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A B S T R A C T

Web data is the most prominent source of information for deciding where to go and what to do. Exploiting this
source for geographic analysis, however, does not come without difficulties. First, in recent years, the amount
and diversity of available Web information about urban space have exploded, and it is therefore increasingly
difficult to overview and exploit. Second, the bulk of information is in an unstructured form which is difficult to
process and interpret by computers. Third, semi-structured sources, such as Web rankings, geolocated tags,
check-ins, or mobile sensor data, do not fully reflect the more subtle qualities of a place, including the particular
functions that make it attractive. In this article, we explore a method to capture leisure activity potentials from
Web data on urban space using semantic topic models. We test three supervised multi-label machine learning
strategies exploiting geolocated webtexts and place tags to estimate whether a given type of leisure activity is
afforded or not. We train and validate these models on a manually curated dataset labeled with leisure ontology
classes for the city of Zwolle, and discuss their potential for urban leisure and tourism research and related city
policies and planning. We found that multi-label affordance estimation is not straightforward but can be made to
work using both official webtexts and user-generated content on a medium semantic level. This opens up new
opportunities for data-driven approaches to urban leisure and tourism studies.

1. Introduction

As part of the smart city wave and corresponding data-driven de-
velopments (Townsend, 2013), the value of Web data for computable
place representations is finding its way into urban leisure and tourism
studies (Marine-Roig & Clavé, 2015) and related city policies and
planning (Kitchin, 2014). Since leisure plays an increasingly important
role in today's urban economy (Lorentzen, 2009), many cities have
adopted data-driven strategies for planning and promoting an attractive
city. This includes, e.g., the city of Zwolle, a Hanseatic city of about
125.000 inhabitants in the northeastern part of the Netherlands.
Making the old town of Zwolle the “place to be” in the Northeast is the
ambition of the urban authorities for the near future. To achieve this,
local planners are exploring data driven strategies to improve the in-
formation provision towards potential visitors. An example of the pre-
sent plans is to create a dynamic digital map showing what is hap-
pening where in the city centre of Zwolle (Bureau voor Economische
Argumentatie, 2017). In order to recommend places for city marketing
and to monitor and guide visitor flows in the city centre, data of high

spatial, temporal, and semantic resolution is needed (Batty, 2013;
Buhalis & Amaranggana, 2013). This includes not only the numbers of
facilities and flows of visitors (so called “hard data”), but also perceived
and experienced qualities of the many places that tourists and residents
may visit to experience a city (so called “soft data”).

While the former kind of data is nowadays easy to gather, the latter,
though called “soft”, is much more difficult to obtain. Looking at pop-
ular websites such as of the Zwolle Tourist Agency (VVV) and
TripAdvisor, e.g., quickly and easily reveals the Museum de Fundatie
(Fig. 1a) and the Sint-Michaëls church (Fig. 1b) as two of the main
tourist highlights. However, the more subtle functions of these places
often remain invisible. Who would have guessed that the museum is
actually a nice place to go for a drink and that you can buy books in the
Sint-Michaëls church (cf. Section. 6.2)?

Indeed, “soft data” is very hard to obtain in a manner that is both
scalable and reliable (Batty, 2013). Scalable means that information can
be obtained in large quantities and for many cities. Reliable means that
this can be done in a way that makes the subtlety of place qualities
discoverable for residents and visitors and exploitable for city
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researchers, consultants, policy makers, and planners. While the Web in
principle offers such information on places (Ballatore, Wilson, &
Bertolotto, 2013) stemming from websites of municipalities, service
providers, and geolocated social media posts (Cataldi, Ballatore, Tiddi,
& Aufaure, 2013; Goodchild, 2007), the difficulty lies in extracting it in
high fidelity for Geographic Information Systems (GIS) (Jonietz, 2016;
Scheider & Janowicz, 2014). Even though the number of studies ap-
plying Web-data analysis in the field of tourism and leisure is in-
creasing, the majority of these studies still apply manual processing and
analysis of the data (Lu & Stepchenkova, 2015). To overcome the
problems of scalability and reliability, useful methods have been sug-
gested in the field of natural language processing (NLP) and data
mining (see e.g. Alazzawi, Abdelmoty, & Jones (2012)). One option is to
use topic models such as Latent Dirichlet Allocation (LDA) (Blei, Ng, &
Jordan, 2003), which postulates topics as hidden graphical nodes to
generate probabilities over words (Blei, 2012), making it an important
discovery method for the Semantic Web (Gangemi, 2013).

So far, topic models have primarily been used to detect urban pat-
terns in an unsupervised manner and for categorizing places (compare
Section 2). Extracting information on what activities a place actually
affords (place affordance modeling (Jordan, Raubal, Gartrell, &
Egenhofer, 1998; Scheider & Janowicz, 2014)), however, is a supervised
multi-label classification problem. Activity classes must be made explicit
in order to be shared and compared with other empirical studies (e.g.,
traditional surveys and activity diaries (Crosbie, 2006)), and therefore
the learning process must be supervised. Furthermore, even though
places are usually tagged with a single category (“café”), they often
afford multiple kinds of activities at the same time, some of which
might be unexpected or not explicit in data, and therefore currently
lacking in Web based geographic research (Ballatore, 2014). Solving
this problem would enable high resolution maps of urban leisure po-
tentials, imputing a qualitative dimension to quantitative measure-
ments.

To approach these challenges we investigate the following questions
in the local context of the city of Zwolle:

1. How and how reliably can we extract place-bound leisure activity
potentials from different Web sources in an automated fashion?

2. How can we study urban leisure potentials across a city like Zwolle,
taking into account side activities at infrequently visited places?

3. What role could these methods play in urban leisure and tourism
research and related city policies and planning?

In Section 2, we situate our work into both urban studies and

information science. In Section 3, we introduce our methodology and
an ontology of leisure activities. In Section 4, we present our methods
for Web data preprocessing, and then test three supervised multi-label
learning strategies on a manually labeled dataset in Section 5. Results
are discussed in Section 6 with respect to all three questions.

2. Urban leisure, web data and semantic modeling

In this section, we embed our article in the existing work on urban
leisure and tourism, as well as on Web data and semantic models.

2.1. Urban leisure and the visitor economy

Cities, their historical cores in particular, have long been appealing
to people with a craving for activities and experiences related with
culture, leisure, and consumption (Gospodini, 2006). However, it is
only since the end of the 20th century that this appeal is being planned
and promoted with the deliberate aim to build a ‘visitor economy’
(Barrett & Hall, 2018). Such a visitor economy relies on a multi-
functional mix of facilities together with visually attractive environ-
ments in the city (Zukin, 1998). In an attempt to attract a large number
and variety of visitors, cities redevelop and market themselves as “must
visit” destinations offering fun and enjoyment (Spierings, 2006).
Themed experiences, combining culture, leisure and consumption, are
(re)imagined and allocated to specific urban spaces to create a ‘theme
park’ city (Hannigan, 1998), including e.g., ‘historic city’, ‘cultural city’,
‘sport city’, or ‘nightlife city’ (Ashworth & Page, 2011). It is within the
historical cores of cities that such themed experiences are linked
through a network of walking routes with the aim to extend visiting
time, to increase exposure of the amenities on offer and to seduce
visitors into spending money (Spierings, 2013). However, as opposed to
top-down planned and managed theme parks like Disneyland, city
centers are living entities in which an evolving amalgam of service
providers and attractions together form dynamic consumption spaces
(van der Zee, van der Borg, & Vanneste, 2017). This makes it much
more challenging for policy makers and planners to manage and market
the attractiveness of city centers, and for residents and visitors to
overview and get accurate information on the leisure affordances on
offer.

2.2. Web data about urban leisure

Information about urban leisure is being circulated and marketed
through a diversity of media–including international branding

Fig. 1. Two famous touristic places in Zwolle.
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campaigns, local newspapers, tourist maps and brochures, websites,
apps, and social media (Hanna & Rowley, 2015; Xiang & Gretzel, 2010).
City visitors increasingly utilize Web information sources and social
media to make decisions about ‘where to go and what to do’ (Hudson &
Thal, 2013; Xiang & Gretzel, 2010). As a consequence, the growing
amount of Web information has the potential to reveal time-space
patterns and related activities (Girardin, Calabrese, Dal Fiore, Ratti, &
Blat, 2008; Kwan, 2002; van der Zee, Bertocchi, & Vanneste, 2018), as
well as the perceptions and experiences of leisure seekers (Lu &
Stepchenkova, 2015; Marine-Roig & Clavé, 2015; Ye, Zhang, & Law,
2009).

However, qualitative information about places is dependent on
perception (Montello, Goodchild, Gottsegen, & Fohl, 2003) and thus
seldom utilized due to its vagueness and the difficulty of extracting it in
a reliable way. In fact, researchers mostly draw on structured “hard”
information, such as geo-coordinates, tags, ratings, or rankings derived
from a single user generated source (such as place review sites or photo-
sharing platforms), and which are fairly easy to collect and process
(Girardin et al., 2008; Hollenstein & Purves, 2010; Hu et al., 2015;
Purves, Edwardes, & Wood, 2011; van der Zee et al., 2018). However,
while visitors and inhabitants of a city leave them in abundance, these
traces reflect qualitative information only to a limited degree. For one,
geo-coordinates, tags and ratings require interpretation in context in
order to reconstruct the actual experiences and functions of corre-
sponding places (Cataldi et al., 2013; Jonietz, 2016; Scheider &
Janowicz, 2014). Furthermore, social media data has been criticized for
providing a biased representation of reality which is heavily influenced
by a platform's algorithms (Caliskan, Bryson, & Narayanan, 2017; Scott
& Orlikowski, 2012). For this reason, there is a danger of overlooking
functions that are less known or less popular (false negatives).

2.3. Semantic modeling of urban leisure

To overcome these problems, a different approach is needed that
makes use of “soft” information about places from a diversity of
sources. The latter is mostly available in an unstructured (textual) or
semi-structured form (Adams & Janowicz, 2015; Purves & Derungs,
2015) on websites as well as from social media, requiring human text
interpretation (Lu & Stepchenkova, 2015). Text corpora can be ana-
lyzed according to semantic and geographic dimensions (Fabrikant &
Buttenfield, 2001), yet it is an open problem how semantic dimensions
of places can be usefully extracted. Some authors have utilized text
mining approaches on content in order to account for the more quali-
tative experiential qualities of space, such as thematic place signatures
(Adams & Janowicz, 2015; Adams & McKenzie, 2013; McKenzie,
Janowicz, Gao, Yang, & Hu, 2015), sentiment analysis (Cataldi et al.,
2013; Guo, Barnes, & Jia, 2017; Ye et al., 2009), and sound experiences
(Chesnokova & Purves, 2018).

These approaches mostly rely on unsupervised learning of ad-hoc
activity concepts, denoting, e.g., linguistic (Alazzawi et al., 2012) or
behavioral (Adams & Janowicz, 2015; Farrahi & Gatica-Perez, 2011;
Hasan & Ukkusuri, 2014) patterns, semantic signatures (McKenzie
et al., 2015) or cluster membership (Hu et al., 2015). Unsupervised
labels, however, lose their meaning outside of the context of the data
set on which they were learned.1 Furthermore, manual qualitative
analysis of Web data is difficult to replicate and scale up (Lu &
Stepchenkova, 2015). For this reason, research is needed that assesses
the quality of supervised methods for urban leisure activity modeling.
In such a model, labels obtain meaning in terms of a shareable on-
tology, which provides urban planners and policy makers with formal
information on place affordances they are unable to retrieve manually.

3. Methodological preliminaries

In this section, we explain our methodology. In particular, we in-
troduce an information ontology that can be used to automatically
capture leisure affordances at urban places in an explicit rather than
implicit way.

3.1. Approach

Progress towards a reusable and automated place affordance model
requires, as a first step, creating an explicit, machine readable voca-
bulary about the various kinds of activities that can occur at urban
places. This vocabulary serves to structure leisure space and links to
more traditional leisure and tourism research on urban activities. For
this purpose, we develop a leisure ontology in Section 3.2, compare
Fig. 2. The ontology is then used to prepare training data (Section 4)
used for training and testing various supervised classifier models
(Section 5). These models are needed in order to automate the process of
extracting leisure activity potentials from various web text sources and
tags on urban places, scaling up affordance analysis across cities (Fig. 4,
white boxes). Using cross-validation,2 we measure the quality of our
models in this respect and discuss to what extent future automated
extraction is possible for other cities and different places (Section 6.1).
We then discuss how urban leisure activity potentials can be analyzed
across a city like Zwolle, using affordance density maps (Section 6.2),
and what this means for future urban research (Section 6.3).

3.2. Urban leisure ontology

An information ontology is a “formal specification of a shared
conceptualization” (Gangemi & Presutti, 2009). We formalized our
ontology using the Web Ontology language (OWL),3 a syntax standard
of the World Wide Web that can be used to publish and share ontologies
on the Web. We based our design on the Place Activity design pattern4

(Scheider & Janowicz, 2014). In this pattern, place affordances are
defined as activities afforded by places, and in which various referents can
be involved (see Fig. 3), such as different types of food involved in
eating at a restaurant. Places are (geo)located and activities happen at
some time. Each of the circles in Fig. 3 denotes an OWL class, and each
one of the arrows stands for some relation between instances of these
classes. The arrow “are” says that place activity is a subclass of affor-
dance.

This pattern was then filled with more specific leisure activity
subclasses in an iterative manner (see Fig. 4) to obtain the Urban Leisure
ontology,5 abbreviated with the prefix ulo. To design relevant and reu-
sable leisure classes, we made use of several scientific resources. We
based our main leisure categories on the work of Ashworth and Page
(Ashworth & Page, 2011), and then refined these with categories from
published geographical studies including (Szalai, 1972), and the Dutch
studies “Met het oog op the tijd” by SCP 2013 (Clon, 2013) and the
factsheet “ContinueVrijeTijdsOnderzoek” by NBTC-NIPO (NBTC-NIPO
Research, 2016). The latter studies consider leisure day trips and ac-
tivities outside home. They do not include activities with an overnight
stay (such as in a hotel) and visits of friends. We also used the websites
of local places in Zwolle to cover locally important types of activities
and search queries on the travel review website TripAdvisor.6 During

1 Teaching a machine a human concept, such as detecting an activity, re-
quires “human supervision”, i.e., manually curated and labeled training data
(Friedman, Hastie, & Tibshirani, 2001).

2 To simulate unknown samples (in this case places from unknown cities), our
training sample is split iteratively into training and test data. For each sub-
sample, the model is built on the training sample and tested on the test sample
(Friedman et al., 2001).

3 https://www.w3.org/OWL
4 http://geographicknowledge.de/vocab/PlaceActivity.ttl
5 ulo: http://geographicknowledge.de/vocab/UrbanLeisure.ttl
6 https://www.tripadvisor.nl/
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the process of data preparation and modeling (see next section), we
always came back to refine the ontology with missing classes. Our de-
sign pattern proved successful in the sense that it covers a large variety
of activity types based on recombining referent and activity classes (see
Figs. 4 and 5). In this way the same activity class, such as “Eating”, can
be specialized by different kinds of referents, such as “Lunch” and “Ice
cream”, and vice versa. Furthermore, it also allowed us to choose an
appropriate semantic level of detail for modeling, by collapsing or ex-
panding child nodes in the classification tree and testing learning
models on that level. Though the ontology was developed for the urban

Fig. 2. Methodology followed in this article. Round boxes denote steps taken, parallelograms denote results. Empty boxes are outside the scope of this article.

Fig. 3. Place activity design pattern.

Fig. 4. Upper level of leisure activities in the ontology (level subsumed by ulo:Leisure).

Fig. 5. Activity referent classes related to “Food”.
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settings in Zwolle, it can probably be used across similar middle-sized
cities.

4. Preparing place data for learning from the Web

In this section, the Web data collection and preprocessing steps
(compare Fig. 6) are described, which provided a training dataset sui-
table for affordance learning.

4.1. Manual selection and labeling of urban places

Places were selected with the following constraints:

1. Places should be uniquely described by a website having substantial
activity-related content;

2. Places should be georeferenced and identified in Open Street Map
(OSM).

The first restriction makes sure activities are place-bound. Many
websites contain an overview of possible activities at multiple places
(e.g., “the best addresses to shop in Zwolle”), and thus are not appro-
priate for our model. The second restriction enables us to cross-identify
places, and thus to combine descriptions from different sources, as well
as georeference and map them.

The encoding was performed during summer months from May
through July 2017. Note that some websites were season-dependent,
which explains that some activities such as sitting on a terrace or
shopping fairs are frequently present in the training data, while, e.g., a
winter fair is missing. Place information from a variety of sources was
collected. First, places described in websites developed by local in-
stitutions were selected, for example, the official leisure website of the
municipality and the official website of the Zwolle Tourist Agency
(VVV). In addition, Google recommendations were used when
searching for “Zwolle” or “Zwolle Nederland interesting places”, see
Fig. 7. Second, user-generated sources were accessed, such as the re-
viewing website TripAdvisor, which at the moment are among the most
popular information sources for tourists and leisure seekers (Lu &
Stepchenkova, 2015; Marine-Roig & Clavé, 2015). Finally, as a third
resource we retrieved sites in the blogosphere, for example, “In de
Buurt Zwolle,” see Fig. 8. All posts in the months June and July on the
subpages “to do” and “food & drinks” were retrieved.

Places described in these sources were identified as OSM nodes or,
in the case of some streets, as OSM ways. OSM nodes and ways are
labeled with tags, which were also used as part of the training data for
the model. Fig. 9 shows how OSM mappers interpret places using tags
such as ‘worship’, ‘shopping’, and ‘café’, visualized as symbols on the
map.

Overall, information on 189 different venues7 within the inner the
city of Zwolle were collected and manually labeled based on their
currently afforded activities. The frequency of activity labels is illu-
strated by Fig. 10. Many places offer multiple activities, such as a park
or a bakery which also has a café and sells coffee. To limit the com-
plexity of the model, we used a maximum of five kinds of activities per

place, each including an activity and a referent class, resulting in 326
different affordances. Finally, the URI of the main website used for la-
beling was stored in the training data (Table 1).

4.2. Automated Web enrichment

To integrate further sources of structured and unstructured user-
generated content into our data set, we automatically linked OSM ob-
jects with Google place objects based on both place name similarity and
geographic distance, using Google's text search engine8 with a maximal
spatial radius of 300 m. Note that while the matching quality here is
defined by the Google service, manual inspection showed a very high
correspondence of matches using these two criteria.

Using the Google Places API,9 we then retrieved review texts and all
available Google place tags. Furthermore, via the Overpass API, we ob-
tained corresponding place tags from OSM.10

The OSM tags (keys) deemed relevant in this context are listed in
Table 2. For every such key, we retrieved the corresponding OSM value
as a tag (e.g., “cuisine”: “japanese”), and encoded them as nominal
variables. We then used Web scraping to obtain the text from the main
website as described in the last section, using Richardson's “Beautiful
Soup”11 to clean up HTML and filter out script and style elements. The
result of this enrichment is available online as a json file.12

4.3. Cleaning and tokenizing Web texts for NLP

To train an LDA model, an important first step is cleaning texts of
punctuation and stop words which have minor semantic relevance.
Furthermore, to identify words across grammatical varieties, such as
inflections, it is necessary to tokenize words; i.e., to transform them into
a “normal” form using the word stem. For these purposes, we used the
stopword and punctuation lists of the NLTK13 and Gensim14 packages,
including Porter (for English) and snowball (for Dutch) stemmers. The
tokenized texts were then summarized into a document-term matrix, a
matrix of word counts per text, which is input format to various su-
pervised versions of LDA based learning, as described in the following
section.

4.4. Reflections on the data quality

The data quality turned out to be heavily dependent on the web
enrichment. From 189 places, only 153 were complete with respect to
web scraped texts and tags. This was a result of varying quality of service
while retrieving web texts. Furthermore, only 66 of these places were
complete with respect to Google reviews, due to the many missing
entries at Google.

The labeling captured 20 unique activity classes in Zwolle, in-
cluding 105 different referent classes and 62 different sorts of places. As

Fig. 6. Preprocessing steps for place sampling and Web enrichment.

7 https://github.com/simonscheider/PlaceLDA/blob/master/
Encoding010817.xlsx

8 https://developers.google.com/places/web-service/search
9 https://developers.google.com/places
10 https://wiki.openstreetmap.org/wiki/Overpass_API
11 https://www.crummy.com/software/BeautifulSoup/
12 https://github.com/simonscheider/PlaceLDA/blob/master/

training_train_u.json
13 http://www.nltk.org/
14 https://radimrehurek.com/gensim/
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can be seen in Fig. 12, the distribution of activities is skewed with a
long tail, where two activities, namely Eating (29.8%) and Shopping
(20.6%) account for half of all instances within the data set. This cor-
responds to the conclusions of the municipal report ‘Buzzing Zwolle’,
which states that Zwolle is still largely focusing on shopping and food
service.15 The third and fourth important categories are Drinking
(15.6%) and Watching (10.7%), where the latter is often related to
referents such as architecture or an exhibition in a gallery.

A similar pattern occurs within the distribution of place classes,
where restaurants and cafés, parks and squares dominate (see Table 3).
The referent classes, however, are more dispersed. The ten most oc-
curring referent classes make up only 41% of the total, and many of
them are only encoded once or twice. As expected, food (7.4%) is the
most frequent class, but architecture, terraces, gifts and exhibitions are
among the 10 most frequent classes, too.

During data collection, it became clear that some activities that are
typically conducted in urban areas and often described on web pages,
such as ‘shopping in the city’ are difficult to capture as a place in OSM
because they are not necessarily place-bound. Leisurely shopping

Fig. 7. Touristic webpages (http://zwolle.nl/vrije-tijd, http://zwolletouristinfo.nl) and Google recommendations for Zwolle.

Fig. 8. Touristic blogs (“In de Buurt Zwolle”, blog “Huis van Belle”) for Zwolle.

15 https://www.zwolle.nl/sites/default/files/strategische-
agenda-binnenstad-2017-samengevat.pdf
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Fig. 9. Screenshot of the Grote Markt, Zwolle as shown on OSM.

Fig. 10. Distribution of activity classes over the encoded places of the city center of Zwolle.

Table 1
Example of manual place encoding.

OSM identifier Place name ulo:Activity ulo:Referent ulo:Place Website

- Node (osm) As in ontology As in ontology As in ontology URL

- Way (osmw)

- Relation (osmr)

osm:2500428169 Hedon ulo:Listening ulo:Concert ulo:Theatre https://.
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means strolling around the shopping streets without the goal of going to
a specific shop (Spierings, 2006), similar to taking a walking tour or
doing sightseeing from a boat or tourist vessel. Another issue that oc-
curred during the data collection is that not all sights in the city have a
website that describes an activity. An example is the old city hall at the
Church square, which is part of the municipality and lacks any parse-
able text.

5. Modeling leisure affordances with semantic topics and tags

In this section, three supervised machine learning approaches to
model leisure affordances are described, which we refer to as slLDA,
mlLDA, and LLDA. We test these approaches with different para-
meterizations, for which we report the estimation quality and discuss
the results.

5.1. slLDA

For slLDA, the task was reduced to a single-label supervised learning
problem in a pipeline with unsupervised LDA. We generated a class
frequency distribution and selected the most frequent class for each
place in the data set. Features for learning included both semantic to-
pics extracted from the texts using unsupervised LDA (Blei, 2012) and
the place tags identified during the enrichment process described in the
previous section. This dataset was then used as training data with
various ordinary (single-label and multi-class) machine learning clas-
sifiers. Using the most frequent class has the advantage that we can test
the multitude of powerful ML classifiers that are available, yet has the
drawback that activity variety about a place is lost. Furthermore, since
LDA is unsupervised, topics irrelevant for classification may occur. This

approach is illustrated in Fig. 11.

5.1.1. Model parametrization and feature selection
We varied the single label multi-class classifier learning algorithms

using standard parameters, which were taken from the scikit-learn
libary,16 see Table 4 (the “Neural Net” algorithm was a multilayer per-
ceptron). In addition, the text sources were varied using Dutch language
web scraped texts and English Google reviews. We also varied our
model with respect to whether it made use of OSM/Google place tags or
not, and with respect to the semantic depth of the activity class label in
our ontology. The latter was done by choosing either the general ac-
tivity class, or synthesizing a combination of activity class and referent
class.17 Finally, we restricted models to those classes with at least five
instances, in order to prevent overly sparse labels. For parametrization
of the LDA learning18 algorithm, we chose 18 topics learned with 600
iterations and a fixed random seed. Results remained stable when
testing other numbers of topics.

5.1.2. Results and evaluation
The LDA model was trained with a corpus vocabulary of 7067 words

occurring 34,326 times over 153 web scraped place description texts. It
produces vectors of probabilities over words for each topic, which can be
used to estimate the probability that a given topic occurs in a given text.
Fig. 12 shows the 18 topics in terms of their 5 most probable words.
Many of these topics can be well interpreted. For example, topic 5 with
word stems “smak” (for “smaakt”, “smaakvol”, or “smakelijk”, all related
to ‘taste’) in combination with “bier”, “caf”, “wijn” can be interpreted as
a place where tasteful beers and wines are served in a café. Topic 3
summarizes beer brewery concepts, while topic 0 is related to movies (A
cinema in Zwolle is called “Pathé” with its own ‘unlimited’ cinema card),
and Topic 16 is related to art galleries. With other topics (such as 8, 9, 10,
and 14), interpretation becomes more difficult, since stemmed website
artifacts (such as Web addresses) range among the words. Our conclusion
is that in some cases, Web artifacts take over topics, due to our com-
parably small sample. The amount of such artifacts dramatically de-
creases with Google reviews. However, the review texts also seem to be
more homogeneous and centered around food, which might be a pro-
blem when considering semantic coverage.

Regarding the classification quality, we measured the performance of
each single-label classifier with 10-fold cross validation and standard
quality metrics (accuracy, weighted precision, weighted recall and F-
measure (a combination of precision and recall)) and compared this
against a naive model, which was based on the majority class. Regarding
model parameters, it turned out that restricting the class size to ≥ 5
was most successful for all text sources and algorithms. Furthermore,
trying to estimate activities down to the level of referent classes largely
failed. In the following, results will therefore be reported for highest
level activity classes and class size ≥ 5, if not stated otherwise.

As can be seen in Table 5, the classification problem is difficult, with
some classifiers (Random Forest, Linear SVM) not improving at all over
the naive model,19 while others improving to a mediocre degree (Lo-
gistic regression, kNN, Decision Tree). However, the Neural Net shows a
respectable improvement over the naive model, raising accuracy from
0.52 to 0.67, precision from 0.27 to 0.63 and recall from 0.52 to 0.66, as
well as the F-measure from 0.17 to 0.54.

It is insightful that the quality goes slightly down when leaving out
tags among the explanatory features (Neural Net accuracy: 0.62, F:
0.40). At the same time, other classifiers become better than neural
networks (Naive Bayes accuracy: 0.64, F: 0.47). Thus, it seems that tags

Table 2
Keys of enriched training data file.

Key Description

Class Activity class manually added in terms of ulo ontology, format
ulo:Activity and ulo:Referent

ulo_Place Place type manually added in terms of ulo ontology
Website URL of the website used to scrape place descriptions
Web title Title of the website used to scrape place descriptions
webtext Text of the website used to scrape place descriptions (cleaned with

Beautifulsoup)
Name Name of the place (manually added)
Review text Text of Google Places reviews (if available). Google place information

was added based on the spatial distance and name similarity
Google type Place tags from Google Places (if available). (in alphabetical order)
Google ID Google Place ID (if available)
Latitude WGS 84 Y Coordinate (taken from OSM, converted to centroid for

ways)
Longitude WGS 84 X Coordinate
OSM keys Open Street Map keys with respective values, or ‘No’ if missing [‘shop’,

‘amenity’, ‘leisure’, ‘tourism’, ‘historic’, ‘man_made’, ‘tower’, ‘cuisine’,
‘clothes’, ‘tower’, ‘beer’, ‘highway’, ‘surface’, ‘place’, ‘building’]

Table 3
Distribution of place and referent classes within the dataset.

# Place %_Place Referent %_Referent

1 Restaurant 23.9 Food 7.4
2 Cafe 13.2 Architecture 6.4
3 Park 4.0 Coffee 4.3
4 Square 4.0 Lunch 4.0
5 Bar 3.4 Terrace 4.0
6 Church 3.1 Gifts 3.4
7 Museum 3.1 Exhibition 3.1
8 Historic Building 2.8 Fashion 3.1
9 Fashion Store 2.5 Beer 2.8
10 Bookstore 1.8 Wine 2.8
Total 61.7% 41.1%

16 http://scikit-learn.org
17 See Section 3.2. A more sophisticated approach could test different depths

using subsumption class hierarchies.
18 https://pythonhosted.org/lda/
19 Estimation based on majority class.
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play an important role as explanatory features for all classifiers to reach
highest scores.

A similar picture occurs when using Google reviews instead of web

scraped texts (Table 6). Note that due to the more skewed class dis-
tribution of these examples, the naive model has already a very high
accuracy, which is still overcome by the Neural Net with 0.78. The
fitting quality of the neural net is high over all classes, as can be seen by
its confusion matrix for estimating activity classes on 136 web scraped
texts (Table 7).

When increasing the semantic depth of labels by including 61 ac-
tivity/referent combinations (such as ulo:Eating∥ulo:Pastry), accuracy of
the Neural Net went down to 0.27 (F score of 0.22), which only slightly
improves over the naive model (accuracy 0.20, F 0.07). It seems that the
amount and semantic coverage of texts and tags simply does not yield
enough information for this purpose.

5.2. mlLDA

For mlLDA ordinary multi-label classification approaches were used
(Madjarov, Kocev, Gjorgjevikj, & Džeroski, 2012) in a pipeline with
unsupervised LDA (Fig. 13). In contrast to slLDA, this allowed us to use
multiple labels at the same time and has the advantage that we can use
non-text features such as tags as explanatory variables in addition to
latent topics. Still, as in the first approach, topics irrelevant for classi-
fication might occur. In multi-label classification, each instance comes
with a list of class labels given as an indicator matrix.20 There are two
basic learning strategies: (1) either single-label classifier algorithms can
be adapted specifically to the multi-label problem. A common example
is “Multi-label kNN (MLKNN)”, which is an adaption of kNN (Zhang &
Zhou, 2007). Or (2) one can transform the problem into multiple single-
label classification problems (Madjarov et al., 2012).

5.2.1. Model parametrization and feature selection
In our experiment, we tested the algorithmic variants as given in

Table 8, where MLKNN is an algorithmic adaption, while all other
classifiers are single-label wrapped into a label power set using the scikit-
multilearn package.21 The latter turned out to be the most successful
transformation method. The LDA method was equivalent to the pre-
vious version as well as all other parameter variations, except that we
did not restrict class sizes.

Fig. 11. slLDA approach to place affordance modeling. Blue boxes are modeling processes, yellow ones are results.

Table 4
Variants of the slLDA model. We varied the model along each dimension combining parameters.

Classifier learning algorithms Text sources Place tags Semantic depth Min class size

Logistic regression (C = 1e5), Scraped web texts, Google reviews Used, not used Activity class with referents, without referents 0, 5
Nearest Neighbors (k = 5),
Linear SVM (C = 0.025),
RBF SVM (gamma = 2, C = 1),
Gaussian Process
(1.0 * RBF(1.0), warm start),
Decision Tree (max_depth = 5),
Random Forest
(max_depth = 5, n_est = 10, max_feat = 1),
Neural Net (alpha = 1),
AdaBoost, Naive Bayes

Fig. 12. Word clouds for 18 topics from training LDA on web scraped texts.

20 A matrix of instances against classes, where each cell is 1 in case the in-
stance is labeled with the class

21 http://scikit.ml/api/index.html
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5.2.2. Results and evaluation
To measure the classification quality, we performed 10-fold cross

validation and used the weighted variants of the standard quality mea-
sures (accuracy, weighted precision, weighted recall, and weighted F1).
For these measures, estimation qualities for each class are weighted by
the size of that class. Standard multi-label quality measures take into
account label order, however, which is not relevant in our case.22 Thus,

we also calculated order-neutral measures including 1) the coverage
error, which computes the average number of labels that have to be
included in the final prediction such that all true labels are covered, and
2) the Jaccard similarity score, which computes the average Jaccard si-
milarity coefficient over all instances. The latter coefficient is the ratio
of the number of shared (true and predicted) labels, divided by the size
of the union of the true and the predicted labels. When looking at the
performance of the models on the Web scraped texts including tags
(Table 9), we see that again the Neural Net outperforms the other al-
gorithms and raises the accuracy of the naive model from 0.24 to 0.4.
The more tolerant coverage error drops from almost 14 to 10.7, and the
Jaccard score is raised from 0.34 to over 0.52. This means that on
average, more than half of all the class labels present are correctly
predicted by the model. An only slightly worse quality is reached by
kNN, the naive Bayes classifier and logistic regression. Surprisingly, the
adapted MLKNN algorithm did not particularly stand out.

Leaving out tags considerably deteriorated models across all classi-
fiers. Most classifiers were not capable anymore to raise the level be-
yond a naive guess. The Neural Net accuracy drops to 0.37, and its
Jaccard score to 0.45.

We also tested the approach on Google review texts. In this case, the
naive accuracy of 0.31 was bested by the Neural Network 0.38, and the
Jaccard score improved from 0.44 to 0.59. It seems, however, that the
sample size in this case is too small for the task. Finally, we tested with
highest semantic resolution (including referent classes). As expected, this
turned down the quality considerably. The Neural Net was able to raise
the accuracy in this case from 0.05 only to 0.11, and the Jaccard score
from 0.06 to 0.15.

5.3. LLDA

LLDA is a variant of LDA that uses the additional information of
user-contributed labels to identify topics from texts in a supervised
manner, so that there is a one-to-one correspondence between labels
and topics (Ramage, Hall, Nallapati, & Manning, 2009). Since a text can
have more than one label, it is modeled as a mixture over those cor-
responding topics. This has the advantage that topics are chosen in a
way that optimizes discrimination between class labels. The drawback
lies in the fact that LLDA is restricted to texts as features. This approach
is described in Fig. 14.

5.3.1. Model parametrization and feature selection
Similar to the LDA model, we restricted models to those classes with

at least 5 instances. For parameterization of the LLDA algorithm, the α

Table 5
Classification quality of slLDA activity class labeling, using web texts with OSM/Google tags and classes ≥ 5.

naive model logistic regr. kNN Linear SVM RBF SVM Gauss. proc. Decision Tree Random Forest Neural Net Ada Boost Naive Bayes

Accuracy 0.52 0.60 0.58 0.52 0.56 0.6 0.58 0.54 0.67 0.56 0.49
Std.dev. 0.04 0.13 0.13 0.04 0.08 0.1 0.07 0.1 0.13 0.11 0.16
W.prec. 0.27 0.64 0.61 0.27 0.51 0.46 0.56 0.38 0.63 0.58 0.62
W.recall 0.52 0.61 0.58 0.52 0.56 0.6 0.6 0.57 0.66 0.56 0.49
F 0.17 0.49 0.48 0.17 0.39 0.32 0.45 0.21 0.54 0.48 0.47

Bold indicates the best performing classification

Table 6
Classification quality of slLDA activity class labeling, using Google review texts with OSM/Google tags and classes ≥ 5.

Naive model Logistic regr. kNN Linear SVM RBF SVM Gauss. proc. Decision Tree Random Forest Neural Net Ada Boost Naive Bayes

Accuracy 0.67 0.72 0.77 0.67 0.67 0.67 0.64 0.69 0.78 0.65 0.62
Std.dev. 0.01 0.17 0.13 0.01 0.01 0.01 0.59 0.05 0.17 0.12 0.22
W.prec. 0.45 0.68 0.7 0.45 0.45 0.45 0.59 0.45 0.66 0.55 0.64
W.recall 0.67 0.72 0.77 0.67 0.67 0.67 0.66 0.69 0.77 0.65 0.62
F 0.27 0.54 0.59 0.27 0.27 0.27 0.66 0.3 0.56 0.4 0.5

Bold indicates the best performing classification

Table 7
Confusion matrix of Neural Net classification using web scraped texts and tags.

Predicted labels

Shopping Eating Watching Drinking Total

Actual labels Shopping 28 3 0 2 33
Eating 3 66 0 1 70
Watching 2 1 12 0 15
Drinking 2 7 0 9 18
Total 35 77 12 12 136

Bold indicates the best performing classification

Table 8
Variants of the mlLDA model. We varied the model along each dimension
combining parameters.

Classifier learning
algorithms

Text sources Place
tags

Semantic depth

Logistic Regression
(C = 1e5),

Scraped web
texts, Google
reviews

Used,
not used

Activity class with
referents, without
referentsMLKNN (k = 5, s = 1.0),

Decision Tree
(max_depth = 5),

Extra Tree (max_depth = 5),
Nearest Neighbors (k = 10),
Neural Net (alpha = 1),
Random Forest
(max_depth = 5, n_est = 10,

max_feat = 1),
Naive Bayes,
RBF SVM (gamma = 2,

C = 1),
Linear SVM (C = 0.025)

22 Since the order of activities can be disregarded.
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hyperparameter, used to determine the distribution of topics over
documents, was set to 0.001 and training was performed with 1000
iterations.

5.3.2. Results and evaluation
The LLDA model was trained on the same Web corpus that was

described in Section 5.1.2 and Table 9. As shown in Table 10 many top
words for topics that were trained based on general activity labels
correspond with the labeled activities. For example, the Dutch words

“eten” (eating), “sfeer” (atmosphere) and “schaal” (plate) correspond to
Eating in a restaurant, “zon” and “terras” correspond to Sitting on a
terrace in the sun, and “live”, “podia” and “show” correspond to Lis-
tening to concerts. Words include also sensible local venues names, like
“Mizu” (a cocktail bar) and “Thor”(a music club).

In order to evaluate how well labels are correctly applied to texts,
we performed a 10-fold cross validation on the data. Since the LLDA
prediction results in probabilities for each label rather than label in-
dicators (i.e., true or false for each label), an additional threshold value
of 0.2 was applied to turn LLDA into a multi-label classifier comparable
to Table 9. Table 11 shows these results for LLDA.

Based on this method the quality of LLDA is better than the naive
model but is not as high as the best performing multi-label classifiers
shown in Section 5.2.2.

6. Discussion, outlook and conclusion

The results of our study add to more than one direction of research
on place and urban leisure space. We therefore discuss them separately
for the three questions posed in the introduction.

Table 9
Multi-label classification quality of activity classes, using web scraped texts with OSM/Google tags.

Naive model Logistic regr. MLKNN Decision Tree Extra Tree KNN Neural Net Random Forest Naive Bayes RBF SVM Linear SVM

Accuracy 0.24 0.33 0.31 0.22 0.23 0.36 0.40 0.30 0.31 0.31 0.24
Std.dev. 0.04 0.04 0.04 0.02 0.04 0.02 0.03 0.06 0.06 0.05 0.05
W.prec. 0.14 0.53 0.57 0.45 0.33 0.48 0.58 0.36 0.6 0.37 0.15
W.recall 0.31 0.5 0.43 0.44 0.34 0.43 0.48 0.38 0.51 0.36 0.31
F 0.17 0.48 0.47 0.42 0.31 0.43 0.49 0.33 0.52 0.33 0.2
Coverage 13.9 10.56 11.95 11.11 12.94 10.88 10.71 13.01 10.68 12.47 13.9
Jaccard 0.34 0.47 0.44 0.41 0.36 0.47 0.52 0.38 0.47 0.41 0.34

Bold indicates the best performing classification

Fig. 14. LLDA approach to place affordance modeling.

Table 10
Top words for LLDA topics trained using general activity class labels.

Eating Shopping Drinking Watching Sitting Listening Dancing

eten onze koffie langhuis augustus dienst club
sfeer wij onze stichting kerk live bommel
service winkel we jaar mizu podia jack
kwaliteit augustus bier path zoeken uur underground
Prijs we caf kunst zwolse thor dj
Drinken cookies wij pand kunt verkocht wils
We nederland plek nieuwe indebuurt gesteld evenementen
Schaal website barista kunstenaars zon diverse reactie
restaurant waar kunt galerie terras show bloopers

Table 11
LLDA classification quality of activity classes, using Web scraped texts.

Naive model LLDA

Accuracy 0.24 0.34
W.prec. 0.14 0.44
W.recall 0.31 0.45
F 0.17 0.42
coverage 13.9 10.5
jaccard 0.34 0.42

Fig. 13. mlLDA approach to place affordance modeling.
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6.1. Quality of extracting leisure activity potentials from Web sources

The results show that even though place affordance estimation
down to the semantic level of activity referents (what kind of food is
eaten) is a hard problem, a particular machine learning approach
(neural nets trained on semantic topics from websites and review texts
and making use of place tags) is able to achieve a considerable quality
on the level of activity classes. The most important activity class can be
estimated with an accuracy of ∼0.8 (using review texts) and ∼0.7
(using webtexts), where accuracy, precision, and recall are significantly
better than a naive model. Also the more challenging multi-label pro-
blem can be handled in this way, where on average more than half of all
true activity class labels are correctly suggested by our model.
Surprisingly, supervised multi-label models specifically designed for the
task, such as MLKNN and LLDA, did not perform any better. Social
media tags from OSM and Google places were an indispensable source
for the task.

In summary, the variety of place affordances and functions can be
estimated with a moderate to good quality by combining various texts
and tag sources from the web. However, this can be done only on a
rather coarse semantic level of activity classes. This demonstrates that
there remains indeed a large gap between the alleged benefits of readily
available data on the Web and the difficulties involved in making
scalable and reliable statements about affordances and experiential
qualities that urban places actually offer, c.f. Section 2.2 and 2.3.

To extend our model to other cities, our study should be con-
siderably extended. Since our manually labeled sample was rather re-
stricted in size and based on a single city, many meaningless topics
based on text artifacts (such as web formatting) remained, which might
disappear with larger samples. Furthermore, a lot of missing items were
produced by Web scraping due to service quality and incompleteness of
social media data. A larger issue related to this is how a sufficient text
quality of web sources can be assured when expanding the method
beyond our manually curated sample. For this purpose, studies on
principle Web data quality are needed (Ostermann & Granell, 2017), in
order to compare different sources, and in order to assess their sample
biases (Caliskan et al., 2017). Future work could build on our results in
order to realize a repository of urban activity models with labeled place
data across cities. It would then become possible to compare the leisure
potentials across these cities.

6.2. Studying the landscape of leisure activity potentials in Zwolle

Our approach allows us to translate urban texts into a technical
machine-readable vocabulary, which can be used in GIS analysis to
reveal different spatial patterns of specialization and mixing of place
affordances. For example, in Fig. 15 we have produced high resolution
kernel density maps about four different place affordances in the city
centre of Zwolle, namely drinking, eating, shopping, and watching.

On these affordance maps, one can discover that places for eating
and places for shopping are concentrated around different crossing
streets and partly overlap in the old town. Places combining the af-
fordance of eating and drinking are mostly concentrated on the square
surrounding the Sint-Michaëls church. When visitors do a Google maps
search of Zwolle and zoom in on its city centre, they may discover this
particular spatial pattern of specialization in terms of tags. However,
they will have great difficulties in discovering side activities and con-
cealed place qualities. Google places category tags hide that some
places afford multiple kinds of activities. For example, as can be seen in
Fig. 15, the Museum de Fundatie and the Sint-Michaëls church provide
not only the obvious watching affordances—e.g. in terms of archi-
tectural features of the buildings and the visual arts inside. The museum
is also depicted as a place for drinking and eating—due to a small bar
on its third floor—and the church as a place for shopping—due to a
book market inside to financially support its maintenance.

Furthermore, less prominent places are also reliably captured. In

fact, the inner city of Zwolle is covered almost completely in our model.
Fig. 15 does not only display the main tourist highlights, but also ar-
chitectural highlights “off the beaten track”. For example, chain store
shops like ‘Ici Paris XL’ and ‘Purdey’ are discovered as interesting places
for watching because they are both housed in buildings of historical
value. The ‘Ici Paris XL’ store is housed in a 17th century building with
a Classicist style and the ‘Purdey’ store in a 20th century building with a
Jugendstil style. At the same time, the Eekhout park provides various
monuments, an open air terrace and musical performances, which seem
known and quite popular among locals but probably not among visitors
yet.

This demonstrates that in contrast to Google maps or OSM, our af-
fordance maps display a large diversity of leisure affordances in the city
centre of Zwolle which are not captured by place names or tags.

6.3. Coping with the long tail and soft spot of urban research

Our affordance maps of Zwolle (Fig. 15) demonstrate the potential
to account for several challenges in existing data science approaches to
urban leisure and tourism studies and for related city policies and
planning.

First, it may be used to avoid the quantitative bias in the currently
available geographic information of social media data (ratings, clicks,
number of reviews), providing a platform to dig into more “qualitative”
soft and subtle information sources, such as perceptions and experi-
ences of place affordances. Texts provide a much richer semantic re-
source for this purpose compared to only tags.

Second, it provides a way to avoid the bias coming from overlooking
the long tail in place popularity and place categorization. Place popu-
larity reinforces attention and visitor flows to the most popular sites
(Scott & Orlikowski, 2012; van der Zee et al., 2018), while place ca-
tegorization reduces urban space to the most obvious things to do there.

Third, in combining different sources within distinct features, we
avoid the bias coming from single sources, such as a single social media
site or first-hand website. This provides a more balanced image as
different types of sources are known to present different aspects of
places (Xiang & Gretzel, 2010).

This provides fascinating opportunities for future research in urban
leisure and tourism and for innovating city policies and planning. For
example, it helps overcoming a one-size-fits-all approach to city mar-
keting. Extracting information of high spatio-temporal and semantic
resolution, may support more personalized urban exploration of leisure
seekers. It may also show a way to better direct the crowd of visitors
and residents in order to distribute them over various places within the
city (compare Section 2). Furthermore, our type of urban spatial ana-
lysis can enrich tracking and quantitative spatial behavior studies with
precious qualitative information, which is currently not available or
needs to be obtained via costly surveys and interviews.

However, our machine learning study also showed that the semantic
resolution and accuracy has limits imposed by the quality of sample
texts. For this reason, developing purely data-driven strategies for
urban planning should be approached with care. It might be the case
that information about needed place affordances in a city are just not
explicit in the text sources or that they are not covered in detail. Future
research should therefore measure the quality of existing Web data
sources for a given semantic level. For example, while our results il-
lustrate the gastronomic appeal of Zwolle, it is unclear whether our
method can also extract the availability of vegetarian food.
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