results are striking. When
there is no publication bias, results are identical. In the presence of
publication bias, the same combinations of publication bias and

Figure 6. Contour plots of the power of the Q test of homogeneity for different amounts of true heterogeneity
(columns) and different sample size ratios (rows), as a function publication bias (x-axis: 0 and 1 correspond to
none and all nonsignificant studies published, respectively) and effect size (�, y-axis). The text below each plot
gives the minimum and maximum value of statistical power in the plot.
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effect size result in over- or underestimations of heterogeneity.
Only minor differences occur in the amount of over- or underes-
timation of heterogeneity, and hence in statistical power and Type
I error rates. When sample sizes are different (Simulation Study 2),
bias is slightly smaller, with slightly less underestimation when
true heterogeneity is absent or small, and with Type I error rates
closer to .05 in these situations, and if power is lower than .80, it
is slightly lower in simulation Study 2. As differences are very
minor, even for K � 145, we conclude that our results on the
effects of publication bias on heterogeneity assessment are robust
to the sample size distribution, given the same mean and variance
of this distribution.

The sample sizes of the third and fourth additional simulation
studies were taken from published studies from the field of social and
personality psychology (Fraley & Vazire, 2014) and from a large
meta-analysis focusing on the association between brain volume and
intelligence (Pietschnig et al., 2015). The samples from the third study
had the largest variation, from 10 to 10,000. When publication bias is
absent, this large variation, along with the lower average sample size,
results in smaller values of E(I2), and lower amounts of power, for the
same values of � (if � 	 0) and number of studies compared with the
other simulation studies. Besides the differences at baseline, the
results showed the same trends of sample size variation that we saw
in the main analysis. Again, underestimations of between-study vari-
ance were less severe when sample sizes vary, and the minimum Type
I error rate and power increase. The same impact of sample size
variation can be seen in the fourth simulation study, in which sample
sizes range from 4 to 649. The average and variance of the sample size
is smaller compared with the third simulation study, resulting in even
lower estimates of between-study variance and power when there is
no publication bias. In all other aspects, the same trends and patterns
are again observed that we already saw in the main analysis.

The results of our main analyses and the four simulation studies
reveal that the assessment of heterogeneity and the Type I error rate
and statistical power of the Q test depend on the sample size charac-
teristics, such as the average sample size and the variation in sample
size, but not as much the specific distribution of sample sizes. The
same pattern and trends of the effect of publication bias can be
observed in all studies, with possible serious underestimation or
overestimation of heterogeneity, and the Type I error rate and power
of the Q test can both decrease to 0 or increase to 1 as a consequence
of publication bias, depending on complex combinations of condi-
tions.

Application to Actual Meta-Analyses

In this section, we show how analyzing of the effect of publi-
cation bias on the assessment of heterogeneity may increase our
understanding of meta-analyses. First, we introduce a web appli-
cation, called Q-sense, that can be used to determine the sensitivity
of the heterogeneity assessment and the Q test to publication bias
for a meta-analytic data set. More generally, Q-sense enables
researchers to determine which values of effect size, heterogeneity,
and publication bias are consistent with the observed effect size
and heterogeneity. As current meta-analytic tools do not perform
well under heterogeneity in the presence of publication bias (e.g.,
Carter, Schönbrodt, Gervais, & Hilgard, 2017; McShane et al.,
2016; van Aert, Wicherts, & van Assen, 2016; van Assen et al.,

2015). Q-sense is a timely tool to address possible effects of
publication bias on meta-analytic results.

Furthermore, we will provide some guidelines for using Q-sense
and we will apply Q-sense to two different data sets of actual
meta-analyses. We first examine a meta-analysis by Der, Batty,
and Deary (2006) concerning the effect of breastfeeding on intel-
ligence in children, showing a situation in which there is no
evidence for publication bias and little impact on the results of the
Q test. We follow this with an examination of a meta-analysis
concerning the relation between weight and moral judgment by
Rabelo, Keller, Pilati, and Wicherts (2015), showing how publi-
cation bias can explain the observed extreme homogeneity.

Q-Sense

Q-sense (https://augusteijn.shinyapps.io/Q-sense/) provides a
sensitivity analysis of heterogeneity assessment and the Q test in a
meta-analysis. More precisely, it provides the expected values and
95% CIs of values of Q, H2, and I2 as a function of publication bias
for the data in the meta-analysis given specified values of true
effect size and heterogeneity. Q-sense allows researchers to deter-
mine which presumed population values of effect size, heteroge-
neity, and publication bias are consistent with the observed effect
size and observed heterogeneity. It also enables one to examine
how the test of homogeneity is affected by publication bias.
Heterogeneity assessment and the Q test in a meta-analysis can be
said to be robust if the value and CI of Q are relatively unaffected
by publication bias for the estimated values of effect size and
heterogeneity, and the expected values of Q and I2 in the sensi-
tivity analysis are close to those observed in the meta-analysis.

Q-sense requires the sample size of the primary studies that are
included in the meta-analysis, either as total sample sizes or as two
subgroup sample sizes. Furthermore, it requires presumed values
of the true effect size (�), heterogeneity (�2), and the observed Q
value in the meta-analysis. Sensible presumed values are those
observed in the meta-analysis, those corresponding to the null
hypothesis of a zero true effect size or homogeneity of effect sizes,
those obtained with meta-analytic methods correcting for publica-
tion bias, or those from previous (meta-analytic or large single)
studies relevant to the meta-analysis at hand. Using this input,
Q-sense will provide the user with a plot of the average Q value
and 95% CI for different levels of publication bias.

Q-sense varies the amount of publication bias from 0% to 100%
in 32 levels (0% to 50% bias in steps of 10%, 55% to 80% bias in
steps of 5%, and 81% to 100% bias in steps of 1%; effects of
publication bias are strongest in this last interval). For each level
of publication bias, 50,000 divided by K iterations are used. In
each iteration, the meta-analytic studies’ effect sizes are generated
using the effect size and level of heterogeneity provided by the
researcher, and Q and I2 are estimated (see Material E and “Shiny
code Q-sense,” both on the OSF). The average Q value, the 2.5th
quantile, and the 97.5th quantile of these iterations are used to
determine the 95% CIs for Q and I2. These are shown in a figure
as a function of publication bias in combination with both the
observed value and critical value of Q. Furthermore, the results of
the 32 publication bias levels (average Q value, 95% CI, average
I2 value, 95% CI, and whether the Q value observed by the user
fall within the 95% CI) can be downloaded as a .csv file.
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Recommendations Using Q-Sense

We recommend applying Q-sense after assessing and testing the
effect size and heterogeneity of effects in a meta-analysis. As a
first step, we advise entering the estimated values of effect size and
heterogeneity (without a correction for publication bias) for the
required population values. If Q-sense shows that (a) both the
average and CI of the Q statistic are relatively unaffected by
publications bias (little variation when publication bias is intro-
duced), and (b) the observed Q statistic is in its CI for most or all
values of publication bias, then one can conclude that the results of
the meta-analysis (including the estimates of true effect size and
heterogeneity) are robust to publication bias. We recommend
reporting Q-sense’s results concerning both of these conditions
when publishing meta-analytic results. If both conditions are met,
the meta-analytic results are robust to publication bias and can be
interpreted with more confidence. However, if both conditions are
not met, the meta-analytic results are not robust to publication bias
and should be interpreted with caution, and we suggest proceeding
with additional analyses with Q-sense.

If the meta-analytic results turn out to be not robust to publication
bias, we recommend further analyses with Q-sense to find values of
true effect size, heterogeneity, and publication bias that provide a CI
of the Q statistic that is consistent with the observed Q statistic. As
first follow-up analyses, we recommend running Q-sense with a zero
true effect size for two reasons. First, the effects of publication bias on
estimation are particularly dramatic for zero true effect size. Second,
the hypothesis of zero true effect size is especially practically relevant
for researchers. In these follow-up analyses, different values of true
heterogeneity can be entered in attempts to obtain consistent results.
If, for true zero effect size, combinations of values of publication bias
and true heterogeneity yield both an expected effect size and a Q
statistic close to those observed, then the observed meta-analytic
results can also be explained by a zero true effect size and publication
bias. In that case, the researcher must seriously consider the possibility
that true effect size is indeed zero. If no combination of values of
publication bias and heterogeneity can be found that yield results
consistent with those observed in the meta-analysis, the researcher can
be more confident that true effect size exceeds zero. Particularly, if no
results of these first follow-up analyses are consistent with those
observed, one may proceed with further follow-up analyses.

Finally, if the meta-analytic results are not robust to publication
bias, one may conduct second follow-up analyses applying meta-
analytic techniques that estimate true effect size and heterogeneity
after adjusting for possible publication bias. The estimates obtained
from these methods can also be used as input for Q-sense and checked
for consistency with the observed meta-analytic findings. Following
the Meta-Analysis Reporting Standards (MARS; APA Publications
and Communications Board Working Group on Journal Article Re-
porting Standards, 2008), we recommend adding a separate subsec-
tion on the heterogeneity-sensitivity analyses of the meta-analysis at
the end of the results section. Many meta-analytic methods have been
proposed that attempt to estimate true effect size and heterogeneity
while correcting for publication bias. Current methods are still being
improved, and new methods continue to be developed. The state-of-
the-art knowledge on the performance of current methods is that many
of them perform relatively well under homogeneity and extreme
publication bias but fail to perform well under heterogeneity in com-
bination with (almost) only statistically significant studies in the

meta-analysis (e.g., see for an overview and discussions of [dis]ad-
vantages; Carter et al., 2017; McShane et al., 2016; van Assen et al.,
2015; van Aert et al., 2016). A discussion of all these methods and
their performance in different conditions is out of the scope of this
article.

Q-Sense Applied to Der et al. (2006)

This meta-analysis, examining the effect of breastfeeding on
intelligence in children, featured nine effect sizes; five of them
were statistically significant, whereas four of them were not (when
tested either one- or two-sided). The average sample size of these
studies was 909.22 (SD � 1,732.25; Ns ranging from 108 to
5,475). The characteristics of the meta-analysis can be found in
OSF Material F. A random-effects meta-analysis with the re-
stricted maximum-likelihood estimator resulted in d � 0.138, 95%
CI [0.059, 0.217], p � .0006, and Q(8) � 21.05, p � .007 (I2 �
65.76%, 95% CI [14.73%, 96.12%], �2 � 0.0071). Following the
recommendations, we first applied Q-sense using these estimated
values of effect size (d � 0.138) and heterogeneity (�2 � 0.0071).
Figure 7 shows the average value of Q and its CI as a function of
publication bias. This figure shows that (a) Q’s average and CI are
hardly affected by publication bias, and (b) the observed value of
Q in the meta-analysis is always in Q’s CI based on the observed
values of effect size and heterogeneity. On the basis of the analysis
with Q-sense, we therefore conclude that Der et al.’s (2006)
meta-analytic results are robust to publication bias, thereby in-
creasing our confidence in their meta-analytic findings that there is
a small true effect size, a moderate to large heterogeneity, and little
or no publication bias.2

Q-Sense Applied to Rabelo et al. (2015)

This meta-analysis contains 25 effect sizes on the effect of expe-
riencing weight on interpersonal judgment, with 23 being statistically
significant if tested two-sided, and all of them being statistically
significant if tested one-sided. The average sample size is 61.12
(SD � 20.22, N ranging from 30 to 100; https://osf.io/cgmdi/ and OSF
Material G). The authors used a fixed-effect meta-analysis on these
data that resulted in d � .57, 95% CI [0.47, 0.67], and Q(24) � 4.70
(p � .999993), which they indicate as excessive homogeneity and a
sign of publication bias. This observed Q value corresponds to H2 �
0.196, which indeed corresponds to extreme homogeneity because
H2 
 1 corresponds to I2 
 0.

Following our recommendations, we first apply Q-sense to the
results of the fixed-effect meta-analysis (d � .57, �2 � 0). Q-sense
reveals (see Figure 8) that (a) both the average and CI of the Q statistic
are affected by publications bias (the average value of Q and the upper
and lower bound of the CI are almost halved when there is full
publication bias compared with no publication bias), and (b) the
observed Q(24) � 4.7 never falls in the 95% CI of the Q test,
regardless of the level of publication bias. Hence, we conclude that the

2 We note that the conditions of this meta-analysis are similar to those in
the two most right plots in the last row of Figure 3 (large variation in
sample size, medium to large amount of heterogeneity). If we draw a
horizontal line at the effect size � � 0.138, we are close to the line where
heterogeneity is correctly estimated regardless of the level of publication
bias.
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results of the meta-analysis are not robust to publication bias and
continue with our first follow-up analyses with Q-sense.

Again following our recommendations, we then examined whether
the meta-analytic findings are consistent with a true effect size equal
to zero. We kept heterogeneity at �2 � 0, as estimated in the meta-
analysis. Figure 9 shows that also in this situation Q’s average value
and CI are strongly affected by publication bias: When there is no bias
(published � 100%), the average observed Q value is 24.01 (p �
.461), 95% CI [12.65, 38.69]. As publication bias increases, the
expected value of Q also increases, with a maximum of Q of 47.63
(p � .003), 95% CI [29.92, 69.79] when published � 3%. In case of
full publication bias, the average drops to Q � 6.29 (p � .99989),
95% CI [3.42, 11.16], which is consistent with the observed extreme
homogeneity. Figure 10 shows the empirical sampling distribution of
Q when the effect size, the amount of heterogeneity, and the percent-
age of nonsignificant studies published are all equal to zero. This
figure confirms that both extreme homogeneity and the observed
value of Q in the meta-analysis are consistent with this scenario.
Hence, we conclude on the basis of Q-sense that the observed meta-
analytic findings are consistent with a zero true effect size (instead of

a medium to large effect size), no heterogeneity, and extreme publi-
cation bias.

We note that Rabelo et al. (2015) also applied p-uniform, a
meta-analytic method correcting for publication bias that has been
shown to work well under homogeneity in combination with many
statistically significant studies (van Aert et al., 2016; van Assen et
al., 2015). The publication bias test of p-uniform indeed indicated
the presence of publication bias (L � 5.1, p 
 .001) and yielded
a corrected estimate of the effect size of d � �0.179, 95% CI
[�0.676, 0.159], p � .831, which is in line with the findings of
Q-sense that the true effect size may equal zero.

Discussion

Meta-analyses aim to estimate effect sizes and heterogeneity of
effect sizes and to explain possible heterogeneity using modera-
tors. It is well established that tests and estimates of heterogeneity
are influenced by publication bias (Ioannidis, 2008; Jackson,
2006a, 2006b; McShane et al., 2016). However, it has remained

Figure 7. Output of sensitivity analysis of Q-sense: Q’s average value
and confidence interval as a function of publication bias, for the random-
effects estimated values of effect size (d � 0.1383) and heterogeneity (�2 �
0.0071) in Der et al. (2006).

Figure 8. Output of sensitivity analysis of Q-sense: Q’s average value
and confidence interval as a function of publication bias, for the fixed-
effects estimated values of effect size (d � 0.57) and heterogeneity (�2 �
0) in Rabelo et al. (2015).

Figure 9. Output of sensitivity analysis of Q-sense: Q’s average value
and confidence interval as a function of publication bias, for the corrected
estimated values of effect size (d � 0) and heterogeneity (�2 � 0) in Rabelo
et al. (2015).

Q = K  1

Figure 10. Empirical sampling distribution of Q for � � �2 � % non-
significant studies published � 0, for the meta-analysis of Rabelo et al.
(2015). The dashed line shows the observed values by Rabelo et al. The
solid vertical line at Q � K-1 shows the expected value when there is no
heterogeneity.
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largely unclear how they are influenced, how severe this influence
is, and which factors moderate this influence. The first contribu-
tion of this article was to examine the effect of publication bias on
the Q test and assessments of heterogeneity in a multitude of
conditions that, as opposed to previous research on this topic,
provide several novel findings on the effect of publication bias.
Corroborating the findings of Jackson (2006a, 2007), we found
that the effect of publication bias on the assessment of heteroge-
neity and the performance of the Q test intricately depends on the
true effect size, the amount of true heterogeneity, the number of
studies, and variation in sample size. The effect of publication bias
is nonlinear and complex; publication bias can either decrease or
increase the expected amount of heterogeneity, depending on the
value of the true effect size and severity of publication bias. It is
not surprising that the effects of publication bias are larger when
the true effect size is smaller. When the true effect size is large,
more studies are statistically significant and will be published, and
publication bias has less impact because it only applies to nonsig-
nificant studies. When true heterogeneity is large, heterogeneity is
typically (albeit certainly not always) underestimated. For equal
sample sizes, extreme homogeneity can occur, especially when the
true effect size is small and publication bias is large. When sample
sizes vary, extreme homogeneity is expected less frequently, as the
minimal expected values of heterogeneity are larger.

Publication bias also causes the Type I error rate and statistical
power of the Q test to decrease or increase, again depending on the
value of the true effect size and publication bias. The power can
even drop to zero, so that the presence of true heterogeneity is
impossible to detect. At the same time, the Type I error rate can be
as high as 1, meaning that a meta-analysis is guaranteed to find
statistically significant heterogeneity, even though the studies are
truly homogenous. The power and the Type I error rate of the Q
test depend not only on the number of studies and the size of these
studies but also on differences in the studies’ sample size, dem-
onstrating the complex effect of publication bias on the assessment
of heterogeneity. Although it is commonly stated that the Q test
only has sufficient statistical power when the number of studies is
large (Hardy & Thompson, 1998; Thompson & Pocock, 1991), our
work demonstrates that publication bias, particularly in combina-
tion with a small true effect size, may have a large effect on its
power (and Type I error rate) as well. To conclude, publication
bias has a large effect on assessments of heterogeneity, particularly
when publication bias is severe and the true effect size is not large.
Consequently, the Q test and assessments of heterogeneity will be
biased in these conditions. Furthermore, extreme homogeneity is
particularly likely when the amount of true heterogeneity is low,
the true effect size is small, and the number of studies is large.

Our second contribution was to develop the web application
Q-sense to provide insight in the sensitivity of the results of the Q
test to publication bias. The results of a meta-analysis are robust if
the observed value and CI of Q are relatively unaffected by
publication bias for the estimated values of effect size and heter-
ogeneity and the value of Q in the sensitivity analysis is close to
those calculated in the meta-analysis. We advise meta-analysts to
report the results of Q-sense in their articles and to investigate
whether other combinations of true heterogeneity, effect size, and
publication bias could also have resulted in the observed hetero-
geneity. We applied Q-sense to two published meta-analyses,
illustrating how this web-based routine can improve our under-

standing of meta-analytic results in the presence of publication
bias.

Our results also provide new insight into previous research on
meta-analyses. For example, Ioannidis et al. (2006) observed that
the likelihood of extreme homogeneity appearing in a meta-
analysis was unrelated to the number of studies it included. This is
surprising because meta-analyses that include more studies are
more likely to have a higher p value on the Q test, provided there
is no or small true homogeneity. Ioannidis et al. only infrequently
observed extreme homogeneity, suggesting that fields for which
publication bias is high and true effect sizes are small, we are
either dealing with large variations in sample size or considerable
amounts of true heterogeneity. In their article, Ioannidis et al.
suggest multiple explanations for extreme homogeneity, such as
random chance, the metric of the treatment effect, correlated data,
stratified or blocked randomization, and fraud. We would like to
add publication bias as an additional source of extreme homoge-
neity that should be considered. The meta-analysis of Rabelo et al.
(2015) is an example in which a likely explanation of the observed
extreme homogeneity is publication bias in combination with a
zero true effect size and relatively similar study sample sizes.

In the design of our analyses, we made some assumptions that
may limit the generalizability of some of our results. First, we
assumed the effects sizes to be normally distributed. We do not
feel that this is a substantial limitation, because research has shown
that when the distribution of effect sizes are nonnormal, the Type
I error rates and power of the Q test are still approximately correct
when Hedges’ g is used as effect size measure (Huedo-Medina,
Sánchez-Meca, Marín-Martínez, & Botella, 2006). Second, we
interpreted bias in the publication process as a strict division
between significant studies (p 
 .05) and nonsignificant studies
(p 	 .05). However, other scenarios of publication bias are cer-
tainly possible. For instance, it is possible that the probability of
publication increases monotonically with a study’s p value: the
smaller the p value, the higher the likelihood of getting published.
Furthermore, studies with large samples may be more likely to be
published, even if their results are nonsignificant, than small
studies with nonsignificant results. Other models of publication
bias might offer other results; however, we anticipate that these
results, too, will show that publication bias may strongly affect the
assessment of heterogeneity in complex, nonlinear ways (e.g.,
Jackson, 2006a, 2007). Moreover, our main analyses focused on an
80%–20% mixture of small–large studies using certain sample size
ratios when investigating the effects of sample size variability. As
the implementation of sample size variability may affect overall
trends and conclusions, we carried out and discussed the results of
four additional simulation studies with other implementations of
sample size variation, including one used for comparison, one with
a different fixed distribution of sample sizes, and two based on
sample sizes from the published literature. As trends and conclu-
sions of these four additional simulation studies were similar to
those of our main analysis, we conclude that our main results on
the effect of sample size variation are generalizable.

Future research could investigate the influences of our choices
on the effects of publication bias on the assessment of heteroge-
neity. First, although we conducted our analyses using Cohen’s d,
researchers could also examine effects of publication bias using
other effect size measures with their own idiosyncrasies. Second,
more research on alternative approaches to estimate heterogeneity
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that correct for publication bias is clearly needed. Three promising
meta-analytic approaches are selection models, Bayesian methods,
and methods based on p values. Selection models explicitly model
publication bias, that is, the probability of findings to get into the
literature, and allow for the estimation of both true effect size and
heterogeneity (Hedges & Vevea, 2005). Unfortunately, these mod-
els are complex, require strong assumptions on the publication bias
mechanism, and may require a large number of studies to con-
verge, making them less useful for most meta-analyses (Borenstein
et al., 2009; Field & Gillett, 2010). Some Bayesian methods are
based on selection models but incorporate priors for true effect size
and true heterogeneity (Kicinski, 2013). Bayesian methods have
been developed only recently, and their properties for estimation of
heterogeneity are therefore still largely unknown (e.g., Gronau,
Duizer, Bakker, & Wagenmakers, 2017; Guan & Vandekerckhove,
2016). Finally, p-uniform (van Aert et al., 2016; van Assen et al.,
2015) and p-curve (Simonsohn et al., 2014b) are meta-analytic
methods that accurately estimate overall effect size in the presence
of publication bias, for any number of significant studies, but only
when true effect size is homogenous (van Aert et al., 2016). The
advantages of the methods based on p values over selection models
and Bayesian methods are the weaker assumptions on publication
bias and the ability of these methods to accurately estimate effect
size even when the number of studies is small. However, to
become useful for most applications, these methods should be
modified in future research such that they can deal with, test for,
and assess heterogeneity.

It is known that tests of publication bias provide invalid results
in case of true heterogeneity (Ioannidis & Trikalinos, 2007; Peters
et al., 2010). It is also important to examine the effect of another
aspect of the publication process, p-hacking, on the assessment of
heterogeneity. P-hacking is the result of the researchers’ behavior
directed at obtaining statistically significant results (Simmons,
Nelson, & Simonsohn, 2011). Examples of p-hacking are testing
many variables or adding observations up to the point to which
results are significant, dropping conditions or post hoc outlier
removal (see Wicherts et al., 2016, for an extensive overview).
P-hacking increases the probability on a Type I error of a study.
Research has shown that some methods of p-hacking influence the
assessment of the effect size in meta-analyses (Simonsohn et al.,
2014b; van Aert et al., 2016), but it is unclear how p-hacking
influences the assessment of heterogeneity. Thus, when publica-
tion bias results in an unrepresentative sample of studies in the
meta-analysis, some methods of p-hacking may also lead to a
distorted sample with inflated effect sizes in the primary studies.
Investigating p-hacking and enhancing meta-analytic methods in
such a way that they can assess their effects on the estimation of
true effect sizes, heterogeneity, and moderator effects is an impor-
tant step for improving the quality of meta-analytic research.

This article provides more insight on the complex and nonlinear
impact of publication bias on the assessment of heterogeneity in
meta-analysis. Publication bias can result in incorrect conclusions
regarding not only true effect size but also heterogeneity. Further-
more, we have developed a web application, Q-sense, that allows
researchers to investigate the impact of publication bias on their
estimates of heterogeneity and the robustness of their meta-analytic
estimates to publication bias. As publication bias may strongly affect
the assessment of heterogeneity, we acknowledge the importance of
developing meta-analytic methods that correct for publication bias,

not only when estimating the effect size but also when estimating
heterogeneity.
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