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ABSTRACT
BACKGROUND: Sequencing studies have pointed to the involvement in schizophrenia of rare coding variants in
neuronally expressed genes, including activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-D-
aspartate receptor (NMDAR) complexes; however, larger samples are required to reveal novel genes and specific
biological mechanisms.
METHODS:We sequenced 187 genes, selected for prior evidence of association with schizophrenia, in a new dataset
of 5207 cases and 4991 controls. Included among these genes were members of ARC and NMDAR postsynaptic
protein complexes, as well as voltage-gated sodium and calcium channels. We performed a rare variant meta-
analysis with published sequencing data for a total of 11,319 cases, 15,854 controls, and 1136 trios.
RESULTS: While no individual gene was significantly associated with schizophrenia after genome-wide correction for
multiple testing, we strengthen the evidence that rare exonic variants in the ARC (p = 4.0 3 10–4) and NMDAR (p =
1.7 3 10–5) synaptic complexes are risk factors for schizophrenia. In addition, we found that loss-of-function variants
and missense variants at paralog-conserved sites were enriched in voltage-gated sodium channels, particularly the
alpha subunits (p = 8.6 3 10–4).
CONCLUSIONS: In one of the largest sequencing studies of schizophrenia to date, we provide novel evidence that
multiple voltage-gated sodium channels are involved in schizophrenia pathogenesis and confirm the involvement of
ARC and NMDAR postsynaptic complexes.
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Schizophrenia is a highly heritable polygenic disorder (1).
Collectively, common variants contribute up to half of the ge-
netic variance in schizophrenia liability (2,3), and 145 distinct
loci have currently been associated with the disorder at
genome-wide levels of significance in the most recent
genome-wide association study (4). Schizophrenia risk is also
conferred by rare mutations, including copy number variants
(CNVs) (5,6) and rare coding variants (RCVs) (7,8), each of
which sometimes occur as de novo mutations (9,10).

Studies of RCVs have the potential to inform schizophrenia
pathogenesis because they can pinpoint specific functional
variants in individual genes. However, only two genes,
SETD1A (11) and RBM12 (12), have been strongly implicated.
A major limiting factor, as for studies of common variants, is
that for complex disorders, large samples are required to
obtain robust results in case-control studies (13). To date, the
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largest published sequencing studies of schizophrenia have
involved around 5000 cases, 9000 controls, and 1000 parent-
proband trios (7,11), almost an order of magnitude smaller than
recently published schizophrenia single nucleotide poly-
morphism genotyping studies of common risk variants [e.g.,
40,675 cases and 64,643 controls (4)]. Nevertheless, exome
sequencing studies have provided important clues to the
pathophysiology of schizophrenia. For example, proband-
parent trio-based studies have shown de novo RCVs to be
significantly enriched among glutamatergic postsynaptic
proteins, in particular, the activity-regulated cytoskeleton-
associated protein (ARC) and N-methyl-D-aspartate receptor
(NMDAR) complexes (9). These synaptic gene sets, first
associated with schizophrenia through studies of de novo
CNVs (10), have also shown evidence for association in inde-
pendent case-control CNV (14) and sequencing (7,8) datasets.
ticle under the
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More recently, in an extension of the Swedish sample used by
Purcell et al. (8), the authors documented an elevated exome-
wide burden of ultra-rare, protein disruptive variants, which
was concentrated among 3388 neuron-specific genes,
particularly those that are expressed at synapses, including the
ARC and NMDAR complexes (7). Additionally, the enrichment
of RCVs in schizophrenia has been shown to be concentrated
among 3488 genes that are depleted for loss-of-function (LoF)
mutation in large population cohorts (15,16).

In the current study, we performed targeted sequencing of
187 genes, selected for prior evidence for association with
schizophrenia (Table S1 in Supplement 2), in 5207 cases and
4991 controls, none of which have contributed to previous
schizophrenia sequencing studies. Among these targeted
genes, we had complete membership of four gene sets: ARC
and NMDAR postsynaptic protein complexes, which have
been strongly implicated in multiple previous studies (9,10),
and voltage-gated sodium (17) and calcium (8) channels, which
have inconclusive evidence for association with schizophrenia
in previous rare variant studies (7,17). The remainder of the
genes targeted for sequencing were selected on the basis of
supportive evidence from at least two sources (see Methods
and Materials). Our primary aims were to 1) test for enrichment
of RCVs in all 187 targeted genes, 2) test for enrichment of
RCVs in four candidate gene sets previously implicated in
schizophrenia, and 3) identify individual genes significantly
enriched for RCVs.

Most recent studies of RCVs in schizophrenia have
focused on LoF variants. However, it is clear that missense
variants also contribute to schizophrenia risk (7,9), but in
contrast to LoF variants, in silico methods cannot distinguish
at high sensitivity and specificity between missense variants
that alter the function of the encoded protein and those that
are benign. Recently, it has been shown that restricting ana-
lyses to missense variants affecting amino acids that are
conserved within paralogous gene families improves power
for identifying pathogenic variants (18). Given that two of our
targeted gene sets consist of paralogous gene families
(voltage-gated sodium and calcium channels), we exploited
this approach in a secondary analysis of paralog-conserved
missense variants (18).

Finally, to maximize power, we meta-analyzed the new
sequencing data with independent, published schizophrenia
case-control [Swedish (7) and UK10K (11) datasets] and trio
exome-sequencing data (see Methods and Materials), yielding
a combined analysis of RCVs in a total of 11,319 cases, 15,854
controls, and 1136 trios.
METHODS AND MATERIALS

Ethics Statement

All research conducted as part of this study was consistent
with UK regulatory and ethical guidelines. We gained na-
tional National Health Service research ethics committee
approval for the CLOZUK (10/WSE02/15) and Cardiff
COGS (07/WSE03/110) studies. The control samples were
recruited as part of independent projects, all of which have
equivalent ethical permissions and data sharing procedures
in place.
Biologica
Sample Description

Targeted Sequence Sample. A total of 11,493 blood-
derived DNA samples were selected for targeted sequencing
(5724 cases and 5769 controls). None have been included in
previous schizophrenia sequencing studies. The majority of
sequenced cases were from the CLOZUK dataset (n = 4647),
which has been described previously (19) and in Supplement 1.
We sequenced additional cases from the United Kingdom
(Cardiff COGS cohort; n = 521), Ireland (Dublin cohort; n = 335),
and the Netherlands [GROUP cohort (20); n = 221]. We
sequenced UK controls from the Wellcome Trust Case Control
Consortium 2 consortium (1958 birth cohort, n = 2860; UK
blood donors, n = 2463) (21–23). Additional controls were
sequenced from the Dublin (n = 230) and GROUP (n = 216)
cohorts (20). Sample descriptions are presented in
Supplement 1.

Additional Datasets. We acquired publically available
case-control exome sequencing data from the UK10K study
(1352 cases and 4769 controls) (11) and a Swedish study (4867
cases and 6140 controls) (7). De novo mutations from 1136
published schizophrenia-proband parent trios were derived
from published studies (9,24–31) (Table S8 in Supplement 1).

Power calculations for our final sample size are presented in
Table S11 in Supplement 1.

Gene Selection

We used Ion Torrent instruments (Thermo Fisher Scientific,
Waltham, MA) to sequence the coding regions of genes
belonging to the following gene sets: ARC (n = 28) (9), NMDAR
(n = 61) (9), voltage-gated calcium channels (n = 26) (8), and
voltage-gated sodium channels (n = 14) (17). We sequenced an
additional 58 genes, selected for having two or more sup-
portive lines of evidence for association with schizophrenia (full
criteria for gene selection described in Supplement 1 and
Table S1 in Supplement 2).

Data Processing and Quality Control

The protocols used for targeted sequencing, data processing,
and quality control are presented in Supplement 1. Briefly, raw
sequence reads were independently processed for each Ion
Torrent wave according to GATK best practice guidelines
(32,33). We excluded samples that were outliers from their
sequencing wave’s mean for proportion of variants in the
database of single nucleotide polymorphisms, number of
alternative alleles, number of singletons, number of synony-
mous mutations, and number of nonsynonymous mutations.
For 96% (5508 of 5724) of cases and 72% (4149 of 5769) of
controls, we used available array data to identify and remove
duplicate and first-degree relatives and samples with a geno-
type concordance ,0.9. For samples not previously geno-
typed, we used Ion Torrent sequence data to exclude duplicate
samples. Principal component analysis was used to identify
and exclude cases and controls with non-European ancestry.
After quality control, 5207 cases and 4991 controls from the
targeted sequence sample, 4765 cases and 6107 controls
from the Swedish sample, and 1347 cases and 4756 controls
from the UK10K sample were retained for analysis. Variant
annotation and quality control are described in Supplement 1.
l Psychiatry April 1, 2019; 85:554–562 www.sobp.org/journal 555

http://www.sobp.org/journal


Targeted Sequencing of 10,198 Schizophrenia Samples

Biological
Psychiatry:
Celebrating
50 Years
Statistics

Gene set and single-gene association statistics for case-
control data were generated using the following Firth’s
penalized-likelihood logistic regression model:

Logit ðprðcaseÞÞw N test variants1baseline synonymous

count1 first 10 PCs1 sex1 Ion Torrent sequencing wave

ðtargeted analysis onlyÞ

The p values from the above models were compared with
those generated in the same manner from 100,000 random
permutations of case-control labels in our datasets. Enrich-
ment for de novo mutations was tested using the statistical
framework described in Samocha et al. (34), in which we
compared the observed and expected number of de novo
mutations using a Poisson test. A full description of our sta-
tistical approach for the above tests, and the case-control–de
novo meta-analysis, can be found in Supplement 1.

Approach to Hypothesis Testing and Multiple
Testing

Here we outline our main enrichment tests and our approach
for correcting for multiple testing (further details in Supplement 1).
We first tested for the enrichment of RCVs in all 187 genes by
performing six burden tests (LoF, nonsynonymous damaging,
and nonsynonymous variant annotations under two allele fre-
quency thresholds [,0.1% and singletons]). The derived
p values were Bonferroni corrected for six tests. We then
performed an exploratory analysis to further characterize any
observed enrichments, by partitioning the targeted genes into
those intolerant of LoF variants (pLi . 0.9) and those that are
not (pLi # 0.9). Because this later analysis was exploratory, no
multiple testing correction was applied.

In our primary case-control gene set analysis, we had data
for four sets; two synaptic sets (ARC and NMDAR) and two
ion-channel sets (voltage-gated sodium channels and voltage-
gated calcium channels). These were tested for enrichment of
rare (,0.1% frequency) LoF variants, as this was the only class
of mutation enriched among all 187 genes after correction for
multiple testing (see Results). The p values derived from our
new targeted sequencing sample were therefore Bonferroni
corrected for four tests (four gene sets 3 one mutation class).

For meta-analysis, we note that the inclusion of ARC,
NMDAR, and calcium-channel gene sets in the present study
was predicated on previous associations from exome-wide de
novo and case-control studies that are included in the present
meta-analysis (8,9). This ascertainment bias makes it impos-
sible to generate meaningful and appropriately conservative
study-wide multiple-testing corrections. Therefore, we
consider those meta-analyses as representing an appraisal of
the current sequencing evidence for those gene sets. The
case-control meta-analysis of sodium channels does not
include any previously reported data and therefore it does not
suffer from such an ascertainment bias; accordingly, we
calculate study-wide corrected p values as we did for the new
sequencing data (four gene sets 3 one mutation class).

For the secondary analysis of LoF variants and missense
variants at paralog-conserved sites, although this was only
apropriate for the two ion-channel gene sets, aiming to be
556 Biological Psychiatry April 1, 2019; 85:554–562 www.sobp.org/jou
conservative, we Bonferroni corrected for eight potential tests
(four gene sets 3 two mutation classes). To dissect the
observed enrichment of LoF and missense variants at paralog-
conserved sites in sodium channels (see Results), we par-
tioned them into alpha and beta subunits. Aiming to favor
caution in view of the novelty of the finding, we conservatively
Bonferroni corrected the derived p values for 12 potential tests
(two mutation classes tested against four gene sets plus the
two subsets of sodium channel alpha and beta subunits).

For single-gene enrichment analysis of rare (, 0.1% fre-
quency) LoF variants, we applied exome-wide criteria for
multiple testing correction by Bonferroni correcting p values for
20,000 tests.

RESULTS

Mutation Burden

In the targeted sequence sample, we performed six primary
tests of mutation burden across all 187 targeted genes: LoF,
nonsynonymousdamaging, and nonsynonymous variants, each
under two allele frequency thresholds (,0.1% and singletons).
Correcting for six tests, we observed a significant (pcorrected
, .05) excess of LoF mutations (, 0.1% frequency) in cases
(Table 1), that had ameanexcess of 0.013LoFmutations/person
across the 187 targeted genes (Table S2 in Supplement 2).
Similar results were obtained by permutation analysis (p = .0013;
pcorrected = .0078). There was no significant difference between
cases andcontrols for any other class of variant (Table 1). As part
of our quality control, we note no difference between cases and
controls in the rate of synonymous mutation at the same fre-
quency (,0.1%; odds ratio [OR], 1.02; 95% confidence interval
[CI], 0.94–1.08; p = 1), suggesting that the enrichment of LoF
mutations in cases is unlikely to be due to technical artifacts.

Meta-analysis with two previously published case-control
exome sequencing datasets (Sweden and UK10K) strength-
ened the evidence for an increase in LoF variants (frequency
,0.1%) in the set of 187 genes in cases (Table 1 and Table S3
in Supplement 2).

We partitioned the 187 genes into those intolerant of LoF
variants [pLi scores . 0.9 in nonpsych-Exome Aggregation
Consortium data (15)] and those that are not intolerant (pLi #
0.9). Meta-analysis of the case-control data showed that as-
sociation between schizophrenia and rare (frequency ,0.1%)
LoF variants was stronger in LoF-intolerant genes (Table 1;
Z-test difference in effect size p = .0006).

Gene Set Analysis

Primary Analysis of Voltage-Gated Sodium and
Calcium Channels. We found nominally significant evi-
dence for enrichment in cases for LoF variants (frequency
,0.1%) in voltage-gated sodium channels (targeted
sequencing sample: OR, 1.99; 95% CI, 1.11–3.71; p = .02;
pcorrected = .08; case-control-de novo meta-analysis: p = .025;
pcorrected = .1) (Table S4 in Supplement 2), but no evidence for
association between schizophrenia and voltage-gated calcium
channels (Table S4 in Supplement 2).

Secondary Analysis of Paralog-Conserved Ion-
Channel Sites. In the targeted sequence sample, we found
rnal
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a significant case excess of rare (frequency ,0.1%) paralog-
conserved missense and LoF variants in sodium channels
(OR, 1.26; 95% CI, 1.08–1.47; p = .0035; empirical p = .0034;
pcorrected = .027) but not calcium channels (Table S5 in
Supplement 2). This enrichment was also supported in the full
case-control meta-analysis (OR, 1.18; 95% CI, 1.07–1.31; p =
.0014; pcorrected = .011) (Figure 1, Table S5 in Supplement 2).

The following exploratory analyses were conducted to test
the robustness of the enrichment of paralog-conserved
missense and LoF variants in sodium channels. We found
evidence that the sodium-channel enrichment does not simply
reflect a general increased burden for LoF variants and
missense variants at paralog sites, as it is significantly greater
than sets of genes of equivalent size sampled randomly from
the non–sodium-channel component of our targeted gene set
(p = .0037) (see Supplement 1 for details). Additionally, the
enrichment observed for sodium channels was significantly
greater (p = .016) than random sets of genes sampled from all
targeted paralogous genes (i.e., including sodium channels
among the genes randomly sampled). An enrichment with a
similar effect size was also observed after the exclusion of LoF
variants (case-control meta-analysis: OR, 1.16; 95% CI,
1.04–1.29; p = .007), discounting the possibility that the
additonal evidence provided by our analysis of paralog-
conserved sites in sodium channels was merely a represen-
tation of the earlier primary finding of a nominal enrichment for
LoF variants. As a further control for sequence quality, we
found that the effect size for rare (frequency ,0.1%) paralog-
conserved missense and LoF variants was significantly
different from that for paralog-nonconserved missense vari-
ants (Z-test p = .0018); indeed, as a negative control, there was
no enrichment for missense variants at paralog-nonconserved
sites (case-control meta-analysis: p = .44) (Figure 1, Table S5
in Supplement 2).

To dissect the voltage-gated sodium channel association,
we divided the genes into their two primary functional group-
ings, alpha (10 genes) and beta (four genes) subunits, testing
these separately. Only the alpha subunits were significantly
enriched for rare (frequency ,0.1%) paralog-conserved
missense and LoF variants (case-control meta-analysis:
alpha subunits, OR, 1.2; 95% CI, 1.08–1.33; p = .00086;
pcorrected = .01; beta subunits, OR, 0.92; 95% CI, 0.52–1.62;
puncorrected = .76). In all sodium-channel genes, a single
nonsense de novo mutation was observed, that being in
SCN2A (de novo p value for LoF and paralog-conserved
missense variants in sodium-channel alpha subunits = .75;
case-control-de novo meta-analysis: p = .0029; pcorrected = .035).

Paralog-conserved analysis did not reveal association with
schizophrenia for individual voltage-gated sodium channel
genes at the level required to demonstrate association (i.e.,
exome-wide significance) (Table S6 in Supplement 2) or even
after adjusting for the experiment-wide context of 187 genes,
although SCN7A showed a nominal signal (puncorrected = .001).

Primary Analysis of ARC and NMDAR Gene Sets. In
the targeted sequencing sample, cases had a higher rate of
LoF variants (frequency ,0.1%) in ARC (puncorrected = .14; OR,
1.88; 95% CI, 0.83–4.91) and NMDAR (puncorrected = .03;
pcorrected = .12; OR, 1.66; 95% CI, 1.05–2.69) sets (Figure 2).
When meta-analyzed with published case-control datasets, we
l Psychiatry April 1, 2019; 85:554–562 www.sobp.org/journal 557
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Figure 2. Case-control analysis of rare (frequency ,0.1%) loss-of-
function variants in activity-regulated cytoskeleton-associated protein
(ARC) and N-methyl-D-aspartate receptor (NMDAR) synaptic gene sets (n =
28 and 61 genes, respectively). The case control meta-analysis comprises
data from the targeted sequence sample (5207 cases and 4991 controls),
the Sweden sample (4765 cases and 6107 controls), and the UK10K sample
(1347 cases and 4756 controls).

Figure 1. Case-control meta-analysis of rare (fre-
quency ,0.1%) variants in voltage-gated sodium
channels. For comparison, we present results for
variants outside those tested in our primary (loss-of-
function [LoF]) and secondary (paralog-conserved
missense and LoF) analyses, which include negative
controls (synonymous [S] and paralog-nonconserved
missense). NS, nonsynonymous; NSD, non-
synonymous damaging.
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found strong evidence that LoF variants in NMDAR complex
genes were associated with schizophrenia (p = 1.6 3 10–4)
(Figure 2 and Table S4 in Supplement 2), but weaker evi-
dence for association with ARC complex genes (p = .047)
(Figure 2 and Table S4 in Supplement 2).

To summarize the current status of RCVs in the above gene
sets, we combined the case-control meta-analysis data with
the de novo variant data, selecting the class of de novo data
reported to be most strongly enriched in these gene sets
(nonsynonymous de novo variants in ARC and LoF de novo
variants NMDAR) in previous work (9). In the trio data, non-
synonymous and LoF de novo variants were associated with
ARC (p = .0015) and NMDAR (p = .014), respectively.
Combining the de novo enrichment results with the case-
control meta-analysis results (LoF; frequency ,0.1%), both
ARC (p = 4.0 3 10–4) and NMDAR (p = 1.7 3 10–5) complexes
were associated with schizophrenia (Table 2).

The ARC and NMDAR complexes share nine overlapping
genes: when excluded from the analysis, we observed inde-
pendent evidence for association with both gene sets (case-
control–de novo meta-analysis (ARC: p = 9.4 3 10–4;
NMDAR: p = 7.4 3 10–5).

Single-Gene Analysis

In the primary meta-analysis (LoF; frequency ,0.1%) of all
data, no gene was associated with schizophrenia after Bon-
ferroni correction (Table S7 in Supplement 2). The most
significant gene was TAF13 (p = 1.6 3 10–5), with support
coming mainly from published LoF de novo variants as noted
before (9).

DISCUSSION

Sequencing studies have started to provide novel insights into
the genetic architecture and etiology of schizophrenia,
although these are still limited by small sample sizes and low
power. Seeking to increase power for a prioritized set of genes,
we sequenced the coding regions of 187 schizophrenia can-
didates in over 10,000 samples that have not contributed to
previous sequencing studies of schizophrenia.
558 Biological Psychiatry April 1, 2019; 85:554–562 www.sobp.org/jou
Across all candidates, we found a significant excess of LoF
variants in the independent samples, confirming our hypothe-
sis that one or more of the candidates is involved in schizo-
phrenia pathogenesis. The strongest evidence for enrichment
was for LoF variants with a frequency ,0.1%, suggesting that
recurrent rather than only singleton schizophrenia risk variants
are present among our 187 targeted genes. This appears to
contrast with a Swedish exome-sequencing study of schizo-
phrenia, which reported an increased exome-wide burden in
cases of ultra-rare protein altering variants observed only once
rnal
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Table 2. Synaptic Gene Set Meta-analysis

Gene Set

Case-Control Meta-analysis De Novo Analysis Case-Control–De Novo Combined

Mutations (Cases/
Controls)

Rate (Cases/
Controls) p (Two-Sided) OR (95% CI) p (Observed/Expected)

p (One-Sided,
Fisher’s Combined)

ARC (n = 28) 32/27 0.0028/0.0017 .047 1.78 (1.01–3.13) .0015 (7/1.64) 4.0 3 10–4

NMDAR (n = 61) 114/111 0.01/0.007 .00016 1.69 (1.29–2.21) .014 (3/0.49) 1.7 3 10–5

The case-control meta-analysis tested loss-of-function (LoF) variants (frequency ,0.1%) for activity-regulated cytoskeleton-associated protein
(ARC) and N-methyl-D-aspartate receptor (NMDAR) in 11,319 schizophrenia cases and 15,854 controls. The de novo analysis tested
nonsynonymous and LoF variants in ARC and NMDAR in 1136 schizophrenia trios. Full details of the analysis are presented in Table S4 in
Supplement 2. We note that the p values reported here are uncorrected (see Methods and Materials for rationale).

CI, confidence interval; OR, odds ratio.
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in their sample and never in 45,376 nonpsychiatric Exome
Aggregation Consortium individuals (7). Our analyses of the
same Swedish dataset (Table S10 in Supplement 1) agrees
with the primary study that at the exome-wide level, singleton
LoF variants are more highly enriched than recurrent variants
with a frequency ,0.1% (Z-test p = .00035). However, this did
not hold when restricted to the 187 targeted genes (Z-test
p = .11) we have selected. Evidence for nonsingleton variants’
being enriched among specific sets of genes has been
demonstrated in a recent analysis of the same Swedish
data (35).

RCVs were enriched in our targeted genes with modest
effect sizes when compared with specific rare variants previ-
ously associated with schizophrenia (e.g., CNVs). This may be
a consequence of including variants in our burden analyses
that are not related to schizophrenia, thus underestimating the
effect size of causal variants. This limitation is inherent in
sequencing studies and will only be overcome when true risk
variants are known.

Among our sequenced genes were 14 voltage-gated so-
dium channels, which as a set were previously associated with
schizophrenia in an analysis of parent-proband trios for com-
pound heterozygous mutation, although this did not replicate
(17). Rare variants in sodium channels have been associated
with additional neurodevelopmental disorders, including some
forms of epilepsy and developmental delay (18,36,37), which
gives high plausibility that variants in these genes could also
increase risk of schizophrenia. Given equivocal findings from
previous studies implicating sodium channels in schizophrenia
(17), our results provide novel evidence for association be-
tween RCVs in sodium channels and schizophrenia. We
provide evidence that both LoF and missense variants at
paralog-conserved sites in sodium channels increase risk of
schizophrenia. This supports previous work that showed that
paralog conservation scores can effectively identify missense
variants associated with neurodevelopmental disorders (18).

The sodium channel set contains 14 genes–10 encoding
alpha subunits involved in generating action potentials (36),
and 4 beta subunits that, in association with alpha subunits,
modulate their gating and cellular excitability (37). In our
analysis, the evidence for association derives from variants in
alpha subunits, although the absence of signal in beta subunits
might simply reflect low power (there are fewer beta subunits,
of which paralog conservation scores are only available for
SCN2B and SCN4B, whereas paralog conservation scores are
available for all 10 alpha subunits).

The statistical evidence we report for association with so-
dium channels survived a study-wide Bonferroni correction for
Biologica
multiple testing, was robust to permutation testing, and has
high plausibility in the context of sodium-channel associations
in other neurodevelopmental disorders; nevertheless, despite
our use of virtually all published sequencing data that are
publicly available, it will be necessary for future studies to
confirm this before the finding can be considered definitive.

In the present study, we conducted the largest schizo-
phrenia sequencing meta-analysis of RCVs in the ARC and
NMDAR synaptic gene sets to date. The inclusion of our new
independent data in this analysis strengthened the evidence
for association between RCVs in ARC and NMDARs and
schizophrenia. In the context of previously published research,
in which rare and de novo CNVs in these gene sets have been
consistently associated with schizophrenia (5,10,14), the re-
sults now provide a strong and consistent body of evidence for
the involvement of ARC and NMDAR proteins in the etiology of
schizophrenia.

Despite the increased sample size, we did not observe any
single-gene association that was significant at a genome-wide
significant level, or even a study-wide level, and therefore it is
not possible to infer causal associations between any of the
variants, or genes, presented in this study. Doing so will require
even larger samples, and possibly other methods for classi-
fying missense variation.

In our new targeted sequence sample,w81% of cases were
from the CLOZUK cohort, a cohort of individuals whose
phenotype comprises a clinician reported diagnosis of
treatment-resistant schizophrenia (TRS) requiring clozapine
treatment. The CLOZUK cohort has been previously validated
[see supplemental note in (4)] and has a similar common and
CNV variant architecture to schizophrenia samples diagnosed
using research instruments (6). This sample is likely to be
overrepresented for certain features including increased
severity, poorer cognition, early onset, and (by definition)
treatment resistance, but we are unable to examine the impact
these phenotypes may have had on our results. Therefore, it is
possible that our findings reflect association with those
phenotypic aspects of the disorder rather than liability in
general. Moreover, as many of our controls (N = 2463) are
blood donors, these are likely to be psychiatrically healthier
than the general population. These sampling frameworks
enhance power for discovery, but a corollary is that it is likely to
inflate effect sizes, so follow-up studies in general population
samples are required.

Differences in allele frequencies caused by phenotypes
associated with TRS would most likely be observed in LoF-
intolerant genes, given their consistent association with se-
vere neurodevelopmental phenotypes (16,38). However, we
l Psychiatry April 1, 2019; 85:554–562 www.sobp.org/journal 559
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find no evidence of heterogeneity in our case-control meta-
analysis of rare, LoF variants in all 106 sequenced LoF-
intolerant genes (Cochran’s Q = 1.23, p = .54). Nonetheless,
deep phenotyping of individuals carrying schizophrenia risk
variants and investigating differences in the risk conferred by
rare variants between TRS and non-TRS are important areas
for future research. Additional limitations in our study include
the exclusion of indel mutations (see Supplement 1) from the
targeted sequencing data, and the inability to test some of the
larger gene sets that have been implicated in schizophrenia
(e.g., fragile X mental retardation protein targets).

In conclusion, we conducted one of the largest sequencing
studies of schizophrenia to date, which targeted the protein
coding regions of 187 putative schizophrenia risk genes. By
leveraging information from paralog conservation, we provide
novel evidence that multiple voltage-gated sodium channels
are involved in schizophrenia pathogenesis. We provide
further support for association between RCVs in ARC and
NMDAR postsynaptic protein complexes and schizophrenia.
While it is premature to speculate on the mechanistic
and therapeutic implications of the current findings, we
note the implication of sodium-channel genes adds to evi-
dence, including previous work implicating postsynaptic
protein complexes, pointing to fundamental abnormalities of
neuronal activity in schizophrenia as well as suggesting the
possibility that these may be tractable to novel and existing
pharmacological approaches.
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