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Abstract
Objectives To evaluate the added value of deep learning (DL) analysis of the left ventricular myocardium (LVM) in resting
coronary CT angiography (CCTA) over determination of coronary degree of stenosis (DS), for identification of patients with
functionally significant coronary artery stenosis.
Methods Patients who underwent CCTA prior to an invasive fractional flow reserve (FFR) measurement were retrospectively
selected. Highest DS fromCCTAwas used to classify patients as having non-significant (≤ 24%DS), intermediate (25–69%DS),
or significant stenosis (≥ 70% DS). Patients with intermediate stenosis were referred for fully automatic DL analysis of the LVM.
The DL algorithm characterized the LVM, and likely encoded information regarding shape, texture, contrast enhancement, and
more. Based on these encodings, features were extracted and patients classified as having a non-significant or significant stenosis.
Diagnostic performance of the combined method was evaluated and compared to DS evaluation only. Functionally significant
stenosis was defined as FFR ≤ 0.8 or presence of angiographic high-grade stenosis (≥ 90% DS).
Results The final study population consisted of 126 patients (77% male, 59 ± 9 years). Eighty-one patients (64%) had a func-
tionally significant stenosis. The proposed method resulted in improved discrimination (AUC= 0.76) compared to classification
based on DS only (AUC= 0.68). Sensitivity and specificity were 92.6% and 31.1% for DS only (≥ 50% indicating functionally
significant stenosis), and 84.6% and 48.4% for the proposed method.
Conclusion The combination of DS with DL analysis of the LVM in intermediate-degree coronary stenosis may result in
improved diagnostic performance for identification of patients with functionally significant coronary artery stenosis.
Key Points
• Assessment of degree of coronary stenosis on CCTA has consistently high sensitivity and negative predictive value, but has
limited specificity for identifying the functional significance of a stenosis.

• Deep learning algorithms are able to learn complex patterns and relationships directly from the images without prior
specification of which image features represent presence of disease, and thereby may be more sensitive to subtle changes in
the LVM caused by functionally significant stenosis.
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• Addition of deep learning analysis of the left ventricular myocardium to the evaluation of degree of coronary artery stenosis
improves diagnostic performance and increases specificity of resting CCTA. This could potentially decrease the number of
patients undergoing invasive coronary angiography.

Keywords Artificial intelligence .Myocardial ischemia . Coronary artery disease . Computed tomography angiography

Abbreviations
AUC Area under the receiver operating

characteristic curve
CABG Coronary artery bypass grafting
CAD Coronary artery disease
CCTA Coronary computed tomography angiography
DL Deep learning
DS Degree of stenosis
FFR Fractional flow reserve
ICA Invasive coronary angiography
LVM Left ventricular myocardium
PCI Percutaneous coronary intervention

Introduction

Assessment of degree of stenosis (DS) in coronary arteries
using coronary computed tomography angiography (CCTA)
is an accepted diagnostic tool for the detection and exclusion
of coronary artery disease (CAD), with consistently high sen-
sitivity and negative predictive value [1–3]. However, it has
limited specificity in indicating the functional significance of a
stenosis [2, 3]. Invasive fractional flow reserve (FFR) is cur-
rently the reference standard to indicate functional signifi-
cance of a coronary stenosis and to guide treatment [4].
However, due to its invasive nature and high cost, adoption
of invasive FFR in clinical practice is limited, and the search
for a non-invasive method that would determine functional
significance of a stenosis continues.

To address the limited specificity of CCTA, new techniques
have been developed to obtain information about the functional
significance of a stenosis in a non-invasive way. FFR derived
from CT (FFRct) is an emerging method which has shown
promising results [5–7]. By simulating flow and pressure
through the coronary arteries, a virtual FFR value is obtained.
More recently, promising results have been obtained with anal-
ysis of myocardial perfusion from resting CT [8–16]. Even
though it is well known that perfusion defects are more pro-
nounced under conditions of hyperemia [17, 18], prior studies
have shown the feasibility and accuracy of identification of
patients with a functionally significant coronary artery stenosis
with resting CCTA only [8–13]. With these approaches, func-
tional information is obtainedwithout the need for an additional
stress perfusion acquisition, thereby saving radiation and con-
trast medium dose, lowering risk, and reducing examination
duration and cost. In recent studies, approaches exploiting

machine learning have been proposed in which the left ventric-
ular myocardium (LVM) in resting CCTA is analyzed and used
to classify patients with regard to the presence of functionally
significant coronary artery stenosis [8, 9, 13].

In classical machine learning, discriminant features de-
scribing the LVM, such as hypo-attenuation and changes in
myocardial wall thickness, are manually designed by an ex-
pert. Subsequently, these features are used in an algorithm that
is built to classify patients according to presence of function-
ally significant coronary artery stenosis [8, 9]. In contrast to
the approaches using expert engineered image features, we
recently proposed a deep learning (DL) algorithm, whereby
the LVM features that discriminate patients with and without
functionally significant coronary artery stenosis are indepen-
dently learned by the algorithm directly from the image [13].
The current study expands on our previous work [13] by ap-
plying a combined method of visual stenosis grading on
CCTA and only applying the DL-based analysis to the
intermediate-degree stenosis. In contrast to classical machine
learning–based approaches, the DL algorithm is able to inde-
pendently learn generic and complex LVMpatterns, and could
potentially bemore sensitive to changes in the LVMcaused by
functionally significant stenosis [19, 20].

Thus, the aim of the current study was to evaluate the added
value of resting CCTA LVM deep learning analysis over cor-
onary DS evaluation only, for identification of patients with
functionally significant coronary artery stenosis.

Materials and methods

Study design and population

This was a single center, retrospective, observational study.
Between 2012 and 2016, 136 consecutive patients who
underwent a CCTA within 1 year prior to an invasive FFR
measurement were selected. Patients were excluded (n = 10)
when automatic LVM segmentation failed or when a signifi-
cant part was not or incorrectly segmented, following grading
defined by Abadi et al [21]. This was the only exclusion
criteria used to indirectly exclude scans with bad image qual-
ity, suboptimal contrast, motion artifact, or any other artifact.
No further in- or exclusion criteria were applied. This study
was approved by our local institutional review board at the
University Medical Center Utrecht in the Netherlands (proto-
col number 15/608). The need for informed consent was
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waived by the institutional review board, since the study was
performed on already available imaging data.

CCTA image acquisition

All patients underwent CCTA on a 256-slice CT system with a
collimation of 128 × 0.625 mm (Brilliance iCT, Philips
Healthcare). In accordance with the Society of Cardiovascular
Computed Tomography guidelines [22], beta-blockers and/or
nitroglycerine was administered to target a heart rate of 60 beats
per minute (bpm). Patients were imaged using either an ECG-
triggered step-and-shoot protocol (≤ 60 bpm) or a retrospective-
ly ECG-gated spiral protocol (heart rate > 60 bpm). An intra-
venous contrast agent (70–80 mL) (iopromide, Ultravist 300,
Bayer Healthcare), followed by a mix (60–67 mL) of 30%
contrast agent and 70% saline, followed by saline (30–40 mL)
was administrated using a flow rate of 6 (< 80 kg) or 6.7 mL/s
(≥ 80 kg). Bolus tracking with 7-s delay was used for acquisi-
tion (threshold of 100 HU for step-and-shoot or 200 HU for
spiral). For step-and-shoot, images were acquired at 78% of the
R-R interval with a rotation time of 0.27 s. Aweight-dependent
tube voltage and corresponding current of 80, 100, or 120 kVp
and 195, 210, and 210 mAs were used in patient weighing
< 50 kg, 50–80 kg, and > 80 kg, respectively. For spiral, a
heart rate–dependent pitch (0.16–0.18) and rotation time
(0.27–0.33) were used. Weight-dependent tube voltage
and corresponding tube current were 100, 120, or
120 kVp and 600, 600, and 700 mAs for patients weighing
< 65 kg, 65–80 kg, and > 80 kg, respectively. Images acquired
at 75% of the R-R interval were selected for further analysis.
For both protocols, axial images were reconstructed with a
slice thickness of 0.9 mm at 0.45-mm increment using itera-
tive reconstruction (iDose4, Philips Healthcare). Maximum
DS for each coronary artery was visually scored in consensus
by two observers and categorized in 0%, 1–24%, 25–49%,
50–69%, and ≥ 70% or non-diagnostic, in accordance with
dedicated guidelines [23, 24].

Invasive coronary angiography and FFR

All patients underwent invasive coronary angiography (ICA)
and FFR according to standard clinical guidelines. FFR mea-
surements were performed in the coronary arteries when
deemed clinically indicated. Measurements were performed
under adenosine-induced hyperemia (140 μg/kg as continu-
ous intravenous infusion), and FFR was measured as distal as
possible in the target vessel using a coronary pressure wire
(Pressure™ Certus™Wire, St. Jude Medical). The FFR value
was automatically calculated by dividing the pressure mea-
sured distal to the stenosis by the pressure measured at the
level of the guiding catheter in mmHg. In case FFR was
≤ 0.80, the stenosis was considered significant. In the vessels
with high-grade coronary stenosis at ICA (≥ 90% DS),

invasive FFR was not performed, but stenoses were deemed
significant based on DS alone [25]. Therefore, when evaluat-
ing ischemia on a patient basis, either a significant FFR (≤ 0.8)
or high-grade stenosis at ICA (≥ 90%DS) was used to indicate
the presence of functionally significant stenoses (Fig. 1).

CCTA and deep learning–based image analysis

To evaluate the diagnostic performance of adding LVM DL
analysis to evaluation of DS, patients were subdivided into
three different groups based on the highest degree of coronary
stenosis at CCTA (group 1, DS ≤ 24%; group 2, DS 25–69%,
and group 3, ≥ 70%DS). Patients with ≤ 24% DS at CCTA
(n = 10) were considered to have a non-significant stenosis,
and patients with ≥ 70% DS at CCTA (n = 15) were consid-
ered to have a significant stenosis. Patients with intermediate
stenosis at CCTA (25–69% DS, n = 101) were referred for
fully automatic DL analysis of the LVM to indicate whether
a functionally significant stenosis was present (Fig. 2). With
the DL method, resting CCTA images were automatically

Final study popula
 (n=126)

FFR≤0.80
yes

no

High-grade stenosis at 
ICA (≥90%) (in any vessel)

Significant stenosis
(n=69)

no

Significant stenosis
(n=12)

Non-significant stenosis
(n=45)

yes

Invasive FFR + CCTA <1y 
prior to FFR (n=136)

Excluded (n=10) due 
to failed automa
LV n

Fig. 1 Flowchart indicating ischemia on a patient basis. CCTA, coronary
computed tomography angiography; FFR, fractional flow reserve; ICA,
invasive coronary angiography; LVM, left ventricular myocardium; n,
number of patients
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analyzed using the method as described by Zreik et al [13].
The prior technical study [13] focused on development of the
DL algorithm, while assessing the effect of the different build-
ing blocks. The current clinical study expands and validates
the previous study in two ways. First, by employing a clini-
cally more relevant reference standard to indicate functional
significant stenosis on a patient level: either a significant FFR
(≤ 0.8) or high-grade stenosis at ICA ( ≥90% DS). Second, a
combined method of visual stenosis grading on CCTA and
only applying the DL-based analysis to the intermediate-
degree stenosis is applied. In this way, the DL method could
be trained and evaluated on this subset of most challenging
patient category of intermediate stenosis only. A full descrip-
tion of the DL method can be found elsewhere [13]; a graph-
ical summary is presented in Fig. 3, and a more detailed de-
scription about feature extraction in Supplement Fig. 1. First,
LVM was automatically segmented on all CT slices using a
multiscale convolutional neural network (Fig. 4).
Subsequently, the LVM was characterized (encoded) on all
CT slices by the algorithm in an unsupervised manner using
a convolutional auto-encoder. Using these encodings, which
likely contain information regarding shape, texture, contrast
enhancement, and more, features were extracted to represent
the whole LVM as a volume. Based on these features, patients
were classified according to the presence of functionally sig-
nificant coronary stenosis using a support vector machine
classifier. For the current study, the DL method was trained
and validated on the subset of patients with intermediate ste-
nosis (n = 101) using an invasively measured FFR ≤ 0.80 or
angiographic high-grade stenosis (≥ 90% DS) as an indicator
for presence of functionally significant stenosis. All patients
with intermediate stenosis (n = 101) were classified in 10-fold
stratified cross-validation experiments. For each 10-fold
cross-validation, the dataset was divided into ten stratified
subsets whereby one subset was used as validation set and

the other nine subsets were used for training. This process
was repeated ten times, whereby each subset was used once
as validation set. To evaluate robustness of the method, the 10-
fold cross-validation was repeated 50 times, with randomiza-
tion of the data after each repetition. To allow for evaluation of
the combined method (DS and LVM DL on intermediate ste-
nosis) on the entire set of patients, patients found to be non-
significant (≤ 24% DS) and significant (≥ 70% DS) based on
DS on CCTAwere assigned probability values of 0 s and 1 s,
respectively. For patients with intermediate stenosis, the out-
put probability of the LVMDLmodel in each cross-validation
experiment was employed.

Statistical analysis

Diagnostic performance of the proposed method (DS
evaluation combined with DL analysis of LVM on pa-
tients with intermediate stenosis at CCTA) for predicting
the presence of functionally significant stenosis on a
patient basis was evaluated and compared to the diag-
nostic performance of DS evaluation alone. Diagnostic
performance was evaluated using accuracy, sensitivity,
specificity, negative predictive value, positive predictive
value, and area under the receiver operating characteris-
tic curve (AUC). For the evaluation of the DS com-
bined with DL analysis, diagnostic performance was
evaluated on all 50 cross-validation experiments, and
the average ± standard deviation (SD) was used to rep-
resent diagnostic performance. For DS only, diagnostic
performance is presented with 95% confidence interval
(CI). Because prior events and interventions could influ-
ence texture changes, an additional sensitivity analysis
was performed after exclusion of patients with prior
events and interventions (prior myocardial infarction
(MI), prior PCI, and/or prior CABG, n = 23). The
Shapiro-Wilk test was used to evaluate normality of the data.
Continuous values are listed as mean with SD and categorical
values as percentages, unless stated otherwise. A p value <
0.05 was used to indicate statistical significance. IBM SPSS
version 21.0 (IBM corp.) and MedCalc Statistical Software
version 17.7.2 (MedCalc Software BVBA) were used for sta-
tistical analyses.

Results

Patient characteristics

In total, 136 patients were eligible, of which 10 were excluded
due to incorrect or failed automatic LVM segmentation. The
final study population consisted of 126 patients (77% male,
mean age 59 ± 9 years). Baseline characteristics are listed in
Table 1.

Final study popula
 (n=126)

Stenosis degree on CCTA
 (n=126)

≤24% (n=10)

25-69%

≥70% (n=15)

Non-significant stenosis 

Intermediate stenosis
(n=101)

Significant stenosisDeep leerning algorithm

Fig. 2 Flowchart of analysis on a patient basis. CCTA, coronary
computed tomography angiography; n, number of patients
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Invasive coronary angiography and FFR

The median number of days (IQR) between CCTA and inva-
sive FFR was 33 (40). Eighty-one patients (81/126, 64%) had
a functionally significant stenosis, of which 69 patients (69/
81, 85%) had an FFR ≤ 0.80. In the remaining twelve patients
(12/81, 15%), lowest FFR value was > 0.80 and a high-grade
stenosis on ICA (≥ 90% DS) was present in another coronary
artery (Fig. 1). The distribution of severity of disease on a
patient-by-patient basis is depicted in Fig. 5.

Degree of stenosis on CCTA

MaximumDS on a patient basis was 0%, 1–24%, 25–49%, 50–
69%, and ≥70% in 2, 8, 10, 91, and 15 patients, respectively. In

20 patients, at least one segment was scored non-diagnostic, of
which 18 patients had a significant stenosis (≥ 50% DS) in
another segment. In the remaining two patients, maximum DS
in another segment was 25–49%, and PCI was present.

Diagnostic performance

The diagnostic performance of analysis by evaluation of DS
alone to indicate functionally significant stenosis was moderate
with an AUC of 0.68 (95%CI 0.59–0.76) (Fig. 6). When apply-
ing a threshold of ≥ 50% DS to indicate functional significance
of a stenosis, sensitivity was 92.6% (95%CI 84.6–97.2%) and
specificity 31.1% (95%CI 18.2–46.6%). Changing the threshold
to lower or higher DS resulted in commensurate changes in
sensitivity or specificity (Table 2). In ten patients (10/126, 8%),
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Fig. 3 Graphical summary of the utilized deep learning method. The
described DL method includes three stages. First (1), LVM is
automatically segmented using a multiscale convolutional neural
network (CNN). The multiscale CNN includes two identical streams;
each analyzes a set of triplanar input patches taken at a single scale
(black and red squares) from the axial, coronal, and sagittal image slices
with the target voxel in their centers. Each set is processed with a
combination of convolutional (conv), max-pooling (MP), and fully con-
nected (FC) layers. In the end, single voxels are classified as myocardium
or background. This was performed on all CTslices to segment the whole
myocardium. All LVM voxels are analyzed in the next stage. Second (2),
LVMwas characterized (encoded) on all CT slices by the algorithm in an
unsupervised manner using a convolutional auto-encoder (CAE). The

CAE contains two parts, an encoder and a decoder. The encoder com-
presses the data to a lower dimensional representation by convolutional
and max-pooling layers. The decoder expands the compressed form to
reconstruct the input data by deconvolutional (deconv) and upsampling
(US) layers. To represent the entire LVM, statistics over encodings of all
LVMvoxels (on all CTslices) are used as features. Third (3), based on the
extracted features, patients are classified with a support vector machine
(SVM) to those with or without functionally significant coronary artery
stenosis. BG, background; CAE, convolutional auto-encoder; CCTA,
coronary computed tomography angiography; CNN, convolutional neu-
ral network; conv, convolutional; deconv, deconvolutional; FC, fully con-
nected; LVM, left ventricular myocardium; MP, max-pooling; SVM, sup-
port vector machine; US, upsampling
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the maximum DS at CCTAwas ≤ 24% (Fig. 2). In all of these
patients, FFR was higher than 0.8 (mean ± SD; 0.89 ± 0.05) and
no high-grade stenosis on ICAwas present. Fifteen patients (15/
126, 12%) had ≥ 70% DS at CCTA, and in 14 of these patients
(14/15, 93%), FFR was ≤ 0.8 or high-grade stenosis on ICAwas
present. In one case, FFR was 0.82, and no high-grade stenosis
on ICAwas present. The remaining 101 patients with interme-
diate DS at CCTA were subjected to LVM DL analysis.
Classification based on the combination of DS from CCTA
(≤ 24% and ≥ 70%) and LVMDL analysis on intermediate ste-
nosis (25–69%) improved discrimination (AUC = 0.76 ± 0.02)
compared to classification based on DS from CCTA only
(AUC= 0.68 [95%CI 0.59–0.76]) (Fig. 6). The combinedmeth-
od resulted in an increased specificity of 48.4 ± 0.04% at the

expense of a small decrease in sensitivity (84.6 ± 0.03%), com-
pared to the specificity31.1%(95%CI18.2–46.6%)and sensitiv-
ity 92.6% (95%CI 84.6–97.2%) of DS fromCCTAonly (≥ 50%
DS to indicate functional significant stenosis) (Table 2). To eval-
uate the robustness of theDLmethod applied on different patient
cohorts, theDLanalysiswas appliedon the complete cohort (n =
126) and compared to DL analysis of intermediate stenosis only
(n = 101) (supplement Fig. 2).

Diagnostic performance in patients without prior MI,
PCI, or CABG (n = 103)

In eight patients (8/103, 8%), maximum DS at CCTA was
≤ 24%, and in 12 patients (12/103, 12%), maximum DS was

Table 1 Patient characteristics
Characteristics Total population

(n = 126)
Patients with intermediate
stenosis (n = 101)

Sex (men), n (%) 97 (77) 77 (76)

Age (years), mean ± SD 59 ± 9 60 ± 9

Men 58 ± 9 58 ± 9

Women 65 ± 8 65 ± 8

Body mass index (kg/m2), mean ± SD 27 ± 4 28 ± 4

Cardiovascular risk factors, n (%)

Current smoker 31 (25) 23 (23)

Diabetes 24 (19) 21 (21)

Dyslipidemia 109 (87) 87 (86)

Hypertension 110 (87) 89 (88)

Previous myocardial infarction, n (%) 14 (11) 11 (11)

Previous percutaneous coronary intervention, n (%) 19 (15) 15 (15)

Previous coronary artery bypass grafting, n (%) 2 (2) 2 (2)

Coronary calcium Agatston score, median (IQR) 464 (800)a 526 (782)a

IQR interquartile range, n number of patients, SD standard deviation
a in three cases coronary calcium scoring was not performed due to motion artifacts of the coronary arteries

Fig. 4 Example of fully automatic left ventricular myocardium
segmentation. Coronary CTA images of three randomly selected
patients (1, 2, and 3). For each patient, the left column (a) depicts a
conventional image, and the right column (b), the fully automatic LVM

segmentation overlay. LVMwas automatically segmented on all CTslices
using a multiscale convolutional neural network. For each patient, an
example of one axial slice (top), one coronal slice (middle), and one
sagittal slice (bottom) is shown. LVM, left ventricular myocardium
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≥ 70%. DL was applied to the intermediate stenosis (n = 83).
Also in this sub analysis, the combined method showed an
improved discrimination (AUC = 0.77 ± 0.02) compared to
evaluation of DS alone (AUC = 0.67 [95%CI 0.57–0.76])
(Supplement Fig. 3). Other measures of diagnostic perfor-
mance were also comparable to the results of the full sample
(Supplement Table 1).

Discussion

In the current study, we aimed to evaluate the added value of
resting CCTA LVM deep learning analysis over coronary DS
evaluation only, for identification of patients with functionally
significant coronary artery stenosis. We demonstrated that the
combination of DS with DL analysis of the LVM in

intermediate-degree coronary stenosis improves the specifici-
ty of CCTA in comparison to evaluation of the DS alone.

Visual determination of the DS from CCTA is a highly sen-
sitive and established diagnostic tool for evaluation of patients
with chest pain of suspected coronary origin. However, CCTA
presently lacks specificity for identifying the functional signif-
icance of coronary stenosis [1, 2]. A tiered approach with sub-
sequent functional testing (e.g., stress myocardial perfusion im-
aging) can reduce the number of patients undergoing ICA [26].
However, this approach mandates additional diagnostic testing
before deciding on the necessity for PCI. Here, we propose
combining evaluation of DSwith LVMDL analysis to improve
the specificity of CCTA. The combined evaluation has the po-
tential to avoid additional examinations because analysis is per-
formed on the already acquired CCTA images.

Analysis of the LVM on resting CCTA has been previously
studied. Two studies evaluated resting dual-energy CT for the
detection of perfusion defects confirmed by ≥ 50% stenosis at
ICA [15, 16]. They found a slight decrease in sensitivity (79–
90%) and increase in specificity (86–92%) compared to
≥ 50%DS on CCTA only (82–98% and 88–91%, respectively).
Osawa et al [10] visually evaluated perfusion of the LVM
in all cardiac phases from a retrospectively ECG-triggered
scan at rest and compared their results with invasive FFR
measurements. By combining this LVM analysis with DS,
they found an incremental value (AUC = 0.82) over CCTA
alone (AUC = 0.71), which is in line with our study. In two
recent studies, machine learning–approaches using expert-
designed features for classifying patients with functionally
significant stenosis were described [8, 9]. Xiong et al [8]
found a good discrimination for the detection of a perfu-
sion defect (max. AUC = 0.73). However, in this study, a
stenosis degree of ≥ 50% DS on ICAwas used as reference
[8], and no FFR was performed, making a direct compar-
ison with our results impossible. Han et al [9] used FFR as
reference and described that their algorithm, combined
with evaluation of DS, showed an added value (AUC = 0.75)
over DS alone (AUC= 0.68) [9], which is closely in line with
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Fig. 5 Distribution of lowest FFR value per patient (n = 126). Ischemia
was evaluated on a patient basis, an FFR ≤ 0.8 or angiographic high-grade
stenosis (≥ 90% DS) was used to indicate the presence of a functionally
significant stenosis. Per patient, the lowest FFR value is depicted, unless
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DS + LVM DL
DS
Reference

Test AUC (95% CI) 
DS 0.68 (0.59-0.76) 
DS + LVM DL 0.76 ± 0.02 
 

Fig. 6 Receiver operating characteristic curves. Diagnostic performance
of DS and a combination of DL added to DS on CCTA for predicting
functionally significant stenosis on a patient basis. For the combined
method, ROC curves and AUC are depicted as average ± SD of 50
cross-validation experiments. AUC, area under the receiver operating
characteristic curve; CCTA, coronary computed tomography angiogra-
phy; DL, deep learning; DS, degree of stenosis; LVM, left ventricular
myocardium; ROC, receiver operating characteristic
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the findings in the present study. However, patients with inter-
mediate DS comprised a minority of the subjects studied by
Han et al [9] (33%, 82/252), whereas the present study
consisted of a majority of intermediate stenosis (80%, 101/
126) and was exclusively focused on the added value of DL
in this most challenging patient category.

FFRct is another technique performed on resting CCTA that
has shown promising results (AUC= 0.79–0.93) for the evalu-
ation of functionally significant stenosis [5–7]. However, FFRct
depends on lumen segmentations which can be challenging or
impossible in patients with high-density calcified plaque, mo-
tion or misalignment artifacts, and/or prior CABGor PCI [5–7].
Our proposed method may be less affected by these challenges
as the analysis of intermediate stenosis is performed only on the
LV myocardium. Results of the present study underscore the
need to look beyond the coronary arteries in the quest to im-
prove specificity of CCTA. A recent systematic review by
Cook et al [27] found that FFRct has a lower diagnostic perfor-
mance with FFRct values around the cut point (0.7–0.8). In
addition, patients with physiologically intermediate lesions (in-
vasive FFR 0.7–0.8) comprised only a small minority of all the
patients studied (12.8%) with a median FFR of 0.88, indicating
a focus on patients with milder disease. In the current study,
nearly three times as many patients (36.5%, 46/126) had phys-
iologically intermediate lesions, and median FFR was 0.78,
indicating a more diseased population. This supports the notion
that the value of additional analysis of the myocardium is likely
to be highest in patients with intermediate stenosis. However, a
limitation of the present study is that results are only available
on a patient basis; therefore, no indication could be given as to
which stenosis was functionally significant, while FFRct has
the ability to evaluate functional significance of a stenosis on
a vessel basis. It is likely that a combined approach using both
techniques will lead to further increase in specificity for identi-
fying flow-limiting lesions in patients with intermediate-degree
stenosis at CCTA.

DL algorithms are able to learn new complex patterns and
relationships directly from the images without prior specification
of which image features represent presence of disease. Therefore,
DL may be more sensitive to subtle changes in the LVM caused
by functionally significant stenosis, which can be difficult to
detect by a human observer [19, 20]. In spite of excellent perfor-
mance of deep learning techniques demonstrated in many med-
ical image analysis tasks, their interpretability is very limited, and
we do not yet fully understand their inner working [19, 28]. Also
in this work, even though the extracted encodings are relevant in
representing LVM (Supplement Fig. 1), they are not readily in-
terpretable. As distinct combinations of encodings represent dif-
ferent LVM appearances (e.g., normal vs. thin), specific
encodings do not correspond to specific physical appearances.
This prevented us from interpreting, visualizing, and localizing
differences within the LVM for patients with significant stenosis.
Future work might address these limitations [19, 28].Ta
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This study has limitations. First, the retrospective single-
center study design has to be taken into account. This could have
induced selection bias as CT could have been the reason for
referral to invasive FFR. In addition, because of this bias, the
study group consisted of patients with high Agatston scores
and a high prevalence of stenosis and extensive CADwith main-
ly intermediate stenosis (n= 101/126). Due to blooming, calci-
fied plaques are known to cause overestimation of DS and there-
by decrease specificity [29]. In addition, as reported in prior
studies [2, 3], DS on CCTA showed high diagnostic accuracy
for low- and high-grade stenosis (≤ 24% and ≥ 70%), which
decreased when evaluating intermediate-degree stenosis (25–
69%).This is reflected in the low specificity for DS only on
CCTA found in the current study (31.1%) compared to reported
in literature (40–83%) [1–3]. Second, maximum DS for each
coronary artery was visually categorized, and no continuous
quantitative measurements were performed. Although continu-
ous quantitative measurements would allow for a more accurate
way to evaluate diagnostic accuracy of DS, this is not regularly
performed in clinical practice and was therefore not performed.
Third, in the current study, no comparison with another type of
functional assessment was performed (e.g., FFRct or visual as-
sessment of myocardial perfusion), thereby limiting the evalua-
tion of the added value of the current method compared to other
available methods. Fourth, we used equipment of one single
vendor and results may therefore be limited to this vendor. A
final limitation is the relative small patient cohort and unbalanced
dataset, which can introduce bias in performance. Although we
performed 50 repetitions of 10-fold cross-validation experiments
with randomization after each repetition, results may still be par-
tially affected by coincidental findings. Analysis on a separate
patient cohort as well as prospective studies needs to be per-
formed to assess whether the found correlation also implies cau-
sation. Future work will address these limitations.

In conclusion, combining assessment of degree of stenosis
with DL analysis of the LVM may result in improved diag-
nostic performance for identification of patients with function-
ally significant coronary artery stenosis. Future research is
warranted to evaluate this approach on patients with low
pre-test probability of obstructive coronary disease, more clin-
ically encountered at CCTA.
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