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Abstract
Omnidirectional cameras cover more ground than perspective cameras, at the expense of resolution. Their comprehensive 
field of view makes omnidirectional cameras appealing for security and ambient intelligence applications. Person detection 
is usually a core part of such applications. Conventional methods fail for omnidirectional images due to different image 
geometry and formation. In this study, we propose a method for person detection in omnidirectional images, which is based 
on the integral channel features approach. Features are extracted from various channels, such as LUV and gradient magnitude, 
and classified using boosted decision trees. Features are pixel sums inside annular sectors (doughnut slice shapes) contained 
by the detection window. We also propose a novel data structure called radial integral image that allows to calculate sums 
inside annular sectors efficiently. We have shown with experiments that our method outperforms the previous state of the art 
and uses significantly less computational resources.

Keywords Omnidirectional camera · Object detection · Human detection · Person detection · Integral channel features · 
Integral image

1 Introduction

We are entering an era where humans and intelligent systems 
will coexist in factory and office environments, smart cit-
ies and roads and home environments. Intelligent systems 
need to detect humans in order to protect them, serve them 
and communicate with them. Person detection is a crucial 
step for surveillance, autonomous vehicles and assisted liv-
ing applications. Depending on the application domain, 

detecting the body of a human being is called human detec-
tion, pedestrian detection or person detection. Many applica-
tions require the detection of multiple persons using video 
sensors, as well as the tracking of detected persons, their 
re-identification in different camera views, and at later times, 
the classification of their actions. The detection of persons 
in an environment using minimal computational resources 
is a challenging first step.

Many person detection studies use conventional perspec-
tive cameras. In that case, multiple cameras are needed to 
cover the ground of interest [1]. Omnidirectional cameras 
have a very wide field of view and might reduce, if not elimi-
nate, the need to use multiple perspective cameras. However, 
the use of omnidirectional cameras for object detection has 
been limited. This is partly because conventional camera 
approaches are not directly applicable and need to be modi-
fied in a theoretically correct and practical manner to be 
used with omnidirectional cameras. In this work, we propose 
a method to perform person detection directly on images 
obtained by omnidirectional cameras. Our method requires 
minimal computational resources to achieve the state-of-the-
art person detection performance.

Our contribution in this paper is twofold. First, we intro-
duce a novel integral image scheme for omnidirectional 
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images to speed up feature extraction. Integral images have 
been extremely useful for speeding up detection problems 
and were used in the rapid face detection study proposed 
by Viola and Jones [37]. However, integral images work 
with rectangular bounding boxes, an assumption which no 
longer holds in omnidirectional images. As Fig. 1 illus-
trates, the bounding box around the detected person is 
much narrower in its base. Our proposed solution makes 
it possible to use integral images directly on omnidirec-
tional camera images.

As a second contribution, we advance the state of the 
art in omnidirectional camera-based person detection. 
Using the new integral image structure and the integral 
channel features (ICF) approach  [15], we outperform 
recent omnidirectional camera person detection algo-
rithms [10]. We also compare our method to converting 
the omnidirectional image to a panoramic image and then 
applying the standard ICF method, and experimentally 
show the superior performance of our approach.

This paper is structured as follows: In Sect. 2, a brief 
overview of the feature extraction and person detection 
methods using omnidirectional cameras is given. In 
Sect. 3, our novel person detection scheme using omni-
directional cameras is outlined, including our camera 
model in Sect. 3.2, and a novel data structure, namely the 
radial integral image, to rapidly extract feature vectors 
from omnidirectional images in Sect. 3.3. In Sect. 4, the 
experiments we have conducted to validate our approach 
are reported with comparisons to the state of the art. Sec-
tion 5 concludes the paper.

2  Related work

2.1  Camera‑based person detection

In a classical work of object detection [11], Dalal and 
Triggs extracted histogram of oriented gradient (HOG) 
features from overlapping rectangular regions from the 
detection window. They used these features with sup-
port vector machine (SVM) classifiers to perform human 
detection. Consulting such gradient-based features 
is a well-established idea in person detection. Later, 
Zhu et al. [41] used integral image histograms to speed up 
the feature extraction step in the HOG detector. Felzen-
szwalb et al. [19] developed a similar model with mul-
tiple body parts, where the positions of these parts were 
inferred as the latent variables of an SVM. In [36], authors 
used the covariance matrix of different image features (i.e., 
covariance features) for pedestrian detection. Conventional 
classifiers do not perform well for covariance matrices, 
because they do not form a vector space. Instead they pro-
posed a method to effectively do classification with covari-
ance features on a Riemannian manifold.

In [2], slanted integral images are used to approximate 
the Laplacian of Gaussian filter to detect key points in the 
image. With the slanted integral images, the area of a right 
trapezoidal can be computed in constant time. In a similar 
vein, [30] used rotated integral images to extract Haar-like 
features from images. Although the time complexity is 
constant, the space complexity of both methods increases 
with each added rotation angle, because a separate integral 
image needs to be computed for that angle.

Performance is a major concern in person detectors, 
as the applications typically require real-time computa-
tions. In [15], authors combined the idea of boosting mul-
tiple simple features, as in the Viola–Jones detector [37] 
throughout multiple channels, including the HOG channel. 
Their work, namely, integral channel features (ICF), has 
been very successful due to its simplicity, low compu-
tational cost and detection performance. ICF forms the 
backbone of our approach. To deal with computational 
performance issues, Dollar et al. [14] proposed that feature 
responses can be used to approximate feature responses 
at nearby scales. They accelerated person detection by 
avoiding the building of the full-scale space. Following 
a similar line of work, Benenson et al. [7] investigated 
every component of a rigid (i.e., not part based) detector 
and improved HOG + SVM miss rate by more than 30%, 
through adjustment of system components such as fea-
ture pooling and normalization. In addition to HOG, local 
binary patterns (LBP) are also used for detection [35].

In [40], authors investigated the failure cases of top 
performing pedestrian detectors (most of them being from 

Fig. 1  Person detection in an omnidirectional camera setting, with the 
detection results of the proposed approach superimposed
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the ICF family) in detail and suggested ways to design and 
improve existing detectors. We refer the readers to [17] for 
a comprehensive review of methods on person detection 
using perspective cameras.

Introduction of deep learning changed the scene for 
object detection [21, 27, 33]. Although some of the per-
son detection approaches rely on deep neural networks [31] 
until recently, convolutional neural networks (CNN) failed 
to catch up with ICF-based methods [22, 39]. In a recent 
work, Cao et al. [9] used handcrafted feature channels (LUV, 
HOG, etc.) and features from inner layers of a CNN to per-
form classification with AdaBoost. This can be considered a 
hybrid approach, as neural networks are not used in an end-
to-end fashion. It is possible to fuse CNN features with other 
detectors, but this represents a trade-off between accuracy 
and speed. Furthermore, ICF-based methods are still attrac-
tive due to computational advantage gained by the simplicity 
of these features and good detection performance.

2.2  Detection in omnidirectional cameras

Regarding object detection studies with omnidirectional 
cameras, some previous approaches first transform the omni-
directional image into a panoramic image and then apply 
conventional detection methods on this image [23, 25, 38, 
42]. However, this transformation introduces extra param-
eters for tuning and brings additional computational effort. 
Panoramic transformation also distorts objects. Therefore, 
objects in transformed images differ from those in perspec-
tive cameras. Especially for tall objects, this distortion 
results in a decreased detection performance [10].

Geyer and Daniilidis [20] have shown that every central 
projection system can be modeled as a projection to a sphere, 
followed by a projection to the image plane. Based on this 
sphere model, researchers recently proposed methods to 
compute features directly on omnidirectional images. Puig 
and Guerrero [32] proposed using differential operators on 
the sphere to construct a scale space for omnidirectional 
images. Arıcan and Frossard [6] used the same idea to con-
struct a feature detection and extraction method for cata-
dioptric omnidirectional cameras. The features they used 
are similar to Lowe’s [29] popular scale invariant feature 
transform (SIFT). Lourenço et al. [28] proposed a similar 
framework, called sRD-SIFT, for images with radial lens 
distortions. Their method corrects the gradient using lens 
distortion coefficient, provided that it is available.

Tracking people with omnidirectional cameras is relevant 
for both indoor and outdoor settings. Saito et al. [34] used 
template matching in a Bayesian framework to detect and 
track multiple people in omnidirectional cameras. They 
generated different templates for people standing at dif-
ferent distances from the camera. Alahi et al. [3, 4] used 
omnidirectional cameras along with perspective cameras 

for person detection in a basketball game. They used a dic-
tionary of binary human silhouettes for each discrete loca-
tion and inferred the actual occupancies using binary fore-
ground detection as the input. They formulated the problem 
as a linear inverse problem and added a constraint on the 
maximum number of people to enforce the sparsity of the 
solution. In [12], authors used the same basketball game 
data to generate ground occupancy maps by backproject-
ing the foreground maps to ground plane. In [13], authors 
used, silhouette-based approach similar to [4], along with 
a hierarchical hidden Markov model to track a person in a 
room and detect falls.

Features can be tailored for omnidirectional images. Cin-
aroglu and Bastanlar [10] took the traditional HOG approach 
and modified the features according to the Riemannian met-
ric on the sphere camera model. In that way, object detection 
was done directly on the omnidirectional image. They also 
proposed rotating annular sectors (doughnut slice shapes) 
to improve the performance over rotating rectangular win-
dows. Their approach is computationally expensive, since 
the transformation of HOG features is done separately for 
each sliding-rotating window. In this study, we propose a 
faster and more accurate approach.

In [26], a circular grid scheme was proposed instead of 
a rectangular grid to calculate HOG responses over annular 
sectors. In this way, cyclic shifts of the final descriptor rep-
resent image rotations, which helps achieve some rotation 
invariance, especially if no assumption can be made regard-
ing the object’s orientation. However, in omnidirectional 
images, standing humans are typically aligned with lines 
diverging from the image center. Incorporating full rotation 
invariance in such scenarios would reduce the discrimina-
tive power.

To our knowledge, the method we propose in this paper 
is the first to compute the integral image for omnidirectional 
images and therefore, it is the first to apply the state-of-
the-art ICF method [17] for object detection with omnidi-
rectional cameras. We describe our approach in the next 
section.

3  Methodology

3.1  Integral channel features method

This subsection briefly describes the integral channel fea-
tures method [15], followed by a description of the proposed 
radial integral channel features (RICF).

The integral channel features (ICF) method first computes 
multiple channels from a single input image. These include 
individual color channels (e.g., RGB, LUV), gradient mag-
nitude, HOG and the difference of Gaussian filtered image. 
Then, summarizing features are extracted from each of these 
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channels. These are pixel sums over rectangular regions on 
the channels, which can be computed rapidly using integral 
images. Finally, boosting is used for classification. Using 
shallow decision trees as weak classifiers also serves as fea-
ture selection.

ICF is not directly applicable to omnidirectional images, 
because the rectangular feature extraction scheme and the 
sliding window approach are designed for perspective 
images and fail for the omnidirectional image geometry. 
The irregular distribution of pixels in the omnidirectional 
image makes it impossible to apply the efficient recursive 
approaches used for rectangular areas [18]. Our proposed 
method replaces the sliding window with a rotating annular 
sector (ring/doughnut slice shape) as in [10], and rectangular 
regions with annular sectors. To calculate pixel sums inside 
annular sectors rapidly, we propose a novel structure, radial 
integral image (Sect. 3.3). The idea is similar to the con-
ventional integral image, but instead of querying points in 
the Cartesian coordinate system, polar coordinates are used. 
See Fig. 2 for the illustration of the radial integral channel 
features method.

3.2  Camera model

In this work, we use the sphere camera model [20], accord-
ing to which all central catadioptric (mirror+lens) systems 
can be modeled as projection to a sphere, followed by a 
secondary projection from the sphere surface to the image 
plane via a projection point.

The projection point, which acts as the camera center 
of a virtual camera inside the sphere, is located on the 
diameter that is perpendicular to the image plane and � 
units away from the center of the sphere (Fig. 3). We can 

assume that the sphere is a unit sphere, and by changing 
the position of the image plane, we can scale the image.

Let the z axis be perpendicular and pointing toward the 
image plane; f be the distance of the image plane to the 
projection point; (X, Y, Z) be the coordinates of an arbi-
trary 3D point in the world, denoted by pworld ; (x, y, z) be 
the coordinates of psphere , which is the projection of pworld 
on the sphere, and 

(
xim, yim

)
 be the projection of psphere on 

the image. A graphical depiction is shown in Fig. 3. Then, 
r =

√
x2 + y2 + z2  and the projection from world coordi-

nates to image coordinates can be expressed as:

For cameras using parabolic mirrors, � = 1 . In other words, 
the projection point is located on the sphere. This is a typical 
situation and also known as stereographic projection. We 
use a dataset collected with a parabolic mirror and use this 
model in the rest of the paper.

3.3  Radial integral image

An annulus is a region bounded by two concentric circles. 
Annular sector (a.k.a. circular ring sector or doughnut 
slice shape) is a cut from the annulus, which is bordered 
by two straight lines from its center.

Annular sector features are very similar to the rectan-
gular features used in integral channel features (ICF) [15]. 
An annular sector feature is the sum of the pixels inside 
that annular sector. Instead of using Cartesian coordinates 
to obtain sums inside rectangular regions, it uses polar 
coordinates to obtain sums inside circular sectors. Annular 

(
xim, yim

)
=

(
fx

� + z
,

fy

� + z

)

feature vector
... ...

Fig. 2  Visualization of the radial integral channel features. Top: First, 
the input image is transformed into various channels (LUV, gradi-
ent magnitude etc). Then, radial integral images are formed. Bottom: 
Lastly, for a given annular sector shaped window, the sum inside the 
annular sectors (corresponding to a channel) is calculated. Features 
are shown on the original image for clarity

Fig. 3  In the spherical camera model, a point is projected onto the 
unit sphere first and then projected onto the image plane. For cameras 
using parabolic mirrors, � = 1
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sector features can be calculated rapidly using the pro-
posed radial integral image.

Radial integral image, Ĩ , is defined as:

where I is the input image, p and q are pixels, �p and rp are 
angular and radial coordinates of pixel p.

According to this definition, we can calculate the sum 
inside an annular sector (�min, �max, rmin, rmax) as:

where p�,r is the pixel that has the polar coordinates (�, r) . 
See Fig. 4a for an illustration. Once the radial integral image 
is computed, calculating each sum has O(1) complexity (four 
lookups and three operations).

Since a given (�, r) usually corresponds to fractional pixel 
coordinates in the actual image plane, we have used bilin-
ear interpolation to calculate the pixel values in the integral 
image. We have observed that using interpolation instead of 
rounding the coordinates is a crucial part of the sum calcula-
tion. Rounding leads to inclusion of unwanted pixel values in 
the sum, whereas interpolation provides a value much closer 
to the true sum inside the given range.

If the annular sector crosses the � = 0 angle, the sum can 
not be calculated directly, but it can be decomposed into two 
sums (Fig. 4b):

 This requires looking up pixel values corresponding to 
� = 2� , which can be achieved by storing an extra row for 
� = 2� in addition to the radial integral image.

When n denotes the number of pixels in the image, a 
naïve algorithm to compute the radial integral image has 
O(n2) complexity, because for each pixel, � and r should be 
compared with a subset of pixels in the image (on average 
half of the pixels). In the following section, we adapt a way 
to compute the radial integral image in O(n log n) time.

3.3.1  Fast computation of the radial integral image

Like rectangular integral image, computation of radial inte-
gral image is a domination problem. In this application, the 
question is to find which other pixels are dominated, given 
a pixel and the non-rectangular image structure. We adopt a 
multidimensional divide-and-conquer approach [8] to solve 
this 2D domination problem. In this approach, at each recur-
sive step, the problem of input size n is converted to two sub-
problems of input size n/2, plus a merge step that is solved in 

Ĩ(p) =
∑

q∶𝜃q≤𝜃p,rq≤rp

I(q)

S(𝜃min, 𝜃max, rmin, rmax) =Ĩ(p𝜃max,rmax
) − Ĩ(p𝜃max,rmin

)

− Ĩ(p𝜃min,rmax
) + Ĩ(p𝜃min,rmin

)

S(�min, �max, rmin, rmax) =S(�min, 2�, rmin, rmax)

+ S(0, �max, rmin, rmax)

linear time. Let T(n) denote the complexity of calculating the 
radial integral image, the corresponding recurrence becomes

which is solved in O(n log n) time.
We apply this approach to our case as follows: Along 

with each pixel value, we store radius r (distance from image 
center) and angle � . Note that, domination is computed in 
2D ( r, � ) space but pixels do not have a grid structure in 
( r, � ) space (Fig. 5a). We say that the point p dominates q if 
all the coordinates (r and � ) of p are greater than or equal to 
the corresponding coordinates of q. At each step, the set of 
all the pixels is divided into two subsets A and B using the 
median radius value (Fig. 5b). This means that the radius of 
every pixel in B is greater than the radius of every pixel in A 
and no pixel in A is dominating a pixel in B. The algorithm 

T(n) = 2T(n∕2) + O(n)

min

max

= − − +

(a)

= 1 + 2

= : + 0:

= row
2

1

(b)

Fig. 4  a Illustration of rapid computation of the sum inside an annu-
lar region using radial integral image. Four lookups and three opera-
tions are sufficient to calculate the sum. b If an annular sector query 
crosses � = 2� angle, it can be broken up into two annular sectors. In 
this case, an extra column is needed to look-up values that correspond 
to � = 2�
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is recursively called for A and B. These are the two half-size 
subproblems.

Upon completion of each recursive step, we are at a point 
that every pixel in A gives the desired sum, and every pixel 
in B gives the sum of the dominated pixels in B (Fig. 5c). 
Pixels in B might be dominating some pixels in A; thus, 
values in set B need to be updated. This update is the merge 
step of the divide-and-conquer approach. Here, we assume 
that pixels were sorted by � in a pre-processing step. In this 
sorted list of n points (moving along vertical axis, Fig. 5d), 
the algorithm keeps track of the sum of values in A so far. 
Each time a point in B is observed, the current sum is added 
to that point. Therefore, the time spent for the merge opera-
tion is O(n).

When the number of pixels in the set is less than a par-
ticular value, we stop the recursion and switch to a naïve 
implementation. This strategy avoids the recursion over-
head for small sets and increases CPU cache utilization. 
We observed that the critical set size is 16 for our hardware 
architecture. We also make the implementation of the radial 
integral image open source.1

3.3.2  Gradient correction

It has been shown that modifying gradient magnitudes 
according to the Riemannian metric on the sphere improves 
human detection performance using omnidirectional cam-
eras [10]. For cameras with parabolic mirror, the gradient 
magnitude channels are updated with:

where |∇S2I| and |∇2 I| are the gradient magnitudes on the 
sphere and the image, respectively. We observe that at the 
center of the omnidirectional image, (x, y) = (0, 0) , gradients 
are the same. As we move from the center to the periphery 
of the omnidirectional image, gradients on the sphere are the 
magnified versions of the gradients on the image.

4  Experimental setup

In our experiments, we followed a setting that is very simi-
lar to the one described in the original ICF paper [15]. For 
each input image, we extracted 10 channels in total: LUV 
for color, gradient magnitude and gradient histogram for 6 
equally spaced orientations. We generated 20,000 random 
features and trained an AdaBoost classifier with 1024 deci-
sion trees with a depth of two. This gives a good balance 
between classification accuracy and computational load.

We present three sets of experiments: For the first experi-
ment, we have generated artificial omnidirectional images 
using the images in the INRIA dataset [11]. We report false 
positive per window versus miss rate for this experiment and 
show the validity of our approach. The second experiment 
was conducted on real omnidirectional images and compares 
a state-of-the-art approach with the proposed method, illus-
trating the improvement in accuracy and speed. Lastly, we 
compare the performance of our method against transform-
ing omnidirectional images to panoramic images and using 
a conventional person detection method and show that work-
ing directly on omnidirectional images is a better approach.

4.1  Evaluation on the INRIA person dataset

The first set of experiments is intended as a validation of the 
method using artificially generated omnidirectional images. 
For this purpose, we have created a virtual camera, placed 
images such that the persons feet are on the ground plane, 
and projected the INRIA images onto the omnidirectional 
camera’s image plane (Fig. 6). For each image, we have 
applied a random rotation to the camera around the verti-
cal axis. We have trained our classifier with all of the 2416 

|∇S2 I| =
(4 + x2 + y2)

4
|∇2 I|

+ + +

+ + +

+
+

+

(a) (b)

(c) (d)

Fig. 5  Steps of computing the radial integral image. a Polar coor-
dinates and values of the pixel are given as the input. b Pixels are 
split from the median radius to form two equally sized sets, A and B. 
c The algorithm is recursively called for each set. d Pixels are iter-
ated according to increasing angle value, and two sets are merged by 
updating the values in B 

1 The code is publicly available at https ://githu b.com/baris demir oz/
radia l_integ ral_image .

https://github.com/barisdemiroz/radial_integral_image
https://github.com/barisdemiroz/radial_integral_image
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positive samples and 5000 random windows from negative 
samples from the INRIA training set.

Using these artificial omnidirectional images, we have 
trained a boosted classifier utilizing features extracted using 
radial integral images.2 Training the final AdaBoost classi-
fier only takes approximately 2 min on our hardware, thanks 
to early pruning of underachieving features [5]. For perfor-
mance, we have used a custom radial integral image imple-
mentation that processes a part of the full omnidirectional 
image (which corresponds to the projected INRIA image). 
Feature extraction, training and classification require mini-
mal resources. All of the experiments are run on a PC with 
an Intel i7 CPU and 4 GB RAM.

We plot false positive per window (fppw) versus miss rate 
(Fig. 7), and we observe 85.3% detection rate at the reference 
point of 10−4 fppw. Considering that the detection rate for 
perspective cameras is around 90% [15], this result shows 
that our approach is plausible for semi-synthetic omnidi-
rectional images. In Fig. 7, we have also plotted the per-
formance of the same classifier by changing the distance of 
the INRIA samples to the camera by − 20% , − 15% , −10% , 
+10% , +20% and +30% . We have trained a single classifier 
and run on the different samples without scaling the detec-
tion window or the test image. The performance decreases 
rapidly as the samples are placed away from the distance 
it was trained on. This is due to the image of the INRIA 
samples being significantly different at different distances 
and the classifier trained for a particular distance cannot be 
applied directly to the human shapes at different distances. 
For detection in real omnidirectional images, we run the 
detector at multiple scales to detect people at different dis-
tances (see Figs. 1 and 10). In the next section (Sect. 4.2), 
we report the performance on real omnidirectional images. 
The visualization of the channels and selected features after 
boosting can be seen in Fig. 8. Note that for related gradient 
orientations, features are clustered around shoulders. For the 
gradient magnitude and color channels, most of the learned 
features are from regions covered by the human body.

The false positive per window criterion is better suited 
for evaluating a binary classifier. On the other hand, for 
evaluating an end-to-end detection system, using false posi-
tive per image (fppi) is a better criterion, because in such a 
setting ideally all possible windows are considered, result-
ing potentially in much more false positives than the per-
window approach [16]. Besides, not all detectors work on a 
per-window basis. Using fppi allows us to compare results of 

INRIA sample

Camera

Fig. 6  Left: Each sample in the INRIA dataset is placed on the 
ground plane, and a virtual omnidirectional image is formed. (Cam-
era is shown as a sphere since we used the sphere camera model.) 
Right: Some examples of the resulting images

10-5 10-4 10-3 10-2 10-1

false positive per window

0.001

0.005

0.01
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0.1

0.2

0.5

m
is

s 
ra

te

original
-20%
-15%
-10%
+10%
+20%
+30%

Fig. 7  The performance of the proposed method (RICF) on the 
INRIA dataset, where each window is transformed into an omnidirec-
tional image. The performance decreases rapidly as the test images 
get further away from the camera. Best viewed in color

Fig. 8  Top left: An example image synthesized from the INRIA data-
set. Top two rows: Channels generated from the image. Six gradient 
orientations (starting from zero degrees), gradient magnitude and 
L, U, V channels, respectively. Bottom two rows: Visualization of 
learned features from the training data. Each feature region is painted 
and averaged for visualization. Images correspond to the aforemen-
tioned channels in the same order

2 The code is publicly available at https ://githu b.com/baris demir oz/
adabo ost_cpp.

https://github.com/barisdemiroz/adaboost_cpp
https://github.com/barisdemiroz/adaboost_cpp
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different type of detectors. However, in this section, we used 
fppw because we generate human centered omnidirectional 
images which leaves the rest of the image unrealistic, if not 
empty. We report experiments using the false positive per 
image (fppi) criterion in Sect. 4.2, which uses real omnidi-
rectional images.

4.2  Evaluation on the IYTE omnidirectional image 
dataset

For the second experiment, we have compared our method 
with Cinaroglu and Bastanlar’s recent approach, which is 
the state of the art in omnidirectional person detection [10]. 
We trained a detector using artificial omnidirectional images 
using the INRIA dataset as described in the previous sec-
tion. For testing, we used the same dataset3 with [10]. This 
dataset contains images taken with a real omnidirectional 
camera (Fig. 9), and humans are manually annotated for 
each segmented person as annular sectors. While testing, 
we use a scale step of 1.04 and window step size of 6 pixels. 
Note that for rotating annular sectors, the window step size 
corresponds to varying angle step size for different radii. 
We have also experimented with different step sizes. We 
have observed that increasing step size affects the perfor-
mance only slightly because, in IYTE dataset the humans are 
large and the detection windows are always dense enough 
on multiple scales to capture humans. In Fig. 1, an example 
result of our RICF method can be seen. In Fig. 10, example 
instances can be seen where our RICF method fails.

In [10], precision–recall curves are reported for their 
OmniHOG method. To keep the comparison fair, we report 
our results using the same metrics, namely precision and 
recall. We have selected a similar ratio of the negative sam-
ples as well. We also provide a false positive per image vs. 
miss rate plot, which is better suited for the person detection 
task.

The precision–recall curve shows that we have surpassed 
the detection performance of OmniHOG (Fig. 11a). We have 
also obtained 11.59% log-average miss rate on the IYTE 
dataset where the miss rate at fppi = 1 is 4.5% (Fig. 11b). 
In [17], it is reported that 10% miss rate at fppi = 1 is the 
best result for the datasets evaluated. Although our dataset 
is different and not as challenging as some of those datasets, 
our results show that using semi-synthetic omnidirectional 
images is a viable way to train person detectors for omnidi-
rectional cameras.

Also note that, our method RICF is much faster than 
OmniHOG, since in OmniHOG, the transformation of HOG 

Fig. 9  Three samples from the IYTE dataset

Fig. 10  Example instances where our RICF method fails. Top: false 
negative example. Bottom: false positive example

3 IYTE dataset—available at http://cvrg.iyte.edu.tr.

http://cvrg.iyte.edu.tr
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features is done separately for each sliding-rotating window. 
For a given input image, OmniHOG takes about 17 ms per 
window, where our lightly optimized OmniIntegral imple-
mentation takes 1.6 ms per window on a similar hardware. 

In other words, our method is more than 10 times faster than 
the previous state of the art.

4.3  Evaluation on panoramic images

Lastly, we compare the performance of our method against 
transforming the omnidirectional image to a panoramic 
image and using a conventional integral image sliding 
window approach [15]. We chose to compare our method 
against this baseline approach, because this is usually the 
most straightforward way to work with omnidirectional 
images [23, 25, 38, 42].

We have used spherical projection to convert omnidirec-
tional images to panoramic images. Spherical projection 
provides equiangular representation in the vertical direction 
of panoramic images, and it was shown to provide better 
performance over cylindrical projection [24]. We also set 
the image height so that it preserves the 2:1 aspect ratio 
for humans. By doing this, we actually gave the panoramic 
method an advantage. Nonetheless, our proposed radial inte-
gral channel features method outperformed the panoramic 
method (Fig. 11a). We conclude that working directly on 
omnidirectional images instead of transforming them into 
panoramic images has clear benefits for person detection. 
Besides, since the omnidirectional integral image is com-
puted only once for the input image, the computational 
complexity of detection on the omnidirectional image is not 
higher than converting to a panoramic image and applying 
the standard perspective camera method.

5  Conclusions

In this paper, we have presented a novel method, called 
radial integral channel features (RICF), to detect people 
in images acquired by omnidirectional cameras. We have 
presented a new data structure called radial integral image 
to speed up feature extraction in omnidirectional images. 
RICF beats the current state of the art for person detection 
in omnidirectional cameras and demands less computational 
resources.

Our experiments illustrate that working directly on 
native omnidirectional images is better than converting 
them to panoramic images, followed by applying traditional 
approaches. The distortions caused by such rectification are 
problematic. If efficient native versions of useful algorithms 
are introduced, omnidirectional cameras will be more acces-
sible to system developers.

Efficient omnidirectional image processing for detecting 
humans has great potential for many applications, including 
indoor scenarios such as smart environments and mobile 
robot-based applications, as well as outdoor scenarios, 
such as pedestrian detection. We believe advances such as 
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Fig. 11  Comparison of our method with [10]. Best viewed in color. a 
Working directly on omnidirectional images outperforms transform-
ing image to panoramic and using conventional method (Pano-ICF). 
OmniHOG and Pano-HOG results are taken from  [10], and higher 
precision values are better. b Miss rate versus false positive per image 
plot of our method and OmniHOG method, where lower values are 
better
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proposed in this paper will result in more widespread use of 
omnidirectional cameras.
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