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Abstract Introduction: The Meta VCI Map consortium performs meta-analyses on strategic lesion locations
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Methods: Cohorts with available imaging on white matter hyperintensities or infarcts and cognitive
testing were invited. We performed a pilot study to test the feasibility of multicenter data processing
and analysis and determine the benefits to lesion coverage.
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Results: Forty-seven groups have joined Meta VCI Map (stroke n 5 7800 patients; memory clinic
n 5 4900; population-based n 5 14,400). The pilot study (six ischemic stroke cohorts, n 5 878)
demonstrated feasibility of multicenter data integration (computed tomography/magnetic resonance
imaging) and achieved marked improvement of lesion coverage.
Discussion: Meta VCI Map will provide new insights into the relevance of vascular lesion location
for cognitive dysfunction. After the successful pilot study, further projects are being prepared. Other
investigators are welcome to join.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Cerebrovascular disease; Vascular cognitive impairment; Stroke; Small vessel disease; Consortium; Data harmo-
nization; Support vector regression; Lesion-symptom mapping; Lesion location
1. Introduction

Cerebrovascular disease is a major cause of cognitive
impairment and dementia, either alone or in combination
with Alzheimer’s disease. This vascular contribution to cogni-
tive decline is collectively referred to as vascular cognitive
impairment (VCI) [1]. VCI is a heterogeneous construct,
both in terms of cognitive phenotypes and nature and severity
of underlying vascular etiologies and comorbid conditions.
Despite this heterogeneity, lesion location is likely to be an
important determinant of cognitive impact of different mani-
festations of vascular brain injury. Based on early observations,
certain lesion locations are considered to be “strategic,”
including the left angular gyrus, thalamus, and basal ganglia.
However, a recent statement on VCI from the American Heart
Association/American Stroke Association emphasized that
current concepts of strategic infarction are largely based on
small case series and warrant reexamination in larger imaging
studies [1]. For white matter hyperintensities (WMHs), there
are also indications that lesion location is related to cognitive
impact, but this relationship is less clear [2,3].

Lesion-symptom mapping (LSM) is an increasingly uti-
lized method in the VCI research field [4,5]. The concept of
LSM is that it examines relationships between the location
of brain injury—usually at the level of individual voxels or
regions of interest—and behavioral measures such as
cognition. This is commonly done through statistical
comparisons of patients with and without a lesion for
individual voxels or by associating regional lesion volumes
with cognition. LSM studies have identified strategic lesion
locations for acute infarcts [6] and small vessel disease [3].
A growing number of scientific publications and lesion anal-
ysis methods have emerged over the past decades [7]. Yet,
most LSM studies are hampered by incomplete lesion
coverage of the brain. This is important because the cognitive
impact of damage to a particular brain region can only be ad-
dressed in the statistical analyses if this region is damaged in a
sufficient number of patients. Because vascular lesions are not
distributed randomly across the brain, some regions are
commonly affected, but others that may be relevant for cogni-
tion—such as the orbitofrontal lobes in anterior cerebral artery
territory infarction [8,9]—are rarely affected. As a
consequence, previous studies (e.g., [5,10,11]) found that
Downloaded for Anonymous User (n/a) at Utrecht University
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even with several hundred subjects, large regions of the
brain were not affected by vascular lesions and could
therefore not be considered in LSM analyses. Thus, it
remains difficult to obtain a comprehensive picture of
strategic lesion locations for cognitive dysfunction.

Meta VCI Map is a recently established consortium that
aims to performMeta-analyses on strategic lesion locations
for VCI using lesion-symptom Mapping. This consortium
provides an international collaborative platform for multi-
center LSM projects. By integrating existing data sets with
imaging data on vascular lesions and cognitive data, LSM
studies can be performed on larger study samples to improve
brain lesion coverage.

Meta VCI Map has two key objectives. The first objective
is to create vulnerability maps of the brain that show where
vascular lesions have the most impact on cognition. Such
vulnerability maps would be of diagnostic and prognostic
value and could help explain why some patients with
vascular lesions develop VCI while others do not. The sec-
ond objective is to further establish strategic lesion locations
that lead to impairment of specific cognitive functions.

In this study, we provide an overview of the design and
objectives of this consortium. In addition, we present the
methods and results of the pilot study, which aimed to deter-
mine the feasibility and potential benefits of multicenter
LSM studies.
2. Methods

2.1. Consortium design

2.1.1. Membership and data index
Membership is open to all research groups and consortia

willing to share suitable data. Data sets are eligible for inclu-
sion if both brain imaging and data on cognitive performance
are available. Study populations typically involve patients
with ischemic stroke, memory clinic patients, or
population-based subjects. Study design may be cross-
sectional or longitudinal. Lesions of interest are infarcts
(on computed tomography [CT]/magnetic resonance imag-
ing [MRI]) or WMH (on MRI). Availability of lesion maps
is preferred, but not a prerequisite. Meta VCI Map image
processing and analysis pipelines allow for inclusion and
 from ClinicalKey.com by Elsevier on June 28, 2019.
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combination of different types of imaging data (see 2.1.4).
Standardized measures of cognitive performance or decline
should have been collected, for example, cognitive screening
tests (e.g., Montreal Cognitive Assessment [MoCA]), neuro-
psychological tests (e.g., Trail Making Test), clinical diag-
noses (e.g., mild cognitive impairment or dementia), or
norm-based scores for individual tests or cognitive domains.
Other clinical parameters, such as gait or depressive symp-
toms, may also be suitable for LSM analyses.

Data sets available from members are listed in the Meta
VCIMap data index. This data index is used to select cohorts
with comparable study populations and cognitive outcomes
that can be used in meta-analyses. These analyses are per-
formed on a project-by-project basis. Membership as such
does not require the actual submission of data. Data are
only shared in the context of specific projects (see 2.1.2).

Potential members were identified and invited through
other collaborative networks in the VCI research field,
including STRIVE [12], METACOHORTS [13], and
HARNESS (www.harness-neuroimaging.org) and asked to
fill in a survey to explore their interest in participating and
support creation of the data index. As of November 2018,
47 groups have joined Meta VCI Map, and the data index in-
cludes approximately 7800 patients with ischemic stroke,
4900 memory clinic patients, and 14,400 population-based
subjects. An overview of cohorts is presented in Table 1.
Recruitment of members is an open and ongoing process.
Interested parties are invited to sign up through e-mail or
the Meta VCI Map website.

The website is active at www.metavcimap.org. It pro-
vides a public platform for information on the consortium.
This includes the data index of member cohorts and consor-
tia. The website also has a section for technical support
(see 2.1.4/2.1.5).

2.1.2. Organization
Meta VCI Map is governed by a Steering Committee,

which consists of representatives from study groups who
have participated in Meta VCI Map projects. The Steering
Committee is responsible for the governance of the con-
sortium and oversees research projects performed within
the consortium framework. To support individual projects
in various areas of expertise, Working Groups for data anal-
ysis, data management, cognitive assessment, and ethics and
regulations have been established.

Data will be shared on a project-by-project basis. This en-
ables each consortiummember to opt-in or opt-out on sharing
data for specific projects, which allows individual investiga-
tors to prioritize projects of their interest accordingly. Each
project involves individual data sharing agreements between
participating centers, defining data use and access for that
particular project. This ensures that local requirements for pri-
vacy, ownership, and traceability of the data are fulfilled. To
accelerateworkflow, a data sharing agreement template is pro-
vided, which has been optimized for international use (avail-
able at https://metavcimap.org/features/downloads).
Downloaded for Anonymous User (n/a) at Utrecht University
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2.1.3. Ethics
Meta VCI Map supports and encourages sharing of data,

while strictly adhering to ethical and legal institutional review
board regulations to ensure protection of (data from) human
subjects, including the European Union General Data Protec-
tion Regulation. Consortium members are responsible for
adhering to their local regulations and for proper deidentifica-
tion of data before sharing. Requirements will differ for each
institution and particular research project and therefore must
be reviewed on a project-by-project basis.
2.1.4. Image processing
Lesion segmentation and image processing tools are

available for determining the location of brain lesions,
including infarcts (on CT, fluid-attenuated inversion recov-
ery [FLAIR], or diffusion-weighted imaging [DWI]) or
WMH (on FLAIR). An overview of typical image process-
ing steps is shown in Fig. 1. Meta VCI Map provides tech-
nical support for each step, thereby allowing interested
parties to contribute imaging data at different stages of
processing.

For image and lesion data processing, Meta VCI Map
promotes the use of the RegLSM image processing pipeline,
which was recently developed in a collaborative LSM proj-
ect between Utrecht and Hong Kong [10]. RegLSM can
transform lesion maps to fit onto a standardized brain tem-
plate. For the present pilot study, the Montreal Neurological
Institute (MNI)-152 template [63] was used, but this can be
substituted by other brain templates depending on individual
preference [64]. RegLSM provides custom-fit settings for
CT [65], MRI T1 and FLAIR [11], and DWI [10] (Fig. 1).
It can also process scans from different vendors and field
strengths. Furthermore, it can correct for anatomical varia-
tion (e.g., ethnicity-based morphometric differences or brain
atrophy) by performing intermediate transformation steps
using population-adjusted templates. The output is the
same for each setting, that is, lesion maps in standardized
brain space, which allows lesion data from different imaging
modalities (e.g., CT/MRI) and sequences (e.g., T1/FLAIR/
DWI) to be combined into one data set.

RegLSM and other downloadable software packages,
protocols, and tutorials will be provided on the Meta VCI
Map website (see 2.1.1) to facilitate and harmonize data pro-
cessing. Although we strive to implement standard pipelines
across projects, ultimately the selection of particular (or
combinations of) pipelines will be decided on a project-
by-project basis, but always with rigorous quality controls.
Our processing pipelines are in constant development; there-
fore, we encourage our members to share their tools and
knowledge.

2.1.5. Data analysis
Meta-analysis of multicenter data can be challenging due

to heterogeneity of data. For imaging data, the ability to detect
and localize lesions depends, for example, on the imaging
 from ClinicalKey.com by Elsevier on June 28, 2019.
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Table 1

Overview of Meta VCI Map member studies

Study Country

Sample

size Imaging data

Cognitive screening

tests

Cognitive domain-

specific assessment

Lesion

maps* Key reference(s)

Ischemic stroke cohorts

Bundang VCI cohort Republic of Korea 2233 T1, FLAIR, DWI MMSE, IQCODE Mem, AEF, Vis, Lan No Lim et al., 2014 [14]

Center of Excellence in Rehabilitation

Medicine, UMC Utrecht—De

Hoogstraat Rehabilitation cohort

Netherlands 150 CT, T1, FLAIR, DWI MoCA, MMSE,

neglect screening

Mem, AEF, PS, Vis, Lan Yes Ten Brink et al., 2016 [15]

Ten Brink et al., 2019 [16]

Clinical Biological and

Pharmacological Factors

Influencing Stroke Outcome

(BIOSTROKE)

France 395 T1, T2, FLAIR, T2-

star, DWI

MoCA, MMSE, CDR N/A N/A Ducroquet et al., 2013 [17]

Cognition and Affect after Stroke:

Prospective Evaluation of Risks

(CASPER)

Netherlands 250 T1, T2, FLAIR, SWI MMSE, neglect

screening

Mem, AEF, PS, Vis, Lan Yes Douven et al., 2016 [18]

Cognitive Outcome After Stroke

(COAST)

Singapore 117 CT, FLAIR, DWI MoCA, MMSE Mem, AEF, Vis, Lan Yes Dong et al., 2012 [19]

Cognitive Deficits in Cerebellar Stroke

(CODECS)

Netherlands 40 CT, T1, T2, FLAIR,

DWI

MoCA, FAB Mem, AEF, PS, Vis, Lan Yes N/A

Cognitive function after lacunar stroke

MUMC study

Netherlands 77 T2, FLAIR, T2-star,

DWI

R-CAMCOG Mem, AEF, PS No Huijts et al., 2013 [20]

Cognitive Function After Stroke

(CogFAST-UK)

United Kingdom 100 CT, T1, FLAIR MMSE, CDR,

CAMCOG

IQCODE

N/A N/A Allan et al., 2011 [21]

Clinical Relevance of Microbleeds in

Stroke (CROMIS-2)

United Kingdom 1000 T1, T2, FLAIR, T2-

star, DWI, SWI

MoCA Mem, AEF, PS, Vis, Lan N/A Charidimou et al., 2015 [22]

Wilson et al., 2018 [23]

Chinese University of Hong Kong—

Stroke Registry Investigating

Cognitive Decline (CU-STRIDE)

Hong Kong 410 CT, T1, T2, FLAIR,

DWI

MoCA, MMSE, CDR,

IQCODE

None Yes Yang et al., 2015 [24]

Mok et al., 2016 [25];

Zhao et al., 2017 [10]

Determinants of Dementia After

Stroke (DEDEMAS)

Germany 131 T1, FLAIR, DTI MoCA, MMSE Mem, AEF, PS, Vis, Lan Yes Wollenweber et al., 2013 [26]

Hallym VCI cohort Republic of Korea 994 T1, FLAIR, DWI MoCA, MMSE,

IQCODE

Mem, AEF, Vis, Lan No Yu et al., 2013 [27]

Kaohsiung Chang Gung Memorial

Hospital stroke cohort

Taiwan 500 T1, FLAIR, DWI, DTI MMSE, CASI None No N/A

Linkou Chang Gung Memorial

Hospital stroke cohort

Taiwan 100 T1, FLAIR, DWI, DTI MoCA, MMSE Mem, AEF, Lan No N/A

Mild Stroke Study II (MSS-II) United Kingdom 200 T1, T2, FLAIR, T2-

star, DWI, DTI

MoCA, MMSE, ACE-

R

None Yes Wardlaw et al., 2017 [28]

Neurovascular Underpinnings of

Exercise post-Stroke (RISE3)

Canada 15 T1, T2, FLAIR MoCA Mem, AEF, PS Yes Robertson et al., 2015 [29]

Prediction of Cognitive Recovery

After Stroke (PROCRAS)

Netherlands 242 CT, T1, T2, FLAIR,

DWI, DTI

MoCA, IQCODE Mem, AEF, PS, Vis,

Lan, emotion

recognition

Yes Aben et al., 2018 [30]

Recovery Improved post-Stroke with

Exercise (RISE1)

Canada 13 T1, T2, FLAIR MoCA Mem, AEF, PS Yes Robertson et al., 2017 [31]

(Continued )
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Table 1

Overview of Meta VCI Map member studies (Continued )

Study Country

Sample

size Imaging data

Cognitive screening

tests

Cognitive domain-

specific assessment

Lesion

maps* Key reference(s)

Study of Factors Influencing Post-

Stroke Dementia (STROKDEM)

France 300 T1, FLAIR, T2-star,

DTI

MoCA, MMSE,

IQCODE, CDR

N/A N/A Bournonville et al., 2018 [32]

Delattre et al., 2017 [33]

Tel Aviv Brain Acute Stroke Cohort

(TABASCO)

Israel 421 T1, T2, FLAIR, DWI,

DTI

MoCA Mem, AEF, Vis, Lan Yes Ben Assayag et al., 2012 [34]

Utrecht Stroke and COGnition

(USCOG)

Netherlands 121 CT, T1, FLAIR N/A Mem, AEF, PS, Vis, Lan Yes Biesbroek et al., 2014 [35]

Memory clinic cohorts

ADNI-1/2/GO (WMH segmentations

by University of California, Davis)y
United States of

America

1231 T1, T2, FLAIR MMSE, CDR Mem, AEF, PS, Vis, Lan Yes Jack et al., 2015 [36] http://

adni.loni.usc.edu/

ADNI-2/GO (WMH segmentations by

University College London)y
United Kingdom 929 T1, FLAIR MoCA, MMSE Mem, AEF, PS, Vis, Lan Yes http://adni.loni.usc.edu/

Alzheimer Center Erasmus MCz Netherlands 130 T1, T2, FLAIR MMSE, FAB Mem, AEF, PS, Vis, Lan No N/A

Cognition and Aging Center—

Kaohsiung Chang Gung Memorial

Hospital (CAC-KCGMH)

Taiwan 100 T1, FLAIR MMSE, FAB, CASI Mem, AEF, PS, Vis, Lan No Huang et al., 2017, 2018

[37,38]

The Dutch Parelsnoer Institute—

neurodegenerative diseasesz
Netherlands 1200 T1, T2, FLAIR, DWI MMSE Mem, AEF, PS, Vis, Lan Yes Aalten et al., 2014 [39]

Functional Assessment of Vascular

Reactivity (FAVR) and Brain

IMPACT

Canada 150 T1, T2, FLAIR, DTI MMSE Mem, AEF, PS, Vis Yes Case et al., 2016 [40]

Harmonization Singapore 167 T1, T2, FLAIR MoCA, MMSE Mem, AEF, PS, Vis, Lan Yes Biesbroek et al., 2016 [41]

PRE-MCI United Kingdom 91 FLAIR MMSE Mem, AEF, PS, Vis No Archer et al., 2006 [42]

Prospective Dementia Registry Austria

(PRODEM-Austria)

Austria 819 T1, T2, FLAIR MMSE Mem, AEF, PS, Vis, Lan Yes Pusswald et al., 2015 [43]

Recovery Improved in Covert Stroke

With Exercise (RISE2)

Canada 47 T1, T2, FLAIR MoCA Mem, AEF, PS Yes https://clinicaltrials.gov/ct2/

show/NCT02068391

Utrecht-Amsterdam Clinical Features

and Prognosis in Vascular Cognitive

Impairment (TRACE-VCI)z

Netherlands 860 T1, T2, FLAIR, SWI CDR, MMSE,

CAMCOG

Mem, AEF, PS, Vis, Lan Yes Boomsma et al., 2017 [44]

Young Onset Alzheimer’s disease

(YOAD) cohort

United Kingdom 69 T1, T2 MMSE Mem, AEF, PS, Vis, Lan Yes Slattery et al., 2017 [45]

Population-based cohorts

Austrian Stroke Prevention Study

(ASPS), Graz Study

Austria 1188 T1, T2, FLAIR MMSE Mem, AEF, PS, Vis, Lan Yes Seiler et al., 2014 [46];

Schmidt et al., 1994, 1999

[47,48]

Calgary Normative Study Canada 200 T1, FLAIR, DTI MoCA N/A Yes Tsang et al., 2017 [49]

Chinese University of Hong Kong –

Risk Index for Subclinical brain

lesions in Hong Kong (CU-RISK)

Hong Kong 851 T1, T2, FLAIR, DTI MoCA, MMSE Mem, AEF, PS, Vis, Lan Yes Wong et al., 2015 [50]

Epidemiology of Dementia in

Singapore (EDIS)

Singapore 1500 CT, T1, T2, FLAIR,

T2-star, DWI

MoCA, MMSE,

IQCODE

Mem, AEF, PS, Vis, Lan Yes Hilal et al., 2013 [51]
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Framingham Heart Study United States 1820 T1, T2 N/A Mem, AEF, PS, Vis, Lan Yes Au et al., 2006 [52]

Prospective Study of Pravastatin in the

Elderly at Risk (PROSPER)

Netherlands 550 T1, T2, FLAIR, T2-

star, DWI

MMSE Mem, AEF, PS Yes Shepherd et al., 2014 [53]

Rotterdam Study Netherlands 5400 T1, T2, FLAIR, T2-

star, DTI

MMSE Mem, AEF, PS, Vis, Lan Yes Ikram et al., 2015, 2017

[54,55]

Southall And Brent Revisited

(SABRE)

United Kingdom 1306 T1, T2, FLAIR, T2-

star, DTI

N/A Mem, AEF, PS, Lan Yes Shibata et al., 2013 [56]

Sudre et al., 2018 [57]

Sydney Memory and Ageing Study

(MAS)

Australia 540 T1, FLAIR MMSE Mem, AEF, PS, Vis, Lan Yes Sachdev et al., 2010 [58]

UC Davis ADC Diversity Cohort United States 1063 T1, FLAIR N/A Mem, AEF, Vis Yes Hinton et al., 2010 [59]

Other cohort types

Blood-brain barrier in cerebral small

vessel disease cohort

Netherlands 75 T1, FLAIR N/A Mem, AEF, PS Yes Zhang et al., 2017 [60]

Discontinuation of Antihypertensive

Treatment in Elderly People

(DANTE)

Netherlands 219 T1, T2, FLAIR, T2-

star

MMSE Mem, AEF, PS N/A Moonen et al., 2015 [61]

Munich CADASIL cohort Germany 125 T1, FLAIR, T2-star,

DTI

MMSE Mem, PS, Vis Yes Duering et al., 2011 [5]

Radboud University Nijmegen

Diffusion tensor and Magnetic

resonance imaging Cohort

(RUN DMC)

Netherlands 503 T1, T2, FLAIR, T2-

star, DWI, DTI

MMSE Mem, AEF, PS, Vis Yes Van Norden et al., 2011 [62]

Abbreviations: ACE, Addenbrooke’s Cognitive Examination; AEF, attention and/or executive functions; CAMCOG, Cambridge Cognitive Examination; CDR, clinical dementia rating; CASI, Cognitive Abil-

ities Screening Instrument; CT, computed tomography; DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; FAB, frontal assessment battery; FLAIR, fluid-attenuated inversion recovery; IQCODE,

Informant Questionnaire for Cognitive Decline in the Elderly; Lan, language; Mem, memory; MMSE, Mini–Mental State Examination; MoCA, Montreal Cognitive Assessment; MRI, magnetic resonance im-

aging; N/A, (information on data) not available; PS, processing speed; SWI, susceptibility-weighted imaging; Vis, visuospatial functions (e.g., perception, construction); VCI, vascular cognitive impairment;

WMH, white matter hyperintensity.

*Lesion maps: infarcts for stroke cohorts; white matter hyperintensities for cohorts with memory clinic patients, population-based subjects, and other cohort types.
yLesion segmentations of ADNI data have been provided by different centers (i.e., University of California at Davis and University College London). Therefore, a large degree of overlap in subjects between

these data sets must be noted.
zThe Dutch Parelsnoer Institute—Neurodegenerative diseases cohort is a collaboration between the eight Dutch University Medical Centres (www.parelsnoer.org). This includes subjects from the TRACE-VCI

and Alzheimer Center Erasmus MC cohorts; thus, partial overlap between these cohorts must be noted.
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Fig. 1. Typical image and lesion processing pipeline for lesion-symptommapping studies. Lesion-symptommapping studies essentially require three image and

lesion processing steps to prepare lesion maps. Examples are shown for three common imaging sequences: FLAIR, DWI, and CT. First, the lesion must be

delineated on the original scan data (lesion segmentation). This can be done manually, or (semi-)automatically using computer algorithms. Next, the scan

and corresponding lesion map are transformed to fit the size and shape of a brain template (spatial normalization). An intermediate registration step to an

age-specific template is often used to improve registration accuracy. Finally, the resulting lesionmap is projected onto the brain template. This result is compared

to the original scan, to determine whether lesion registration was successful. Main criteria are that the key anatomical landmarks of the transformed scan and

template should correspond and that the registered lesion map accurately represents the original lesion regarding location, size, and shape. The final lesion map

can be used for group comparisons, unrestricted by type and format of the raw imaging data. Abbreviations: CT, computed tomography; DWI, diffusion-

weighted imaging; FLAIR, fluid attenuated inversion recovery.
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modality and sequence, and timing of assessment. For cogni-
tive data, thewidevariety of available neuropsychological test
batteries and diagnostic criteria make this challenging to
harmonize across cohorts. Meta VCI Map projects will ac-
count for heterogeneity by pooling data from cohorts that
use internationally validated, commonly used cognitive tests
(e.g., MoCA, Trail Making Test), or by recoding data into
standardized cognitive outcomes (e.g., dementia yes/no).
The data index will allow cohorts to be selected based on
the availability of comparable data.

Meta VCI Map will implement state-of-the-art multivar-
iate LSM analysis techniques, which show a higher
sensitivity and better spatial accuracy than the original
Downloaded for Anonymous User (n/a) at Utrecht University
For personal use only. No other uses without permission. C
mass-univariate approach [66]. The consortium will facili-
tate the utilization of multivariate LSM methods by
providing software and manuals on its website and offer
hands-on support through the Data Analysis Working
Group.
2.2. Pilot study
2.2.1. Objectives
As a pilot, we performed a multicenter LSM study

in which we integrated data from different cohorts, to test
the feasibility of data exchange, image processing, and
 from ClinicalKey.com by Elsevier on June 28, 2019.
opyright ©2019. Elsevier Inc. All rights reserved.
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analysis procedures. A second objective was to determine
whether an integrated data set would improve brain lesion
coverage.

2.2.2. Cohort and patient selection
The target population for the pilot was based on the re-

sponses to the initial survey. We aimed to include at least
five different cohorts, to test our processing and analysis
pipelines on different types of imaging data from different
sources. The initial survey identified patients with ischemic
stroke, with symptomatic infarcts as the lesion of interest
and MoCA as cognitive outcome, as a suitable target popu-
lation. This was operationalized in the following inclusion
criteria: (1) patients admitted with acute ischemic stroke;
(2) availability of brain imaging (CT/MRI) showing acute
infarct(s); and (3) MoCA performed within 1 year after
stroke. All eligible cohorts (per December 2017) were
invited to participate.

2.2.3. Generation of lesion maps
Processing of imaging and lesion data was performed by

the project team in Utrecht. Imaging data could be submitted
in different formats and at different stages of processing,
ranging from raw imaging data to fully prepared lesion
maps.

For cohorts that provided raw imaging data, lesion seg-
mentation was performed manually with in-house devel-
oped software using MeVisLab (MeVis Medical
Solutions AG, Bremen, Germany) [67]. Infarcts were
delineated onMRI DWI (,2 weeks after stroke) or FLAIR
(�2 weeks after stroke), or on CT (�1 day after stroke) if
no MRI was available. The acute (symptomatic) lesion
was identified based on imaging features, which needed
to be compatible with the poststroke interval. In cases of
uncertainty based on imaging alone, the reported neuro-
logical deficit or the clinician’s localization of the infarct
was used to help localize the lesion. One trained rater per-
formed lesion segmentation for all scans (E.M.H.), which
was reviewed by a second rater (N.A.W.). In case of uncer-
tainty regarding lesion location or classification, a third
rater performed a consensus rating (J.M.B.). All raters
were blinded to the neuropsychological data. Intraob-
server and interobserver agreement were determined us-
ing the Dice Similarity Coefficient, which expresses the
degree of overlap between the segmented regions on a
scale from 0 to 1, on a random subset of 15 scans (5 for
CT/FLAIR/DWI each) [68,69]. Both interobserver
(0.81 6 0.08) and intraobserver (0.83 6 0.07) agreement
were excellent.

Next, segmented lesions were registered to the MNI-152
template using the RegLSM software package (see 2.1.4).
Each registered lesion map underwent visual quality
control. Lesion maps in MNI-152 space were compared
to the original scan, to determine whether key anatomical
landmarks corresponded, and whether the registered
lesion map accurately represented the infarct regarding
Downloaded for Anonymous User (n/a) at Utrecht University
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location, size, and shape. In case of minor errors, manual
adjustments were made using ITK-SNAP v3.6.0 (www.
itksnap.org) [70].

2.2.4. Neuropsychological assessment
Cognitive performance was assessed using the MoCA to-

tal score as measure of global cognition. In addition, a
domain score for language was calculated by combining
the scores for the animal picture naming and sentence repe-
tition tasks [71]. This language domain score was included
for comparative purposes, to determine whether our LSM
analyses would identify different strategic infarct locations
for distinct cognitive processes (i.e., global cognition vs.
language).

2.2.5. Statistical analyses
Support vector regression (SVR)–based lesion-symptom

mapping was performed using a previously published
method [10]. Two independent SVR-based analyses were
performed: voxel-based LSM (SVR-LSM) and region of
interest-based analyses (SVR-ROI). The methodology of
SVR-LSM and SVR-ROI is described extensively in the
original study [10]. Further details are provided in the
Supplementary Material. To allow for optimal comparison
with the original study, we applied the same correction fac-
tors (i.e., age, sex, years of education, clinical history of
stroke and/or TIA, and total infarct volume) and statistical
analyses.
3. Results

3.1. Cohort selection and data transfer

In December 2017, nine cohorts of acute ischemic stroke
patients with available MoCA scores were invited to
participate in the pilot study. Within the time frame of
6 weeks, investigators from six cohorts responded and
agreed to participate [10,19,26,28,30]. Data transfer was
straightforward and completed within 2 months, though
some regulatory challenges were encountered, mainly due
to differences in the required documentation regarding
ownership and traceability of data. This has led to further
streamlining of data sharing procedures for future projects
(see 2.1.2).

3.2. Patient selection and data processing

A flowchart of patient selection is shown in Fig. 2. Three
cohorts provided raw imaging data (n 5 330), two cohorts
provided imaging data and lesion maps in native brain space
(n 5 211), and one cohort provided lesion data in MNI-152
space (n 5 410). From the 330 patients with raw imaging
data, 73 were excluded because the quality of imaging
data was insufficient (n 5 26), or if no acute infarct was
visible (n 5 47).

Lesion segmentation was performed manually for
257 patients (35 DWI; 177 FLAIR; 45 CT). Spatial
 from ClinicalKey.com by Elsevier on June 28, 2019.
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Fig. 2. Flowchart of patient selection for the Meta VCI Map pilot study. Patient selection is shown for each cohort separately. Cohorts could join at any given

step of image processing. The processing steps—congruent with the pipeline shown in Fig. 1—are shown at the top. Availability of clinical data was a prereq-

uisite to be considered. The blue boxes indicate at what stage the cohort entered the pipeline, and what kind of imaging data was provided. Note that spatial

normalization passed visual quality control in all cases, though (minor) manual adjustments were made in 177 (38%) cases.

N.A. Weaver et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 310-326318
normalization was performed for 468 patients, which was
successful in all cases. Manual adjustments were made in
177 cases, which was comparable for each cohort and type
of imaging data. This resulted in a final study sample of
878 subjects. Characteristics of the total and individual study
samples are shown in Table 2.
Downloaded for Anonymous User (n/a) at Utrecht University
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3.3. Brain lesion coverage

Lesion prevalence maps of individual cohorts and the
collective study sample are shown in Fig. 3. Compared
with CU-STRIDE, the largest of the six included cohorts
(n 5 410), lesion coverage in the merged data set
 from ClinicalKey.com by Elsevier on June 28, 2019.
opyright ©2019. Elsevier Inc. All rights reserved.



Table 2

Patient characteristics of pilot study sample

Characteristics COAST (n 5 74) CODECS (n 5 20)

CU-STRIDE

(n 5 410) DEDEMAS (n5 102) MSS-II (n 5 109) PROCRAS (n 5 163)

Total sample

(n 5 878)

Relevant inclusion

criteria

Acute ischemic stroke

(within 14 days),

age �21 years

Cerebellar stroke, age

�18 years

Ischemic stroke,

Chinese ethnicity,

language:

Cantonese

Acute ischemic stroke

(within 3 days), age

�18 years,

language: German

Lacunar or mild

cortical ischemic

stroke (within

4 weeks), age

�18 years, visible

infarct

Acute ischemic

stroke, age

�50 years,

language: Dutch

-

Relevant exclusion criteria Significant aphasia or

dysarthria, prior

dementia,

psychiatric

comorbidity

Significant aphasia or

severe dysarthria,

prior cognitive

impairment

Significant aphasia,

prior dementia,

psychiatric

comorbidity

Prior dementia None Prior dementia, severe

stroke requiring

long-term care

-

Demographic characteristics

Age in years, mean 6 SD 58.4 6 10.5 60.3 6 16.7 68.6 6 10.4 71.0 6 8.7 65.6 6 11.4 69.5 6 0.76 67.6 6 10.9

Female, n (%) 21 (28.4) 10 (50.0) 163 (39.8) 35 (34.3) 41 (37.6) 53 (32.5) 323 (36.8)

Education in years,

mean 6 SD

6.8 6 3.7 13.6 6 4.6 5.9 6 4.7 10.6 6 2.1 12.1 6 3.2 11.4 6 2.5 8.5 6 4.7

Handedness, left/right/

ambidext., n

N/A 13/4/0 (n 5 17)* 396/7/7 95/6/1 97/12/0 153/6/4 754/35/12

(n 5 801)*

Clinical history of stroke

or TIA

10 (13.5) 0 (0.0) 56 (13.7) 17 (16.7) 16 (14.7) 34 (20.9) 133 (15.1)

Cognitive assessment

MoCA total (max. 30),

mean 6 SD

21.0 6 5.0 24.9 6 3.4 19.9 6 5.9 25.0 6 3.3 25.3 6 3.5 22.0 6 4.3 21.8 6 5.4

MoCA language (max. 5),

mean 6 SD

3.9 6 0.9 4.4 6 0.8 4.3 6 0.9 4.7 6 0.6 4.8 6 0.6 4.3 6 0.9 4.4 6 0.9

Time point of MoCA

assessment, n days after

stroke onset, median (IQR)

121 (47) 3 monthsy 154 (47)z 2 (2) 389 (43)

(n 5 107)*

3 (3) 134 (172)

(n 5 856)*

Brain imaging

Scan used for lesion

segmentation, DWI/

FLAIR/CT, n

30/4/40 5/10/5 307/0/103 102/0/0 0/109/0 0/163/0 444/286/148

Normalized acute infarct

volume in milliliters,

median (IQR)

6.82 (30.59) 16.59 (48.95) 2.31 (11.99) 2.52 (11.15) 2.59 (8.74) 4.30 (18.88) 2.88 (13.19)

Time point of imaging, n days

after stroke onset, median (IQR)

2 (3) 5 (24)

(n 5 18)*

1 (2)z 3 (3) 4 (6) 33 (14) 3 (7)

(n 5 856)*

Abbreviations: CT, computed tomography; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; IQR, interquartile range; MoCA, Montreal Cognitive Assessment; SD, standard

deviation; TIA, transient ischemic attack.

*Missing data; available sample size (n) is noted behind the respective variable.
y3 months is protocol for this study; no exact numbers available, therefore counted as missing data in total sample.
zDays after admission to clinical ward (i.e., 0 to 3 days after stroke onset or presentation at emergency department), instead of days after stroke onset.
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Fig. 3. Lesion prevalence map for individual cohorts and the collective data set of the Meta VCIMap pilot study. Voxel-based lesion prevalence map of infarcts

for individual cohorts and collective data set, shown on the Montreal Neurological Institute 152 T1 template [63]. Every voxel that is damaged in one or more

subjects in the cohort is shown in colors ranging from purple (n 5 1) to red (n � 10). The right hemisphere is depicted on the right, which is conventional in

lesion-symptom mapping studies. To prevent that lesion-symptom mapping analyses are biased by voxels that are only rarely affected, a minimum number of

patients with a lesion in a particular voxel is commonly set. Although there is no general rule on where to set this threshold, it is typically set in the range of

5� n� 10 [66]. In this figure, blue- and purple-colored voxels are damaged in less than five subjects and thus would normally be excluded from lesion-symptom

mapping studies. The bottom lesion map was created by merging lesion maps from all the cohorts, which shows a considerably increased number of included

voxels after integrating the data from all six cohorts. Note that the left hemisphere is relatively underrepresented; most cohorts used aphasia as an exclusion

criterion because it precluded reliable cognitive assessment. Thus, subjects with (large) left hemispheric lesions were often excluded during initial inclusion

of stroke patients.

N.A. Weaver et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 310-326320
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Fig. 4. Lesion prevalence map and lesion-symptom mapping results. Lesion prevalence map (A), lesion size topographies (B), and SVR-LSM and SVR-ROI

results (C–F). The right hemisphere is depicted on the right. (A) Lesion prevalence map showing voxels that are damaged in at least five patients is projected on

the 1mmMNI-152 template [63]. The bar indicates the number of patients with a lesion for each voxel. (B) Lesion size topographies for each voxel lesioned in at

least five patients. The bar indicates the median lesion volume (in milliliters) per patient, given that the specific voxel is lesioned. This illustrates whether a

particular voxel is more often damaged by relatively large infarcts (red) or small infarcts (purple). In the present study, right hemispheric infarcts were often

larger and commonly included cortical areas, while infarcts in the thalamus, brain stem, and internal capsule were often small. (C–D) Results of multivariate

lesion-symptom mapping. Voxelwise associations between the presence of a lesion and Montreal Cognitive Assessment (MoCA) total score (C) or language

domain score (D) were determined using support vector regression (SVR-LSM). This multivariate approach assesses the intervoxel correlations and identifies

which voxels have an independent contribution to the outcomemeasure. These associations are corrected for age, gender, and education. Significant clusters are

shown in colors ranging from yellow (P5 .01) to red (P, .001). To visualize the voxels that were included in each step of the analyses, voxels associated with

cognition in the univariate analyses (without correction for multiple testing), but not in the multivariate analyses, are shown in light blue. Voxels with no uni-

variate association with cognition are shown in dark blue and were not included in the multivariate analysis. Uncolored voxels were not included in any step of

the analyses because these were damaged in less than five individuals. (E–F) Results of multivariate region of interest–based analyses using support vector

regression (SVR-ROI). The ROIs where the regional infarct volume was statistically associated with the cognitive functions are colored from yellow

(P 5 .01) to red (P , .001). ROIs that were associated with cognition in the univariate analyses but not in the multivariate analyses are shown in light blue.
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(n 5 878) showed an absolute increase of 26% (374,100–
840,300 voxels; 20%–46% of the MNI-152 template,
respectively). This increase was most prominent in the left
hemisphere, right occipital lobe, and cerebellum.
Meanwhile, coverage of the left hemisphere and
orbitofrontal lobes was relatively limited. For the left
hemisphere, this was likely due to aphasia being an exclu-
sion criterion in most cohorts, because this would preclude
reliable cognitive assessment. This is also reflected in the
finding that left hemispheric infarcts were often smaller
and did not cover cortical regions in the frontal and temporal
lobes (Fig. 4A, B). For the orbitofrontal lobes, coverage was
likely limited because anterior cerebral artery infarcts are
relatively rare [9].

Lesion distributions differed between cohorts, reflective
of differences in inclusion criteria and recruitment strategies
(Table 2). For example, CODECS only included patients
with cerebellar infarcts. Meanwhile, DEDEMAS and
MSS-II included subjects with milder stroke symptoms,
who generally had smaller infarcts that showed less overlap
(Fig. 3).
3.4. Lesion-symptom mapping results

SVR-LSM and SVR-ROI results are shown in Fig. 4
and Supplementary Tables 1 and 2. Both methods identi-
fied significant associations between total MoCA scores
and infarcts located in the left inferior frontal gyrus,
left basal ganglia and their surrounding white matter
tracts, left insula, and bilateral occipital lobes. Language
domain scores were associated with infarcts located in
the left middle and superior temporal gyri, left insula,
left posterior thalamic radiation, and left anterior corona
radiata.
4. Discussion

The Meta VCI Map consortium will provide new insights
into the relevance of vascular lesion location for cognitive
dysfunction, by creating a research framework that facili-
tates collaborative LSM projects. The pilot demonstrates
that this novel multicenter LSM approach is feasible
and substantially improves brain lesion coverage. Our image
processing and LSM analysis pipelines showed that integra-
tion of multicenter patient data is feasible, allowing for in-
clusion of both CT and MRI scans from different data sets.

This pilot study demonstrates the benefits of multicenter
LSM. First, we achieved a marked improvement of brain
The names of the significant ROIs are labeled in the figure. Abbreviations: ACR, an

peduncle; EC, external capsule; IFGtri, inferior frontal gyrus (triangular); IFO, infe

temporal gyrus; PIC, posterior limb of internal capsule; PTR, posterior thalamic ra

lum; SCR, superior corona radiata; SFO, superior fronto-occipital fasciculus; SLF,

striatum; STG, superior temporal gyrus.
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lesion coverage by integrating individual data sets.
Compared with the CU-STRIDE study, one of the largest
(monocenter) LSM studies to date (n 5 410) [8], the
increased coverage in our merged data set (n5 878) allowed
us to identify strategic infarct locations in previously
excluded brain areas. Furthermore, we provided a proof-
of-concept that multicenter LSM can identify strategic
lesion locations for distinct cognitive processes. For
example, infarcts in the basal ganglia and internal capsule
were associated with impairment of global cognition, which
agrees with the known critical role of these structures [1],
whereas infarcts in the left superior temporal lobe and fron-
tal white matter were associated with language impairment,
which agrees with well-established neural correlates for lan-
guage [72,73].

Several challenges for future multicenter LSM studies
were also identified. First, achieving better brain lesion
coverage of rarely affected brain regions, such as orbitofron-
tal regions for infarcts and temporal lobes for WMH,
will require even larger study samples. However, although
larger multicenter data sets will lead to an increase of statis-
tical power by including more patients with a lesion in each
voxel, it must be taken into account that regions with higher
lesion frequency will be more likely to be found in the LSM
analysis than voxels with a lower lesion frequency [74]. This
spatial bias persists in larger data sets because vascular
lesion distribution typically follows the vascular tree.
Further improvement of LSM methods is therefore an
ongoing endeavor of the Data AnalysisWorking Group. Sec-
ond, preparation and processing of lesion data is labor
intensive, particularly for infarcts because these require
manual lesion segmentation and frequent manual adjust-
ments after registration (approximately 25% of cases). In
our experience, this issue is less prominent for WMH, where
automated segmentation tools are available (e.g., at https://
software.harness-neuroimaging.org) and adaptations are
generally needed in ,5% of subjects (e.g., [41,75]).
Nevertheless, efforts to reduce requirements for manual
editing are a key priority of the Data Analysis Working
Group. Third, although integration of different types of
imaging data at different processing stages is technically
feasible, this could introduce variability that must be taken
into account, preferably through implementation of
standardized protocols for each processing step. Fourth,
our pilot study cohort had heterogeneous characteristics in
terms of time point of cognitive assessment and inclusion
criteria, which might impact our LSM results. Notably,
the cognitive impact of acute versus chronic stroke is
known to differ due to network reorganization and
terior corona radiata; AIC, anterior limb of internal capsule; CPed, cerebral

rior fronto-occipital fasciculus; MOG, middle occipital gyrus; MTG, middle

diation; RIC, retrolenticular part of internal capsule; ROp, rolandic opercu-

superior longitudinal fasciculus; SOG, superior occipital gyrus; SS, sagittal
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significantly influences lesion-symptom correlations [6,7].
Finally, other contributing factors to cognitive decline,
such as the presence and burden of other vascular lesions
and premorbid cognitive status, should be taken into
account in future projects. This should also include
markers of neurodegeneration, which often accompany
vascular lesions, particularly in older individuals. Of note,
LSM techniques are well equipped to deal with such
factors, for example, by including biomarkers for amyloid
or tau in the analyses.

Future Meta VCI Map projects aim to include thousands
of subjects to achieve even better brain lesion coverage.
Several Meta VCI Map projects are in preparation. First,
for patients with acute ischemic stroke, we aim to create a
comprehensive vulnerability map of the brain that shows
which infarct locations predict poststroke cognitive impair-
ment, with particular focus on differences between early
and late poststroke phases. Second, for infarcts and WMH,
we aim to establish strategic lesion locations for domain-
specific cognitive functions. Third, multidimensional LSM
models will be implemented to study the interplay between
MRI manifestations of vascular injury and other contrib-
uting factors to cognitive decline, such as risk factors and
biomarkers for neurodegeneration.

Current members and other interested parties already
show a great willingness to contribute data. Future pro-
jects will benefit from a growing Meta VCI Map mem-
bership base. Therefore, we invite all investigators who
are interested and can contribute data to join Meta
VCI Map.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed published literature
on lesion-symptom mapping in vascular cognitive
impairment (VCI) using PubMed. Potential members
for the consortium were identified and invited
through existing collaborative networks in the VCI
research field.

2. Interpretation: Published lesion-symptom mapping
studies proved to have limited lesion coverage.
The Meta VCI Map consortium brings international
researchers together to perform multicenter lesion-
symptom mapping studies. Our initial inventory re-
vealed a great willingness of investigators to share
data. The pilot study demonstrates that multicenter
data integration is feasible and markedly improves
brain lesion coverage. This allows us to study the
cognitive impact of vascular lesions in more brain
regions.

3. Future directions: Subsequent Meta VCI Map pro-
jects will include thousands of subjects to achieve
even better brain lesion coverage, to comprehen-
sively establish strategic lesion locations for cogni-
tive dysfunction. Procedural challenges, also
identified through the pilot, are being addressed to
allow further upscaling of multicenter study samples.
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