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Chapter 1

Introduction

All models are wrong, but some are useful.

George E. P. Box

1.1 Colloids: interactions and phase behaviour

Colloids are dispersions of a phase (solid, gas, or liquid) in another medium. Charac-
teristic of colloidal particles is their size; in at least one dimension their length scale
is between, say, a nm and a µm. One may also de�ne the upper-size limit of colloi-
dal particles by the fact that they exhibit Brownian motion. 1 If the thermal energy,
which drives Brownian or thermal motion, is large compared to the gravitational
energy, an ensemble of colloidal particles may reach equilibrium states similar to
those manifested in atomic systems.2 Presumably, at low enough densities, a colloidal
dispersion behaves as an ideal gas; an ensemble of molecules at very low densities.
This colloid–atom analogy was used by Einstein in his theory for Brownian motion
of particles suspended in a solvent.3 The later experimental veri�cation by Perrin4 of
the colloidal barometric height distribution following Boltzmann’s law constituted
the starting point of systematic studies on the dynamics and equilibrium properties
of colloidal systems. 5

In contrast to interactions between molecules or atoms, colloid–colloid interacti-
ons are tuneable, to a certain degree.6–9 Control over the interactions may be achieved
through modi�cations of the colloidal surfaces, such as functionalisation of the par-
ticles with polymers, surfactants or charged groups. 10,11 A systematic method to
e�ectuate well-de�ned attractions is through the addition of non-adsorbing polymers
to a colloidal suspension. 12–15 In this case the polymers are excluded from a region
near the particle surface, the so-called depletion zone, due to a loss of con�gurational
entropy. In fact, the excluded volume between the polymer chain and the colloidal par-
ticle of interest de�nes this depletion zone. When two colloidal particles are brought
in close proximity such that their depletion zones overlap, the volume available for
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1 | Introduction

non-adsorbing polymers increases. This leads to an increase in entropy of the poly-
mers. In general, a non-adsorbing species added to a colloidal suspension is termed
‘depletant’. The magnitude and range of the resulting depletion attraction between
particles are set by the concentration and size of the non-adsorbing depletant. 14

Colloidal particles can sometimes be envisaged as impenetrable (marble-like)
spheres. The latter is known as the hard sphere (HS) model. 16 Silica or PMMA spheres
in a refractive index-matched solvent are examples of experimental realisations of
such a theoretically appealing model. 17 The hard-core repulsion between HSs is
su�cient to explain the equilibrium �uid–solid phase transition solely on entropic
grounds. 16 Dispersions of anisotropic (hard) colloidal particles have a more intricate
phase behaviour. 18 Directional excluded volume interactions between anisotropic
colloidal particles also give rise to entropy-driven phase transitions 19, which have been
studied for lyotropic systems such as rod-like20,21 and platelet-like particles,22 as well
as for non-axisymmetric colloids23,24. The communal entropy e�ects of directional
interactions su�ces to explain, for instance, the emergence of liquid-crystalline phases
in suspensions of anisotropic colloidal particles.25 Depletant addition to a system
of anisotropic particles induces e�ective depletion attraction patches26 because the
depletion attraction is stronger for larger overlap of depletion zones. The e�ects of
entropic patchiness in lyotropic systems have received increasing attention.27

The speci�c colloid–polymer a�nity also modulates the e�ective colloid–colloid
interaction.28 Whenever there is some polymer adhesion at the colloidal surface
but this attraction does not su�ce to compensate the con�gurational penalty for
polymer adsorption, there is a non-negligible polymer concentration near the colloidal
surface. This happens for instance when PDMS polymers in cyclohexane are close to
silica surfaces.29 However, classical depletion models assume a negligible polymer
concentration at the colloidal surface. Attention has been paid to understand the e�ect
of this weak depletion as compared to the classical depletion case,30,31 also at high
polymer concentrations32. When the colloid–polymer a�nity is high enough, the
entropic penalty for the polymer is balanced by an enthalpic gain near the colloidal
surface, leading to (weak) polymer adsorption. This induces �occulation at low
polymer concentration and steric stabilisation at higher concentrations.33 In fact,
a transition from polymer depletion to adsorption occurs with increasing colloid–
polymer a�nity.

A particular class of colloidal particle dispersions are association colloids.34 In
such systems the colloidal particles of interest are constituted by amphipathic building
blocks, unimers, which in a selective solvent self-assemble into structures with colloi-
dal size. Spherical micelles composed of block copolymers are an example of such
association colloids.35 Contrary to inorganic (hard) colloids, colloid-forming unimers
can be in (thermodynamic) equilibrium with a bulk unimer concentration.36 As the
�nal equilibrium micelle properties are set via the unimers, micelle–micelle interacti-
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1.2 | Aim and structure of this thesis

ons can be modulated via the unimer properties. While a lot of attention has been
paid to equilibrium micelle properties in terms of unimer composition and solvent
conditions37, less is known about the colloidal stability of micelles, and how addition
of guest compounds, such as polymers, modulates micelle–micelle interactions.

1.2 Aim and structure of this thesis

This thesis constitutes a fundamental study on polymer-mediated interactions be-
tween spherical hard colloids, anisotropic hard colloids, and association spherical
colloids. In order to understand the intricacies of colloid–polymer mixtures (CPMs),
simpli�ed versions of the real-life counterpart shall be studied. This enables extracting
some of the key parameters governing the �nal properties of a colloidal suspension.
A useful model is constructed over clear assumptions, and shall recover real-life
observations; in return such a model may be used to delineate new experimental areas
of interest. A textbook example of a complex colloid–polymer mixture is paint.38

The particular shape of the pigment, as well as the speci�c interaction between
polymers (binders) and pigments, play a role in the properties of the �nal product.
Hence, fundamental understanding of how these two parameters (pigment shape and
pigment–binder interaction) in�uence the phase stability of a paint suspension is not
only of fundamental, but also of practical interest. Through this thesis, selected CPMs
are studied putting emphasis to di�erent key aspects governing their stability. The
insights gained are compared, when possible, with experimental observations.

We employ available theoretical and computational tools as a starting point. If
possible, the stable phases present for the CPM of interest at a given set of system
parameters are cast into phase diagrams. Alternatively (or complementarily), an as-
sessment of the colloidal stability is inferred via the second (osmotic) virial coe�cient
B2. The e�ects of direct colloid–colloid interactions beyond their hard core on the
stability of CPMs are studied in Chapter 2, while in Chapter 3 we re-examine and
improve the solid description of a well-established theory for CPMs. In Chapter 4 the
e�ect of varying colloid–polymer a�nity on the stability of CPMs is addressed. These
three Chapters constitute the �rst block of this work: spherical colloids containing
a hard core. The second block deals with anisotropic hard colloids: the rather rich
phase behaviour of superballs–depletant (Chapter 5) and platelet–depletant (Chap-
ter 6) suspensions is studied. Finally, in Chapter 7 and Chapter 8 we investigate the
interactions between spherical diblock copolymer micelles and how addition of a
second homopolymer species modulates them. These two Chapters constitute the
third block: spherical association colloids. In Chapters 2, 3, 5 and 6 the depletion
agent is considered ‘ideal’, whilst in Chapters 4, 7 and 8 the polymeric nature of the
homopolymer added to the colloidal suspension is taken into account.

3



1 | Introduction

1.3 Common methodology

To avoid repetition, this Section serves as a common background for some concepts
and tools used in this thesis. Firstly, we introduce the pair potentials used and the
calculation of the second (osmotic) virial coe�cient. The three main tools employed
are also summarised here: Tang’s �rst order mean spherical approximation (FMSA)
for the hard-core Yukawa potential, Lekkerkerker’s free volume theory (FVT), and
Scheutjens–Fleer self-consistent mean-�eld computations (SCF) for micelle formation
and micelle–micelle interactions. Speci�c, Chapter-dependent methods are introduced
when needed.

1.3.1 HCY, AOV, and PS potentials

Within this thesis, the hard-core Yukawa (HCY) pair interaction39 is frequently used
either to model direct colloid–colloid interactions or as a �tting model for the inte-
ractions obtained via other approaches. The HCY potential mimics a wide range of
interactions between spherical particles, since both the range and strength can be
tuned. It could represent, for instance, a screened double layer repulsion or a Van
der Waals attraction between the colloids.40 It is convenient to work with the dimen-
sionless distance between the centres of two colloidal spheres r̃ ≡ r/σ , with r the
centre–to–centre distance and σ the colloidal diameter (σ = 2R, with R the colloidal
sphere radius). A tilde over the quantities is used to indicate dimensionless units.
The relative range of the Yukawa interaction is characterised by qY = 2/(κ̂σ ), with
κ̂ the screening parameter (screening length κ̂−1). The HCY pair potential between
colloidal spheres is written in terms of r̃ , qY and ϵ , and normalised by β = 1/(kBT )

(with kB the Boltzmann’s constant and T the absolute temperature):

βWHCY =


∞ , r̃ < 1

−
βϵ

r̃
exp

[
−

2
qY
(r̃ − 1)

]
, r̃ ≥ 1.

(1.1)

The strength of the Yukawa potential is set via ϵ , de�ned such that ϵ > 0 implies a
HCY attraction and ϵ < 0 a HCY repulsion. For ϵ = 0 the HCY reduces to the HS
interaction.

Following the classical works by Asakura, Oosawa, 12,13 and Vrij 14, the depletion-
induced pair interaction between colloidal HSs can be described via an e�ective pair
potential. We consider depletants with a radius |δ |. Within this thesis, we consider
the simplest depletant model in the AOV pair interaction. Depletants are described as
penetrable hard spheres (PHSs): they do not interact with each other, but have a hard
core repulsive interaction with the colloidal spheres. Thus, for PHSs as depletants,
the thickness of the depletion zone is |δ | ≡ Rg, and |δ | is the PHS radius 15. Note that
in general δ refers to the adsorption thickness, and may be used to assess whether
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1.3 | Common methodology

a polymer is depleted (δ < 0) or adsorbed (δ > 0) from/onto the colloidal particle
(Chapters 4 and 8). For the ease of notation, in Chapters where PHSs are considered
we simply term the PHS radius as δ (Chapters 2, 3, 5 and 6). The PHS approximation
can be used to describe depletion e�ects in dilute polymer solutions: they mimic
ideal polymer chains. 15 The depletion pair potential between HSs due to PHSs is
the product of the overlap of depletion zones at a distance r times the bulk osmotic
pressure of the ideal depletants 14:

βWAOV =



∞ , r̃ < 1

−ϕR
d

(
1
q
+ 1

)3
[
1 −

3
2

r̃

q + 1
+

1
2

(
r̃

q + 1

)3
]

, 1 ≤ r̃ ≤ 1 + q

0 , r̃ > 1 + q,

(1.2)

where

q =
2|δ |
σ

(1.3)

is the relative size of the depletant, and where ϕR
d is the volume fraction of PHSs in

the bulk. When ϕR
d = 0 the AOV potential reduces, also, to the HS one. This pair

potential does not account for the multi-body nature of the depletion interaction.41

We �nally note that the contact potential [W (r = σ )] of the AOV interaction depends
both on ϕR

d and q:

WAOV(r = σ ) = −
3 + 2q

2q
ϕR

d . (1.4)

In Fig. 1.1, illustrative pair potentials are presented. On top of the AOV and HCY pair
interactions, a penetrable sphere (PS) potential42 is also presented:

βWPS =

{
ζ , r̃ < 1

0 , r̃ > 1.
(1.5)

The PHS–PHS interaction is a particular case of the PS potential, for which ζ = 0. If
ζ = ∞, the HS–HS interaction is recovered. The range of the interactions considered
can be recognised by the separation distance at which the AOV interaction vanishes.
For the HCY interaction, qY marks the value at which the interaction has decayed to
e2(qY + 1) its contact value ϵ .

1.3.2 Second virial coe�icient

From the pair potentials, the second virial coe�cient (B2) can be extracted to assess
the stability of the colloidal suspension.43,44 For any form of the pair interactionW (r ),
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Figure 1.1 Illustrative pair potentials for the AOV (orange) and HCY (purple) potentials
considered in this thesis. For simplicity, all contact potentials are considered such that |W (r =
σ )| = 1. An example PS potential (grey) is also shown.

the second virial coe�cient follows as:

B2

vc
= 12

r̃=∞∫
r̃=0

r̃ 2(1 − exp [−βW (r̃ )])dr̃ , (1.6)

where vc is the colloidal particle volume. If the pair potential contains a hard core
contribution, the equation above reads:

B2

vc
= 4 + 12

r̃=∞∫
r̃=1

r̃ 2(1 − exp [−βW (r̃ )])dr̃ . (1.7)

From Eq. (1.7) it follows that for HSs B2 = 4vc. 16 Colloidal suspensions with B2 above
the HS limit are expected to be stable. If colloidal particles attract each other, B2 < 4vc.
Whenever B2 ≤ −6vc gas–liquid phase separation of the colloidal suspension is
expected.45 The latter is known as the Vliegenthart–Lekkerkerker (VL) criterion. The
VL criterion can be regarded as a particular case of Noro and Frenkel’s extended law
of corresponding states.46 In short, this law states that B2 is useful to estimate the
onset of demixing. For a colloidal suspension of sticky hard spheres (short-ranged
attraction), the onset of phase separation is B2 ≈ −4.9vc

47; slightly higher than, but
close to the value, speci�ed by the VL criterion. In Part III we use both the HS and
the VL B2-values as an indicative of the colloidal stability of a micellar suspension.
The B2-value dependence on system parameters may be used for sketching a state
diagram.

In Fig. 1.2, illustrative B2-values are presented for the potentials considered. We
brie�y address how strong a potential may be in order to recover B2 = 4vc due
to contributions within the colloidal domain. Consider the PS potential de�ned in
the previous Subsection. The B2 of this potential (BPS

2 /vc = 4
[
1 − e−βζ

]
) converges

towards 4vc already for βϵ ≈ 5 (see leftmost panel of Fig. 1.2). Hence, for any pair

6
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Figure 1.2 Normalised second virial coe�icient as a function of the contact value of the
potential considered [W (r = σ )] for the indicated pair potentials.

interaction with W (r = σ ) ≈ 5kBT or larger and increasing in r ≤ σ , Eq. (1.7)
remains (approximately) valid. This simple mental experiment shows that B2 must
be interpreted carefully: even if B2 is close to the HS value, it does not imply that
the particles behave as HSs. In fact, the �uid–solid coexistence region for PSs with
βϵ = 5 occurs at volume fractions ϕc ∈ {0.8, 1.0} 42: far above the coexistence region
for HSs, ϕc ∈ {0.49, 0.55} 48.

For purely repulsive HCY potentials, B2 increases with respect to the HS-value
and is below the HS case for attractive HCY cases. For the AOV pair-interaction,
WAOV(r = σ ) < 0 whenever the depletant concentration ϕR

d is �nite. Consequently,
B2 ≤ 4vc for allW (r = σ ).

1.3.3 FMSA: closed expressions for interacting colloids

Conveniently, from the HCY potential one can extract approximate (yet accurate)
analytical thermodynamic expressions for the free energy of a HCY-interacting colloi-
dal suspension (within certain limits).49 The free energy of a dispersion of colloidal
spheres (Fc) interacting via hard-core Yukawa (FHCY) is described as consisting of a
hard core plus an additional Yukawa contribution39,50:

Fcvc

kBTV
≡ F̃HCY

k = F̃HS
k + F̃Y, (1.8)

where V is the volume of the system considered, and k denotes the phase-state (�uid
or solid). The pure HS contributions to the free energy (F̃HS

k ) are well-known. 51,52 For
a �uid of HSs, an accurate expression up to colloid volume fractions ϕc ≈ 0.5 follows
from the Carnahan-Starling (CS) 52 equation of state (EOS):

F̃HS
�uid = ϕc

(
ln
ϕcΛ

3
B

vc
− 1

)
+

4ϕ2
c − 3ϕ3

c
(1 − ϕc)2

,
(1.9)

7



1 | Introduction

where ΛB is the de Broglie thermal wavelength. For a face-centred cubic (FCC)
crystalline solid phase the Lennard-Jones–Devonshire (LJD) 51 EOS reads:

F̃HS
solid = 2.1306ϕc + 3ϕc ln

(
ϕc

1 − ϕc/ϕ
cp
c

)
+ ϕc ln(Λ3

B/vc), (1.10)

where ϕcp
c = π/(3

√
2) ≈ 0.74 is the volume fraction of HSs at close packing. The value

2.1306 has been collected from Monte Carlo simulations of the pure HS system, 53 but
is fairly close to the LJD solution.

Tang et al.49 derived an expression for the free energy of a collection HCY spheres
via a �rst-order mean spherical approximation (FMSA). The HCY potential allows
an analytical solution of the Orstein-Zernike integral upon using the mean spherical
closure approximation in Laplace space. This leads to analytical expressions for the
radial distribution function and the direct correlation function up to �rst order in
inverse temperature. The results provide a closed expression for FY in Eq. (1.8). Tang’s
approach can be extended to Multi-Yukawa potentials, and has been successfully
applied to study the interactions between charged colloidal particles 54 and to predict
multi-body properties of particles interacting through a Lennard-Jones pair inte-
raction39. This Yukawa contribution to the free energy can be written in a Van der
Waals form39,50:

F̃Y = −γYϕ
2
c,

where the Van der Waals parameter γY is not a constant but reads:

γY = γ1βϵ + γ2 (βϵ)
2 , (1.11)

in which the functions γ1 and γ2 can be expressed in terms of the auxiliary functions
LY and QY:

γ1 =
3q2

YLY

(1 − ϕc)2(1 +QY)
, γ2 =

3qY

2(1 +QY)4
,

where

LY = 1 + 2/qY + ϕc(2 + 1/qY),

and

QY = ϕc
6(1 − ϕc)qY + 9ϕcq

2
Y − 3q3

Y[1 + 2ϕc − LY exp (−2/qY)]

2(1 − ϕc)2
. (1.12)

The osmotic pressure Π and chemical potential µ of HCY-interacting spheres follow
from standard thermodynamic relations:

βµ ≡ µ̃ =

(
∂F̃c

∂ϕc

)
T ,V

; βΠvc ≡ Π̃ = ϕcµ̃ − F̃c, (1.13)

8



1.3 | Common methodology

The relations in Eq. (1.13) apply in general, not only for interacting HCY spheres.
Calculation of coexistence binodals and characteristic phase points from the FMSA
EOS follow the same reasoning explained in the next Section. Further improvements
of Tang’s FMSA have been proposed, 55,56 yet lacking the simple and tractable closed
forms presented here.

1.3.4 FVT for PHS-depletants

We account for mixtures of hard colloidal particles plus non-adsorbing polymers
in a semi-grand canonical fashion via the free volume theory (FVT) developed by
Lekkerkerker et al. in the 1990s. 15,57,58 Within FVT, the colloid–polymer mixture (CPM,
the system S of interest) is considered to be in equilibrium with a reservoir (R) of
polymers. In R and S the solvent is treated as background. System and reservoir
are connected through a membrane permeable for the polymers and the common
solvent, but impermeable for the colloidal particles. A sketch of this osmotic equili-
brium approach is given in Fig. 1.3 for a cuboid–polymer mixture. The key quantity
relating the polymer concentrations in R and S is the free volume fraction available
for depletants in the system α . Following the original ideas of FVT, we assume that α
is independent of the chemical potential of the depletants in R. Furthermore, we take
the simplest model for polymeric depletants, namely the PHS model introduced in
Section 1.3.1. The FVT approach results in the following (normalised) expression for
the semi-grand potential of the system:

Ω̃ =
βΩvc

V
= F̃c − Π̃

R
dα
vc

vd
, (1.14)

withV the volume of the system, Π̃R
d = βΠ

R
dvd the reduced depletant osmotic pressure

in R, and vd the volume of the depletant (vd = 4π |δ |3/3). Since the depletants are
considered to behave ideally, the (reduced) osmotic pressure in the R is simply given
by Van ’t Ho�’s law:

Π̃R
d = βΠ

R
dvd = ϕ

R
d .

The depletant concentration in the system follows from:

ϕS
d = αϕ

R
d .

From the semi-grand potential, the chemical potential and osmotic pressure of
the CPM of interest follow similarly as in Eq. (1.13) from standard thermodynamic
relations:

βµ ≡ µ̃ =

(
∂Ω̃

∂ϕc

)
T ,V ,N R

d

; βΠvc ≡ Π̃ = ϕcµ̃ − Ω̃, (1.15)

9
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Figure 1.3 Schematic representation of the free volume theory construction for colloid–
depletant mixtures. Colloidal cuboids are indicated as big black particles; the corresponding
depletion zones surrounding them are indicated in grey. The system of interest (centre) is
surrounded by a reservoir containing only depletants (grey particles). Le� panel: there is only
one stable phase. Right panel: at high enough depletant concentration the system of interest
is phase-separated into a cuboid-rich and a dilute cuboid phase.

with N R
d the number of depletants in R. Using these quantities, phase coexistences

follow from:

µ̃i = µ̃ j = ... and Π̃i = Π̃j = ..., (1.16)

where i and j denote the two (or more) coexisting phases of kind i , j. Coexistence
between three phases corresponds to a triple point (TP). Four-phase coexistence is
denoted via a quadruple point (QP). Colloidal systems may exhibit isostructural phase
coexistence (such as gas–liquid equilibrium) when attractive interactions between
particles are present. 50,58 In such a case, the low-density phase will be entropically
favourable and the high-density phase is stabilized by attractive interactions between
the particles. Commonly, the limit of isostructural phase coexistence is de�ned via
the critical point (CP), commonly calculated via:

∂µ̃i
∂ϕc
=
∂2µ̃i
∂2ϕc

= 0 and
∂Π̃i

∂ϕc
=
∂2Π̃i

∂2ϕc
= 0. (1.17)

Whenever a phase state has a CP, an isostructural phase coexistence can take place,
which can be stable or metastable. The transition from a potentially stable to a
metastable isostructural phase coexistence is de�ned by the critical end point (CEP),
where the CP and the TP (or QP) of the corresponding isostructural coexistences
merge. 50,59 These conditions enable to determine the topology of the phase diagrams
as a function of the system parameters of the CPM of interest.

The only remaining unknown parameter in Eq. (1.14) is the free volume fraction
for depletants in the system α . Widom’s insertion theorem60 relates the free volume

10



1.3 | Common methodology

fraction α to the work ω required to bring a depletant from R to S via:

α =
〈Vfree〉o

V
= e−βω , (1.18)

where 〈Vfree〉o is the average free volume for depletants in the undistorted (depletant-
free) system. This work, ω, is approximated using Scaled Particle Theory (SPT)61,62,
by connecting the limits of inserting a very small depletant and a very big depletant
in the system of interest, followed by scaling back to the actual size of the depletant.
In this thesis, we only consider spherical depletants. Hence, a single scaling factor (λ)
enables to express this work by combining the limiting results for λ→ 0 and λ→∞:

ω(λ) = ω(0) +
∂ω

∂λ

����
λ=0

λ +
1
2
∂2ω

∂λ2

����
λ=0

λ2︸                                     ︷︷                                     ︸
λ�1

+ vdΠ
o
k︸︷︷︸

λ�1

,
(1.19)

where Πo
k is the osmotic pressure of the depletant-free system (in a phase k). In

the small depletant insertion limit (λ � 1) there is no overlap of depletion zones:
α → [1 − ϕcvexc(λ)/vc], with vexc the excluded volume between the hard colloid of
interest and a sphere. Eq. (1.18) then allows writing ω(λ � 1) as:

βω(λ � 1) = − ln
[
1 − ϕc

(
vexc(λ)

vc

)]
, (1.20)

where the scaled depletion volume is obtained by scaling the depletant size: |δ | → λ |δ |.
For big depletants (λ→∞) we assume that the insertion work ω is the work required
to create a cavity with the size of the depletant in the system. We use normalised
units also in the big-depletant limit for convenience, thus:

βω(λ � 1) =
vd(λ)

vc
Π̃o
k . (1.21)

By combining Eqs. (1.19) and (1.21), and inserting λ = 1 a general expression for ω is
derived:

βω =− ln(1 − ϕc)︸        ︷︷        ︸
point depletant

+ y
∂ṽexc(λ)

∂λ

����
λ=0
+
y

2

(
∂ṽexc(λ)

∂λ

����
λ=0

)2
+
y

2
∂2ṽexc(λ)

∂λ2

����
λ=0︸                                                                   ︷︷                                                                   ︸

colloidal shape-dependent term, Qs

+
vd

vc
Π̃o
k︸︷︷︸

cavity limit

,

(1.22)

with ṽexc = vexc/vc and

y =
ϕc

1 − ϕc
.
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Inserting Eq. (1.22) into Eq. (1.14) using the relation given in Eq. (1.18) yields the
general expression:

Ω̃ = F̃c −
vc

vd
Π̃R

d (1 − ϕc) exp [−Qs] exp
[
−
vd

vc
Π̃o

c

]
. (1.23)

Hence, provided the particular expression for vexc and the EOS of the depletant-free
system are known, determination of phase coexistence is straightforward. All results
presented for the FVT approaches can be easily extended towards polymers in Θ

and good solvent conditions at elevated concentrations. 15 Independent studies have
shown that, for instance, the phase behaviour of anisotropic colloid–polymer mixtures
are not dramatically sensitive to the speci�c nature of the depletant.63 Therefore it is
expected this approach can provide insight into a wide range of mixtures of colloids
plus depletants while being tractable.

1.3.5 SCF for micelle–micelle interactions

In the last two Chapters of this thesis we focus on spherical micelles, particularly
on micelle–micelle interactions. Speci�cally, we studied diblock copolymer micelle
suspensions. We used the Scheutjens–Fleer self-consistent lattice theory (SCF)64–66

to numerically resolve micelle–micelle interactions, employing the sfbox software
developed by prof. F.A.M. Leermakers at Wageningen University. This software was
also used in the computations in Chapter 4. It is based upon Flory–Huggins mean-�eld
theory,67 but with concentration gradients following discrete versions of the Edwards
equation accounting for mean-�eld polymer propagations68. The interdependence of
the (segment) potentials (uk ) and the volume fractions (ϕk ) for each component k in
the system,

ϕk (uk ) ↔ uk (ϕk ) ,

is the core idea of the self-consistent method.69 Provided an user-de�ned starting
con�guration for the components in the lattice, the free energy (F ) of the lattice is
optimised in a self-consistent fashion.

The SCF routine provides concentration pro�les from which other quantities may
be derived. For instance, the method used to calculate the hydrodynamic size of
self-assembled structures from SCF density pro�les follows the work of Scheutjens et
al.66,70,71 It is based upon applying the Debye-Brinkman equation to the SCF-computed
polymer segment density pro�le. The core idea is to relate the (theoretical) solvent
velocity pro�le [v(z)] to the polymer segment concentration pro�le ϕp(z). In each
layer at position z, the quantity ᾱ(z) = v(z)/v ′(z) can be related to the segment
concentration pro�le via:

ᾱ =
ρ̄(z) tanh[ρ̄(z)]−1 + ᾱ(z − 1)

1 + ᾱ(z − 1)ρ̄−1(z) tanh[ρ̄(z)]−1 , (1.24)

12



1.3 | Common methodology

where ρ̄(z) is a normalised polymer segment concentration pro�le with respect to
the bulk concentration:

ρ̄ =

√√
1 − ϕp(z) + ϕ

bulk
p

ϕp(z) − ϕ
bulk
p

. (1.25)

The hydrodynamic radius (in lattice units) hence relates to the outermost layer at
which there is no more change in the relative solvent velocity.

Within SCF, the boundary conditions and the lattice geometry need to be speci�ed.
For spherical micelles we consider two di�erent lattice types, namely a spherical
lattice with concentration gradients in one direction and a cylindrical lattice with
concentration gradients in two directions. Mirror boundary conditions are set for all
boundaries. 72 A spherical lattice is de�ned as shells from the centre (z = 0) of the
lattice up to z = Nlat (Nlat beign the number of lattice sites). The �rst lattice layer
corresponds to the centre of the spherical micelle. As we focus on conditions where
spherical micelles are preferred over other self-assembled morphologies, a spherical
lattice is used in most of our calculations. A cylindrical lattice is de�ned by a grid
of N r

lat sites in the radial coordinate, and N
y
lat sites in the longitudinal coordinate,

and it is used in Chapter 7 simply to assess the accuracy of the calculation of the
micelle–micelle interactions using the spherical lattice.

Due to the mirror conditions imposed, a micelle is formed in the presence of K
surrounding ones. The distance between the centres of two nearest neighbour micelles
r de�nes the characteristic length scale involved in the calculation of micelle–micelle
interactions. For the spherical lattice, K = 12 and r = 2Nlat. For the cylindrical one,
six cylindrical lattices are present around the simulated one in the radial direction
(Kr = 6) while two span from the top and bottom of the radial mirror conditions
(one from the upper and one from the lower boundaries of the lattice (Ky = 2). In
this case, the micelle–micelle interaction calculation depends on how N (k)lat is varied
(k = {r ,y}). In the cylindrical lattice, micelles are formed in the centre of the radial
axis of symmetry. This implies that the nearest neighbours are at distances rr = 2N r

lat
(radial direction) and ry = N

y
lat (longitudinal direction). Both for the spherical and

cylindrical lattices a lattice constant k = 3 was used, following previous research on
SCF applied to self-assembly. 73

The SCF approach is combined with small system thermodynamics to study
the conditions under which the diblock copolymers form self-assembled morpholo-
gies. 74,75 To �nd the equilibrium con�guration, we compute the grand potential Ω of
the system for a speci�c diblock copolymer as a function of the aggregation number
дp:

Ω = F −
Nt∑
i=1

Niµi , (1.26)
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where µi and Ni are the chemical potential and (number) concentrations of the species
i , and Nt is the number of components considered. This grand potential relates to the
inhomogeneities in the system: in a pure solvent Ω = 0. As diblock copolymers are
added to the solution, Ω increases due to the contacts present between solution and
solvophobic blocks. The appearance of the �rst thermodynamically stable micelle
is marked by a maximum in Ω. If a micelle can form, Ω decreases with дp, and at a
given diblock concentration the condition Ωд,0 = 0 is met (with ∂Ω/∂дp < 0).34 At
this condition the block copolymers in the micelle are in equilibrium with free block
copolymers in the bulk. Thus, the chemical potential of one copolymer in the micelle
is equal to that in the bulk:

µbulk
p = µmicelle

p ≡ µp. (1.27)

The work required to dissociate all polymers from the fully-grown self-assembled
structure (equivalently, the energy gain of the diblocks upon micellisation) at a certain
intermicelle distance r follows as 76:

ω(r ) = дp(r )µp(r ) + Ns(r )µs(r ) . (1.28)

Note that this work is the free energy of micellisation when Ω = 0 [Eq. (1.26)].
A similar approach has been followed to study the phase behaviour of �ower-like
micelles. 77 If a homopolymer (G) is also added to the considered colloidal suspension
(Chapter 8), we compute the work required to dissociate a micelle in its presence (the
free energy di�erence when a second component is present in the system):

ω(r ) = дp(r )µp(r ) + Ns(r )µs(r ) + дG(r )µG(r ), (1.29)

with дG the excess number of guest homopolymer in the system. The SCF-provided
equilibrium quantities enable us to estimate the micelle–micelle interaction as:

W (x) =
2
K
[ω(r ) − ω(r = ∞)] . (1.30)

These e�ective interactions consider micelles composed of дp polymers surrounded
by K other micelles at a distance r , and are directly estimated from the SCF output.
Our approach does not imply any ad hoc interaction between the micellar domains.
Rather, they originate naturally from the equilibrium properties of micelles formed
at a given r . From typical di�usion coe�cient and micelle size values for block
copolymer micelles 78,79, the time required for a micelle to travel over its own size
(the con�gurational relaxation time 1) is of the order of µs. This time estimate applies
independently of the relative block lengths. Remarkably, the unimer–micelle exchange
may also be up to the µs time scale if the solvophilic block is signi�cantly larger than
the solvophobic one. If, on the contrary, the solvophobic and solvophilic blocks are
of similar chain length, the unimer–micelle exchange rate drops dramatically.80,81
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1.3 | Common methodology

Such self-assembled morphologies are often termed ‘frozen micelles’. These e�ects
are linked to the energy barrier of removing a unimer from the micelle, which is
smaller the larger the solvophilic block. Contrary to hard, non-associative particles,
(spherical) association colloids may adapt their properties while interacting with each
other.

Note

Numerical computations (e.g., phase diagram calculations, B2 calculations), data
processing (e.g., sfbox and Monte Carlo output data), and plots were conducted using
Wolfram Mathematica.82 Mathematica scripts are available from the author upon
reasonable request.
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Part I

Spherical colloids

A la mar fui por naranjas, cosa que la mar no tiene.
Metí la mano en el agua: la esperanza me mantiene.

I went to the sea for oranges, which the sea does not have.
I reached into the water: hope keeps me.

Pedro García Cabrera

17





Chapter 2

Tuning the phase diagram of
colloid–polymer mixtures

Abstract
A theory that predicts the phase behaviour of interacting Yukawa spheres in a so-
lution containing non-adsorbing polymer is presented. It is found that additional
Yukawa interactions beyond the hard core a�ect the location and presence of coexis-
tence regions and phase states. The theoretical phase diagrams are compared with
Monte Carlo simulations. The agreement between the two approaches supports
the validity of the theoretical approximations made and confirm that, by choosing
the parameters of the interaction potentials, tuning of the binodals is possible. The
colloidal gas–liquid critical end point (CEP) characterizes the phase diagram topology.
It is demonstrated how an additional Yukawa interaction shi�s this CEP with respect
to the hard sphere case. Provided a certain depletant–to–colloid size ratio for which
a stable colloidal gas–liquid phase coexistence takes place for hard spheres, added
direct Yukawa interactions turn this into a metastable gas–liquid equilibrium. The
opposite case, the induction of a stable gas–liquid coexistence where only fluid–solid
was present for hard spheres, is also reported.
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2 | Tuning the phase diagram of CPMs

2.1 Introduction

When considering hard spheres (HSs, diameter σ ) depleted by penetrable hard sp-
heres (PHSs, diameter 2δ ), two di�erent regimes for depletion interaction can be
distinguished in terms of the relative depletant size q ≡ 2δ/σ . For q . 0.15, a
collection of spheres whose interaction is mediated by PHS-depletants is pair-wise
additive. 15 Otherwise, multiple overlap of depletion zones needs to be accounted
for. The consequences of assuming pair-wise addition in the latter case have been
analysed and discussed in detail.83,84 Describing the mixture by an e�ective pair
potential approach has been widely applied.85,86 Contrary to the usually complex or
computationally-based approaches followed, in this Chapter we describe a simple
(yet relatively accurate) method for predicting phase diagrams of colloid–polymer
mixtures (CPMs), in which the direct colloid–colloid interactions are not too strong.

Much attention has been paid to the phase behaviour of HSs plus depletants
when multiple overlap of depletion zones occur (q & 0.15).41,87,88 However, limited
theories are available for colloidal particles interacting beyond their hard-cores and
added free non-adsorbing polymers (acting as depletants). Available approaches
focused on short-range repulsive colloids.40,89–92 In real systems, more involved (soft)
interactions are often present. For example, in paint and food dispersions, particles
are often charged and/or partially (de)stabilized by adsorbing polymers.93

We show in this Chapter how additional direct interactions between the colloidal
particles modify the phase diagram of a CPM. The direct interactions between the
spherical colloidal particles are described via hard-core Yukawa potentials49 [HCY,
see Eq. (1.1)]. The non-adsorbing polymers are treated as PHSs 14 (see Chapter 1).
In Section 2.3, phase diagrams of HCY spheres in a sea of PHSs are presented and
compared with Monte Carlo (MC) simulations. It is shown how additional (relatively
weak) direct colloid–colloid interactions modify the phase coexistence landscape
within the framework of free volume theory (FVT) 58.

2.2 FVT for hard-core Yukawa colloids

As introduced in Chapter 1, the required FVT ingredients for colloidal particles mixed
with PHSs are the equation(s) of state of the pure colloidal suspension and the excluded
volume between a colloidal particle and a PHS. For a dispersion of HCY-interacting
colloidal spheres, we use the closed expressions provided by the �rst order mean
spherical approximation.49 From the general expression given in Chapter 1:

Ω̃ = F̃HCY
k − q−3Π̃R

dα , (2.1)

the free volume fraction for depletants in the system α follows as:

α = (1 − ϕc) exp [−Qs] exp
[
−q3Π̃o

k

]
, (2.2)
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Figure 2.1 Dimensionless osmotic pressure of the fluid phase of hard-core Yukawa (HCY)
fluids for a collection of ϵ-values (black curve corresponds to ϵ = 0; solid coloured curves
correspond to HCY a�ractions whilst dashed coloured curves indicate HCY repulsions). Insets
show the di�erence in free volume fraction with respect to the hard sphere case for the relative
depletant–to–colloid size q indicated.

where Π̃o
k ≡ Π̃HCY

k follows from Eq. (1.8) using standard thermodynamic relations [see
Eq. (1.13)]. The term Qs reads as for hard-spheres mixed with PHSs, as it is assumed
that the direct colloid–colloid interactions do not a�ect the depletion zones:

Qs = 3qy +
y

2
q2y [6 + 9y] , (2.3)

where

y =
ϕc

1 − ϕc
. (2.4)

Logically, Eq. (2.1) reduces to the original FVT expression when considering a HCY
potential with ϵ = 0. In Fig. 2.1 we present the osmotic pressure of a HCY �uid (Π̃o

F)
and the free volume fraction α (insets) for PHSs for the system parameters indicated.
Added Yukawa attractions lower the osmotic pressure Π̃o

F of the colloidal dispersions,
while repulsions increase Π̃o

F with respect to the pure HS interaction. This can be
explained by the fact that an additional weak repulsion increases the e�ective excluded
volume of the colloidal particle.40 An inverse e�ect is expected for weak attractions.
This has a signi�cant in�uence on the stability of the gas–liquid (G–L) and �uid–solid
(F–S) coexistence regions, inducing di�erent coexistences with respect to the HS case
at given system parameters (q,qY, ϵ).

In the insets of Fig. 2.1, α is compared to the HS-case in a colloidal �uid state.
As the depletants are considered as PHSs, α does not to depend on the depletant
concentration (ϕR

d ). Varyingq has a greater e�ect onα than tuning the HCY interaction.
This naturally follows from the fact that all HCY contributions to α contain a q3 pre-
factor, whereas depletant contributions are of the order of q and q2 [see Eq. (2.2)]. In
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2 | Tuning the phase diagram of CPMs

all cases, the di�erence in α between the HS and the HCY cases is small, but (logically)
increases with q and with increasing strength (|ϵ |) of the Yukawa interactions. Note
also that α increases with respect to the HS case for repulsive HCY interactions
while it decreases for added HCY attractions [due to the negative sign of the osmotic
pressure in Eq. (2.3)].

2.3 Results and discussion

Firstly, we address the phase diagrams of HCY spheres mixed with PHSs, and analyse
the conditions under which a stable G–L coexistence occurs. Subsequently, we focus
on the value of the second virial coe�cient B2 at the critical point. Finally, selected
phase diagrams are compared with Monte Carlo simulations.

2.3.1 Phase diagrams

In this Section, phase diagrams are presented for dispersions containing HCY inte-
racting spheres plus PHSs. As expected from the pair potentials (see Fig. 1.1), the
parameters that determine phase coexistence are the relative depletant concentration
ϕR

d , the relative size of the depletant (q ≡ 2δ/σ ); and the strength (βϵ) and range (qY)
of the HCY interaction. In Fig. 2.2, FVT phase diagrams are presented for mixtures
of HSs (ϵ = 0) and PHSs for a wide range of q-values. These provide a baseline for
quantifying the e�ects of additional direct colloid–colloid interactions. In absence
of depletants, F–S coexistence is found for ϕc ∈ {0.49, 0.55} as computed from the
�uid and solid equations of state (see Chapter 1), in close agreement with computer
simulations.48 Colloidal G–L phase coexistence is obtained for ϕR

d values above the
critical point and is characterised by a distinctive U -shape. For short-range depletion
attractions (q . 0.33) only colloidal �uid–solid (F–S) coexistence is observed (the
G–L coexistence is metastable). For long-range depletion attractions (q & 0.33), stable
colloidal G–L coexistence takes place. The transition between these two regimes is
de�ned by the critical end point, CEP. 15,59 Three binodal curves are compared with
(independent) simulation results.41

In Fig. 2.3(a), phase diagrams calculated for a long-range Yukawa interaction
(qY = 1) combined with (relatively) short-range depletion attraction (q = 0.25) are
presented. For particles with repulsive HCY interactions (dashed curves) there is
only F–S coexistence and the coexistence points are located at higher values of ϕR

d as
the repulsions become stronger (increasing |βϵ |). There is G-L coexistence for this
combination of {qY,q} when the attractions are strong enough (βϵ > 0.25). Such
G–L coexistence leads to a narrow liquid window for (βϵ = 0.66), and for stronger
attractions the whole phase space gets unstable (demixing). The latter indicates that
the thermodynamics of the CPM are dominated by the state of the depletant-free HCY
suspension. While HCY repulsions hardly a�ect the F-S phase in 0.49 . ϕc . 0.55,
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Figure 2.2 Phase diagrams for mixtures of hard spheres (HSs) plus penetrable hard spheres
(PHSs) for a wide range PHS–to–HS size ratios (q) between 0.05 and 1 as indicated. The cases
q = 0.1, q = 0.6 and q = 1 are compared with independent simulation results (squares, taken
from41). Filled circles refer to the critical points when G–L coexistence is thermodynamically
stable (q & 0.33).

additional HCY attractions broaden this F–S coexistence region. As expected, added
direct repulsions between colloidal spheres stabilize (widen) the stability regions of
colloid–polymer mixtures while direct attractions decrease the extent of the stable
regions.

Phase diagrams obtained as a result of long-range depletion (q = 1) and short-
range HCY interactions (qY = 0.15) are presented in Fig. 2.3(b). Independently of
the strength and nature of the HCY interaction, the characteristic U -shape of G-L
coexistence is always present for the combination {q,qY} = {1, 0.15}. There is a
remarkable increase of the width between the two vertical curves corresponding to
F–S coexisting phase at low ϕR

d when direct attractions are incorporated (i.e., the HS
F–S coexistence broadens due to added direct attractions). Even though the Yukawa
attraction is short-ranged, the G–L binodals are clearly shifted. There is always G–L
coexistence atϕc < 0.4 for these sets of {qY,q, ϵ} values. Contrary to the previous case,
for this set of {q,qY}-values the G–L coexistence seems to follow what is expected
when no additional direct colloid–colloid interactions are taken into account.

Di�erent combinations of Yukawa and depletion interactions can be explored by
systematically varying the system parameters {q,qY, ϵ}. The most striking observation
is that the direct Yukawa interactions change the topology of the phase diagrams
with respect to the HS case, inducing a stable G–L coexistence when only F–S is
present for HSs and viceversa. For instance, in Fig. 2.3(c) the G–L coexistence vanishes
upon increasing the strength of the direct HCY (short-ranged) attraction (becomes
metastable with increasing ϵ). In Fig. 2.3(d) binodals are presented for the set {q,qY} =

{0.33, 0.25}, the corresponding critical end point (CEP) of purely attractive HCY �uids

23



2 | Tuning the phase diagram of CPMs

de
pl
et
an
tv
ol
um
e
fr
ac
tio
n
in
R
ϕ
dR

0.1

0.3

0.5

0.7

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a)

q = 0.25 , qY = 1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.3

0.5

0.7

0.9

(b)

q = 1.0 , qY = 0.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.3

0.5

0.7

0.9 (c)

q = 0.4 , qY = 0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.3

0.5

0.7

0.9
(d)

q = 0.26 , qY = 0.33

colloid volume fraction ϕc

|βϵ|

0.0

0.33

0.66

1.0

1.5

Figure 2.3 Phase diagrams in the reservoir representation for a mixture of hard core Yukawa
(HCY) spheres and PHS depletants for several relative depletant sizes q and ranges of HCY
interaction qY with varying HCY strength ϵ as indicated. The G–L critical points are indicated
by circles. Black curves hold for ϵ = 0, corresponding to HS-PHS mixtures. Dashed curves
correspond to HCY repulsions, while solid ones to a�ractions.

and HSs in a sea of PHSs (see next Section). The di�erence for HCY spheres in a sea of
PHSs with respect to the HS case is small and follows the trends previously described.
All binodals in Fig. 2.3(d) exhibit a shape of the �uid branch that is critical (or nearly
critical), and a narrow G–L coexistence arises for repulsive Yukawa interactions above
|βϵ | = 0.33. Due to combined short-ranged indirect attractions and short-ranged
repulsions, G–L coexistence takes place, while it was metastable for HSs plus PHSs.
Thus, by carefully analysing the CEP, one can reveal under which conditions a G–L
coexistence appears or disappears in cases when it was present in a HS+PHS mixture.

The following general trends can be withdrawn from computed phase diagrams
plotted in Fig. 2.3. Additional Yukawa attractions between colloidal particles lower the
depletant concentration required for phase coexistence. This applies independently
of the nature of the coexistence phase (G–L or F–S) and the ranges of the interactions
considered. Equivalently, added repulsions increase the required depletant concen-
tration for phase coexistence. The latter is in qualitative agreement with computer
simulations and experimental results for charged nanoparticles in polymeric soluti-
ons.40,90–92 Not surprising, the di�erence in the phase diagram with respect to the
HS cases is more dramatic for larger values of |βϵ | and qY. Su�ciently strong, short-
ranged Yukawa attractions turn the G–L coexistence region eventually metastable,
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Figure 2.4 Critical end point curves. Le� panel: relative size of depletant at the CEP.
Right panel: relative depletant concentration in the reservoir, ϕR,cep

d , at the critical depletion
interaction endpoint, qcep, for various added HCY interactions as predicted by free volume
theory. All curves coincide at ϵ = 0, the hard sphere case (black line). On the le� panel, grey
vertical line corresponds to the CEP of a�ractive HCY spheres. For the description of the
regions (I)-(IV), see main text.

inducing a thermodynamically stable F–S coexistence even at low colloid volume
fractions. This shows that it is possible to modify the phase diagram topology of CPMs
by tuning the Yukawa pair potential. Such tuning of the direct colloid interactions in
experimental systems can be achieved for example by modifying the double layer94

or brush repulsion95,96 or in near-critical solvent mixtures97.

2.3.2 Critical end point

The critical end point (CEP) is the main indicator of the topology of the phase diagrams,
as it marks the limits at which a certain isostructural coexistence is stable. 59 Here, we
focus on the CEP of the colloidal gas–liquid (G–L) coexistence. For a suspension of
attractive HCY spheres, 50 the CEP is qcep

Y ≈ 0.26, while for HSs in a sea of PHSs, FVT
provides98 qcep ≈ 0.33. These values establish a natural reference point for quantifying
the e�ects of added Yukawa interactions, as hinted at in Fig. 2.3(d). The calculated
q-values at the CEP are summarised in Fig. 2.4 (right panel): if a chosen point in {q,qY}

lies below the CEP curve at a given ϵ , the G–L coexistence is metastable. Above {q,qY},
stable colloidal G–L coexistence appears. On the right panel, the minimum depletant
concentration required for a stable G–L coexistence (ϕR,cep

d ) are also presented. As
expected, ϕR,cep

d lowers with added Yukawa attractions and increases with Yukawa
repulsions (see Fig. 2.4, left panel).

We have divided the ranges required for stable G–L coexistence in terms of the
CEP-ranges of the HCY and depletion interactions into regions (I) to (IV), marked
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2 | Tuning the phase diagram of CPMs

on the right panel of Fig. 2.4. (I): q > qcep, qY < q
cep
Y . Due to a short-range direct

HCY attraction that destabilizes colloidal G–L coexistence, the range of the depletion
interaction needs to be increased in order to still achieve a stable G–L coexistence,
see the vanishing G–L binodals in Fig. 2.3(c). Added short-range HCY repulsions
do not destabilize the G-L coexistence. (II): q > qcep, qY > q

cep
Y . Additional HCY

repulsions barely a�ect the stability of the G–L coexistence [see Fig. 2.3(c)]. (III):
q < qcep, qY < q

cep
Y . There is no G–L coexistence present unless q ≈ qcep and qY ≈ q

cep
Y .

In this (surprising) case, short-range direct colloid–colloid repulsions may induce a
stable (narrow) G–L coexistence when it was not present in the HS case, as shown
in Fig. 2.3(d). (IV): q < qcep, qY > q

cep
Y . Su�ciently long-ranged HCY attractions

may induce stable G–L coexistences when these were not present in the HS case,
see Fig. 2.3(a), for βϵ = 0.66. Note, however, that stable G–L coexistence does not
necessarily imply the presence of a G–L critical point at �nite depletant concentration
when strong and long-ranged Yukawa and depletion attractions are combined, see
Fig. 2.3(a) for strong attractions. As observed from the CEP behaviour, the system
is governed either by the depletion or the HCY pure systems far from their relative
CEPs. Let us take, for example, the HCY-attractive cases (a) and (b) in Fig. 2.3. In (a),
the G–L of the present for HSs+PHSs may simple ‘sink’ into the F–S coexistence of
the pure attractive HCY system when ϵ is large enough; in (b) the G–L coexistence
appears because it was present in the HS+PHS mixture; it does not get metastable
even at relatively high ϵ-values.

2.3.3 Second virial coe�icient at the critical point

It is worthwhile analysing the value of the second virial (B2) coe�cient at the critical
point (CP), given the tools for systematically calculating the CP from FVT. In Fig. 2.5
the normalised second osmotic virial coe�cient (B∗2 ≡ B2/vc) is plotted as a function
of q for two di�erent qY-values (below and above the CEP) for a collection of ϵ-values.
It is clear the Vliegenthart-Lekkerkerker (VL) criterion (B∗2 = −6) does not hold for
mixtures HSs and PHSs, even when the added direct attractions are su�ciently long-
ranged. This is due to the indirect nature of the depletion interaction: the VL criterion
is based upon direct attractions99. For su�ciently long-ranged repulsive potentials
B∗2 lies just below the HS value (B2 = 4vc) for small q-values. As expected, indirect
attractions lead to di�erent physical behaviour. As a consequence, when q is high
enough, B∗2 at the critical point can be smaller than −6 even for additional strong,
long-ranged direct attractions (as can be seen for instance for qY = 0.5 and βϵ = 1.5
in Fig. 2.5). Not surprisingly, low qY-values exhibit trends closer to the HS case than
high ones.
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2.3.4 Comparison with Monte Carlo simulations

Finally, results from Monte Carlo simulations are presented which were conducted
in order to verify the accuracy of the theoretical FVT predictions. In a simulation
box at constant volume and temperature, a collection of Nc = 256 HSs, interacting
via a depletion potential [WAOV, Eq. (1.2)] plus a HCY potential [WHCY, Eq. (1.1)], was
employed (NVT ensemble). A collection of {ϕc,ϕ

R
d } state points in the phase diagram

is considered for each set of {q,qY, βϵ}. The free energy of the ensemble at each
{ϕc,ϕ

R
d } state point is estimated using the λ-integration method for the depletion

interaction, with a ten-point Gauss–Legendre integration (following40,83,100 and re-
ferences therein). The MC simulations ran for 32000 lattice sweeps at each λ value,
enough for the system to equilibrate in the state points studied. The considered free
energy of the system was averaged over the last 3200 MC cycles at each state point.
The collected energy can be associated with the (dimensionless) free energy of the
system:

F̃MC
NVT =

©«
〈

Nc∑
i<j

WHCY(xij)〉︸             ︷︷             ︸
HCY contri.

+

∫ 1

0
dλ

Nc∑
i<j

〈WAOV(xij)〉︸                      ︷︷                      ︸
λ-inte. depletion

ª®®®®®®®¬
vc

VMC

1
kBT
≈ F̃HCY︸︷︷︸

Analytical

+ F̃AOV︸︷︷︸
Fit

,

(2.5)
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Figure 2.6 Phase diagrams in the {ϕc,ϕ
R
d } phase space for hard-core Yukawa spheres plus

penetrable hard spheres as predicted via MC simulations for the {q,qY, βϵ} system parameters
considered. Circles correspond to F-S coexistence, whereas discs indicate G–L coexistences.

where the angular brackets (〈...〉) indicate ensemble-averages. Even though already
veri�ed to be accurate, 50 we checked the feasibility of the FMSA. The match bet-
ween the MC-averaged free energies and the analytical FMSA expressions enables to
perform the λ-integration only over the depletion pair potential.

Phase diagrams obtained using the free energies obtained from MC simulations
for HCY spheres plus the considered depletion potential are presented as the data
points in Fig. 2.6. The trends observed match the ones of FVT for HCY spheres plus
PHSs (solid curves). The F–S coexistence arising from the HS case is broader at
high colloidal packing fraction than predicted by FVT at su�ciently high {q,ϕR

d }-
values. This (most likely) re�ects to the lack of accounting for multi-overlap of the
depletion zones in the MC simulations, which is accounted for within FVT. In all cases
studied, MC-predicted phase diagrams quantitatively match with FVT. Moreover,
the results for HSs+PHSs slightly di�er from the original calculations,83 where no
G–L coexistence was found for q = 0.4. Experimentally, G–L coexistence has been
reported for q > 0.3. 15 Future improvements of the simulation method are possible,
mainly accounting for the multi-body nature of the depletion interaction,41 without
presuming the FMSA free energy (i.e., performing two λ-integrations for the free
energy) or using binary mixtures of HSs and PHSs in a canonical or grand-canonical
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ensemble. This would enable a more precise comparison of our theory. Overall, there
is good agreement in the trends of the results with respect to the in�uence of the
additional Yukawa interactions.

2.4 Conclusions and outlook

The quantitative match between the Monte Carlo-generated phase diagrams and those
arising from free volume theory implies that the tuning knobs that determine the
phase diagram of hard-core Yukawa (HCY) spheres in a sea of penetrable hard spheres
(PHSs) have been identi�ed correctly within our theoretical framework. The depletant
concentration and relative depletant size plus the range and strength of the direct
interactions allow controlling the stable phase regions of colloid–polymer mixtures.
Deviation from the hard sphere (HS) case takes place as the direct HCY interactions
become stronger, inducing di�erent phase coexistence regions than those present for
a pure suspension of HSs in a sea of polymeric depletants. Here we have identi�ed
how the colloidal gas–liquid critical end point, that determines the coexisting phases
at a particular set of interaction potentials, is shifted due to combined interactions.
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Chapter 3

Depletion-driven solid–solid coexistence in
colloid–polymer mixtures

Abstract
Hard spheres mixed with penetrable hard spheres display an isostructural solid–solid
transition. This phase transition is fully driven by the entropy gain of the depletants
without invoking explicit pair potentials between the colloidal particles. The solid–
solid phase coexistence exists for size ratios q ≡ δ/R . 0.09, with δ the penetrable
hard sphere radius and R the hard sphere radius. This coexistence is revealed using a
modified free volume theory, where the free volume fraction for depletants in the
solid phase is calculated on geometrical grounds. Due to a be�er account of the
small depletant partitioning, the fluid branch of the fluid–solid coexistence also
decreases with decreasing q. Colloid–polymer mixtures are an excellent candidate
for the experimental realization of this intricate solid–solid transition, first predicted
by Bolhuis and Frenkel for hard spheres with short range pair a�ractions [PRL 72,
2211–2214 (1994)].
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3 | Solid–solid coexistence in CPMs

3.1 Introduction

We focus in this Chapter on a model system for the depletion attraction, which arises
when hard spheres (HSs, with radius R) are mixed with penetrable hard spheres
as depletants (PHSs, with radius δ ). PHSs can freely overlap with each other, but
feature hard-core repulsions with HSs. 14 All length scales involved in the problem of
interest are captured in terms of the depletant-to-colloid size ratio q ≡ 2δ/σ . PHSs
are an approximation to polymeric depletants at relatively low concentrations in
θ -solvents.98

Di�erent thermodynamic approaches can be followed to reveal the phase behavi-
our of these model colloid–polymer mixtures (CPMs). For instance, depletion e�ects
may be mapped onto an e�ective pair potential between the colloidal particles, as
done originally by Asakura and Oosawa 12,13 and Vrij 14, often denoted as the AOV
potential (see Chapter 1). These pair potentials can be used in Monte Carlo routines or
other theoretical approaches for phase stability studies.40,101 More sophisticated ap-
proaches account for multiple overlap of depletion zones41 or the statistics of polymer
chains87,102.

Independent of the approach followed, it is the size ratio q that de�nes the possible
thermodynamically stable phases. It is well-known that a collection of HSs only
exhibits a �uid–solid (F–S) phase transition.48 Upon adding large depletants (q & 0.33),
the range of the e�ective attractions is su�cient to display additionally an isostructural
F1–F2 equilibrium: the colloidal gas–liquid (G–L) transition. 15,83,103 In this Chapter we
show that, in the opposite limit of su�ciently small PHSs, an isostructural solid–solid
phase transition can be realised on purely entropic grounds, without invoking explicit
pair potentials.

3.2 Geometrical free volume fraction in the solid state

We study the model CPM on the basis of free volume theory (FVT), developed by
Lekkerkerker et al. in the early 1990s. 57,58 FVT is an instructive approach to describe
the phase behaviour of CPMs, because it accounts explicitly for the partitioning of
depletants over the di�erent phases by considering the free (accessible) volume of the
depletants in the HS dispersion. 15 Several improvements have been incorporated into
FVT to bring it closer to reality, 104–106 for instance, by accounting for con�gurations of
large polymer chains around smaller colloidal particles,98,107 that e�ectively increase
the free volume available to the depletants.

One remaining particularity of FVT for HS–PHS mixtures in the small depletant
limit (q . 0.1) is the prediction 15 that the F–S binodal becomes independent of q, see
Fig. 3.1 (grey curve). This is unphysical, because in the small q limit the depth ϵ of the
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expressions for the indicated q-values. Symbols represent experimental results from (squares)
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depletion potential for two spheres at contact in the AOV model is 15 (see Chapter 1)

WAOV(r = σ )

kBT
' −

3
2
ϕR

d
q
, (3.1)

where kBT is the thermal energy and ϕR
d the bulk volume fraction of PHSs. If the

location of the binodal in terms of depletant concentration would be independent of
q, the potential depthWAOV(r = σ ) at the binodal would diverge. Instead, one would
expect WAOV(r = σ ) at the binodal to be nearly independent of depletant size, so
that the depletant concentration at the binodal should be approximately proportional
to q. Experiments indeed show this trend (Fig. 3.1, data points). We show that this
unphysical behaviour of FVT for small q is a consequence of an imprecise description
of the free volume fraction for PHSs in the HS solid phase: an improved description
brings FVT in line with experimental results and, crucially, yields the aforementioned
solid–solid phase coexistence.

The core idea of the FVT used was introduced in Chapter 1. For HSs mixed with
PHSs the dimensionless grand potential Ω̃k ≡

Ωkvc
VkBT

(with vc the HS volume and V

the system volume) has the form:

Ω̃k = F̃k − q
−3αk Π̃

R
d , (3.2)

where F̃k is the dimensionless free energy of pure HSs and the second term on the right
hand side incorporates depletion e�ects (see Chapter 1, where also the expressions
for the free energies F̃k of a HS system are presented). Implicitly, it is assumed that
the depletant concentration does not a�ect α . For colloidal hard spheres mixed with
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3 | Solid–solid coexistence in CPMs

PHS depletants, α reads:

αF = (1 − ϕc)︸  ︷︷  ︸
point depl.

exp(−Qs)︸     ︷︷     ︸
small depl.

exp(−q3Π̃o
F)︸        ︷︷        ︸

cavity

, (3.3)

with

Qs = 3qy +
y

2
q2[6 + 9y], (3.4)

and

y =
ϕc

1 − ϕc
. (3.5)

Traditionally, Eq. (3.3) is used not only for the �uid phase, but also for the solid state. 15

The argument for this is that α in the solid phase is very low, so that the absolute
di�erence between αF and the actual free volume of a solid phase will be small. A
slightly improved estimate for the free volume in a solid phase can be obtained by
replacing Π̃o

F in Eq. (3.3) by the osmotic pressure of a HS solid, Π̃o
S. However, this does

not drastically improve the phase diagrams in the small q limit, as α is dominated
by the �rst two terms in Eq. (3.3), due to the q3 dependence of the third term. This
motivated us to investigate α in the solid state in more detail.

We determine the free volume fraction αS of the solid state on the basis of geo-
metrical arguments. A system in a solid phase state can be de�ned via its unit cell
(UC). Hence, the volume of the system V is directly the unit cell volume V = VUC. In
a solid state of static HSs where depletants are present, three di�erent regions can be
identi�ed: there is no overlap of depletion zones, there is overlap of depletion zones,
and there is no free volume for depletants. An illustrative scheme of the method set
is presented in Fig. 3.2.

In general, the free volume fraction in a solid state can be written by looking at
the unit cells as:

αS =


1 −

Ncvdep

VUC
for r̃ < 1 + q,

1 −
[
Ncvdep

VUC
−
κvoverl

VUC

]
for r̃ > 1 + q,

0 if no free volume,

(3.6)

where r̃ ≡ r/σ is the distance between nearest neighbours within the UC (which
depends on ϕc), vdep is the volume of a depletion zone, Nc is the actual number of
colloidal particles within the UC, and κ is the total number of depletion zone overlaps
within the UC. For the FCC lattice:

r̃ =
(
ϕ

cp
c /ϕc

)1/3 , VUC = 23/2r 3, Nc = 4, κ = 24 . (3.7)
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Figure 3.2 (1, 0, 0) plane representation of the unit cell of an FCC la�ice with increasing
colloid volume fraction and relative depletant size. In black, the colloidal hard spheres. Light
grey stands for the depletion zones. Dark grey regions represent the overlap of the depletion
zones. White space within each unit cell corresponds to the free volume for depletants.

Note that r is obtained via geometrical arguments: the structure of the UC does not
depend on the colloid concentration. The term vdep reads:

vdep = vc(1 + q)3. (3.8)

On the other hand, the volume of overlap of depletion zones is 15:

voverl = vc

[
1 + q −

(
ϕ

cp
c
ϕc

) 1
3
]2 [

1 + q +
1
2

(
ϕ

cp
c
ϕc

) 1
3
]
. (3.9)

The colloid volume fraction at which overlap of depletion zones just starts to take
place (ϕ∗c ) follows as:

r̃ = 1 + q, ϕ∗c = ϕ
cp
c /ṽ

o
exc, (3.10)

with

ṽo
exc = vdep/vc = (1 + q)3. (3.11)

Finally, the colloid concentration at which there is no free volume for depletants
follows from the condition at which

√
2r̃ > (q + 1), ϕc > 23/2ϕ∗c . (3.12)

With all the ingredients at hand, it follows from Eq. (3.6) that

αS =


1 − ϕcṽ

o
exc for ϕc < ϕ

∗
c (no overlap),

1 − ϕcṽ
∗
exc for ϕ∗c ≤ ϕc < 23/2ϕ∗c (overlap),

0 otherwise,

(3.13)
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Figure 3.3 Comparison between the free volume fractions for penetrable hard spheres in
a system of hard spheres from scaled particle theory (dashed curves) for the fluid phase
[Eq. (3.3)], from our analytical expression (solid curves) for the solid phase [Eq. (3.13)], and
from Monte Carlo simulations (filled circles).

with

ṽ∗exc ≡ ṽ
o
exc − 6voverl/vc. (3.14)

Monte Carlo (MC) simulations provide a way to verify the validity of Eq. (3.13).
To this end we performed simulations on an NVT-ensemble of Nc = 256 HSs with an
initial FCC state of 2 × 105 MC steps (one step corresponding to Nc trials of moving a
randomly selected particle). In each of the last 50% of the MC steps, a virtual attempt
was made to insert a PHS. The free volume fraction is given as the number of accepted
insertions over the number of trials performed. The reported values correspond to
the averages of 10 di�erent runs.

The free volume fractions for PHSs in the HS solid state are presented in Fig. 3.3 as
obtained from Eqs. (3.3) and (3.13) and are compared to our MC simulations. We focus
�rst on the case of q = 0.2. Up to ϕc ≈ 0.65, the free volume from MC simulations
follows the SPT �uid prediction, Eq. (3.3). For larger HS volume fractions, there is
a crossover to our new prediction for the solid state, Eq. (3.13). For q = 0.1, this
crossover happens also at ϕc ≈ 0.65. For even smaller depletants (q = 0.05), both the
�uid and the solid state free volume fractions become an adequate description at lower
volume fractions, but only the solid phase prediction matches the MC simulations at
larger volume fractions. On each occasion, in the close packed regime, ϕc → 0.74,
Eq. (3.13) predicts the MC results much better than Eq. (3.3). Thus, αF underestimates
the free volume for depletants for q . 0.2 at high ϕc (see Fig. 3.3). It is important to
note that the thermodynamic properties of colloid–polymer mixtures do not only
depend on the absolute value of α , but also on its derivative. As can be seen from
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3.3 | Phase diagrams and solid–solid CEP

Fig. 3.3 (left panel), the slopes near close packing are also di�erent and this bears
important consequences for the phase behaviour.

3.3 Phase diagrams and solid–solid critical end point

We now turn our attention to the phase behaviour of these HS–PHS mixtures. Calcu-
lation of phase diagrams is straightforward from Eq. (3.2) and basic thermodynamics
(see Chapter 1). Fig. 3.4 shows phase diagrams for q ≤ 0.1 using our expression
[Eq. (3.13)] for the free volume of the solid phase (black curves) and following the
usual practice of using the free volume of the �uid phase [Eq. (3.3)] for the solid phase
(solid grey curves). The pure HS F–S coexistence is recovered at ϕR

d = 0.48 Contrary
to the phase diagrams generated when the �uid free volume αF is used for the solid
phase, we now do observe a shift of the binodal to lower depletant concentrations
upon decreasing q, in agreement with experiments (see also Fig. 3.1, curves through
the experimental points). Further, we observe a shift of the F–S coexistence towards
higher HS volume fractions with increasing ϕR

d . At small ϕR
d the F–S coexistences

quantitatively follow the predictions from thermodynamic perturbation theory 110

(dashed grey lines, see Section 3.A).
The phase diagrams for q . 0.1 also display an isostructural solid–solid (S1–S2)

coexistence (orange and purple curves). Due to the piecewise nature of αS [see
Eq. (3.13)], the curvature of the S1–S2 binodal to the left and right of the critical point
di�ers. This S1–S2 critical point is found precisely at the HS volume fraction ϕ∗c where
overlap of depletion zones starts to take place: the colloid–polymer mixture phase
separates into a high density solid with large overlap of depletion zones and a dilute
solid with no overlap. We note here that the (commonly applied) second derivative
condition of a critical point (see Chapter 1) depends on the nature of the functions
involved, and is not a necessary condition for de�ning a critical point. 111,112 In fact,
due to the di�erent behaviour of α from the right and from the left of this CP, in this
case the solid–solid critical point does not satisfy this condition.

Isostructural S1–S2 coexistence has been predicted theoretically 59,113–117 and re-
ported in MC simulation studies 118,119 for systems with explicit short-range attractive
pair potentials, as well as for additive binary hard sphere mixtures 120. Many of these
authors hypothesized that mixing HSs with depletants might be a way to realise such
an S1–S2 coexistence experimentally. So far, no experiments have demonstrated this
transition. However, as in experiments, our computations do not invoke explicit pair
potentials: the isostructural solid–solid coexistence arises from the partitioning (or
entropy gain) of depletants. It must be noted that the wide presence of glassy states
at such small ranges of attraction may make this isostructural solid–solid coexistence
hard to �nd experimentally. 121–123
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Figure 3.4 Phase diagrams of hard spheres mixed with penetrable hard spheres as depletants
for various relative depletant sizes q. The various curves are obtained using the solid free
volume [Eq. (3.13)] for the solid phase (black, orange, purple curves) and using the fluid
free volume [Eq. (3.3)] for the solid phase (solid grey curves). The triple lines (purple) and
isostructural solid–solid binodals (orange) are indicated. The dashed grey curves correspond
to the fluid–solid coexistence calculated using thermodynamic perturbation theory.

We now turn our attention to the critical behaviour of the S1–S2 coexistence,
detailed in Fig. 3.5. We observe that the solid–solid critical point (CP) moves to
lower HS volume fraction with increasing q, because ϕ∗c ' ϕ

cp
c (1 − 3q) for small q

[see Eq. (3.13)]. This trend is in qualitative agreement with results from Dijkstra
et al. for binary mixtures of hard spheres of di�erent sizes. 120 Similarly, the PHS
volume fraction at the CP increases linearly with q, since the depth of the potential
[Eq. (3.1)] at the CP is expected to be approximately constant. Indeed, we �nd a
limiting value ofW (r = σ ) ≈ −0.25kBT for q → 0 from the ratio of q and ϕR

d at the CP
in terms of the AOV potential. This is considerably lower than found previously for
HSs interacting through square-well 118 and Yukawa potentials 119, for which limiting
contact potentials at the CP of W (r = σ ) ≈ −0.59kBT and −1.49kBT were found,
respectively. This suggests that the S1–S2 transition is sensitive to the precise shape
of the (e�ective) interactions. In particular, we expect the shape of the binodal near
the S1–S2 critical point to become more rounded in real systems, as Brownian motion
makes the transition from non-overlapping to overlapping depletion zones more
gradual. For the triple point (TP), a soft re-entrant behaviour is observed: the PHS
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Figure 3.5 Depletant volume fraction (ϕR
d ) and colloid volume fraction (ϕc) at the fluid–

solid–solid triple point (black curves) and solid–solid critical point (grey dashed curves) as a
function of the relative depletant size q. The open symbols denote the critical endpoint.

volume fraction �rst increases and then decreases, in agreement with previous studies
on hard spheres with short-range Yukawa attractions. 117

The conditions for which a critical point becomes metastable is marked by the
critical endpoint (CEP). More speci�cally, a CEP is found when two phases are at a
CP while they are in equilibrium with a third distinct phase, for instance when the
S1–S2 CP coexists with the �uid phase. This is identi�ed graphically in Fig. 3.5, where
the S1–S2 CP meets the TP. Thus, we �nd an upper q-limit for solid–solid coexistence
of about q ≈ 0.091; for larger PHSs the S1–S2 coexistence becomes metastable.

3.4 Conclusion

We have shown that mixtures of hard spheres plus small penetrable hard spheres
as depletants exhibit an isostructural solid–solid phase coexistence. The �nding of
this phase coexistence follows from an accurate description of the free volume for
depletants in the HS solid phase within free volume theory. Crucially, the solid–solid
coexistence is caused solely by the partitioning of the depletants—without invoking
explicit pair potentials—re�ecting the situation of depletion-induced phase separation
in experiments. The solid–solid coexistence is terminated by a critical endpoint at a
depletant-to-colloid size ratio of q ≈ 0.091. Our work contributes to the fundamental
understanding of phase transitions in mixed colloidal dispersions and paves the way
towards experimental realization of this solid–solid coexistence.

3.A TPT for the AOV potential

In this short Section we describe the approach followed to justify the shift of the
�uid–solid (F–S) coexistence towards higher packing fractions upon addition of small
depletants. Following standard thermodynamic perturbation theories 110 (previously
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3 | Solid–solid coexistence in CPMs

applied to highly-screened repulsive interactions90), we consider an e�ective sphere
of interaction whose diameter σ ′ is calculated via

σ ′/σ = 1 +
∫ ∞

1
dr̃ (1 − exp [−βWAOV(r̃ )]), (3.15)

with the Asakura–Oosawa–Vrij (AOV) depletion pair potential given as in Eq. (1.2).
The integral given in Eq. (3.15) can be solved numerically for all {q,ϕR

d }, providing σ ′.
We then map the thermodynamic functions of a pure HS suspension with an e�ective
packing fraction:

ϕ ′c = (σ
′/σ )3ϕc.

By substituting ϕc ↔ ϕ ′c on all canonical expressions, calculation of the F–S binodal
is straightforward.
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Chapter 4

Unipletion in colloid–polymer mixtures

Abstract
Addition of polymers to a colloidal dispersion modulates the interactions between
the colloids. The precise e�ect on the colloidal phase behaviour sensitively depends
on the e�ective colloid–polymer interactions. We present a theoretical framework
to predict the phase behaviour of colloid–polymer mixtures for varying a�inities
between colloid and polymer, leading for instance to polymer depletion or adsorption.
For certain conditions, polymers are neither depleted nor adsorbed: the polymer
concentration is essentially constant up to the colloidal surface, a condition which we
term ‘unipletion’. Near this condition, the calculated phase diagrams reveal a stable–
unstable–restabilisation transition with increasing polymer concentration. Similar
e�ects have been reported experimentally, for instance as a function of temperature
[Feng et al., Nat. Mat., 2015, 14,61–65], which may modulate the e�ective polymer–
colloid a�inity. Understanding unipletion opens up the possibility of preparing highly
dense, yet stable, colloid–polymer mixtures.
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4.1 Introduction

Mixtures of colloidal particles and polymers are widespread in biological93,124,125

(e.g., blood) and industrial38,126 (e.g., paint) systems. Fundamental understanding
of the colligative properties of colloid–polymer mixtures (CPMs) in terms of the
molecular parameters involved provides a design pathway towards the desired �nal
application. Particularly, the solvent quality30,31 as well as the speci�c polymer–colloid
interaction28 mediate the stability of the CPM. Polymers which do not adsorb onto
the colloidal particles cause an indirect, entropy-driven attraction between the colloids,
known as the depletion attraction.28 On the other hand, polymer adsorption driven
by enthalpic attractions between the polymer and the colloid leads to �occulation
at low polymer concentrations and steric stabilisation at higher concentrations.33 It
is clear that both depletion and adsorption phenomena strongly mediate colloidal
stability. Demixing is often undesirable since long-term stability is a requirement
for products such as food and coatings. However, phase separation can be useful
to fractionate compounds or extract certain components. Hence, continuous e�orts
take place for better understanding and controlling the stability of CPMs driven by
polymer depletion or adsorption.

Most of the theoretical investigations on the phase behaviour of CPMs have been
conducted on the depletion case, particularly under the assumption that the polymer
concentration at the colloidal surface is strictly zero. 127–129 We term this situation
classical depletion. Such a full depletion situation is formally restricted to a particular
situation. Only if the e�ective interaction between the polymer segments and the
surface is su�ciently repulsive there is a vanishing polymer segment concentration at
the colloid. 130 Whenever the entropic or enthalpic penalty for the presence of polymers
near the colloidal surface is insu�cient, there is a �nite polymer concentration
at the colloidal surface. Attention has been paid to understand the e�ect of this
weak depletion as compared to the classical depletion case29–31, also at high polymer
concentrations32. Theory98, experiments30, and computer simulation 107 studies
have revealed that the depletion thickness decreases at su�ciently high polymer
concentrations.

Little attention has been paid to the colloidal interactions induced by weakly
adsorbing polymers. 129,131 For polymers which weakly (reversibly) adsorb onto the
colloidal particle (‘weak physisorption’), segment–surface attractions are of the order
of the thermal energy. In this case, the phase behaviour of the CPM can be interpreted
using thermodynamic descriptions such as the sticky hard sphere model.47,132 At
low polymer concentrations, bridging attraction between the colloidal particles is
expected because of the partial coverage of the colloids. In case the available amount
of polymers is not su�cient to achieve (full) coverage of the colloidal surfaces, the
polymer chains tend to adsorb onto two (or more) particles simultaneously. When the
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 ~ −Rg δ ≳ −Rg

2Rg

classical depletion weak depletion weak adsorption

δ   
δ > 0

Figure 4.1 Schematic representation of polymer configurations near a hard surface. Dashed
lines represent the adsorption thickness δ , which is negative for depletion and positive for
adsorption.

concentration of adsorbing polymer is high enough, the colloids become saturated
with polymers, and hence restabilisation of the CPM may take place.66

If the polymer a�nity for the colloidal particle is su�ciently high, kinetic e�ects
become relevant and polymers irreversibly adsorb at the colloidal particles.33,133

Both for depletion and bridging attraction, short-ranged and strong interactions
may induce non-equilibrium phenomena. These include �occulation, aggregation,
gelation 134, formation of percolated networks 131 and colloidal glasses 122. These states
are out of the scope of this Chapter, where we present a theoretical framework for the
equilibrium phase behaviour from classical depletion to weak adsorption (situations
schematized in Fig. 4.1).

This Chapter is inspired by classic studies of Scheutjens and Fleer on polymer-
mediated interactions between two parallel plates. 135 Theoretically, we brie�y revisit
the well-established depletion and adsorption polymer concentration pro�les near a
hard surface for a dilute polymer solution. Then, we systematically vary the polymer–
colloid a�nity, which reveals a smooth transition from depletion to adsorption. In
between we �nd a scenario where the polymer solution appears e�ectively unaf-
fected by the colloidal particle. We term this condition unipletion, which reveals
the possibility of preparing CPMs which are stable over a wide range of polymer
concentrations. From the plate–plate interactions, we resolve the polymer-mediated
pair potentials between colloidal hard spheres. Following the ideas of the extended
law of corresponding states46 allows us to construct the phase diagrams of CPMs
ranging from classical depletion to weak adsorption via unipletion.

4.2 Interactions between hard spheres: SCF and HCY

We follow the Scheutjens–Fleer self-consistent mean-�eld theory (SCF) for polymers
at interfaces64–66, and use the sfbox software (see Section 1.3.5) for obtaining homo-
polymer segment distributions and plate–plate interactions. As the SCF computations
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are based on Flory–Huggins mean-�eld theory, segment–segment interactions are
captured via χ -parameters. We use a planar lattice with coordination number k = 6
(a simple cubic lattice), and consider concentration gradients in one dimension. The
lower and upper boundary conditions of the lattice are user-de�ned. In this Chapter,
we consider two cases: i) A mirror located after the last lattice layer combined with a
surface impenetrable to all components in the system before the �rst lattice layer. ii)
An impenetrable surface both before the �rst and after the last lattice layer. In either
case, the number of lattice sites is Nlat. In case (ii), Nlat corresponds to the distance
(h) between the two hard plates. The [guest (G)] homopolymer chains added to the
colloidal suspension are considered to be in a Θ-solvent (W). Hence, the polymer
segment–solvent interaction is χGW = 0.5. The e�ective a�nity of the polymer
segments for the surface groups at a �at wall, which represent the surface of the
colloidal (C) particle, is determined by the di�erence between polymer–colloid (χCP)
and solvent–colloid (χCW) interactions. The interaction between the �at plate and
a polymer segment (G) is set via ∆χ = χCG − χCW. At a �xed χGW, results are inva-
riant at a �xed ∆χ .30 For simplicity, we set χCW = 0, so ∆χ ≡ χCG. All interactions
are expressed in units of kBT , with kB the Boltzmann’s constant and T the absolute
temperature.

The SCF approach provides the polymer segment concentration pro�le that optimi-
ses the free energy of the lattice at the imposed ϕbulk

G and Nlat, following a semi-grand
canonical approach at a �xed polymer bulk concentrations. The chemical potentials
of all species in the bulk and in the system are equal. In the planar lattice, the resulting
grand-canonical potential Ω comprises the free energy and the chemical potential
of components in the lattice (see Section 1.3.5). Due to the Θ-solvent conditions, the
(guest) homopolymer size may be characterised via its radius of gyration 15:

Rg = b

√
N

6
, (4.1)

with b the size of a lattice site and N the number of polymer segments. We set
N = 1000 for all calculations in this Chapter. As no long-ranged interactions (e.g.,
electrostatics) play a role and we normalize all distances either by the polymer size Rg

or the colloidal diameter σ , there is no need to specify b. We express the homopolymer
concentration ϕG relative to the overlap concentration ϕ∗G, which satis�es:

ϕ∗G =
Nb3

vG
≈ 3.5N −1/2, (4.2)

with

vG =
4π
3
R3

g (4.3)
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the volume occupied by a polymer coil in bulk at low concentrations. The interaction
energyWplate per unit area between two plates separated a distance h follows as 135:

Wplate(h) = Ω(h) − Ω(∞). (4.4)

We employ the Derjaguin approximation to obtain the interactionW between two
spheres from the interaction between two plates 15:

W (r ) =WHS(r ) +
πσ

2

∫ ∞

r
Wplate(r

′ − σ )dr ′, (4.5)

where r is the distance between the centres of the colloids and WHS is the hard-
sphere potential which accounts for impenetrability between the colloidal spheres
(see Section 1.3.1). The size of the colloidal particle σ modulates the �nal pair potential
beyond the hard-core. We impose a diameter σ such that q = 0.15, with

q ≡
2Rg

σ
. (4.6)

The interaction potentials calculated via SCF (upon applying the Dejarguin approxima-
tion) are �tted to a HCY potential imposing the same second virial coe�cient B2 and
area under the integral, considering spherical coordinates. Provided q, �tted ranges
qY and strengths ϵ of the polymer-mediated e�ective colloid–colloid interaction are
obtained as a function of ϕbulk

G . This pair potential, the de�nition of B2, and the free
energy expressions applied to the �tted parameters were presented in Sections 1.3.1
to 1.3.3.

4.3 Polymers near surfaces

We �rst consider polymers in a planar lattice where a single hard surface, which mimics
the surface of the colloidal particle, is present. The resulting polymer concentration
pro�les already provide a �rst assessment of the polymer-mediated interactions
between colloidal particles. For various values of the colloid–polymer a�nity ∆χ ,
illustrative polymer segment concentration pro�les near a single hard plate are plotted
in Fig. 4.2 for a dilute polymer bulk concentration (ϕbulk

G /ϕ∗G = 10−4). The expected
depletion and adsorption homopolymer concentration pro�les66 near a hard wall
are recovered for ∆χ = +1.0 and ∆χ = −0.74, respectively. For ∆χ = +1.0, classical
depletion of the polymer from the colloidal surface takes place; ϕG(z = 0) ≈ 0. For z >
0, the segment concentration increases up to its bulk value, reached around z ≈ 3Rg.
A precise evaluation for ϕG(z = 0) = 0 corresponds to ∆χ = 6 ln(7/6) ≈ +0.92. 136

For adsorbing polymers (∆χ = −0.74), the concentration near the colloidal hard
surface is much greater than in bulk, and reaches its bulk value also around z ≈ 3Rg.
The equilibrium properties of adsorbed polymers are well-established 137, and the
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Figure 4.2 Polymer concentration profiles relative to bulk (ϕG/ϕ
bulk
G ) as a function of the

distance from a flat surface (z/Rg). Polymer–colloid a�inities ∆χ indicated. In the inset, the
adsorption thickness δ as a function of ∆χ is presented. The situation δ ≈ 0 corresponds to
the unipletion condition. Polymer bulk concentration relative to overlap is ϕbulk

G /ϕ∗G = 10−4.
The polymer consists of N = 1000 segments with segment–solvent interaction χGW = 0.5.

features of weakly-adsorbing polymers are well-recovered in SCF66, hence they are
not discussed here in more detail.

Remarkably, for ∆χ ≈ −0.59 the polymer segment concentration pro�le is practi-
cally equal to ϕbulk

G up to the lattice site adjacent to the hard surface. This speci�c
colloid–polymer a�nity de�nes the unipletion condition, characterised by polymers
that are neither depleted from nor adsorbed at the hard surface (see Fig. 4.1). In the
inset of Fig. 4.2 we show the adsorption thickness δ of the polymer, which corresponds
to the coloured areas of the main plot:

δ

b
=

Nlat∑
z=1

ϕG(z)

ϕbulk
G
− 1. (4.7)

Depletion is characterised by an adsorption thickness δ < 0, while for adsorption
δ > 0. One could interpret δ as an e�ective amount of space gained (δ > 0) or lost
(δ < 0) by the polymer due to the hard surface. The transition from depletion to
adsorption occurs in a narrow ∆χ range: the unipletion condition is characterised by
vanishing δ . We denote this particular a�nity as ∆χu. Note the non-linear behaviour
of δ around ∆χu. Previously, it has been argued that homopolymer accumulation at
the solid interface occurs at ∆χ . ln 5/6 ≈ −0.18. 138 Contrary, we de�ne depletion
as the situation δ/Rg < 0 and adsorption for δ > 0.

The polymer segment concentration pro�les near a hard surface are modulated by
the e�ective polymer–colloid a�nity ∆χ , but also by the polymer bulk concentration
ϕbulk

G and the polymer solvency χGW (the latter is not considered here). Ultimately,
these density pro�les also determine the polymer-mediated interactions between
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G /ϕ∗G) for a collection of e�ective polymer–colloid a�inities (∆χ ) as indicated.
At ∆χ ≈ −0.59, the unipletion condition holds, hence δ ≈ 0 up to relatively high polymer bulk
concentrations.

colloids. Independently of ∆χ , the osmotic pressure Πbulk and consequently the
fugacity of the polymers in bulk follows from Flory–Huggins theory67:

Π̃bulk ≡
ΠvG

kBT
= −

N

ϕ∗G

[
ln

(
1 − ϕbulk

G

)
+

(
1 −

1
N

)
ϕbulk

G + χGW

(
ϕbulk

G

)2
]

, (4.8)

which for polymers in a Θ-solvent (χGW = 0.5) at low concentrations reduces to the
Van ’t Ho� law:

Π̃bulk ≈
ϕbulk

G
ϕ∗G

. (4.9)

In Fig. 4.3, the dependence of δ onϕbulk
G is presented. For a polymer which is classically

depleted from the surface we recover δ ≈ −1.13Rg as expected 130 for ϕbulk
G /ϕ∗G . 0.05

(see left panel). In all depletion cases (1 . ∆χ . −0.59, left panel of Fig. 4.3), δ is
roughly independent of ϕbulk

G if ϕbulk
G /ϕ∗G . 0.05. For ∆χ < 1, the depletion thickness

is always smaller than for the full depletion case due to a decreased free energy
penalty of the guest polymer at the colloidal surface. For ϕbulk

G /ϕ∗G & 0.05, the bulk
osmotic pressure exerted by the polymers on the depletion zone (the volume where
polymers are depleted) leads to compression 136,139, and thus δ decreases in magnitude.
This decrease of |δ | has been indirectly quanti�ed experimentally for instance via
AFM measurements.30

In the case of homopolymer adsorption (−0.59 . ∆χ . −0.82, right panel of
Fig. 4.3), the following trends are observed. A stronger e�ective segment–surface
a�nity (more negative ∆χ ) results in a thicker adsorbed layer for all polymer bulk
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Figure 4.4 Local polymer segment concentration profiles relative to bulk ϕG/ϕ
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G as a

function of the position z between two parallel, flat surfaces with decreasing the interplate-
distance h (see sketch in the top panel). E�ective polymer–colloid a�inities ∆χ are indicated.
Arrow indicates decreasing inter-plate distance, with h∗ = h/Rg.

concentrations; i.e., a larger δ . As for the depletion attraction, δ eventually decreases
in magnitude with increasing ϕbulk

G . Opposite to the depletion case, the range of
constant δ depends on the speci�c ∆χ -value: the lower ∆χ , the lower the ϕbulk

G at
which the surface is saturated with adsorbing polymers.

In case of unipletion (∆χ = ∆χu), δ becomes negative around ϕbulk
G /ϕ∗G ≈ 0.01,

see Fig. 4.3. A negative δ -value indicates the formation of a depletion layer. The
origin of this decrease of δ lies in the saturation of the surface with unipleted polymer.
Therefore the concentration of polymer at the surface is no longer proportional to the
bulk concentration and δ decreases. Although a depletion layer is formed, this process
e�ectively resembles the decrease of δ observed in adsorption. Further increase of the
polymer concentration leads to compression of the depletion layers due to solvent
removal, which resembles the increase of δ for depleting polymers. This highlights
the dual and intricate nature of the unipletion condition, having both characteristics
of depletion and adsorption.

We focus next on the concentration pro�les in polymer solutions con�ned between
two hard surfaces (Fig. 4.4). If the distance between the surfaces is large enough,
the segment concentration pro�les near either surface are like those reported in
Fig. 4.2. For the depletion case, small interplate distances lead to a decrease in the
maximum polymer concentration between plates with respect to the bulk due to
an entropic penalty for polymers in con�nement. In case of adsorbing polymers,
the concentration between plates becomes larger than in bulk. The entropic loss
of polymers in con�nement is more than compensated by an enthalpic preference
of the polymers towards the wall. Hence, when a free guest polymer chain can
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reach both surfaces (h ≈ 3Rg, see Fig. 4.2) the polymer concentration is higher than
in the bulk throughout the inter-plate region. Remarkably, in case of ∆χ ≈ −0.59
the concentration pro�les remain essentially �at for all interplate distances. The
small dents observed at the hard surfaces relate to the fact that a polymer can not be
positioned inside the hard wall.

4.4 Pair interactions and second virial coe�icient

In this Section, the interactions between colloidal spheres mediated by the addition
of a guest homopolymer are studied at the two-body colloid–colloid interaction level.
Examples of pair potentials between spherical colloids are shown in Fig. 4.5 at a low
polymer bulk concentration ϕbulk

G . We focus �rst on classical depletion (∆χ = +1.0),
for which the attraction vanishes at r/σ ≈ 1 + q. In this case, results are compared
with the analytical expression by Eisenriegler. 140 The SCF data points, the �tted
HCY curve, and the theoretical prediction are in agreement. The interaction beyond
the hard-core for ∆χ ≈ −0.59 is neglegible: as polymers are neither adsorbed nor
depleted at the colloidal surface, the colloidal particles interact e�ectively only via their
excluded volume. When considering polymer adsorption (∆χ = −0.74) at low polymer
bulk concentrations, the resulting attraction is shorter in range but signi�cantly
stronger than the depletion attraction. Due to the preference of the polymers to sit
at the colloidal surface, bridging-induced attraction occurs due to weakly adsorbing
polymers at low concentration. The di�erent ranges of the depletion and bridging
attractions presented are magni�ed in the inset in the right panel of Fig. 4.5. For clarity,
the �tted interactions are normalised by the absolute contact potential |W (r = σ )|. It
follows that, for ϕbulk

G /ϕ∗G . 0.05 the normalised depletion attraction remains fairly
constant. Further details on the pair potentials with increasing ϕbulk

G and the results
of the systematic HCY �t are presented in Section 4.A.

In a similar fashion as the adsorption thickness δ collects some key features
of concentration pro�les, we use the second virial coe�cient B2 to systematically
quantify the pair–interactions. Furthermore, B2 is often used as an indicator for
the stability of a colloidal suspension.43–45,141 If no interactions between spherical
colloidal particles take place beyond their excluded volume, B∗2 ≡ B2/vc = 4, with
vc = (π/6)σ 3 the colloidal particle volume. Conveniently, the HCY model �t provides
information on how the range and the strength of the interaction depend on ϕbulk

G .
The discussion which follows is based not only upon the pair interactions, but also
on the information extracted from the HCY �t. The collected ranges qY and strengths
ϵ of the attraction from the systematic �t are also presented in Section 4.A.

We consider �rst polymer–colloid a�nities ranging from depletion (∆χ = +1.0)
to unipletion (∆χ ≈ −0.59), see left panel in Fig. 4.6. Independently of the ∆χ -value,
B∗2 ≈ 4 if ϕbulk

G /ϕ∗G . 10−2. Further increase of ϕbulk
G �rst decreases B∗2 up to a minimum
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Figure 4.5 Interaction between two spheres with diameter σ mediated by polymers with
relative size q ≡ 2Rg/σ = 0.15 as a function of the distance between the centres of the spheres
r . E�ective polymer–colloid a�inities ∆χ are indicated. Solid curves correspond to the hard-
core Yukawa (HCY) pair potential used to fit the calculated points. The dashed grey curve
corresponds to theory by Eisenriegler 140 for the depletion a�raction between two spheres.
Polymer bulk concentration relative to overlap is ϕbulk

G /ϕ∗G = 10−3. Inset in the right panel
shows the HCY-fi�ed depletion and adsorption potentials normalised by their absolute contact
value |W (r = σ )|.

value around ϕbulk
G /ϕ∗G ≈ 0.9. The second virial coe�cient then increases with ϕbulk

G
back to B∗2 ≈ 4. The depths of these minima in B∗2 decrease with decreasing ∆χ . The
latter points towards a restabilisation of the colloidal suspension with decreasing
∆χ : the Vliegenthart–Lekkerkerker criterion45 states that if B∗2 remains above −6,
demixing of the CPM may be suppressed. Remarkably, B∗2 ≈ 4 for all ϕbulk

G close to
unipletion conditions (∆χ ≈ −0.59) even though δ is small yet �nite at intermediate
polymer concentrations (0.01 . ϕbulk

G /ϕ∗G . 1, see Fig. 4.3, left panel).

In case of polymer adsorption onto the colloidal surface (∆χ . −0.59), B∗2 < 4
already at very low polymer bulk concentrations. At a �xed, low ϕbulk

G , both the
range and the strength of the bridging attraction increase with decreasing ∆χ (see
Section 4.A). For lower ∆χ , the polymers stretch from one surface to the other in order
to maximize their overall contact with the colloidal surfaces. As expected, the stronger
the polymer adsorbs to colloidal surface, the stronger the colloid–colloid attraction.
For ϕbulk

G /ϕ∗G . 0.1, both the range and the strength of the adsorption increase with
ϕbulk

G . As for the depletion cases, B∗2 also reaches a minimum with increasing ϕbulk
G . In

this case, as the colloidal surface �lls up with polymer, competition between bridging
attraction and steric (entropic) repulsion between adsorbed polymers takes place. A
repulsive interaction beyond the hard-core occurs near and above ϕ∗G, which results
from a potential with a non-neglible attractive and very short-ranged strong repulsive
contributions (see Fig. 4.8, bottom-right panel). Due to numerical limitations in these
cases, we do not further discuss these e�ects here. The trends obtained for B∗2 point,
also for weakly adsorbing polymers, towards a destabilisation–restabilisation transi-
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Figure 4.6 Normalised second virial coe�icient B∗2 = B2/vc with increasing polymer bulk
concentration ϕbulk

G relative to the polymer overlap concentration ϕ∗G. The polymer–colloid
a�inities ∆χ are indicated. For ∆χ ≈ −0.59, unipletion is retained, and thus B∗2 ≈ 4 for a wide
range of polymer concentrations.

tion around ϕbulk
G ≈ 0.1. Similar trends with increasing bridging agent concentration

for the second virial coe�cient have been recently reported for sticky hard sphere
binary mixtures.47,132 Contrary to these approaches, we account speci�cally for the
polymeric nature of the weakly adsorbing bridging agent.

4.5 Phase diagrams

By virtue of the �rst order mean spherical approximation (FMSA), phase diagrams
can be constructed from the �tted pair interactions obtained from the SCF approach
combined with the Derjaguin approximation. Equal osmotic pressure Π̃ and chemical
potential µ̃ of the �uid and solid colloidal phases holds whenever colloidal coexistence
takes place (see Chapter 1). Detailed results of the systematic �tting of the pair
potentials can be found in Section 4.A. As the FMSA considers interactions added
to the hard sphere (HS) reference state, the well-known �uid–solid coexistence for
HSs48 is recovered for all ∆χ -values in absence of polymer (ϕbulk

G = 0).
Predicted phase diagrams are shown in Fig. 4.7. For polymers which are fully

depleted from the colloidal hard surface [ϕG(z = 0) ≈ 0], the phase diagram matches
predictions of the generalized free volume theory (GFVT) 15 for hard-spheres dispersed
in a polymer solution at Θ-solvent conditions (see left panel of Fig. 4.7). Results from
GFVT compare well with experimental results. 15,98,127 A signi�cant decrease of ∆χ is
required in order to observe a shift of the �uid–solid binodal towards higher polymer
concentration. Note how similar the phase diagrams are for ∆χ = 1.0 and ∆χ = 0.0.
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Figure 4.7 Phase diagrams generated using the first order mean spherical approximation
for the hard-core Yukawa fits of the SCF pair potentials. Dashed grey curve corresponds to
the phase diagram obtained using generalized free volume theory under Θ-solvent conditions.
For ∆χ ≈ −0.59 unipletion takes place, and thus the colloidal fluid–solid coexistence remains
at the same colloid volume fraction for all depletant concentrations.

This corroborates the result that δ/Rg reaches a constant value with increasing ∆χ

(see inset of Fig. 4.2 for ∆χ & 0). Decreasing ∆χ further dramatically a�ects the
�uid–solid binodal and increases the miscibility gap. For ∆χ ≈ 0.59 the colloidal
�uid–solid phase transition is only found at the coexisting concentrations expected
for a polymer-free system. It is clear the concept of unipletion reveals the possibility
of realising CPMs which are stable at high densities.

At a �xed colloid concentration and ∆χ (e.g., ϕc = 0.15 and ∆χ = −0.4), depletion
destabilisation–restabilisation with increasing ϕbulk

G is revealed: with increasing ϕbulk
G ,

the CPM goes from a stable one phase �uid to �uid–solid phase separation, and back
to a single �uid phase (see Fig. 4.7, left panel). Similar trends have been observed in
experiments where weaker depletion of polymer occurs due to the presence of short
polymeric chains grafted to the colloidal particles. 142,143 It has been argued that a
slight repulsive bump in the colloidal pair interaction for a strongly-depleted polymer
may be su�cient to explain this restabilisation. 129,144,145 Our SCF computations do
reveal this repulsive bump in the depletion attraction at su�ciently high ϕbulk

G , whose
magnitude is rather small compared to the contact potential (see Section 4.A). These
tiny repulsive barriers 107 do not play a major role in our model for restabilisation.

Next, we pay attention to the phase diagrams obtained for weakly-adsorbing
polymer (right panel of Fig. 4.7). Already at low ϕbulk

G , the (weakly) adsorbing po-
lymers induce destabilisation of the colloidal suspension. As expected from the
ϕbulk

G -dependence of both δ and B2, weak adsorption-driven F–S demixing of the CPM
occurs at higher polymer concentration with increasing ∆χ . Further, the lower ∆χ ,
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Table 4.1 Depletion and weak-adsorption characteristics as captured with our computations
at low polymer concentration.

∆χ ϕG(z = 0)/ϕbulk
G δ/Rg βW (r = σ ) range

classic depletion ≈ 1 ≈ 0 = −2/
√
π ∝ ϕbulk

G = q
weak depletion > −0.59 < 1 > −2/

√
π ∝ ϕbulk

G < q
unipletion ≈ −0.59 ≈ 1 ≈ 0 ≈ 0 ≈ 0

weak adsorption < −0.59 > 1 > 0 ∝ (ϕbulk
G )n ∝ (ϕbulk

G )n

the smaller the stable one-phase region. Still, even for relatively strong adsorption
(e.g., ∆χ = −0.8) restabilisation occurs at high polymer concentration when the col-
loidal surfaces are saturated with adsorbing polymers. Contrary to the depletion case,
with decreasing ∆χ the adsorption thickness does not reach a limiting value. To the
best of our knowledge, there are no previously-reported phase diagrams for weakly
adsorbing polymers in CPMs where the nature of the bridging agent is taken into
account. It is noted, however, that our computations are based upon thermodynamic
equilibrium. In case of bridging e�ects the interactions are quite strong, and kinetic,
non-equilibrium phenomena also become important.33,133,146

Yet another re-entrant phase behaviour can be extracted from our framework,
namely upon varying ∆χ . Provided that there is an experimentally realizable tuning
parameter for the e�ective polymer–colloid a�nity, a transition from depletion to
unipletion to adsorption is expected, which consequently changes the phase stability.
Such a tuning parameter may for instance be the temperature; in fact the transition
here described from depletion to adsorption by changing the temperature has been
reported recently. 147 We must note that in real life also the solvency of the polymer
changes with temperature, which may make the phase diagram transitions even richer
than with the simple model presented here.

4.6 Conclusions

We present relatively simple computations which reveal the phase stability of colloid–
polymer mixtures (CPMs) ranging from non-adsorbing to weakly-adsorbed polymers.
For classical depletion conditions, the results from the well-established generalized
free volume theory are recovered for the depletant-to-colloid size ratio q = 0.15.
Near a speci�c e�ective polymer–colloid a�nity (the unipletion condition), the CPM
remains stable up to high polymer and colloid concentrations. The developed frame-
work captures the di�erent nature of the depletion and bridging attractions between
colloidal particles, summarised in Table 4.1.

Furthermore, it follows both from the second virial coe�cient and from phase
diagrams that a destabilisation–restabilisation–destabilisation transition takes place
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Figure 4.8 Interaction between spheres with diameter σ due to polymers with relative size
q ≡ 2Rg/σ = 0.15 as a function of the distance between the centres of the spheres r/σ for
the polymer–colloid a�inities ∆χ indicated. In the le� panels, solid curves correspond to the
hard-core Yukawa (HCY) pair potential used to fit the calculated points. In the right panels,
solid curves are to guide the eye. Polymer bulk concentrations relative to overlap are indicated.
Right panels zoom on the range of small interaction energies for the potentials presented in
the le� panels.

as a function of the polymer bulk concentration when the colloid–polymer a�nity is
tuned from classical depletion to weak adsorption. The trends qualitatively match
experimental observations on colloid–polymer mixtures.

4.A Pair potentials: further results

In Fig. 4.8, we present pair potentials between colloidal (hard) spheres for various
polymer bulk concentrations. The HCY model accurately describes the SCF com-
putations for various polymer concentrations. In the right panels we zoom on the
range of small interaction energies. For the depletion case, the small repulsive bump
corresponds with the energy penalty of polymers escaping the depletion zone at high
polymer concentrations. A tiny repulsive shoulder is also visible in case of unipletion
at high polymer concentration. For the polymer adsorption cases, the strong and
very short-ranged repulsion observed at r/σ ≈ 1 may point towards steric repulsion
between adsorbed polymers; however we do not further discuss these e�ects as our
main focus is on dilute polymer solutions.
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Figure 4.9 Fi�ed ranges qY and strengths ϵ of the HCY model with increasing polymer bulk
concentration ϕbulk

G relative to overlap ϕ∗G for di�erent e�ective colloid–polymer a�inities ∆χ
as indicated.

The results of the HCY-�ts leading to the phase diagrams are presented in Fig. 4.9.
The HCY-�ts for the depletion cases show that qY is concentration-independent for
the depletion attraction as expected in the dilute case (ϕbulk

G /ϕ∗G . 0.05). Further, qY

decreases above ϕbulk
G /ϕ∗G ≈ 0.05, corresponding to the compression of the depletion

zones. On the other hand, the strength ϵ increases linearly with polymer concentration.
Above ϕbulk

G /ϕ∗G & 0.05, the range decreases while the contact potential still increases
with increasing ϕbulk

G .
In case of weak polymer adsorption, both the range qY and the strength ϵ of the

bridging attraction increase with polymer bulk concentration for ϕbulk
G /ϕ∗G . 0.05.

Note that the maximum attraction strength shifts towards lower ϕbulk
G with decreasing

∆χ , again in accordance with what is observed for the adsorption thickness δ . The
trends for adsorption around ϕbulk

G /ϕ∗G ≈ 1 point towards the limitations of �tting the
SCF pair interactions with a single HCY potential. Phenomena such as the dramatic
increase of ϵ accompanied by a decay of qY (observed in the right panels of Fig. 4.9)
point towards potentials as the yellow curve in the bottom right panel of Fig. 4.8.
From the trends on range and strength of interactions at low ϕbulk

G , the relevance of the
unipletion condition becomes even clearer. While for depletion ϵ increases linearly
and qY remains constant, for adsorption cases both ϵ and qY follow a power-law
dependence with ϕbulk

G .
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Part II

Anisotropic hard colloids

What is essential is invisible to the eye.

Antoine de Saint-Exupéry
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Chapter 5

Phase behaviour of colloidal superballs
mixed with non-adsorbing polymers

Abstract
Inspired by experimental work on colloidal cuboid–polymer dispersions [Rossi et al.,
So� Ma�er, 2011, 7, 4139-4142] we have theoretically studied the phase behaviour
of such mixtures. To that end, free volume theory was applied to predict the phase
behaviour of mixtures of superballs and non-adsorbing polymer chains in a common
solvent. Closed expressions for the thermodynamic properties of a suspension of hard
colloidal superballs have been derived, accounting for fluid (F), face centred cubic
(FCC) and simple cubic (SC) phase states. Even though these expressions are approx-
imate for the solid phases, the hard superballs phase diagram semi-quantitatively
matches with more evolved methods. The theory developed for the cuboid–polymer
mixture reveals a rich phase behaviour, which includes not only isostructural F1–F2

coexistence, but also SC1–SC2 coexistence, several triple coexistences, and even a
quadruple phase coexistence region (F1–F2–SC–FCC). The model proposed o�ers a
tool to assess the stability of cuboid–polymer mixtures in terms of the colloid-to-
polymer size ratio and superball shape.
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5.1 Introduction

Colloidal cuboids are of interest due to their potential application as photonic cry-
stals, 148,149 their possible roles in emulsion stabilisation 150 and anti-re�ective coa-
tings 151 and to prepare porous membranes 152. Due to recent progress in colloidal
synthesis, it is nowadays possible to prepare colloidal cuboids with a well-de�ned
shape and size. 153–155 A commonly applied model to describe colloidal cuboids is the
superball shape. Formally, superballs are a subset of a family of geometric shapes
called superellipsoids, introduced by Barr. 156 The implicit equation describing the
shape of a superball reads 157:

f(x,y, z) =
���x
R

���m + ���y
R

���m + ��� z
R

���m ≤ 1, (5.1)

where R is the radius of the superball (the shortest distance from the centre of the
superball to its surface, diameter σ ≡ 2R) andm is the shape parameter. The surface
of the superball is described for f(x,y, z) = 1, whereas the locus of points inside the
superball are retained for f(x,y, z) < 1. Here we focus on m ≥ 2: the shape of the
superball lies in between a sphere (m = 2) and a cube (m = ∞). 158 We depict in Fig. 5.1
a collection of superballs in the range ofm-values investigated.

The phase behaviour of colloidal superballs has been studied both experimen-
tally 149,159 and via computer simulations 158,160,161. Some experimental studies on the
e�ect of non-adsorbing polymers on the phase behaviour of colloidal superballs have
also been conducted. 153,162 However, closed-form equations for the thermodynamic
properties of superballs (and superball–polymer mixtures) are not available. Hence,
we �rst describe in this Chapter a theoretical framework for both the superball �uid
and for two possible superball solid states. We use free volume theory (FVT) to
calculate the thermodynamic properties of superball–polymer mixtures. We present
a collection of phase diagrams as well as a phase stability overview, which reveals
various rich multi-phase coexistence regions, including a four–phase equilibrium.

5.2 Theory

In this Section we �rst present the canonical expressions developed for a suspension of
colloidal superballs, both for the �uid and the two solid phases considered. Secondly,
we derive an expression for the excluded volume between a hard superball and a
penetrable hard sphere (PHS), which renders the thermodynamic properties of a
mixture of superballs plus non-adsorbing polymers.
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RR R R

Figure 5.1 3D (top panels) and 2D (bo�om panels) representations of a superball form-values
(le� to right): m = {2, 3, 5, 10}. In the 2D projection the radius of the superball (R) and the
maximum distance of the superball surface from its centre (rmax) are indicated.

5.2.1 Canonical thermodynamic expressions for colloidal superballs

Fluid state

We consider a collection of Nc hard superballs in a volumeV , each superball having a
volume vc, surface area sc and surface integrated mean curvature 163 cc [see Eq. (5.28)].
The second virial coe�cient (B2) for hard particles is given by the orientationally-
averaged excluded volume between two particles, 164 and for a suspension of monodis-
perse convex particles (hence for superballs withm ≥ 2) in a �uid state reads 165,166:

B2/vc ≡ B∗2 = 3γ + 1 ; γ =
sccc

3vc
, (5.2)

where γ is the so-called asphericity parameter. The numerically obtained normalised
second virial coe�cient B∗2 for hard superballs is shown in Fig. 5.2. In Section 5.A we
explain how γ can be computed numerically, yielding B∗2 using Eq. (5.2). It follows
that B∗2 smoothly increases with m from the hard sphere (HS) limit (m = 2, B∗2 = 4)
to the cube limit (m = ∞, B∗2 = 5.5) due to the increase of the particle anisotropy. In
this work, we use a closed expression for B2 by �tting (solid curve) the calculated
data with the (inverse) equation of an ellipse, which accurately matches the data
(accumulated error shown in the caption of Fig. 5.2):

B∗2 ≈
1

0.42
√

1 −
(

1−2/m
1.83

)2
− 0.17

. (5.3)

An equation of state (EOS) for a �uid of hard convex particles was �rst derived by
Gibbons using scaled particle theory, 167 and a more accurate EOS was proposed by
Boublík 168–170 taking into account virial coe�cients higher than B2 in a Carnahan-
Starling-like fashion 52:

Π̃o
F = βΠvc =

ϕc +Qϕ
2
c + Rϕ

3
c −Sϕ

4
c

(1 − ϕc)3
, (5.4)
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where Π̃o
F is the reduced osmotic pressure of the pure hard superball dispersion, β is

1/kBT (with kB the Boltzmann constant and T the absolute temperature),

Q = 3γ − 2 ; R = 1 − 3γ (1 − γ ) ; S = γ (6γ − 5),

and where ϕc is the volume fraction of hard superballs:

ϕc =
Ncvc

V
,

The superscript ‘o’ is used to indicate the (depletant-free) superballs system. Using
the closed relation between B2, γ and Π̃o of Eqs. (5.2) and (5.4), the EOS for a �uid of
hard superballs as a function ofm is completely de�ned. Computer simulations have
shown the accuracy of the Boublík EOS for a wide range ofm-values. 160,161 Obviously,
the Carnahan-Starling 52 EOS is recovered form = 2. The chemical potential of the
superballs is related to the osmotic pressure through the Gibbs-Duhem relation for a
single-component system at constant temperature:

dµ̃o
F =

1
ϕc

dΠ̃o
F

dϕc
dϕc, (5.5)

with µ̃o = βµo the reduced chemical potential. The chemical potential follows from
Eq. (5.4) and Eq. (5.5) as:

µ̃o
F =µ̃

ref +

∫ ϕc

0

1
ϕc

dΠ̃
dϕc

dϕc

=µ̃ref + (S − 1) ln(1 − ϕc) + lnϕc

+
(10 + 4Q + 2S)ϕc − (13 + 3Q − 3R + 5S)ϕ2

c
2(1 − ϕc)3

+
(5 +Q − R +S)ϕ3

c
2(1 − ϕc)3

,

(5.6)

with µ̃ref = ln(Λ3
B/vc) the reference chemical potential of a superball �uid and ΛB the

thermal wavelength. The free energy follows from the chemical potential and the
osmotic pressure through the thermodynamic relations:

F̃ = ϕcµ̃
o − Π̃o ; µ̃o =

(
∂F̃

∂ϕc

)
T ,V

, (5.7)

with F̃ = βFvc/V the reduced free energy.

Solid states

For the colloidal solid phases we modify the cell theory proposed by Lennard-Jones and
Devonshire (LJD) for hard spheres (HSs). 51 We consider each particle to be contained
in a closed region whose shape is determined by its neighbouring particles, which are
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Figure 5.2 Normalised second virial coe�icient B∗2 as a function of the shape parameterm.
grey dots correspond to numerical solutions of the superball area and surface mean curvature
(see Section 5.A for details). The black curve shows a fit through the data points, whose
accumulated relative error is 5.15 · 10−5 = 100% ∗

∑
[1/B∗2(m) − 1/B∗,fit2 (m)]/Npoints, where

Npoints is the number of points used to find the fit in Eq. (5.3).

�xed at their lattice positions, 171 see Fig. 5.3. The free energy of the solid is calculated
from the number of con�gurations determined from the volume Vf that the centre of
the particle explores without overlapping with its nearest neighbours. This leads to
the following normalised free energy for a solid:

F̃ = ϕc ln

(
Λ3

B
vc

)
− ϕc ln

(
Vf

vc

)
. (5.8)

The free volume Vf depends on the shape parameter m and the volume fraction ϕc,
but also on the relative position of the nearest neighbours and hence on the structure
of the solid. In this work we consider two crystal structures: face-centred cubic (FCC)
and simple cubic (SC). A schematic view of the FCC and SC structures of superballs
for severalm-values is shown in Fig. 5.3.

We focus �rst on the FCC crystal. The exact free volume depends on the shape of
the Wigner-Seitz cell, 171 which for an FCC crystal has a rather complicated geome-
try, 172,173 but is usually approximated as a sphere 15. The free volume considering this
spherical approximation is given by:

V FCC
f =

4π
3

(
r − rcp

)3 , (5.9)

where r is the distance between the centres of a superball and its nearest neighbours,
and rcp is r at close packing. For the FCC crystal, we consider a ‘frozen’ crystal where
the particles are perfectly aligned. Hence, for the FCC lattice rcp is two times the
distance between the edges of the superballs (2r2D

max, see Section 5.A). The distance r
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5 | Superballs mixed with non-adsorbing polymers

Figure 5.3 Top panel: (100) plane representation of the face centred cubic (FCC) crystal
la�ice for increasing m-values from le� to right: m = {2, 3, 5, 10}. The approximated free
volume is illustrated as a grey region. Grey shapes represent a particle that just touches a
nearest neighbour. Bo�om panels as top ones but for the simple cubic (SC) la�ice. In all cases
considered here the colloid volume fraction is ϕc = 0.45. The arrows on the rightmost panels
indicate the superball radius R and the nearest-neighbour distance r .

at a certain volume fraction can be determined from rcp as:

r = rcp

(
ϕ

cp
c
ϕc

)1/3

, (5.10)

with ϕ
cp
c the close packing fraction. Combining rcp = 2r2D

max = 2R
√

2 (1/2)1/m (see
Section 5.A) with Eqs. (5.8) to (5.10) provides the free energy for the FCC phase.
A Taylor expansion for the term [(ϕcp,FCC

c /ϕc)
1/3 − 1] is used as in the original LJD

approach for HSs. 15,51 The chemical potential and osmotic pressure are calculated via
the thermodynamic relations given in Eq. (5.7), leading to the following closed (yet
approximate) thermodynamic expressions for the FCC phase as a function ofm:

F̃FCC =ϕc ln

(
Λ3

B
vc

)
+ ϕc ln

[
34 f (m)23/m

4π23/2

]
− 3ϕc ln

(
ϕ

cp,FCC
c
ϕc

− 1

)
,

µ̃o
FCC =µ̃0 + ln

[
34 f (m)23/m

4π23/2

]
− 3 ln

(
ϕ

cp,FCC
c
ϕc

− 1

)
+

3
1 − ϕc/ϕ

cp,FCC
c

,

Π̃o
FCC =

3ϕc

1 − ϕc/ϕ
cp,FCC
c

.

(5.11)

Them-dependency of the close packing volume fraction in an FCC crystal is provided
as (see Section 5.B):

ϕ
cp,FCC
c =

1
2
f (m)23/m , (5.12)

where f (m) is (see Section 5.A):

f (m) =
[Γ(1 + 1/m)]3

Γ(1 + 3/m)
, (5.13)
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where Γ is the Euler Gamma function. Form = 2, Eq. (5.11) recovers the free energy
for hard spheres in the FCC phase. 51

The thermodynamic properties of the SC superball crystal are found using a
similar approach as for the FCC crystal. For the SC structure, the free volume has the
shape of a cube. To approximately take into account the e�ect of rotations of cuboidal
particles on the SC free energy, the size of the free volume is chosen such that the
central particle can rotate inside its unit cell. This e�ectively reduces the free volume
by a factor of eight compared to the one obtained for perfectly parallel cuboids. This
approach overestimates the free volume for particles with low m-values. The free
volume of the SC crystal is given by:

V SC
f =

(
r − rcp

)3 , (5.14)

with r de�ned via Eq. (5.10) and rcp = 2R. Following a similar procedure as for the
FCC phase state, the thermodynamic functions of the SC phase read:

F̃SC = ϕc ln

(
Λ3

B
vc

)
+ ϕc ln f (m) − 3ϕc ln


(
ϕ

cp,SC
c
ϕc

)1/3

− 1
 ,

µ̃o
SC = µ̃0 + ln f (m) − 3 ln


(
ϕ

cp,SC
c
ϕc

)1/3

− 1
 +

(ϕ
cp,SC
c /ϕc)

1/3

(ϕ
cp,SC
c /ϕc)1/3 − 1

,

Π̃o
SC =

ϕc(ϕ
cp,SC
c /ϕc)

1/3

(ϕ
cp,SC
c /ϕc)1/3 − 1

,

(5.15)

with the close packing fraction in the SC phase given by:

ϕ
cp,SC
c = f (m) . (5.16)

We note here that e�ects of particle rotations are only qualitatively accounted for via
our estimation of Vf. For nonaxisymmetric hard particles, Onsager-like theories 18 for
crystalline phases are non-trivial due to the lack of a single reference axes for the
inter-particle orientations. Already for biaxial hard particles no analytical solutions
are found. 174 In Table 5.1 we provide the close packing volume fractions for perfect
spheres (m = 2) and perfect cubes (m = ∞) and for a limiting intermediate case. While
FCC packings are more e�cient for small m, SC arrangements can pack closer for
large m. It follows from Eqs. (5.12) and (5.16) that both the FCC and the SC phases
have the same ϕcp

c atm = 3. Further details on ϕcp
c are provided in Section 5.B.

Most of the limitations in our model are those inherent to the cell theory used
in the calculation of the free energy of the crystalline phases. Cell theory is known
to give accurate results for FCC and SC crystals of spherical colloids 172,173, but exten-
ding cell theory to other crystal structures is not straightforward due to the complex
geometries of the space explored by the centres of mass of the particles. Already
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Table 5.1 Close packing volume fractions for superballs with m = 2 (spheres), m = 3 and
m = ∞ (cubes). Atm = 3 both crystals have the same close packing fraction.

m = 2 m = 3 m = ∞

FCC π/3
√

2 ≈ 0.74 Γ (4/3)3 ≈ 0.71 0.5
SC π/6 ≈ 0.52 Γ (4/3)3 ≈ 0.71 1

for a body-centred-cubic crystal of HSs, cell theory does not match with simulati-
ons. 173 Furthermore, the cell theory approach followed does not account for defects,
which a�ect the �uid-crystalline phase transition of cuboidal hard particles. 175,176 The
accuracy of cell theory for anisotropic particles is a matter of debate. Especially, it
is challenging to accurately account for rotational contributions (in particular for
nonaxisymmetric particles) into the solid-phase partition function. More advanced
theoretical approaches to properly describe the complex solid phases of superballs
are rather involved and would make the description at hand less tractable (and most
likely not involving a set of closed expressions).

5.2.2 Free volume theory for cuboid–polymer mixtures

As explained in Chapter 1, the required ingredients for calculating the thermodynamic
properties of colloid–polymer mixtures (CPMs) using FVT are the equations of state
of the depletant-free system and the colloidal particle-depletant excluded volume
(vexc). The general FVT expression for hard-colloids mixed with PHSs (with radius δ )
holds in this case:

Ω̃ = F̃c −
vc

vd
Π̃R

d (1 − ϕc) exp [−Qs] exp
[
−
vd

vc
Π̃o
k

]
, (5.17)

with Π̃o
k the depletant-free osmotic pressure in a phase statek (F, FCC, or SC). Contrary

to other FVT approaches presented through this thesis, simple expressions can not
be obtained for the shape-dependent term Qs [see Eq. (1.22)]. An apparently simple
expression is available for the excluded volume between a convex body and a sphere. 163

The excluded volume between a hard superball and a hard sphere reads:

ṽexc = 1 +
1

f (m)

[
1
2
s̃sbq + π c̃sbq

2 +
π

6
q3

]
(5.18)

where s̃c = sc/σ
2 and c̃c = cc/σ , and where

q =
δ

R
. (5.19)

It turns out that Eq. (5.18) can not be solved analytically (see Section 5.A for details on
the calculation of s̃sb and c̃sb). Due to the linear relation between δ and q (δ = qR),
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ṽexc(λ) is simply obtained by taking q → λq in Eq. (5.18). Via interpolation of s̃sb and
c̃sb it is possible to obtain a (non-closed) expression for Eq. (5.18), hence completely
de�ning the grand potential Ω of the FVT used. Alternatively, we found that the
depletion zone is accurately described by a tilted dampening sinus function:

ṽexc ≈
1

f (m)
(454.34 + 216.36p + 308.59q)

+
1

f (m)
exp [−5 · 103p + 8.18] sin(0.06p + 0.09q − 3.01),

(5.20)

with p = 1 − 2/m. An advantage of Eq. (5.20) over Eq. (5.18) is that it is a closed-
form expression. Subsequently, α is incorporated in our calculations considering the
general form of the shape-dependent term Qs given in Section 1.3.4. By inserting
Eq. (5.20) into Eq. (5.17), the thermodynamics of hard superball–polymer mixtures can
be expressed in terms of closed (�tted) functions. Furthermore, the deviation between
Eq. (5.18) and Eq. (5.20) is very small:

100% ∗
∑
[1/B∗2(m) − 1/B∗,�t

2 (m)]/Npoints = 2.7 · 10−4,

with Npoints being the number of points used to �t Eq. (5.20). Moreover, the �nal
thermodynamic properties of superball–polymer mixtures as considered here do not
depend on the approach followed for calculating ṽexc.

5.3 Results and discussion

In the present Section, we �rst provide the results for an ensemble of hard superballs
in absence of depletants. The free volume fractions for depletants in this system
is then brie�y discussed, which provides all components to understand the phase
diagrams of the superball–polymer mixtures of interest. Based upon these phase
diagrams, an overview of the multi-phase coexistences exhibited is presented in a
single plot which compromises the stable isostructural coexistences present at each
set of relative depletant size and superball shape.

5.3.1 Phase diagram of hard superballs

The calculated phase diagram for a suspension of pure hard superballs is presented
in Fig. 5.4 (left panel), and compared with more evolved simulation results (right
panel). The well-known �uid-FCC coexistence for hard spheres 15,48 (HSs) is recovered
at m = 2, and it slightly shifts to higher densities with increasing m. As can be
appreciated, this is in agreement with computer simulation results. 158 This shift can
be attributed to a thermodynamically less favourable FCC state with increasing m.
The forbidden region (in grey) simply identi�es densities beyond the close packing of
the considered phases. The discontinuity along the border of the forbidden region
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Figure 5.4 Le� panel: Predicted phase diagram for a suspension of superballs in the shape
parameter-colloid volume fraction {m,ϕc} phase space. Two-phase coexistences take place in
the regions bounded by two single-phase regions as indicated. The vertical dashed grey line
holds for the F–FCC–SC coexistence. Right panel: phase diagram for hard colloidal superballs
from Monte Carlo computer simulations by Ni et al. 158

is located at m = 3, which corresponds to the transition between preferred FCC to
more favourable SC. The thermodynamically preferred phase is roughly the one with
the largest close packing fraction, see Table 5.1. However, at intermediate pressures,
crystal structures with lower close packing fraction may also be stable. We �nd a
triple F–FCC–SC coexistence at m ≈ 3.71. Triple phase coexistence for the hard
superball system has also been reported 158 via Monte Carlo simulation results (right
panel of Fig. 5.4). Betweenm = 3 andm ≈ 3.71 we �nd SC–FCC coexistence, which
arises from the di�erent ϕc-dependencies of the solid equations of state (for more
details, see Section 5.B). Abovem ≈ 3.71, only F–SC coexistence is found, which shifts
towards lower packing fractions with increasing m, also in qualitative agreement
with simulations. 158 In the cube limit (m = ∞), we �nd ϕF

c ≈ 0.36 and ϕSC
c ≈ 0.54.

Computer simulation studies by Agarwal and Escobedo 161 indicate that for perfect
cubes phase coexistence between a �uid and a cubatic liquid crystal takes place at
ϕF

c ≈ 0.47 (a phase showing high orientational order, but no long-range translational
order), while at higher densities a transition into a SC crystal occurs at ϕSC

c ≈ 0.58.
This points towards a complex nature of the F–SC phase transition for perfect cubes
that can not be accounted for with our simple theory.

The overall topology of the theoretical phase diagram corresponds to the one
found using more evolved computer simulations (right panel of Fig. 5.4). 158,160,161

Di�erences can be justi�ed because we do not account for the same solid phases for
superballs as in simulations. Jiao et al. 157 showed that the packings of superballs are
the C0 (low m-values) and C1 (high m-values) crystalline phases. Both the C0 and
C1 lattices are obtained via deformation of the FCC (m = 2) and SC lattices (m = ∞),
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5.3 | Results and discussion

respectively. In fact, these solid phases are accounted for in simulations. 158,160 Not
surprisingly, the triple point from simulations is a �uid–plastic FCC–C1. 158 Due to
the limitations inherent to the simple theory used here, the C0 and C1 phases are not
accounted for. The FCC phase features (and its coexistences) roughly match those
of the plastic FCC. The role played in simulations by the C1 is mimicked by the SC
phase in our simpler model.

When considering colloidal cuboid–polymer mixtures, the phase diagrams would
only enrich upon re�nements of the method. The liquid-crystalline and crystalline
coexistence regions are found in simulations in a broader range ofm-values. Based on
experimental observations 153,162, we expect the depletion attraction to enhance solid
phases where depletion zones overlap is maximized (leaving space for the depletants
to �t in the voids of the respective lattices). Note however that these experimental
observations correspond to colloid–polymer mixtures con�ned at a surface, whereas
the results here presented hold for bulk systems.

5.3.2 Free volume fraction

We show examples of free volume fractions for PHSs in a �uid state of hard superballs
(αF) using ṽexc as in Eq. (5.20) in the left panel of Fig. 5.5. It follows that αF only
weakly depends on m. For m > 2 and low q-values (q . 0.05) the free volume
fraction is always slightly smaller than for the HS case (m = 2), see right panel of
Fig. 5.5. However, with increasing q the intricate shape of the depletion zone around a
superball causes αF to be higher than for HSs. We do not pay further attention to the
α in the solid phases considered. A geometrical free volume fraction for depletants in
the di�erent solid phases (Chapter 3) would improve the phase diagrams calculated,
particularly for small q-values. However, already accounting for the most stable solid
phases (C0 and C1) as a function of m would more signi�cantly improve this �rst
theoretical approach to superball–polymer mixtures.

5.3.3 Phase diagrams

Firstly, we consider a superball whose shape is still close to a sphere. We present
phase diagrams of superballs withm = 2.5 and added depletants for three relative size
ratios q in Fig. 5.6. The depletant-free baselines (ϕR

d = 0) for the �uid-FCC coexistence
correspond to the densities shown in Fig. 5.4 (left panel). Upon addition of depletants,
the FCC phase at coexistence gets denser and the coexisting �uid phase becomes more
dilute in order to maximize the total free volume available for the depletants in the
system. At su�ciently large q-values (q = 0.4 and q = 0.6 in Fig. 5.6), an isostructural
colloidal F1–F2 (also termed gas–liquid) coexistence appears (which is metastable for
low q-values). We do not further address metastable coexisting phases. This F1–F2

coexistence spans until the F1–F2 and the F–FCC coexistences match: at this ϕR
d -value
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Figure 5.5 Le� panel: free volume fraction for PHSs in a colloidal superball fluid phase
(αF) as a function of the colloid volume fraction ϕc for the shape parametersm and relative
depletant sizes q as indicated. For q = 0.05 the curves are plo�ed up to the corresponding
highest close packing fraction. Right panel: relative di�erence of αF with respect to spheres
with increasingm at fixed ϕc = 0.4 for a collection of q-values as indicated. Dots denote the
maximum αF-value at eachm.

a triple line is found (upper panel for q = 0.4), which becomes a region in the system
representation (lower panels of Fig. 5.6). In fact, an isostructural phase coexistence
is always connected to a triple coexistence when more than one phase identity is
considered. When q increases, the F-S coexistence narrows and the F1–F2 critical
point shifts to higher depletant volume fractions.

The coexistence regions in the system representation (bottom panels in Fig. 5.6)
show that the �uid phase with a low concentration of superballs has a high concentra-
tion of depletants, whereas the FCC phase has a high concentration of superballs but a
low concentration of depletants. The incorporation of partitioning of depletants over
the di�erent phases is one of the key elements of FVT. 15 The system representation
also shows that for a superball-depletant mixture a single solid phase (without a
coexisting �uid phase) only occurs at nearly imperceptible depletant concentrations.
So far we observe no special features compared to FVT for HSs mixed with PHSs 58,
even though the colloidal shape considered is not perfectly spherical. For HSs plus
polymeric depletants, simulation results taking into account multi-body e�ects show
that the trends predicted by FVT hold.41

Next, we show in Fig. 5.7 phase diagrams form = 3.33, where FCC–SC coexistence
was found for hard superballs (see Fig. 5.4, left panel). At su�ciently high depletant
concentration, the FCC phase becomes metastable with respect to the SC phase,
as expected because ϕcp,SC

c > ϕ
cp,FCC
c for this m-value: the FCC phase completely

disappears, and an F–FCC–SC triple point is always found. For su�ciently large
q-values (q = 0.4 and q = 0.6) two triple-phase coexistences are present whenever
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Figure 5.6 Phase diagrams for a mixture of colloidal superballs for m = 2.5 and PHS
depletants for several relative depletant sizes q as indicated in the reservoir representation
(top panels) and system representation (bo�om panels). The F1–F2 critical point is indicated
by a black dot. Triple-phase coexistences are shown as a horizontal black line in the reservoir
representation and as a coloured area bounded by black lines in the system representation. All
coexisting phases present are indicated in the reservoir representation. Insets in the system
representation zoom in on the low depletant concentration region, and some of the coexistence
regions are indicated. A few illustrative tie-lines are shown as dashed grey lines for q = 0.2.
Above each phase diagram, a 2D illustration of the superball (black) and its depletion zone
(grey) are shown, and them and q-values are indicated.

F1–F2 coexistence is found: F1–F2–FCC and F–FCC–SC, with the corresponding triple
point areas in the system representation.

Phase diagrams for even more cubic particles, m = 5, are presented in Fig. 5.8,
for which only a SC state is present in the pure hard superballs system (see left
panel of Fig. 5.4). Similar qualitative trends as in Fig. 5.6 are observed, but with the
F–SC coexistence playing the role of the F–FCC equilibrium. For small q-values the
broadening of the coexistence lines occurs at lower depletant concentrations with
respect to the superball–polymer mixture with m = 2.5 in Fig. 5.6: the overlap of
depletion zones is larger for particles with an increased cubicity, which results in a
stronger depletion attraction. For m = 5 and q = 0.4, there is no F1–F2 equilibrium
phase coexistence, whereas F1–F2 coexistence was found at this q-value for superballs
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Figure 5.7 Phase diagrams of superball–polymer mixtures as in Fig. 5.6, but form = 3.33.

with m = 2, 58 m = 2.5 and m = 3.33. Due to the tendency of �at faces to align
upon addition of depletant into the system, stable F1–F2 coexistence shifts to higher
q-values: for larger m-values, longer ranges of attraction are required to induce a
stable F1–F2 coexistence.

5.3.4 Multi-phase coexistence overview

The rich multi-phase coexistence behaviour hinted at in the previous Section is
quanti�ed by calculating the critical end points (CEPs) of all possible isostructural
coexistences as a function of the system parameters m and q. The calculated CEP
curves are summarised in Fig. 5.9, which constitutes the main result of our investiga-
tions on the phase behaviour of superball–depletant mixtures. The limiting values of
the FCC phase (m . 3.71) and the SC phase (m & 3) are indicated as vertical dashed
lines in Fig. 5.9: form ∈ {3, 3.71}, F–FCC–SC coexistence always takes place. To the
left of this m-interval the only solid phase found is FCC, and to the right the only
solid state found is the SC. In Fig. 5.9, the solid curves hold for the CEPs de�ning the
limiting q-values at which (stable) isostructural phase coexistences are found. For
su�ciently high q-values, F1–F2 isostructural coexistence is expected for allm-values,
which spans from an F1–F2–FCC triple region or from an F1–F2–SC triple coexistence
as indicated.
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Figure 5.8 Phase diagrams of superball–polymer mixtures as in Fig. 5.6, but form = 5.

To gain insight about the F1–F2 isostructural coexistence and the connection with a
triple F1–F2–FCC or F1–F2–SC coexistence we show in Fig. 5.10 phase diagrams for q =
0.4 and a few selectedm-values (moving along a horizontal line in Fig. 5.9). Form = 3.4,
a F–FCC–SC triple coexistence occurs at a higher ϕR

d than the F1–F2–FCC triple line
(F1–F2–SC coexistence is metastable). On the other hand, form = 3.65 the F1–F2–FCC
triple point becomes metastable and an F–FCC–SC triple point arises at lower ϕR

d than
the F1–F2–SC isostructural coexistence. This is explained by the fact that the stability
of the FCC decreases asm increases. The condition at which the F1–F2–FCC and the F1–
F2–SC coexistences merge results in a quadruple coexistence (F1–F2–FCC–SC). This
four-phase coexistence is present for a range of m-values, and shows an asymptotic
behaviour from the CEP of the quadruple coexistence towards the pure hard superball
triple point (see Fig. 5.9). The shift of the QP from the TP of the depletant-free
system towards lower m-values re�ects the patchiness of the depletion attraction
between superballs. As a consequence of the enhanced alignment of the �at faces
upon addition of depletants, F–SC coexistence takes place at m-values below those of
the depletant-free system. Hence, depletion-mediated entropic patchiness promotes
the appearance of the SC phase. We conclude that quadruple coexistence arising from
merging two isostructural triple phase coexistences is possible for superball–polymer
mixtures. Such four-phase coexistences are possible in e�ective two-component
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Figure 5.9 Isostructural phase coexistence overview for colloidal superball–PHS mixtures as
a function of the shape parameterm and the relative depletant sizeq. Isostructural coexistences
correspond to coloured areas in the state diagram. The dashed black curve corresponds to
the set of system parameters {m,q} along which quadruple F1–F2–FCC–SC coexistence is
found. Additionally, the vertical dashed white line corresponds to the limit of the SC phase
(m > 3), whereas the grey vertical dashed line corresponds to the triple phase coexistence of
the depletant-free system (m ≈ 3.71), which sets the limit for the FCC phase (m . 3.71).

systems provided there is an extra �eld variable: in this case, the superball’s shape
parameter m and the relative polymer size q act as these extra variables. As a F–FCC-
C1 triple point has been detected in Monte Carlo computer simulation studies for the
depletant-free superball system 158, the corresponding quadruple phase coexistence
may be found from simulations with the C1 phase instead of the SC phase used
here. However, hinting at this rich phase behaviour directly from simulations may
be computationally demanding. The results provided by the simple model presented
therefore are advantageous: they enable to map out possible phase coexistences
e�ciently.

A remarkable �nding is the appearance of a SC1–SC2 isostructural coexistence
found at low q and highm-values (see lower right part of Fig. 5.9). We depict a few
illustrative phase diagrams in Fig. 5.11, where small isostructural SC1–SC2 coexistence
regions appear. The single �uid phase and simple cubic regions get smaller upon
decreasing q. For m = 10 the binodals shift towards lower ϕR

d -values with decreasing
q, following the same trend as observed for the F1–F2, F–FCC and F–SC coexistences
(see Figs. 5.6 and 5.8). This solid–solid coexistence is driven by the entropic gain
for depletants upon phase separation of the colloids into a dense solid SC2 phase
and a more dilute SC1 phase. The low q-values at which this coexistence takes
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Figure 5.10 Phase diagrams of mixtures of superball–polymer mixtures in the reservoir
depletant concentration representation for q = 0.4 and variousm-values as indicated.

place are related to the low (yet non-zero for cubic enough superballs) free volume
fraction for depletants available in solid phases at high colloid concentrations. As
can be observed in the rightmost panel of Fig. 5.11, them-value tunes the depletant
concentration at which SC1–SC2 coexistence is found: SC1–SC2 equilibria are driven
by the alignment of the �at faces, and thus for more curved particles (decreasingm)
the SC1–SC2 coexistence requires a higher depletant concentration. This induces the
crystal state to demix into an attractive solid (depletion zones optimally overlapping)
coexisting with a repulsive one, as expected for short-ranged attractions in colloidal
systems. 113,119 With more accurate models or in experimental systems, these SC1–SC2

coexistences may be replaced for example by a C1 coexisting with a SC phase. The
absence of a stable FCC1-FCC2 coexistence can be rationalised by the non-optimal
overlap of depletion zones between the �at faces of the superballs in an FCC state.
However, in view of the results presented in Chapter 3, revision of the model proposed
at small q-values is required to withdraw further conclusions.

5.4 Concluding remarks

A simple model for the thermodynamic properties of superballs was presented, where
all thermodynamic functions required for the phase diagram calculation are expressed
in closed form. We account for three phase states: �uid (F), face centred cubic (FCC)
and simple cubic (SC). Some of the closed expressions provided, such as the accurate
�t for the second virial coe�cient for hard superballs, may be of direct application not
only in theoretical, but also in experimental studies. Despite the assumptions made,
the found phase behaviour of pure hard superballs semi-quantitatively recovers the
trends observed as compared with Monte Carlo (MC) computer simulations. Further
improvements of the theory developed may be possible, particularly in the solid

75



5 | Superballs mixed with non-adsorbing polymers

m = 10, q = 0.03 m = 5.4, q = 0.03 m = 10, q = 0.11
de

pl
et

an
t v

ol
um

e 
fra

ct
io

n 
in

 R
 ϕ

dR

●

0.0 0.2 0.4 0.6 0.8

0.01

0.02

0.03

F F-SC

F-SC2

SC

SC1-SC2

F-SC1-SC2

●

0.0 0.2 0.4 0.6 0.8

0.01

0.02

0.03

0.04

F F-SC

F-SC2

SC

SC1-SC2

F-SC1-SC2 ●

0.0 0.2 0.4 0.6 0.8

0.01

0.02

0.03

F F-SC

F-SC2

SC

SC1-SC2

F-SC1-SC2

colloid volume fraction ϕc

Figure 5.11 Illustrative phase diagrams of superball–polymer mixtures in which isostructural
SC phase coexistences appear.

phases, but most likely lacking the simple, closed expressions reported here. The
increase of the excluded volume with increasing particle anisotropy as well as the
tendency for �at faces to align allowed us to rationalise the phase diagram obtained
in terms of the colloidal packing fraction and the particle shape parameter.

The addition of free, non-adsorbing polymers to a collection of hard superballs
induces e�ective attractive patches: alignment of the less-curved areas of the super-
balls is enhanced. This is clearly re�ected in the presence of F–SC phase coexistence
for shape parameters where it was not stable in the depletant-free system, and also in
the manifestation of SC1–SC2 phase coexistence for su�ciently cubic colloids upon
addition of small depletants. Such solid–solid coexistences may be not only of funda-
mental relevance, but also of relevance for designing novel photonic crystals. When
the depletion attraction is su�ciently long-ranged, isostructural F1–F2 coexistence is
found for all shape parameters, which can coexist either with an FCC or a SC state
depending on the superball shape. The boundary between these two triple points
that included isostructural �uid phases (F1–F2–FCC and F1–F2–SC) de�nes a window
for quadruple phase coexistence (F1–F2–FCC–SC). The main trends were collected in
a simple, comprehensive plot (Fig. 5.9) containing the system parameters (colloidal
shape and relative depletant size) that summarises the e�ectively patchy nature of
the depletion attraction in colloidal suspensions of cuboidal particles. The system
parameters at which rich multi-phase behaviour of superballs–polymer mixtures is
revealed with our simple model may guide more accurate computer simulations, and
may serve as a �rst qualitative guide to interpret experimental results.
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5.A Superball properties: calculation

Superball properties required for the calculation of the second virial coe�cient and for
the free energy of the solid phases are detailed in this Section. The distance r between
the centre of a superball and an arbitrary point on the surface of the superball is given
by 177:

r(θ ,ϕ) = R (|cosϕ |m |sinθ |m + |sinϕ |m |sinθ |m + |cosθ |m)−1/m , (5.21)

where θ andϕ are the polar angle and the azimuthal angle, respectively. The maximum
distance (rmax) between the centre and the surface of the superball is the distance
from the centre to the corner, as shown in Fig. 5.1 for the 2D superball projection.
The angles corresponding to this maximum distance are θ = π/4 and ϕ = 0 for a 2D
superball and θ = arccos

(√
2/3

)
and ϕ = π/4 for a 3D superball, which leads to a

maximum distance given by:

r
2D
max = r

(π
4
, 0

)
=
√

2R
(

1
2

)1/m
, (5.22)

r
3D
max = r

(
arcsin

(√
2/3

)
,
π

4

)
=
√

3R
(

1
3

)1/m
. (5.23)

The volume of the superball vc is obtained by integration of Eq. (5.21) 177:

vc =
8
3

∫ π /2

0

∫ π /2

0
sin (θ )r (θ,ϕ)3dθdϕ, (5.24)

where integration is performed over one octant due to symmetry. Eq. (5.24) can be
solved analytically, resulting in 152,158:

vc = σ
3 f (m), (5.25)

with

f (m) =
[Γ(1 + 1/m)]3

Γ(1 + 3/m)
, (5.26)

with σ the diameter of the superball (σ = 2R) and Γ the Euler Gamma function. Exact
equations for the surface area ssb and for the mean curvature csb of a superball are
not known, but they can be calculated numerically using the surface integral and the
integral of mean curvature 177:

sc = 8
∫ π /2

0

∫ π /2

0
dθdϕ

��������∂®x∂θ × ∂®x∂ϕ �������� , (5.27)
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cc =
8

4π

∫ π /2

0

∫ π /2

0
dθdϕ{

(®xθ · ®xθ )[(®xθ × ®xϕ ) · ®xϕϕ ] + (®xϕ · ®xϕ )[(®xθ × ®xϕ ) · ®xθθ ]−

2(®xθ · ®xϕ )[(®xθ × ®xϕ ) · ®xθϕ ]
}
×{

2(®xθ · ®xθ )(®xϕ · ®xϕ ) − 2(®xθ · ®xϕ )2
}−1

,

(5.28)

where subscripts denote partial derivatives and ®x represents a vector from the centre
of the superball to the surface, given by:

®x = {r(θ,ϕ) sinθ cosϕ, r(θ ,ϕ) sinθ sinϕ, r(θ ,ϕ) cosθ }, (5.29)

with r the distance from the centre of the superball (Eq. (5.21)). In view of the compli-
cated forms of Eqs. (5.28) and (5.29), it is not surprising that formal solutions for the
surface and mean curvature of superballs are not available.

5.B Close packing and free volume of FCC and SC crystals

In this Section, clari�cation on the close packing fraction of the two solid states
considered is provided. The general equation for the close packing fraction of a
superball crystal is given by:

ϕ
cp
c =

Ncvc

V
cp

UC
, (5.30)

with Nc the number of superballs in the crystal unit cell and V
cp

UC the volume of the
unit cell at the close packing fraction.

For the FCC crystal, the number of particles inside the unit cell is 4 and the volume
of the unit cell at the close packing fraction is given by:

V
FCC,cp

UC =
[
4r2D

max sin
(π

4

)]3
= (4R)32−3/m ,

which, combined with Eq. (5.30), gives the close packing fraction of superballs in the
FCC crystal [Eq. (5.12)]. For the SC crystal, there is only a single particle inside the
unit cell and the volume of the unit cell at the close packing fraction is simply given
by:

V
SC,cp

UC = (2R)3, (5.31)

which results in the close packing fraction of superballs in a SC crystal given by
Eq. (5.16).
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Chapter 6

Discotic dispersions mediated by depletion

Abstract
In this Chapter we show how free volume theory (FVT) is an e�icient and tracta-
ble thermodynamic framework capable of unravelling the complicated multi-phase
behaviour of disc–polymer mixtures. Three principal reference phases for the hard
platelets are considered: isotropic (I), nematic (N), and columnar (C). We derive ana-
lytical expressions that enable us to systematically trace the di�erent types of phase
coexistences revealed upon adding depletants, and confirm the predictive power
of FVT by testing the calculated diagrams against phase stability scenarios from
alternative approaches. A wide range of multi-phase equilibria is revealed, involving
two-phase isostructural transitions of all phase symmetries (I, N, C) considered as
well as the possible three-phase coexistences. Moreover, we identify the system
parameters, relative disc shapes and colloid–polymer size ratios, at which four-phase
equilibria are expected. These involve a remarkable coexistence of all three phase
states commonly encountered in discotics including isostructural coexistences I1–I2–
N–C, I–N1–N2–C, and I–N–C1–C2. The isostructural C1–C2 coexistence is analysed
in detail and compared to direct-coexistence Monte Carlo computations. We improve
FVT for disc–polymer mixtures, particularly accounting for a be�er depletant parti-
tioning over the discotic columnar phases. From theory and simulations it is clear
that in the C1 phase depletants are present between the flat faces of the discs, as
opposed to the denser (C2) phase. Consequently, the C1–C2 coexistence is driven
by the depletant partitioning in the intra-columnar direction. This study helps to
understand the role of compartmentalisation in highly asymmetric, crowded systems.
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6.1 Introduction

Colloidal suspensions and colloid–polymer mixtures (CPMs) in which the colloidal
particles have a plate-like shape are common in nature and technology: examples
are pigments, 178 clays, 179 blood, 180 and foodstu�s93. Therefore the phase stability of
colloidal platelets is of great relevance. Further, understanding their phase behavi-
our (also when mixed with other components) may enable separation of di�erent
components or enhance size fractionation. It has been experimentally observed how
addition of non-adsorbing polymers 181–183 or small spheres 184–191 to a colloidal platelet
suspension enriches the phase behaviour.

Theoretical models and computer simulations have predicted the experimentally
observed isotropic–isotropic 181 (I1–I2) and nematic–nematic 192 (N1–N2) phase coexis-
tences for platelets mixed with polymers or with small spheres. For in�nitely thin
plates, Bates and Frenkel 193 found I1–I2 and N1–N2 isostructural coexistences. Such
I1–I2 and N1–N2 isostructural phase coexistences are a consequence of the depletion-
induced attraction. Zhang et al. 194,195 performed a computer simulation study and
accounted for the �nite platelet thickness, and incorporated the columnar phase.
Alternative theoretical approaches regarding platelet–sphere mixtures have also re-
ported such isostructural coexistences. 196,197 Aliabadi et al. 198 presented a theoretical
stability overview for hard plates in a sea of hard spheres (HSs).

In this Chapter we show how the intricate e�ect of excluded volume interacti-
ons leads to a rich phase behaviour for platelet–polymer mixtures. The theoretical
approach qualitatively recovers many results of previously-reported computer simu-
lations and theories. On top of that, new coexisting phases are reported, namely
a columnar–columnar (C1–C2) coexistence, and several types of three phase and
four-phase coexistence regions, the latter being I1–I2–N–C, I–N1–N2–C, I–N–C1–C2.
The structure of this Chapter is as follows. First, we report the basis of the theory
developed, which provides the required tools to calculate the phase diagrams. Some
results from our model are subsequently compared to those emerging from other
more numerically involved methods and with simulation approaches. We summarise
our �ndings by presenting the various multiple phase equilibria that may occur in
discotic colloid–polymer mixtures in a single, comprehensive plot spanned by the
two relevant system parameters of our model, namely the disc aspect ratio and the
colloid-to-polymer size ratio. The C1–C2 coexistence is studied in further detail, and
results using a more precise account of the depletant partitioning in the columnar
phase are compared with Monte Carlo (MC) simulations. Finally, we formulate the
main conclusions.
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Figure 6.1 Le�: side view of a colloidal platelet with aspect ratio Λ = L/σ and a few PHS
depletants with relative size q = 2δ/σ . The depletant diameter (2δ ), the platelet diameter (σ ),
and the platelet thickness (L) are indicated. Right: corresponding depletion zone (grey) around
the platelet (black).

6.2 Theory and model comparison

In this Section the Free Volume Theory (FVT) developed to study the colloidal platelet–
polymer mixtures of interest is introduced. Firstly, we de�ne the di�erent length
scales involved in our theoretical approach and recapitulate the known phase diagram
for pure platelet suspensions. Subsequently, we show how a semi-grand canonical
approach enables to compute the phase behaviour of platelet–polymer mixtures. For
completeness, the equations of state of the pure platelet suspensions are presented in
Section 6.A.

6.2.1 Basics of the model

We model the colloidal platelets as discs with diameter σ and thickness L. The volume
of the colloidal platelet (vc ) is given by vc =

π
4 σ

2L. The aspect ratio Λ = L/σ de�nes
the shape of the colloidal particle, and we focus on Λ < 0.3. These colloidal platelets
are described as hard particles: overlap leads to an in�nite repulsive interaction
while their interaction is zero otherwise. The polymeric depletants are simpli�ed
as penetrable hard spheres (PHSs) with radius δ (hence, their volume is vd =

4π
3 δ

3,
and δ corresponds to the depletion thickness 14). The PHS concentration is expressed
via the dimensionless concentration, ϕR

d = ρR
dvd, with ρR

d the number density of
depletants in bulk. These PHSs can interpenetrate, but are hard for the colloidal discs.
The PHS model is a good approximation for polymers at low concentration and in a
θ–solvent. 199 The relative size of the depletant with respect to the colloidal platelet is
de�ned in this Chapter as:

q ≡
2δ
σ

. (6.1)

The three length scales introduced are schematically depicted in Fig. 6.1. The deple-
tion zone surrounding any convex hard particle is enveloped by the surface with
constant distance δ from the colloidal particle surface. Consequently, the volume of
the depletion zone (vexc) corresponds to the excluded volume between a disc and a
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PHS 163:

vexc =
π

2
σ 2δ +

π

4
L(σ + 2δ )2 +

π 2

2
δ 2

(
σ +

8δ
3π

)
. (6.2)

The typical shape of the depletion zone (side view) is depicted in Fig. 6.1.
We present our expressions for the free energy (F̃k , with subscript k running over

the I, N and C states) of a system containing Nc hard discs in a volume V in terms of
the volume fraction of platelets (ϕc), and use dimensionless units:

ϕc =
Ncvc

V
; F̃k =

βFkvc

V
, (6.3)

with β = 1/kBT in which kBT is the thermal energy with Boltzmann constant (kB) and
the absolute temperature T . Using the free energies for the di�erent phase states,200

standard thermodynamic relations can be applied to calculate the osmotic pressure
(Πo

k ) and chemical potential (µo
k ) of the pure platelet suspension in a given phase k

(see Section 6.A).
This enables resolving the phase diagram for a system of hard platelets, presented

in Fig. 6.2. The relatively high excluded volume between thin platelets explains the
I–N phase transition occurring at very low packing fractions for very small values
of the aspect ratio (Λ→ 0). With increasing Λ, the I–N coexistence widens and its
boundaries shift towards higher packing fractions. From Fig. 6.2 it also follows that the

82



6.2 | Theory and model comparison

N–C coexistence does not depend on Λ (within the model followed). For su�ciently
thick discs (Λ ≈ 0.16), transitions from an isotropic to a columnar phase occur
without an intermediate nematic phase: thick discs are not su�ciently anisotropic
to stabilize the occurrence of a nematic phase.200 The grey vertical line in Fig. 6.2
at Λ ≈ 0.16 indicates the I–N–C triple coexistence for hard colloidal platelets. The
phase diagram presented in Fig. 6.2 constitutes the reference point for understanding
the thermodynamics of platelet–polymer mixtures.

6.2.2 Free volume theory for platelet–polymer mixtures

FVT is applied to compute the thermodynamic properties of colloidal platelets in a sea
of polymer chains modelled as PHSs in a common solvent. Provided the depletant-free
equations of state (Section 6.A), only the excluded volume between a plate and a
sphere is required to de�ne the semi grand-potential Ω of the system:

Ω̃ = F̃k −
vc

vd
Π̃R

dαk , (6.4)

where

αk = (1 − ϕc) exp [−Qs] exp
[
−
vd

vc
Π̃o
k

]
(6.5)

is the free volume fraction (calculated via scaled-particle theory) for depletants in a
phase k , with

Qs = q

(
1
Λ
+
πq

2Λ
+ q + 2

)
y + 2q2

(
1

4Λ2 +
1
Λ
+ 1

)
y2,

and

y =
ϕc

1 − ϕc
. (6.6)

The depletant-free pressure of the phase state k considered is Π̃o
k . As we consider

PHS depletants, the osmotic pressure of depletants in the reservoir R is given as:

Πvd

kBT
≡ Π̃R

d = ϕ
R
d . (6.7)

Details on the calculation of the phase diagrams are given in Section 1.3.4.

6.2.3 Model comparison

We �rst compare our model both at the free volume level and at the phase diagram
level with independent results. In Fig. 6.3 the calculated free volume fractions (using
the osmotic pressure of the isotropic phase) from Eq. (6.4) are compared with previ-
ous results from computer simulations. 193–195 Our results are in concordance with
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Figure 6.3 Comparison of the free volume fraction using Eq. (6.5) and the osmotic pressure
of an isotropic platelet phase [which follows from Eq. (6.14), curves] with available computer
simulations literature data (symbols). Le�: infinitely thin platelets (simulation data from Bates
and Frenkel 193) compared with Λ = 10−5 in our approach. Right: cut-spheres with Λ = 0.1
(simulation data from Zhang et al. 195). The relative size of the depletant q is indicated in the
inset. Note that on the le� panel we use the units as in the original reference.

simulation data both for in�nitely thin plates 193 and for �nite size cut-spheres 194,195

mixed with PHSs. The agreement between our theoretical approach and previous
simulations supports the validity of the derived expression for the free volume fraction
of PHSs in a suspension of hard discs.

Phase diagrams for in�nitely thin plates mixed with PHSs are compared (Fig. 6.4)
with those determined by Bates and Frenkel using MC computer simulations. 193 We
use dimensionless number density of platelets along the abscissa [ρcσ

3 = 4ϕc/(πΛ)]
and the fugacity of depletants (z̄ = ρR

dσ
3 = ϕR

dq
−36/π ) on the ordinate for comparison.

In their approach, the free volume fraction for PHSs in a disc suspension is �tted
from simulation results, and FVT is applied to the calculation of the phase diagrams
considering the full numerical solution of the disc orientation probability function in
the nematic phase. As the di�erence in the I–N coexistence between Odijk’s Gaussian
trial function approximation and the self-consistent numerical approach for the
nematic phase of in�nitely thin plates is quite pronounced,200,203 the depletant-free
baselines (z̄ = 0) deviate from each other. However, the phase sequences occurring at
each range of depletion attraction are not a�ected by the choice of the orientational
distribution probability for the nematic phase. We also compare our theoretical
approach with the phase diagrams generated by mixtures of thick platelets (described
as cut-spheres) plus depletants by Zhang et al. 194 for Λ = 0.1 and q = {0.1, 0.2}
(Fig. 6.4). The hybrid MC-FVT approach followed by Zhang et al. 194 is similar to
the one of Bates and Frenkel 193. Even though the free volume fractions (α , Fig. 6.3)
are quite close, the depletant fugacity that leads to phase coexistence is higher for
our colloidal discs than for these cut-spheres. This is (most likely) due to the higher
excluded volume between discs as between cut-spheres, and due to the di�erent
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Figure 6.4 Phase diagrams from FVT compared to results by Bates and Frenkel, 193 and
compared to the phase diagrams for cut spheres mixed with penetrable hard spheres from
Zhang et al. 194.

mesogen shape used. The overall topology of the phase diagram from FVT agrees
with the one obtained from the hybrid method even though the platelet shape di�ers.

6.3 Multi-phase coexistences and critical end point

In a large part of the {Λ,q} parameter space we �nd phase diagrams such as those
in Fig. 6.4. Isostructural phase transitions (I1–I2, N1–N2, and C1–C2) lead to a con-
siderable enrichment of the phase diagrams including six three-phase coexistences:
I1–I2–N, I1–I2–C, I–N1–N2, N1–N2–C, I–C1–C2, and N–C1–C2; and three four-phase
regions: I1–I2–N–C, I–N1–N2–C, and I–N–C1–C2. In this Section we delineate the
regions in the {Λ,q} plane where three- and four-phase regions occur and discuss
why these appear. To gain insight into the di�erent types of multi-phase coexistence
regions involving isostructural coexistence it is useful to focus on the isostructural
phase coexistences in the vicinity of their corresponding critical endpoints. 50 The
critical endpoint (CEP) is de�ned as the condition under which the critical point of
the isostructural phases is in equilibrium with a distinct third phase.204

6.3.1 Isostructural isotropic coexistence

We �rst consider the I1–I2 coexistence and check under which conditions it coexists
with other phases. The q-value at which the critical point of the I1–I2 coexistence
meets the I1–I2–N three phase region marks the relative range of the depletion
interaction below which I1–I2 transition becomes metastable with respect to the I–N
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Figure 6.5 Collection of phase diagrams for platelet-polymer mixtures in the {ϕc,ϕ
R
d } phase

space for Λ = 0.15 and various q-values as indicated. Horizontal lines mark multiple-phase
coexistence (more than two-phase). Bo�om panels: as top ones but in the {ϕc,ϕ

S
d} phase

space. The coloured triangles are triple regions; they indicate the system representation of the
triple-point lines of the top panels. Inset plots of bo�om panels zoom into the low-depletant
concentration regime.

transition. Above this q value we have a stable three-phase I1–I2–N region. Similarly,
the q-value at which the critical point of the I1–I2 region meets the I1–I2–C three
phase region marks the relative range of the depletion interaction below which I1–I2

transition becomes metastable with respect to the I–C transition; above this q value
three-phase I1–I2–C equilibria appear. Due to the decrease of the platelet–platelet
excluded volume with increasing Λ, the range of the depletion attraction required
for an I1–I2–N multi-phase coexistence lowers as the discs become thicker. However,
when the columnar state dominates over the nematic one at su�ciently high Λ and q,
the scenario changes and the I1–I2 coexistence is connected to a I1–I2–C triple point.

The calculated I1–I2–N and I1–I2–C critical end points (CEPs, shown in Fig. 6.8)
coincide at {Λ,q} ≈ {0.122, 0.163}, leading to a remarkable (I1I2)–N–C CEP where
the CEP of the I1–I2 critical point is in equilibrium with two distinct phases: N and
C. For Λ = 0.15 the transitions from I1–I2–C (q = 0.185) to I1–I2–N (q = 0.25) can
be observed in Fig. 6.5 (upper panels), where FVT binodals are plotted for various q
values. For q = 0.185, stable I1–I2 coexistence is possible, and an I1–I2–C triple line
can be observed above the I2–N–C triple line. For q = 0.25 an I1–I2–N triple line
appears at lower ϕR

d than the I1–N–C triple line. Strikingly, at q = 0.215 a I1–I2–N–C
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four phase coexistence is predicted: at this q-value the I1–I2–N, I1–N–C, I1–I2–C and
I2–N–C three phase lines merge. This I1–I2–N–C four-phase coexistence occurs along
the curve of {Λ,q}-values from the (I1I2)–N–C CEP({Λ,q} ≈ {0.122, 0.163}) towards
the triple-line for platelets in the absence of depletants (Λ ≈ 0.16). No isostructural
isotropic coexistence occurs for Λ = 0.15 if q . 0.17. In the system representation
(bottom panels of Fig. 6.5), the area of the multi-phase coexistence denotes the region
where they are predicted in terms of colloid and depletion concentrations for the
particular set of relevant size ratios.

6.3.2 Isostructural nematic coexistence

We now pay attention to the N1–N2 coexistence and check under which conditions it
coexists with other phases. Again we �rst consider the N1–N2 CEPs: I–N1–N2 and
N1–N2–C. From previous calculations 198 it is known that N1–N2 equilibria are only
stable at low values of Λ and q. In Fig. 6.6 we illustrate the in�uence of varying q at
Λ = 0.02. For q = 0.03 a stable N1–N2 coexistence is possible and a N1–N2–C triple
line emerges, while for q = 0.04 an I–N1–N2 triple line is present. For Λ = 0.02 and
q = 0.033 the N1–N2–C, I–N1–C, I–N1–N2 and I–N2–C three-phase lines merge and
again a four phase equilibrium is predicted: a quadruple I–N1–N2–C coexistence. In
the bottom panels of Fig. 6.6, the areas denote the regions in the system representation
where multi-phase coexistences are predicted in terms of colloid and depletant volume
fractions for the particular set of size ratios. At �xed Λ = 0.02, the N1–N2 coexistence
is metastable with respect to the N–C transition for q . 0.03, becomes stable for
0.03 . q . 0.07, and gets metastable with respect to the I–N for q & 0.07. The CEP
of the four-phase coexistence I–N1–N2–C separates the regions where I–N1–N2 and
N1–N2–C three-phase coexistence occur for all Λ (see Fig. 6.8). From these CEPs of
the isostructural N1–N2 coexistence, a re-entrant behaviour is revealed at �xed Λ.

6.3.3 Isostructural columnar coexistence: a first account

Surprisingly, systematically scanning the possible phase equilibria also revealed
isostructural columnar phase state coexistence regions. Therefore the focus now
is on C1–C2 coexistences, and we investigate under which conditions isostructural
columnar equilibria coexists with other phases. In Fig. 6.7 we present phase diagrams
for Λ = 0.15, but for small q-values. For q = 0.01 a N–C1–C2 triple line emerges while
for q = 0.025 an I-C1–C2 triple line is present. For q = 0.021 the N–C1–C2, I–N–C1,
I–C1–C2 and the I–N–C2 three-phase lines merge and again a four-phase equilibrium
is predicted: the I–N–C1–C2 coexistence. This four-phase coexistence occurs along a
curve of {Λ,q}-values from the I–N–(C1C2) CEP at {Λ,q} ≈ {0.135, 0.029} towards
{Λ,q} ≈ {0.155, 0} (see Fig. 6.8). In the system representation (bottom panels of
Fig. 6.7), the area of multi-phase coexistence denotes the region where they are
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Figure 6.6 Similar plots as in Fig. 6.5, but for very thin hard platelets (Λ = 0.02) and small
polymers, in the range 0.03 ≤ q ≤ 0.04. An isostructural nematic–nematic coexistence occurs
only within a certain range of depletant sizes.

predicted in terms of colloid and depletion concentrations for the particular set of
relevant size ratios. Isostructural C1–C2 coexistence have not been reported yet,
higher order multi-phase coexistences for this isostructural coexistence are unknown
as well. In light of our results in Chapter 3, a better account of the free volume
for depletants in the columnar phase improves the phase diagrams containing this
remarkable isostructural C1–C2 coexistence. In Section 6.4, we focus on the N–C1–C2

coexistence and study the e�ect of considering a more accurate depletant partitioning
over the two columnar phases. Note, however, that the simple scaled particle theory
(SPT) expression for αC allowed us to systematically vary the system parameters, and
revealed for the �rst time the C1–C2 coexistence. Results in Section 6.4 are more
accurate, yet also less tractable than the SPT prediction [Eq. (6.5)] due to the relative
complexity of the geometrically-based αC.

6.3.4 Multi-phase coexistence overview and experimental comparison

We calculated the possible thermodynamically stable phases via the CEPs of the
di�erent isostructural critical points in equilibrium with a distinct third phase. The
results are summarised in Fig. 6.8. In the in�nitely thin platelet limit (Λ→ 0), the stable
phases found correspond to those of Bates and Frenkel. 193 The trends with increasing
platelet thickness correspond to hybrid theory/simulation approaches for cut-spheres
mixed with PHSs. 194,195 The area covered by the I–N1–N2 triple equilibrium matches
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Figure 6.7 Similar plots as in Fig. 6.5, but for thick hard platelets (Λ = 0.15) and tiny polymers,
in the range 0.01 ≤ q ≤ 0.025. For thick platelets and tiny polymers, a remarkable isostructural
columnar–columnar coexistence occurs (analysed in details in Section 6.4).

with previous theoretical studies, 198 and reveals possible new regions for multi-phase
coexistence. At {Λ,q} ≈ {0.045, 0.058}, the I–(N1N2) and (N1N2)–C CEP lines coincide,
hence de�ning the I–(N1N2)–C CEP leading to a small nose-like region in which the
N1–N2 transition is stable (see Fig. 6.8). This region is in agreement with the results
reported by Aliabadi et al. 198 using a canonical Onsager–Parsons-Lee approach for
colloidal discs-hard sphere mixtures to obtain the boundaries of the stable isostructural
N1–N2 transition regions. The I–N1–N2–C four-phase coexistence occurs along a
curve of {Λ,q}-values from the I–(N1N2)–C CEP at {Λ,q} ≈ {0.045, 0.058} towards
the corner of the {Λ,q} diagram. This quadruple curve practically coincides with
the (N1N2)–C CEP curve (see Fig. 6.8). Hence, the area covered by the N1–N2–C
three-phase coexistence is very small.

The isostructural C1–C2 coexistence takes place at very low q-values (as shown
in Fig. 6.8). This is reminiscent of the occurrence of two isostructural solid phases in
a system of spheres with a very narrow range attraction.83,119 Again we �rst consider
the C1–C2 CEPs: I–(C1C2) and N–(C1C2). With increasing Λ and at low q-values the
N1–N2 transition becomes metastable with respect to the N–C transition. On further
lowering q we obtain the N–(C1C2) CEP (see Fig. 6.8). With further increasing Λ the
isotropic state takes over from the nematic in this competition, and we obtain the
I–(C1C2) CEP (see Fig. 6.8). At Λ = 0.135 and q = 0.025 the I–(C1C2) and N–(C1C2)
CEP curves coincide, and we obtain the I–N–(C1C2) CEP. The increase in possible
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etant (q). Solid curves correspond to critical end point (CEP) curves of the isostructural phase
coexistences as indicated. �adruple coexistence curves (dashed) bound the corresponding
isostructural coexistence regions. The CEPs of the quadruple coexistences are marked by black
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short-dashed white curve marks the CEP of N–(C1C2) calculated with the modified theory
presented in Section 6.4.

q-values leading to C1–C2 with increasing Λ follows from the fact that the free volume
for depletants in the direction perpendicular to the column (in the interstices of the
columns) increases with increasing Λ. This becomes clear upon close inspection of
the free volume fraction for depletants in the columnar state. Therefore, we pay close
attention to the isostructural N–C1–C2 coexistence and its critical end behaviour in
Section 6.4.

The overview shown in Fig. 6.8 constitutes the main result of this research: it
provides a systematic overview of where the possible critical points, three-, and
four-phase coexistence areas occur in terms of the (geometrical) system parameters
{Λ,q}.

It may be questioned whether four-phase coexistences violate the Gibbs phase
rule, which dictates that in a system of C components the maximum number of
phases that can coexist is C + 2. As shown by Tanaka and co-workers,205 for systems

90



6.3 | Phase coexistence and CEP

with additional model parameters, four phases can coexist even in single component
systems for speci�c values of these parameters. In the system considered here there
are only hard interactions between the two components (solvent is considered as
background) so the temperature is e�ectively not a degree of freedom. Thus the
maximum number of phases that can coexist is C + 1. So at �rst sight with C = 2 a
four phase equilibrium does not seem possible. However, here we have two additional
parameters at our disposal, Λ and q, which act as additional �eld variables, thus
allowing more than C+ 1 phases to be simultaneously in equilibrium, at appropriately
constrained values of these parameters. Fig. 6.8 shows that for this particular system
it is not possible to �nd coexistence between more than four phases. For other
particle shapes (e.g., biaxial plates providing an additional system parameter) it may
be possible to �nd a quintuple or even a sextuple point. A mixture showing two
simultaneous isostructural transitions (e.g., N1–N2 and C1–C2) could perhaps lead to
such conditions. Alternatively, systems that exhibit more possible phase states could
potentially lead to such depletion-driven multi-phase coexistences.63

In experiments where colloidal platelets, which in the pure state give rise to liquid
crystal phases, are mixed with nonadsorbing polymers 181–183 or with small sphe-
res 184–191 the phase behaviour changes signi�cantly compared to that of the system
of pure platelets. We have to realise that the depletion interaction in combination
with the inherent polydisperse nature of the colloids 181,206,207 and the sedimentation
equilibrium under gravity208,209 may give rise to the presence of additional multi-
phase coexistences. For example Wensink and Lekkerkerker208 showed that a four
phase equilibrium I1–I2–N–C may arise in the gravitational �eld even if the system
‘without gravity’ only displays the two phase equilibria I1–I2, I2–N, N–C. De las Heras
et al. 189,209 showed that in a system with only one isotropic phase, two isotropic
layers may appear with a nematic phase �oating in between (in a system where
gravity does not play a role). Moreover, most experimental colloidal systems are
non-hard and contain additional direct interactions. Here we brie�y consider the
experimentally observed multi-phase coexistences for mixtures of colloidal platelets
with nonadsorbing polymers.

Van der Kooij et al. 181 studied a system of sterically stabilised Gibbsite platelets
dispersed in toluene mixed with added non-adsorbing polymer polydimethylsiloxane
(PDMS). In this plate–polymer mixture, the aspect ratio and relative polymer size
are Λ ≈ 0.07 and q ≈ 0.35. The sterically stabilised Gibbsite platelets in their pure
state exhibit an I–N transition and a N–C transition with increasing concentration.210

In the Gibbsite-PDMS mixture a four-phase equilibrium I1–I2–N–C, bordered by
three three-phase equilibria I1–I2–N, I1–N–C, and I2–N–C was observed. The results
were rationalised by representing the polydisperse platelets by a bidisperse system
consisting of platelets of lower Λ and higher Λ. As we have seen in our calculations
(see Fig. 6.8) this gives rise to the three-phase regions I1–I2–N and I–N–C for the
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low Λ and the three-phase regions I1–I2–C and I–N–C for the high Λ. In the three-
dimensional concentration diagram spanned by the concentrations of the lower Λ
platelets, the higher Λ platelets and the polymer, the four three-phase regions intersect
and a tetrahedron-shaped four-phase I1–I2–N–C region appears bordered by four
three-phase regions: I1–I2–N, I1-N–C, I1–I2–C and I2–N–C. The projection of these
four- and three-phase regions on the experimental plane then leads to the referred
observations.

Zhu et al. 182 studied a system of positively charged Mg2Al layered double hydrox-
ide platelets mixed with polyethylene glycol (PEG). Those platelets exhibit an I–N
transition.211 In this plate–polymer mixture, Λ ≈ 0.055 and q ≈ 0.01. A multi-phase
coexistence consisting of a dilute upper phase, two or three birefringent phases and
an amorphous bottom phase was observed. These results are ascribed to a combina-
tion of the depletion interaction and sedimentation equilibrium. The nature of the
birefringent phases was not determined; however in one experiment a phase which
gives Bragg re�ections of visible light was observed indicating that there is positional
order in this phase. So this phase may be a columnar phase, which given the values
of Λ and q in this experiment would agree with the results given in Fig. 6.8.

Luan et al. 183 observed multiphase coexistences consisting of up to six phases
in a system of positively charged Mg2Al layered double hydroxide platelets mixed
with polyvinyl pyrrolidone (PVP) with Λ ≈ 0.026 and q ≈ 0.78 : a dilute upper phase,
two isotropic phases, two nematic phases, an amorphous bottom phase, and two or
three birefringent phases. They ascribe these results to a combination of the depletion
interaction, sedimentation equilibria and polydispersity e�ects.

6.4 Compartmentalisation in crowded discotics:
detailed account of C1–C2

In this Section we study the stability of the columnar–columnar coexistence via direct
coexistence Monte Carlo (MC) computer simulations (see Section 6.C), and compare it
with a modi�ed FVT where the depletant partitioning in the columnar phase is more
accurately accounted for than in the previous Sections. To retain a nematic–columnar
(N–C) depletant-free coexistence closer to simulation results (Fig. 6.9, triangles), we
consider a corrected free energy for the columnar phase203,212:

F̃ alt
C = F̃C − 1.386 . (6.8)

Crucially, we also consider a geometrical free volume fraction for depletants in the
columnar phase, αgeo

C (see Section 6.B). The predicted phase diagram for Λ = 0.1 and
q = 0.01 is presented in the left panel of Fig. 6.9 (black curves), and compared to that
obtained using F̃ alt

C and the scaled particle theory (SPT) expression for αC (dashed
grey curves). As expected from Chapter 3, a more accurate account of the depletant
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platelet aspect ratio Λ = 0.1 ; relative depletant size q = 0.01
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Figure 6.9 Le� panel: Phase diagrams of discotic colloids mixed with PHSs using the
geometrical free volume fraction [Eq. (6.26)] (black curves) or the fluid-like free volume
fraction [Eq. (6.5)] (dashed grey curves) for PHSs in the columnar phase. Down-triangles
are independent simulation results201; areas bound in purple and grey indicate three-phase
coexistences. Coexistences indicated are only for the geometrical free volume fraction results.
Right panel: Free volume fraction of depletants in the columnar phase. Inset: ratio of Eq. (6.26)
to Eq. (6.5).

partitioning over the columnar phases a�ects the entire phase diagram: all phase
equilibria shift to lower depletant concentrations. The I–C2 coexistence attains (much)
more phase space than with the SPT-derived αC. We note that the phase sequences
occurring are as predicted with the SPT expression for αC (in line with Section 6.2.3).
We use, for the phase diagrams in this Section, the number of depletants per colloidal
particle: N S

d /Nc ≡ vcϕ
S
d/(vdϕc).

We compare the two di�erent αC in the right panel of Fig. 6.9. From geometrical
considerations, it is clear that the the SPT-prediction underestimates αC at high colloid
volume fractions ϕc. For these speci�c {Λ,q}-values, the colloid volume fraction at
which overlap of the depletion zones in the direction parallel to the column ϕ ‖c occurs
is indicated with an orange arrow. We denote this direction as intra-columnar, r ‖ . This
ϕ ‖c -value marks the onset of deviation between the SPT and the geometrical αC (see
inset). Furthermore, the C1–C2 critical point occurs precisely at ϕ ‖c . These two results
apply for all {Λ,q} with q . 0.05 and Λ . 0.12, and follow from our αgeo

C expression.
According to thisαgeo

C , in the lower-density columnar phase (C1) depletants are present
between the �at faces of the discotics [see Fig. 6.10(e)], as opposed to the denser phase
(C2) [see Fig. 6.10(f)]. Consequently, the C1–C2 coexistence is driven by the depletant
partitioning in r ‖ . Note that there is always space for depletants in the interstices
between columns (the pockets of the crowded colloidal state). Overlap of depletion
zones in the direction perpendicular to the column (inter-columnar direction, r⊥) has
a barely perceptible e�ect on αC, and occurs from ϕ⊥c (marked with a purple arrow
in Fig. 6.9). Overlap of depletion zones occurs at lower colloid volume fraction in r ‖
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6 | Discotic dispersions mediated by depletion

than in r⊥, and follows from the di�erent scaling of the intra- and inter-columnar
plate–plate spacings with ϕc.213

Isostructural dense phase coexistences have been obtained for hard spheres (HSs)
interacting via short-ranged (direct) attractions (namely, isostructural face centred
cubic coexistence). 59,117,119 In contrast to these approaches, we consider here anisotropic
particles with excluded volume interactions not only among themselves, but also
with a second component in the mixture. The C1–C2 coexistence is fully understood
(and predicted) solely in terms of compartmentalisation of the depletants over the
two (highly dense) phases. It is noted that the maximum depletion attractionW max

AOV
between hard platelets

W max
AOV
kBT

= −ϕR
d

(
3

4q2 +
3π
8q
+ 1

)
(6.9)

is much stronger than between HSs (for whichW max
AOV ∝ −ϕ

R
dq
−1, see Chapter 3) when

considering addition of tiny depletants. The tendency of the �at faces of the discotics
to align at high concentrations is enhanced by the presence of the non-adsorbing
depletants, leading to aW max

AOV ∝ −ϕ
R
dq
−2 scaling in the limit of small q.

In Fig. 6.10(a), we zoom in on the phase-diagram region of interest. A particular
equilibrium C1–C2 phase coexistence result obtained from the direct coexistence
Monte Carlo computer simulations is plotted together with the theoretical results.
Some simulation details are presented in Section 6.C. A snapshot of the (equilibrated)
direct coexistence is shown in Fig. 6.10(d). For computational purposes, the discotics
were modelled as oblate hard spherocylinders (OHSCs) instead of as hard cylinders.202

The close-packing fraction for these OHSCs (Λ = 0.1) is ϕcp
c ≈ 0.88202, which ex-

plains the lower ϕc-value on the C2 branch of the simulations as compared to FVT
predictions. The stacking of OHSCs in the columnar phase is also slightly di�erent
than those of hard cylinders due to their rounded edges.202 Besides this o�set in
the C2 branch, the direct coexistence MC simulation results and the FVT predicted
tie-line are in remarkable agreement. As previously noted, snapshots of the di�erent
(independently equilibrated) plate–polymer mixtures [Fig. 6.10(e,f)] show that the
depletant compartmentalisation is in line with the predictions from the αgeo

C . Further,
the direct coexistence MC simulations show that this isostructural C1–C2 coexistence
is stable against �uctuations (at least for depletant concentrations far enough from
the critical point).

Next, we pay attention to the colloid–colloid and colloid–depletant distribution
functions obtained from the MC simulations, presented in Fig. 6.10(b,c) (solid and das-
hed green curves). The most insightful of these distributions is the colloid–depletant
distribution function in r⊥ [дc-d

⊥ , green curves in Fig. 6.10(b)]. For the C2 phase, дc-d
⊥ ≈ 0

for r⊥ . 0.5σ , which con�rms that there are barely depletants present in the intra-
columnar direction in C2 (solid green curves). On the contrary, there is a clearly
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(a) (b)

(c)

(e) (f)

(d)

Figure 6.10 (a) Zoom in from the phase diagram in Fig. 6.9 around the vicinity of the C1–C2
coexistence (illustrative tie-lines in orange), considering only the geometrical free volume
fraction for depletants in the columnar phase. Orange circles correspond to the equilibrium
simulation data, tie-line in black. (b,c) Distribution functions in the inter-columnar (d)[д⊥] and
intra-columnar (e)[д‖] directions for the particle-pairs indicated; the di�erence between д00

‖

and д01
‖

is explained in main text. (d-f) Simulation snapshots of colloids (brown) and depletants
(green) in equilibrium states. (d) Snapshot from the (1100) plane of a final direct-coexistence
simulation, where the C1 phase occurs on the le� and the C2 on the right of the simulation box.
(e, f) Snapshots from the (0001) plane of the depletants present in the equilibrium lower-density
[C1, (e)] and higher-density [C2, (f)] columnar phases.
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Figure 6.11 Le� panel: colloid volume fractionϕc at the nematic–columnar–columnar N–C1–
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a�raction at N–C1–C2 (purple curve) and at the I–N–C2 triple points (dashed grey curve) as
a function of the relative depletant size q. In the inset, the depletant concentration in the
reservoir is shown. The open orange symbols denote the critical endpoint.

homogeneous distribution of depletants on the top and bottom of the mesogenic
�at faces in the C1 phase: дc-d

⊥ ≈ 0.4 for r⊥ . 0.5σ (dashed green curves). The �rst
peak at r⊥ ≈ 0.5σ of this дc-d

⊥ , which is present both in C1 and C2, corresponds to
the doughnut-like volume available for depletants between discotics. The similar
position of the second and third peak of дc-d

⊥ indicate that depletants are present in
the interstices of both columnar phases. Furthermore, the д⊥-value at these peaks is
signi�cantly higher in the C2 phase than in the C1 one. This follows naturally from
the lack of pockets in r ‖ in C2, which leads to accumulation of the depletants in the
interstices. In the inter-columnar direction r⊥, the colloid–colloid distribution дc-c

⊥

shows peaks corresponding to the hexagonal (two-dimensional) arrangement both for
C1 and C2 (brown dashed and solid curves). In contrast, colloid–colloid distributions
in the intra-columnar direction r ‖ , both within the same column д00,c-c

‖
and between

di�erent columns д01,c-c
‖

, manifest a solid-like behaviour of the C2-phase (brown solid
curves) and a more �uid-like behaviour of the C1-phase in r ‖ (dashed brown curve)[see
Fig. 6.10(c)]. We deduce from the colloid–colloid and colloid–polymer distributions
that: (i) The C1–C2 coexistence is solid–solid like for the discotics in r⊥ but solid–�uid
like in r ‖ ; and (ii) Depletants compartmentalise according to the pockets present in
the columnar phase. In the C1 phase, pockets are available both in r ‖ and r⊥. Opposite
to this, in the C2 phase, pockets are only available the interstices (i.e., in r⊥).

We �nally turn our attention to the N–(C1C1) critical end point (CEP) for which
FVT predictions are plotted in Fig. 6.11. As observed for HSs mixed with PHSs at low q

(Chapter 3), ϕc at the C1–C2 critical point (ϕ ‖c , orange curve) decreases with increasing
q. The N–C1–C2 CEP occurs at q ≈ 0.04, signi�cantly above the original prediction
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(q ≈ 0.02, see Section 6.3.4). The depletant concentration at the CEP is presented in
the right panel of Fig. 6.11. The depletant concentration of at the I–N–C2 coexistence
is always above the one of the N–C1–C2. In line with our results in Chapter 3, the PHS
volume fraction at the N–C1–C2 triple point �rst increases and then decreases with
increasing q (inset of Fig. 6.11). This denotes a soft re-entrant behaviour 117. However,
the maximum strength of the depletion attraction, Eq. (6.9), decays at the N–C1–C2

triple point. The C1–C2 critical point occurs at a depletant concentration which is
virtually zero: it may appear that the mere presence of depletants in the system is
enough to induce two di�erent columnar states. While not reported previously for
colloidal systems (as far as we are aware of), such behaviour of the critical point is
quite common in alloys.214 One may argue that for such tiny depletants the columnar
phase contains two e�ective di�erent systems: one in r ‖ and one in r⊥. The depletant–
colloid distributions obtained from the MC simulations support the idea of these two
di�erent subsystems for tiny depletants in the columnar phases. The thicker the
discotic, the more clear the di�erence between these ‘two e�ective systems’ is. This
may explain the increase in q at the N–(C1C1) CEP with increasing Λ observed in
Fig. 6.8. We �nally note that the N–(C1C1) CEP dependence with the discotic aspect
ratio Λ remains as predicted with the more tractable SPT approach originally followed
(see orange curve in Fig. 6.8).

The insights put forward in this Section shine light on the role of excluded vo-
lume interactions in compartmentalisation in crowded and highly size-asymmetric
environments, which are of relevance in biological systems. 125,215

6.5 Conclusions

Free volume theory (FVT) is a versatile and tractable framework to predict the phase
behaviour of mixtures of platelets and non-adsorbing polymer chains in a common
solvent. We reveal via FVT, a multi-phase coexistence overview in terms of the
platelet thickness (Λ) and the relative depletant size (q) was obtained (Fig. 6.8). The
possible phase states of the canonical platelet system were considered: isotropic (I),
nematic (N) and columnar (C). The �nal phase diagrams do not only match with
previous theoretical approaches and with experimental results but also exhibit a
columnar-columnar isostructural coexistence not reported before. On top of a I1–
I2–N–C quadruple coexistence, two other four-phase coexistences are presented
involving orientationally ordered isostructural coexistences at low depletant sizes:
I–N1–N2–C, and I–N–C1–C2. All quadruple coexistences arise when two di�erent
isostructural triple phase coexistences merge. The stability regions can be explained in
terms of excluded volume repulsions between hard discs being reduced by the second
component in the mixture. The appearance of columnar phases can be rationalised in
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terms of alignment (and stacking) of the �at faces of the colloidal hard discs, which
increases the free volume and the entropy of the depletants.

The isostructural phase coexistences of ordered phase states of the discs (N1–
N2 and C1–C2) are driven by short-ranged attractions (small q and low depletant
concentrations). This may be envisaged as an e�ective ‘sticky hard platelet’ interaction,
which is supported by the presence of columnar phase equilibria (C1–C2, I-C1–C2,
N–C1–C2, I–N–C1–C2) for relatively small depletants. On the other hand, the isotropic
isostructural coexistence is driven by a large depletion zone that su�ciently smooths
the interacting platelet volume. Hence, the relative size of the depletant modi�es
the coexistence landscape, enhancing isostructural coexistences between partially
crystalline phases (C1–C2 and N1–N2) for small depletant sizes while promoting
isotropic �uid-�uid (I1–I2) coexistence for large enough depletants.

The theoretically predicted C1–C2 coexistence, driven by the depletant partiti-
oning in the intra-columnar direction, was con�rmed by comparison with direct
coexistence Monte Carlo simulations explicitly accounting for a binary mixture of
discotics and depletants. It follows both from geometrical considerations and Monte
Carlo simulations that there are two preferred pockets for tiny depletants in a co-
lumnar phase; one in the intra-columnar and the other inter-columnar direction.
Via a geometrical free volume fraction for depletants, the role of excluded volume
interactions in a crowded and highly asymmetric system can be isolated.

6.A Thermodynamics of pure platelet suspensions

Various thermodynamic properties of pure platelet suspensions have been studied
in detail previously,200,216 and we solely report here the key ingredients required
to calculate the �nal phase diagrams of model colloidal platelet-polymer mixtures.
Entropy-driven phase transitions25 as considered here depend on the excluded volume
between two colloidal particles. This excluded volume is de�ned as the volume
inaccessible to a second particle in the system as a consequence of the presence of
a �rst particle. For two colloidal platelets, the excluded volume (vp-p

exc ) per particle
volume (vc) reads 18:

v
p-p
exc
vc
= 2

[
|cosγ | +

4E (sinγ )
π

+ 1
]
+

8Λ sinγ
π

+
2 sinγ
Λ

, (6.10)

where γ de�nes the relative orientation between two colloidal discs, and E(x) is the
complete elliptic integral of the second kind. Considering the symmetry of a platelet,
its orientation can be de�ned via a unit vector (û) in the axis of symmetry of the
cylinder. Hence, cosγ = û · û ′, where û ′ simple refers to a second cylinder. For the
isotropic and nematic phases we consider Onsager–Parsons-Lee theory.200,217 The
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free energy of both the isotropic and nematic phases reads:

F̃k
ϕc
= ln ṽc + lnϕc − 1 + σk [f (û)] +

2
π

ϕc

Λ
GP〈〈ΘExc(û, û

′)〉〉. (6.11)

The �rst two terms on the right-hand-side of Eq. (6.11) correspond to the �nite-volume
normalization of the energy (ṽc being the dimensionless thermal volume of a platelet)
and the ideal gas contribution to the free energy.

In order to calculate the free energy of the isotropic and nematic phases, an
orientational distribution function [ODF, f (û)] needs to be accounted for. A system
in which particle orientations are taken into account can be envisaged as a multi-
component system in which each component corresponds to a possible particle
orientation. 18,218 Hence, the ODF is a measure of the probability of �nding a particle
with a given orientation û. The rotational entropy term, σk [f (û)] is de�ned as217:

σk [f (û)] =

∫
f (û) ln[4π f (û)]dû. (6.12)

The dimensionless ensemble-averaged excluded volume follows from:

〈〈ΘExc
k (û, û

′)〉〉 =
1
σ 3

∫ ∫
f (û)f (û ′)v

p-p
exc(û · û

′)dûdû ′. (6.13)

Finally, e�ects beyond the second osmotic virial coe�cient are accounted for in an
approximate manner via the Parsons-Lee scaling factor219,220:

GP =
4 − 3ϕc

4(1 − ϕc)2
.

Formally, at each platelet concentration the free energy of the system must be mi-
nimized with respect to the ODF, f (û). Analytical expressions for the ODF can
be obtained for the isotropic state by considering equiprobability of orientations:
f (û) = 1/(4π ). In this case, σI[f (û)] = 0, and by applying the so-called isotropic
averages (〈〈sinγ 〉〉I = π/4, 〈〈E{sinγ }〉〉I = π 2/8, and 〈〈cosγ 〉〉I = 1/2), the free
energy of an isotropic ensemble of discs can be written as200:

F̃I

ϕc
= ln ṽc + lnϕc − 1 +

2
π

ϕc

Λ
GPΘ

Exc
I , (6.14)

with:

ΘExc
I =

π 2

8
+

(
3π
4
+
π 2

4

)
Λ +

πΛ2

2
. (6.15)

Furthermore, closed expressions for the free energy of the nematic phase can be
obtained via a Gaussian approximation221 for f (û). Considering that all relative
orientations can be de�ned as a Gaussian perturbation from the nematic director
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vector provides a closed-form expression for the free energy.200 This Gaussian ODF
reads

fN-G(θ ) =
κ

4π
exp

[
−

1
2
κθ 2

]
, (6.16)

where θ is the polar angle between the nematic director and the orientation of the
platelet. Minimizing the free energy with respect to the unknown parameter of the
Gaussian ODF κ provides a closed form for the free energy of the nematic phase200:

F̃N-G

ϕc
= ln ṽc + lnϕc − 1 + σN-G +

2
π

ϕc

Λ
GPΘ

Exc
N-G, (6.17)

with:

σN-G = ln

[
πϕ2

cG
2
P

Λ2

]
− 1,

and

ΘExc
N-G =

1
2
π 3/2κ(ϕc,Λ)

−1/2 + 2πΛ.

For the columnar phase, a modi�ed Lennard-Jones–Devonshire (LJD) cell-theory 51

approach provides a closed expression for the free energy200,213:

F̃C

ϕc
= ln ṽc + lnϕc − 3 − 2 ln

[
1 −

1
∆̂⊥

]
+ 2 ln


3∆̂2
⊥ϕ

r
c

2Λ
(
1 − ∆̂2

⊥ϕ
r
c

)  − ln
[
1
3

(
1 − ∆̂2

⊥ϕ
r
c

)]
,

(6.18)

where the lateral spacing (inter-columnear direction) is:

∆̂⊥ ≡ ∆⊥/σ =
3√2K̄2/3 − 3√34ϕr

c

62/3 3√
K̄ϕr

c
, (6.19)

where

K̄ =
√

3(ϕr
c)

3(243ϕr
c + 32) + 27(ϕr

c)
2, (6.20)

and with

ϕr
c = ϕc/ϕ

cp
c , (6.21)

and

ϕ
cp
c = π/(2

√
3) ≈ 0.907. (6.22)
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The approximated expression for the intra-columnar spacing213 ∆ ‖ is:

∆̂ ‖ ≡ ∆ ‖/L =
1

ϕr
c∆̂

2
⊥

(6.23)

The (dimensionless) osmotic pressures and chemical potentials follow the relations in
Chapter 1:

βµ ≡ µ̃ =

(
∂F̃c

∂ϕc

)
T ,V

; βΠvc ≡ Π̃ = ϕcµ̃ − F̃c, (6.24)

6.B Geometrical free volume fraction in the columnar state

We follow the ideas put forward in Chapter 3 to calculate a geometrical free volume
fraction for PHS in a columnar state. Let VUC be the volume of the columnar unit cell,
such that:

VUC/vc =
3π 2

16ϕc
. (6.25)

If there is no overlap of depletion zones (colloidal concentrations far from the close
packing), the free volume for depletants is simply the volume unoccupied by the
depletion zones. Overlap of the depletion zones lead to an increase of the free volume
fraction for depletants. In the case of the platelets, overlap of the depletion zones
occurs either from the side or from the �at phases of the hard disc. These two
contributions can be conveniently split. Due to the di�erent scalings of the unit
cell,200 overlap in the intracolumnar direction occurs at lower colloidal concentrations
than in the intercolumnar one. One must account for the total number of overlaps:
nine in the intercolumnar direction and three in the intracolumnar one. This allows
to cast αgeo

col in a generic form:

α
geo
C =



1 −
3vHP-PHS

excl
VUC

if ϕc < ϕ
‖
c (no overlap),

1 −

(
3vHP-PHS

excl
VUC

−
3v ‖overl
VUC

)
if ϕ ‖c ≤ ϕc < ϕ

⊥
c (overlap in r ‖)

1 −

(
3vHP-PHS

excl
VUC

−
3v ‖overl
VUC

−
9v⊥overl
VUC

)
if ϕ⊥c ≤ ϕc (overlap in r ‖ and r⊥),

(6.26)

where ϕ ‖c is the solution of the equation

∆̂ ‖(ϕc) = 1 + q/Λ, (6.27)
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and ϕ⊥c is the solution of the equation

∆̂⊥(ϕc) = 1 + q. (6.28)

Note �rst that the termvHP-PHS
excl accounts for the depletion zone volume [equivalent to

Eq. (6.2) minus the term corresponding to the sphere volume, 2q3/(3Λ4)]. Also note
that with the approach described here we only account for two-body overlaps of the
depletion zones, which is su�cient for small enough q-values. Further, in Eq. (6.26)
the condition ‘no free volume for depletants’ is not shown for simplicity. Upon some
algebra, these three di�erent contributions read:

3vHP-PHS
excl
VUC

= ϕc

[
(1 + q)2 +

q

6Λ
(
6 + 3πq + 4q2) ]

3v ‖overl
VUC

= ϕc

(
1 +

q

Λ

)
−

π

2
√

3∆̂⊥
+

2ϕc

3

[
3ΛA2(q/(2Λ), ∆̂ ‖ − 1) + Λ2

(
∆̂ ‖ − 1

)3
+
q3

Λ

]
9v⊥overl
VUC

=
ϕc

π
12A2

(
1 + q

2
, ∆̂⊥

)
,

(6.29)

where A2 is the area of intersect between two discs with radius R at a distance r :

A2(R, r ) = 2R2 cos−1
( r

2R

)
−

1
2
r
√

4R2 − r 2 (6.30)

We shall �nally note here that the algebraic complexity of Eq. (6.26) arises mostly due
to the contribution to the depletion zone of the edges of the platelet.

6.C Direct coexistence Monte Carlo simulations

The (modi�ed) direct Monte Carlo coexistence simulations consider hard colloidal
platelets as hard oblate hard spherocylinders (OHSC) mixed with a non-adsorbing spe-
cies which is modelled as penetrable hard spheres (PHSs). The direct colloid–colloid
and depletant–colloid interactions are hard, whereas there are no depletant–depletant
interactions. Simulations start with two non-equilibrated simulation boxes in contact.
Each box contains either the C1 or C2 FVT-predicted coexistence volume fractions of
colloids and polymers. The oblates are arranged in two columnar phases with the
same column axes, whereas the depletants are distributed randomly without colloid–
polymer overlaps. The whole simulation box contains N particles (discotics plus
polymers), and a (MC) cycle is de�ned as N trials to displace and/or rotate a randomly
chosen particle plus an attempt to change the aspect ratio of the simulation box (its vo-
lume is �xed). Two di�erent equilibration steps are considered. Firstly, 1 × 106 cycles
are conducted restricting the depletants to the volumes that they occupied in the
initial con�guration (equilibration of the discotic phases). Secondly, 3 × 106 cycles are
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carried out without restrictions (equilibration of the direct coexistence). Ensemble-
averaged equilibrium colloid and polymer volume fractions are collected over the
last 2 × 106 cycles. The method used here is a modi�ed direct coexistence Monte
Carlo222 approach. It is applied, as far as we are aware of, for the �rst time to directly
study isostructural coexistence in highly dense discotic systems explicitly accounting
for a binary mixture (OHSCs and PHSs). These equilibrium direct-coexistence MC
colloid and polymer volume fractions are used for two independent sets of simulations
(1 × 106 cycles to equilibrate, plus 2 × 106 cycles for production), from which colloid–
colloid and colloid–depletant distribution functions elucidate the structural details of
the C1 and C2 phases. These direct coexistence simulations were blind-tested: two
starting con�gurations at di�erent colloid packing fractions in absence of depletants
melt into a single one. Further details of the simulation method are beyond the scope
of this thesis.

103



6 | Discotic dispersions mediated by depletion

104



Part III

Spherical association colloids

Aquellos que allí se parecen no son gigantes,
sino molinos de viento.

Those over there are not giants,
but windmills.

Miguel de Cervantes
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Chapter 7

On the colloidal stability of association
colloids

Abstract
Using self-consistent field (SCF) calculations, we quantify the interactions between
spherical diblock copolymer micelles following a bo�om-up approach. From the
equilibrium properties of self-assembling micelles at di�erent separation distances, a
simple yet insightful micelle–micelle interaction can be extracted. The SCF results
match with an analytical model based upon closed expressions for the free energy
change per diblock copolymer in the micelle. To gain insight on the colloidal stability
of micelle solutions, the second virial coe�icient normalised by the undistorted
micelle volume B∗2 is evaluated. For stable micelle solutions (B∗2 & −6), we find a
weak dependence of B∗2 on solvophilic block length for varying core-forming block
properties (core solvation and block length). The micelle suspension gets unstable
(B∗2 . −6) when the corona-forming block crosses Θ-solvent conditions towards poor
solvency. In contrast with what is expected from models where the so� nature of
the micelle is not taken into account, increasing the e�ective gra�ing density of
solvophilic tails from the core then leads to colloidal destabilisation of the micelle
suspension.
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7.1 Introduction

The association of polymers and surfactants (macromolecules) into soft colloidal parti-
cles provides a playground for generating a wide range of self-assembled architectures
in selective solvents.34 Substantial attention has been paid to predetermine the pre-
ferred morphology of association colloids.37 Among the possible micellar shapes, the
spherical one is appealing due to its wide applicability for instance in coatings,223

in food,224 and as drug delivery systems225–228. In many applications, control is not
only desired over the morphology of the self-assembled structure, but also over the
thermodynamic stability of the micellar suspension. A widely applied technique
to enhance the stability of inorganic colloidal particles is grafting polymers onto
their surface, which leads to steric stabilisation.8,229 For spherical micelles formed by
block copolymers, such steric stabilisation is inherent.35 Understanding how micelles
interact is key to envisage, and therefore predict, the stability of a micellar solution.
Previously presented models for micelle–micelle interactions account for the core as a
hard surface onto which the solvophilic components are tethered.230–232 Micelles are
however responsive, since the assembled molecules are, presumably, in equilibrium
with free ones, so the core–corona interface is soft and adaptable.233–235 For micelles
with large coronal domains, the interaction between micelles mediated by overlap of
coronas has been compared to that of starlike polymers.236,237 It is noted, however, that
starlike polymers are not self-assembled structures,238 and such models hence neglect
the presence of free diblock copolymer in solution. For this reason, the interaction
between diblock copolymer spherical micelles may be quanti�ed while accounting
for their soft polymeric and associative nature. When computing the micelle–micelle
interaction potential, we allow the aggregation number (дp, the number of polymers
composing the micelle) to equilibrate with free polymer in the bulk at each intermi-
celle separation distance r . We account for intermicellar distances r ≥ 2Ro

h, with Ro
h

the hydrodynamic radius of an undistorted micelle. Hence, we focus on dilute micelle
suspensions rather than on high-density solid phases of micelles236 or possible micelle
morphology transformations above their overlap concentration239,240.

A useful indicator for the thermodynamic stability of a colloidal suspension is
the second osmotic virial coe�cient B2.43,44 Yet, experimentally measured B2 values
for micelle suspensions are limited.241–245 The value of B2 can be used to specify the
(colloidal) stability of a suspension. For a collection of hard spheres, B∗2 ≡ B2/vc =

4, 16 where vc is the volume of the colloidal particle considered. If repulsive forces
beyond the pure hard core excluded volume interaction are present between the
colloidal particles, B∗2 > 4. For monocomponent systems of interacting spheres, the
Vliegenthart–Lekkerkerker (VL) criterion45 identi�es the onset of colloidal gas–liquid
coexistence at B∗2 . −699,246. Both the hard sphere limit and the VL criterion are used
here as indicative values for the colloidal stability (see Section 1.3.2).
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7.2 | Semi-analytical expression

Table 7.1 System parameters chosen in this study: number of solvophobic (m) and solvophilic
(n) repeating units, and Flory–Huggins interaction parameters. A and B refer to a solvophilic
and solvophobic segment, respectively; W is a solvent molecule.

m n χBW χAW χAB

16, 24, 32 varied 2, 3 varied 1

In this Chapter, we present a bottom-up approach to study the stability of a
micellar suspension of diblock copolymers. We estimate micelle–micelle interactions
via self-consistent �eld calculations for block copolymers with di�erent block lengths
and solubilities. Results are compared with an alternative analytical expression for
the interaction potential based upon the thermodynamics of micelle formation.247

Here, we investigate whether one can describe self-consistent �eld (SCF) results
with a theoretical model. Furthermore, we calculate the normalised second virial
coe�cient, B2/vc, consideringvc as the volume of an isolated micelle, and evaluate its
dependency on block copolymer composition and solvency parameters of the blocks.
The SCF-approach followed was explained in Chapter 1, hence we focus here on the
results. For completeness, the set of closed expressions used to compare the SCF
results is presented in Section 7.2. The set of system parameters used is summarised
in Table 7.1.

7.2 Semi-analytical expression for the interaction potential

An analytical expression for micelle–micelle interactions can be obtained from previ-
ously developed theories for block copolymer micelles. The presence ofK surrounding
micelles exerts an isotropic compression on a central micelle at small enough inter-
micelle distances r . The con�ned (central) micelle is assumed to be in equilibrium
with free copolymers. This enables to minimize the unfavourable increase of the free
energy upon compression (e.g., the aggregation number дp is allowed to vary with r ).
The micelle–micelle interactionW (r ) can be expressed as:

W (r ) =
2
K
[fmic(r ) − fmic(r = ∞)] , (7.1)

where fmic(r ) is the free energy of a micelle whose centre is separated a distance r
from a neighbouring one. Hence, fmic(r = ∞) is the free energy of an isolated micelle.
The free energy of a micelle can be approximated as the sum of three contributions:
the elastic free energy of the core-forming blocks, the elastic free energy of the corona-
forming blocks and the interfacial energy between the core and the solvent at the
core–corona interface. We use an approximate expression for fmic(r ) = Fmic(r )/(kBT )

(with kB being Boltzmann’s constant and T the absolute temperature) by modifying a
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result from Zhulina and Borisov247:

fmic(r ) =дp(r )
3π 2R2

c(r )

80b2m︸            ︷︷            ︸
elastic, core

+
дp(r )

3/2

2
√
π

ln
[
1 +

T (r )

Rc(r )

]
︸                       ︷︷                       ︸

elastic, corona

+
4πγ̃
b2 [Rc(r )

2 − дp(r )R
2
B]︸                       ︷︷                       ︸

core-corona interface

.
(7.2)

Hereb is the size of a monomer, Rc(r ) andT (r ) represent the core radius and the corona
thickness respectively, RB is the radius of the collapsed B block in an unassembled
block copolymer molecule and γ̃ is the (normalised) interfacial tension between the
core and the solvent. The value of γ̃ is approximated from the Helfand–Tagami
equation248:

γ̃ =
√
χBW/6. (7.3)

Both Rc(r ) and T (r ) can be expressed as a function of дp(r ). In a spherical micelle
composed of дp copolymer molecules the volume of the spherical hydrophobic core is
given by

VC = дpVB =
дpNBb

3

ϕB
, (7.4)

where VB is the volume occupied by a single B block and ϕB is the polymer volume
fraction in the core. For values of χBW > 1, ϕB is close to unity and can be approxima-
ted as:

ϕB = 1 − e−
4
3 χBW . (7.5)

The expression above matches reasonably well with SCF computations.249 Hence, Rc

and RB can be written as:

RB

b
=

(
3m

4πϕB

)1/3
,

Rc

b
=

( 3дpm

4πϕB

)1/3
. (7.6)

To estimate the total radius of the micelle R we assume that the volume of each A
block does not change upon assembly, and equals the unperturbed volume VA, given
by

VA =
4π
3
R3

g,A, (7.7)

where Rg,A is the gyration radius of the A block, which is estimated from 15:

Rg,A

b
= 0.31n1/2

[
1 +

√
1 + 6.5(1 − 2χAW)n1/2

]0.352
. (7.8)

The total radius of the micelle and the corona thickness are thus given by

R =

( 3дp(VA +VB)

4π

)1/3

, T = R − Rc . (7.9)
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Hence, given the χ -parameters and the block copolymer composition we only need
дp(r ) to calculate W (r ). The results of this semi-analytical theory are denoted as
hybrid because SCF input is needed [only through дp(r )].

7.3 Results and discussion

First, we evaluate the dependence of the equilibrium micelle properties on the inter-
micelle distance. This yields micelle–micelle interactions, for which case examples
are presented. Subsequently, we use these micelle–micelle interaction potential to
compute the second virial coe�cients mediated by the solvophilic block solubility
and chain length. Finally, the e�ect of the diblock copolymer composition and mono-
meric interaction parameters on the colloidal phase stability is summarised into two
comprehensible plots.

7.3.1 Equilibrium properties of micelles with varying intermicelle distance

We focus �rst on the changes of the micellar equilibrium properties at di�erent inter-
micelle separation distances r . These micellar properties were studied using a lattice
with concentration gradients in one (spherical lattice) or two directions (cylindrical
lattice). In Fig. 7.1 we present the grand-potential Ω obtained via Scheutjens–Fleer
self-consistent, mean �eld (SCF) computations64–66 as a function of the aggregation
number дp for di�erent lattices for micelles formed by diblock copolymers B24A45

in a solvent W. The interaction between blocks and of blocks with the solvent are
speci�ed via Flory–Huggins interaction parameters, namely χBW = 2 and χAW = 0.4;
χAB = 1 is used in all our calculations. The grand-potential curves using one or two
concentration gradients practically overlap if the lattice dimensions are large enough;
in such a case the dilute solution limit of individual micelles is reached. There are
no appreciable di�erences in the maximum free energy required to form a micelle as
micelles get closer to each other (decreasing r ). However, the average equilibrium
aggregation number of the micelle (which satis�es Ω = 0 with ∂Ω/∂дp < 0) decreases
when micelles are formed at small enough distances. For all diblock sequences BmAn

studied here, it was veri�ed that the preferred self-assembled structure is a spherical
micelle.

The corresponding equilibrium concentration pro�les are presented Fig. 7.2. If
the number of lattice sites (Nlat) is su�ciently large, the micelle size and aggregation
numbers are independent of the lattice type considered (spherical or cylindrical lattice).
This can be appreciated by the projection of the equilibrium sizes from the spherical
lattice onto the cylindrical one (left panel of the top row in Fig. 7.2). All sizes are
expressed in terms of lattice units [l.u.]. Note that the distance between the centres of
the micelles r is set by the number of lattice sites. For one-gradient SCF computations,
r = 2Nlat (with Nlat the number of concentration shells considered). For two-gradient

111



7 | On the colloidal stability of association colloids

gr
an

d
po

te
nt

ia
lβ
Ω

r [l.u.]
400
88

two gradients

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

equilibrium micelle

aggregation number gp

Figure 7.1 Grand potential from SCF computations Ω as a function of the aggregation
number дp at two di�erent intermicelle distances r obtained using a spherical la�ice (solid
and dashed curves). Open circles correspond to the grand-potential curve considering a single
micelle in a cylindrical la�ice, allowing to study spherical micelles with concentration gradients
in two directions. The micelle considered is composed of B24A45 diblock copolymers with
χBW = 2, χAW = 0.4, and χAB = 1.

computations, r = 2N r
lat (if the nearest micelles are in the radial direction) or r = N

y
lat

(in case the nearest micelles are in the longitudinal direction). From the concentration
pro�les, the hydrodynamic micelle radius (Rh) can be computed (see Chapter 1). In
the dilute limit, r � 2Ro

h, Ro
h ≈ 20 [l.u.] for the B24A45 block copolymer micelle.

The superscript ‘o’ denotes micelle undistorted properties. The solvophobic blocks
are concentrated in the core of the spherical micelle, which is compact and nearly
solvent-free.36 The approximated core size Rc is indicated via orange dashed vertical
lines. The solvophilic blocks are mainly located in the corona, which is well-solvated.
It is noted that solvophilic polymer segments are also signi�cantly present at positions
beyond Ro

h, see top panels of Fig. 7.2. We denote the region where solvophilic segments
are clearly present (ϕp � ϕbulk

p , with ϕbulk
p the polymer bulk concentration) beyond

Ro
h as the solvophilic tails. When micelles get close, the overlapping of these outer tail

regions leads to a contraction of the coronas already at intermicelle distances r > 2Ro
h.

This induces a decrease in the micelle size with respect to the dilute limit at r > 2Ro
h

(see Fig. 7.3). The interpenetration of these solvophilic tails is clearly visible in the
bottom right panels of Fig. 7.2, where the density pro�les from the two concentration
gradient computations in either the radial or the longitudinal length is of the order of
2Ro

h.
We use the micelle hydrodynamic size in the dilute limit as characteristic length

scale for the pair interaction between micelles. This quantity relates with theoreti-
cal predictions for diblock copolymer micelles.250 The variation of the aggregation
number as a function of the normalised intermicelle distance r̃ = r/2Ro

h is shown in
Fig. 7.3. Due to the lattice-nature of the approach followed, it is useful to compare the
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Figure 7.2 Concentration profiles computed using SCF theory in a spherical la�ice with
concentration in one dimension (le� panels) or in a cylindrical la�ice with concentration
gradients in two dimensions (right panels) at equilibrium conditions (see Fig. 7.1). Nearest-
neighbour micelle distances r are indicated, as well as the number of la�ice sites (Nlat). Vertical
lines correspond either to the corresponding hydrodynamic sizes (orange and purple) or to
the mirror (blue, only in the bo�om le�most panel). Orange and purple circles (right panels)
correspond to the sizes on the le�, while clouds of purple points correspond to polymer
concentrations in between 1% and 10%.

aggregation number change (∆дp) normalised by the number of nearest neighbouring
micelles K when bringing the micelles closer to each other:

∆дp =
1
K

[
дp(r ) − дp(r � 2Ro

h)
]

. (7.10)

As micelles get closer (decreasing r ) their sizes decrease due to the overlap of the
solvophilic tails, which lead to contraction of the coronas. From the results in Fig. 7.3
it follows that both the characteristic size of the micelle core and corona as well
as the aggregation number decrease with decreasing r . The overall size decreases
already for r . 3.2Ro

h: the outer solvophilic tails start to interact signi�cantly near
r̃ ≈ 1.6. The onset of the decrease of the core size and aggregation number appear
simultaneously near r̃ ≈ 1.2. This may be explained by the strong dependence of the
aggregation number on the core and corona-forming block size247: for r̃ . 1.2 the
core is compressed, and diblock copolymers start to dissociate from the micelle.
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Figure 7.3 Characteristic sizes (le� panel) and e�ective change of aggregation number
(right panel) as a function of the normalised intermicelle distance r/2Ro

h for the same system
parameters as in Fig. 7.1. Arrows are used for the estimated onsets of corona (purple) and core
(orange) compressions.

The decrease of дp as micelles get closer contrasts with regular scaling models,
where дp is assumed to remain constant up to the limit where micelles overlap, and
increases beyond overlap of the micelles.247 We note that the model presented here
concerns dilute suspensions of micelles, as we do not study the micellar changes for
r < 2Ro

h. Upon approaching overlap of micelles, a small decrease of the aggregation
number (of the order of what we �nd here) might be inferred from experiments.251

The trend shown in Fig. 7.3 holds when increasing the solvophilic block length, but
the variation in дp is smaller with increasing n at �xed r̃ (as micelles become more
starlike). It has been suggested that the increase of дp above overlap of the micelles is
associated with a change of the preferred micellar morphology far beyond micelle
overlap concentration.239,240 The 2D-gradient SCF approach followed here might be
able to capture such e�ects, which are out of the scope of the present study.

7.3.2 Model comparison and la�ice geometry e�ects

In this Section, micelle–micelle interactions obtained via the di�erent approaches,
and using di�erent lattice types are compared. We consider �rst diblock copolymers
B24A45 with parameters χBW = 2, χAW = 0.4, χAB = 1. The dependence of the micelle
equilibrium with intermicelle distance provide all required components for calculating
these micelle–micelle interactions (see Section 1.3.5), which are presented in Fig. 7.4.
We �rst consider purely SCF lattice computations using one or two concentration
gradients, as well as a semi-analytical approach (see Section 7.2) in which the only
input from the SCF computations is the change in дp(r ) (hybrid). The di�erent
methods produce very similar results: a strong, short-range repulsion takes place at
short intermicelle distances (r̃ . 1.5) which originates from a signi�cant excluded
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Figure 7.4 Le� panel: interaction potential considering di�erent pure SCF approaches and
the hybrid model [Eq. (7.1)], where the values of дp are obtained from SCF. Curves correspond
to the hard-core-Yukawa (HCY) potential fit while symbols are calculated points. Solid, black
curve correspond to the HCY fit of the one concentration gradient calculations. Dashed orange
curve corresponds to the hybrid method. Dashed black curves hold for the two-gradient
computations where micelles are brought closer to each other in the radial or longitudinal
direction. Right panel: interaction potential between micelles for various solvent quality
parameters of the corona-forming block. Diblock copolymer considered is: B24A45, χBW = 2,
χAB = 1, and varying χAW as indicated. Curves correspond to the hard-core-Yukawa potential
fit while symbols are extracted from SCF data. For χAW = 0.5, the calculated points are simply
joined as a HCY fit is not applicable in this case.

volume repulsion of the solvophilic tails, corresponding to the situation where coronas
contract (see left panel of Fig. 7.3). This repulsive interaction is similar to a brush-
like repulsion between polymer-grafted colloids230,231,252 and starlike polymers253.
For spherical micelles, however, we �nd that the ‘surface’ at which the ‘brushes’
(solvophilic tails) are grafted is soft, and the e�ective grafting density is adaptative:
both дp and Rh depend on r . The SCF computations account for the soft and adaptable
nature of the micelles.

The micelle–micelle interactions obtained via the pure SCF (either one or two
concentration gradients) and the hybrid method are quite close (left panel ofFig. 7.4).
It appeared to be convenient to �t the interaction potential via a hard-core Yukawa
(HCY) interaction (see Section 1.3.1). This allows to systematically quantify the range
of repulsion (qY) between micelles and how the interaction depends on the diblock
copolymer properties. Further, the HCY model has been proposed as a model potential
for the interaction between block copolymer micelles.254 The �tting results are pre-
sented in Table 7.2. The �tted HCY curves can describe the SCF data points quite well,
see Fig. 7.4. Variations are expected in the contact potential values for the di�erent
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Table 7.2 HYC-fi�ed range of interaction (qY), extrapolated contact potential [W (r ) = 2Ro
h],

and normalised second virial coe�icient (B∗2) for a collection of micelle–micelle interactions
obtained from the SCF approach and using Eq. (7.1), where the values of дp are calculated via
SCF-computations (hybrid). Diblock considered is B24A45; the FH interaction parameters are
χBW = 2, χAW = 0.4 and χAB = 1.

Method K qY W (r = 2Ro
h) B∗2

one-gradient SCF 12 0.13 90.1 9.9
Eq. (7.1) + SCF (hybrid) 12 0.13 90.2 9.9
two-gradients SCF, radial compression 6 0.12 85.5 9.2
two-gradients SCF, longitudinal compression 2 0.13 62.7 8.9

approaches due to the steepness of the interactions calculated. The qY-values obtained
do however not vary signi�cantly. The small di�erences can be related to slightly
di�erent ∆дp(r ) values, see Fig. 7.3. Our bottom-up approach di�ers from the ones
previously reported in literature, where the mapping of the micelle–micelle repulsion
into a HCY254 or pure hard sphere255 pair potential was performed using a top–down
approach, via �tting experimentally collected structure factors with theoretical ones.

To gain more insight into the colloidal phase stability of micelle suspensions we
also compare the obtained normalised second virial coe�cient B∗2 = B2/vc, where
the e�ective colloidal particle volume vc is taken as the hydrodynamic volume of a
micelle in the dilute solution limit:

vc =
4π
3

(
Ro

h
)3 . (7.11)

Details on the calculation of B∗2 from the pair interaction can be found in Chapter 1.
The slight decrease of B∗2 with decreasing the number of nearest neighbour micelles
K points towards the small overestimation of the contact potential values when
calculations on the spherical lattice are conducted, most likely due to the di�erent
core compressions induced. Deviations of the results depending on the number
of concentration gradients using SCF computations are expected.231,256 However,
SCF calculations in the spherical lattice are su�ciently accurate to resolve the main
characteristics of diblock copolymer micelle-micelle interactions.

7.3.3 Influence of coronal block solvency

Next, we discuss the e�ects of the solvophilic block solvency parameter (χAW) on the
inter-micellar interactions of the same block-copolymer type as before (B24A45 with
χBW = 2, and varying χAW). This solvency parameter governs the colloidal phase
stability of the micellar suspension (as shown in the next Section). We consider SCF
computations with concentration gradients in one direction. In Fig. 7.4 (right panel)

116



7.3 | Results and discussion

Table 7.3 HYC-fi�ed range of interaction (qY), extrapolated contact potential [W (r ) = 2Ro
h],

and normalised second virial coe�icient (B∗2) for a collection of micelle–micelle interactions
obtained from the SCF approach and using Eq. (7.1), where the values of дp are calculated via
SCF-computations (hybrid). Diblock considered is B24A45; the FH interaction parameters are
χBW = 2, χAB = 1, and χAW is varied as indicated.

SCF hybrid
χAW qSCF

Y W (r = 2Ro
h) B∗2 q

hyb
Y W (r = 2Ro

h) B∗2

0.1 0.17 76.2 12.3 0.17 83.4 12.4
0.2 0.16 82.4 11.8 0.16 86.8 11.9
0.3 0.14 90.6 11.0 0.14 86.1 11.0
0.4 0.13 91.5 9.9 0.13 88.2 9.9
0.45 0.11 90.1 8.6 0.11 86.1 8.6
0.475 0.08 87.3 7.1 0.08 82.2 7.1
0.5 n.a. n.a. 1.0 n.a. n.a. 1.6

micelle–micelle interactions with varying χAW-values are shown. The black curve
corresponds to χAW = 0.4, the reference situation reported already in the previous
Section. For χAW < 0.4, the repulsions get more long-ranged which increases B∗2 (see
also Table 7.3). By increasing the solvent quality for the corona-forming blocks, the
tails extend further from Ro

h. This leads to a longer-ranged repulsion. The opposite
trend is observed for χAW > 0.4. Strikingly, a shallow attraction between the micelles
around r̃ ≈ 1.2 appears for χAW = 0.5. At the Θ-solvent conditions, the excluded
volume between corona-forming segments is compensated by the attraction among
them. When the corona blocks start to overlap, these attractions become increasingly
important as there are less corona-solvent contacts. This explains, we think, the
attractive part of the potential for χAW = 0.5. The repulsion contribution at Θ-solvent
conditions arises from compression of the core. Upon further increase of χAW the
attractive part of the potential would increase.

In Table 7.3 we present the obtained range of repulsion (when possible) as well
as the normalised second virial coe�cient for the potentials in Fig. 7.4 (right panel).
With increasing χAW the qY values get smaller, and B∗2 decreases. Near χAW ≈ 0.5 the
colloidal phase stability of the micelle suspension drops strongly. The pair interactions
(hence their �tting parameters) do not signi�cantly vary with the method (hybrid
method or pure SCF) used in their calculation.

7.3.4 Solvophilic block length e�ects

In this Section we address the e�ect of varying the solvophilic block length, which
leads to an increase of the coronal thickness. The e�ect of increasing the the thickness
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Table 7.4 Similar to Table 7.3 but for various chain lengths n for the diblock B24An ; the FH
interaction parameters are χBW = 2, χAB = 1, and χAW = 0.4.

SCF hybrid
n qY W (r = 2Ro

h) B∗2 qY W (r = 2Ro
h) B∗2

45 0.128 91.6 9.8 0.128 87.5 9.8
90 0.148 48.5 9.8 0.148 48.6 9.8

180 0.165 25.1 9.4 0.164 26.7 9.5
225 0.167 21.8 9.2 0.166 23.8 9.4
450 0.180 11.1 8.4 0.178 13.1 8.7

of this peripheral region is two-fold. On the one hand, due to a soft decay of the
solvophilic tails, the steric repulsion gets more long-ranged (concentration pro�les
on the left panel of Fig. 7.5). This leads to a larger qY-value, see Table 7.4. On the
other hand, the aggregation number decreases with increasing Ro

h due to an increased
overall diblock solvency: a micelles coexist with a higher diblock bulk concentration.
Thus, the e�ective grafting density of solvophilic tails from the core decreases with
increasing n. As observed in the previous section, the strongest contribution to the
steric repulsion between micelles arises, within our model, from compression of the
core. Therefore, there is a balance between the range and the strength of the steric
repulsion due to the coronal decays with increasing the solvophilic block length n,
which leads to an overall high B∗2 value which weakly depends on the particular
n-value. When increasing n, the decrease of дp weakens: the core compression gets
more screened upon increasing the corona thickness.

In the right panel of Fig. 7.5, examples of micelle–micelle interactions for various n-
values (B24An with χBW = 2, χAW = 0.4, and χAB = 1; black curve corresponds to the
chosen reference diblock) are plotted. The shape of the interaction potentials resemble
those presented in Fig. 7.4 (left panel). As can be appreciated, the HCY potential �ts
even better for large n-values: the interaction between diblock copolymeric micelles
(particularly, with long hydrophilic tails) is similar to the outer-soft-core contribution
of the interaction between starlike polymers.236,238 In Table 7.4 the resulting HCY-
�tted interaction range, contact potential, and normalised second virial coe�cient
are listed for various hydrophilic block lengths n. For the conditions investigated B∗2
still remains approximately constant (though a slight decrease is appreciated when
considering very large coronal domains). Note that qY is de�ned relative to the contact
potential (see Section 1.3.1).

118



7.3 | Results and discussion

vo
lu

m
e

fra
ct

io
n

di
st

rib
ut

io
n

0 20 40 60 80 100

10-1

10-2

10-3

10-4

10-5

10-6

10-7 m
ic

el
le

-m
ic

el
le

in
te

ra
ct

io
n
βW SCF

hybrid

n
45

225

450

1.0 1.2 1.4 1.6 1.8 2.0

0

5

10

radial direction distance between micelles r /Rh
o

Figure 7.5 Le� panel: polymer segment concentration profiles computed using SCF theory
in a spherical la�ice with concentration gradients in one direction for diblocks of type B24An
(with χBW = 2, χAW = 0.4, and χAB = 1). Arrows in the top-le� quadrant correspond to
the hydrodynamic radius of the micelle, whereas arrows at low concentrations denote the
position at which concentration has decay to 1.005 times its bulk value. Right panel: interaction
potential between micelles for the same diblocks as on the le� panel. Solid curves correspond
to the hard-core-Yukawa potential fit of the SCF data, whilst dashed curves correspond to
fi�ings of the hybrid approach presented.

7.3.5 Colloidal phase stability of spherical micelles

In this Section a colloidal phase stability overview of diblock copolymer micelle
suspensions is presented in terms of the calculated second virial coe�cient. This
quantity can be related to the colloidal phase stability and can be experimentally
measured using light-scattering techniques. The interaction between polymer brushes
anchored to solid surfaces (steric stabilisation) sensitively depends on the grafting
density of polymers.230,257,258 To compare the interactions between colloidal spheres
with anchored polymeric brushes and those between spherical copolymer micelles,
we considered an e�ective grafting density of solvophilic blocks at the core-corona
interface:

Γc =
дp

4πR2
c

, (7.12)

where Rc is the core size, estimated from the SCF concentration pro�les. The absolute
value of Γc for diblock copolymer micelles depends on the considered system para-
meters: the number of solvophobic block segments (m), the number of solvophilic
block segments (n), and their solvency parameters (χBW and χAW). However, in terms
of the colloidal phase stability, the solvency and length of the core-forming blocks
(m and χBW) does hardly a�ect B∗2 (as shown in the left panel of Fig. 7.6) for the
spherical micelles studied. This is due to a balance between the range (increasing
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Figure 7.6 Le� panel: normalised second virial coe�icient B∗2 of spherical micelles composed
of diblock copolymers B24An with increasing solvophilic block length n. Right panel: B∗2 for the
same data sets as on the le� panel but in terms of the gra�ing density of solvophilic segments
from the core Γc.

with n) and the strength (decreasing with n) of the steric repulsion. In fact, a value of
B∗2 ≈ 9± 1 is found independently of {m,n, χBW} for a �xed coronal block solvency of
χAW = 0.4 (see Fig. 7.6). Hence, the grafting density at the core–corona interface (set
by the diblock properties) hardly mediates repulsive micelle–micelle interactions upon
variations of the solvophobic block (within the range where spherical micelles are
preferred over other micelle morphologies). This is in contrast with the expectations
for the interaction between hard spheres with anchored brushes. Next, we focus again
on the in�uence of the interaction between the solvophilic tails as mediated by χAW.

The in�uence of the corona block solvency (χAW) on B∗2 is plotted in Fig. 7.7. For
χAW ≤ 0.45, we �nd B∗2 > 4 for all values of n, indicating that micelles (with these
characteristics) always interact in an overall repulsive fashion. The value of χAW does
not only a�ect the grafting density, but also the interaction between the coronal tails.
Upon approaching Θ-solvent conditions (χAW → 0.5) the mutual excluded volume
repulsion decreases. Thus, contrary to what is expected from sterically stabilized
inorganic colloids,230,257 B∗2 decreases due to solvophobic e�ects with increasing the
(diblock properties dependent) grafting density.

The attractive part of the pair interaction may be deep enough to destabilize the
micelle suspension (Fig. 7.4, right panel), as seen in Fig. 7.7 (left panel) for χAW & 0.5.
In contrast with theoretical predictions for polymer-grafted colloids,230,257 this colloi-
dal destabilisation arises (within our model) without considering direct attractions
between micelles. Colloidal destabilisation around Θ-solvent conditions for the corona
arises due to solvophobic e�ects: the enthalpic gain due to the solvent expel as mi-
celles get closer is su�cient to compensate the entropic penalty of compressing the
solvophilic tails.
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Figure 7.7 Le� panel: influence of the coronal block solvency (via χAW) on the normalised
second virial coe�icient B∗2 of spherical micelles composed of diblock copolymers B24An for
a collection of di�erent solvophilic block lengths n. Right panel: B∗2 for the same data sets
as on the le� but in terms of the gra�ing density of solvophilic segments at the core-corona
interface.

7.4 Conclusions

In this Chapter the interaction between dilute (diblock) copolymer micelles is quanti-
�ed using numerical self-consistent �eld (SCF) computations and analytical theory.
We use the aggregation number obtained from the SCF computations as an input for
the (semi-)analytical theory. The micelle–micelle interactions obtained via the two
methods are in good agreement, also when considering di�erent lattice topologies.
Particularly, the range of the interaction and the normalised second virial coe�cient
are all rather similar: they are not sensitive to the method used and to the amount
of concentration gradients that are considered. In our approach, we account for the
soft and associative nature of these diblock copolymer micelles as they get closer. At
each condition the equilibrium micellisation is re-evaluated: all polymer blocks in the
micelles remain associative and fully responsive and can conformationally rearrange
and equilibrate at each condition. For coronal domains whose solvency is better than
Θ-solvent conditions, this results in a hard-core Yukawa-like repulsion for all cases
studied. The range of this repulsion depends on the solvophilic block length, whereas
its strength decreases with increasing solvophilic block chain due to a decrease of
their e�ective grafting density, which leads to a weak dependence of the second virial
coe�cient on solvophilic block length.

We �nd that the phase stability of a dilute diblock copolymer micelle suspension
is only weakly a�ected by the nature of the core (solvophobicity and chain length of
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the core blocks). Not surprisingly, colloidal suspensions of diblock copolymer micelles
are always stable (normalised second virial coe�cient B∗2 > −6) unless the solvophilic
blocks are near Θ-solvent or in poor solvent conditions. For �xed core-forming
block properties but di�erent solvophilic block length the normalised second virial
coe�cients with varying coronal block solvency follow a similar curve. Furthermore,
and contrary to what is expected from polymer-grafted colloidal particles, increasing
the e�ective grafting density of solvophilic blocks from the micelle core decreases
the phase stability of the micellar suspension. This is explained due to the interplay
between the e�ective grafting density of solvophilic blocks from the core and the
properties of the solvophilic and solvophobic blocks. The SCF method presented
here for micelle–micelle interactions is extended to account for more components in
solution in the next Chapter.
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Chapter 8

Polymer-mediated stability of micellar
suspensions

Abstract
Despite their wide range of applications, fundamental understanding of how micelles
respond to other components in solution is scarce. Here, the colloidal stability of
micelle solutions in presence of (homo)polymers is investigated following a theoretical
bo�om-up approach. A simple, yet insightful, polymer mediated micelle–micelle
interaction is extracted via the changes in the micelle–unimer equilibrium with
varying the inter-micelle distance in presence of homopolymer. For di�erent polymer-
to-micelle size ratios, model crew-cut and starlike micelles are studied, for both
homopolymer depletion and adsorption from/into the corona. The flu�y nature of
the corona may prevent depletion-induced destabilization of the micellar suspension.
Adsorption of polymers into the corona induces bridging a�raction between micelles.
Crew-cut micelles have a narrower yet denser corona, hence penetration of guest
compounds into the coronal domain is less pronounced than for starlike micelles.
This makes crew-cut micelles more suitable for applications in crowded environments,
such as drug delivery. The trends observed for the colloidal stability of crew-cut
micelles qualitatively match with experimental observations on aqueous dispersions
of polycaprolactone–polyethylene glycol (PCL-PEO) micellar suspensions with added
PEO chains.
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8.1 Introduction

Association colloids are formed from amphipathic building blocks called unimers.34

Often, the properties of the self-assembled structure are determined by its equilibrium
with the bulk unimer concentration. The unimer nature and the solvency conditions
does not only a�ect the preferred morphology of the self-assembled structures37, but
also their colloidal stability259. Spherical micelles formed from block copolymers
in solution have received ample interest for multiple applications, including drug
delivery,225–228 coatings,223 and are present in foodstu�s260,261. Diblock copolymers
are constituted by a solvophilic and a solvophobic block, consisting of m-solvophobic
and n-solvophilic units respectively. The solvophobic blocks drive the micelle forma-
tion, as solvophobic segments (B) tend to minimize their contact with the solvent by
forming a compact, solvent-depleted core.36 The solvophilic blocks (A) concentrate
in the well-solvated corona. From both fundamental and application perspectives,
biocompatible neutral block copolymers are appealing: then the system parameters
are narrowed down to the length, nature, and sequence of the blocks. Potentially, this
provides better control over the system of interest.35 In Chapter 7, we showed that
whereas the equilibrium properties of micelles are dominated by the relative block
lengths and block solvencies, the colloidal stability of a micelle suspension is mainly
determined by the solvency of the coronal block.

Commonly, micelles are not the only component in solution, and the inherent
steric stabilisation between micelles35 may get compromised due to depletion or
adsorption of other compounds in solution. For instance, a micellar drug delivery
system acts in the presence of a myriad of components that may alter the micellar
properties262 and a�ect its colloidal stability259. The surface of a hard colloidal
sphere is sharp and impenetrable for free polymers in solution.66 Di�erently, the
peripheral region of a micelle is di�use (Fig. 8.1), hence partial penetration of the
homopolymers may occur.263 Additionally, the equilibrium properties of micelles,
due to their associative nature, are in�uenced by the presence of added compounds
(see Fig. 8.1). The capability of polymers to penetrate the micellar domain depends on
the local density of the corona and on the interaction between the free polymer and
the corona-forming blocks.

Even though widely present in biology and man-made products, there is yet limited
fundamental understanding of the e�ect of added homopolymer into a suspension of
spherical micelles264, and most of the investigations focused on the solid phases of
micelles and how these are in�uenced by homopolymer addition265,266. The model
presented in Chapter 7 is extended here to account for addition of homopolymers to
the micellar suspension. Often, a distinction is made between crew-cut (similar core
and corona sizes) and starlike (signi�cantly larger corona than core) micelles.247,267 We
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Figure 8.1 Representation of micelle–unimer equilibrium of a micelle (le�) composed of дp

unimers (purple and orange) in the presence of added homopolymer (green). Addition of a
second component in the bulk (potentially) a�ects this equilibrium. The top-right quadrant
corresponds to the segment–segment and segment–solvent interactions considered (values
given in Table 8.1), with A the solvophilic block, B the solvophobic block, G the homopolymer
block, and W a solvent molecule. Further specified are the hydrodynamic micelle radius Rh,
the corona thickness T , the core radius Rc, and the radius of gyration of the homopolymer Rg.
We highlight the parameter χAG which determines whether homopolymers are depleted or
adsorbed.

investigate how the presence of homopolymer in solution a�ects the micelle–unimer
equilibrium both for crew-cut and starlike micelles.

From the collected polymer-mediated micelle–micelle interactions, we calcula-
ted the second virial coe�cient B2

43,44 to assess the phase stability of association
colloid–polymer mixtures (ACPMs). Consider a dilute micelle suspension at a �xed
diblock concentration (above the critical micelle concentration, CMC) to which guest
compounds are added. If such a mixture has a B2-value near or above the hard sp-
here limit 16, it is expected to remain optically transparent (B∗2 ≡ B2/vc = 4, with
vc the considered colloidal particle volume). If instead micelles (strongly) attract
each other, B∗2 < 4 and the micelle suspension may get turbid. In case of B∗2 ≤ −6,
the Vliegenthart–Lekkerkeker (VL) criterion45 states that colloidal gas–liquid phase
separation of the micellar dispersion is expected (see discussion in Section 1.3.2).
Even though this B2-value is in principle experimentally resolvable241–245, there are
many practical di�culties related to measuring B2. Thus, direct visual observation of
the (in)stability of the ACPM serves here as a pragmatic con�rmation of theoretical
predictions made. Trends found based on our theoretical model are compared with
the stability of polycaprolactone–polyethylene glycol (PCL-PEO) micelles in water in
the presence of added PEO chains. The results reported show why micelles with a
narrow corona are more suitable for micellar applications in crowded environments.
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Table 8.1 System parameters chosen in this study: number of solvophobic (m), solvophilic (n),
and guest polymer segment (N ) repeating units, and Flory–Huggins interaction parameters.
A and B refer to a solvophilic and solvophobic segment respectively; G denotes a guest
homopolymer segment; and W is a solvent molecule.

m n N χBW χAW ≡ χGW χAB ≡ χGB χAG

24 45, 450 var 2 0.4 1 var

8.2 System parameters

We followed the approach explained in Section 1.3.5 to collect (homo)polymer-mediated
micelle–micelle interactions. When considering diblock copolymer micelles in the
presence of polymers in a common solvent, the key variables are those reported
in Fig. 8.1. Speci�cally, these variables are: (i) the di�erent segment–segment and
segment–solvent interactions; (ii) the equilibrium micelle properties, and (iii) the
relative size of homopolymer to micelle and its bulk concentration. Micelles are con-
stituted of дp (the aggregation number) diblock copolymers with composition B24An ,
where B is the solvophobic block (χBW = 2), A is the solvophilic block (χAW = 0.4),
and χAB = 1. These parameters are selected to meet typical solvencies for industrially
relevant systems such as pluronics in water268,269, and are based on previous inves-
tigations 79. At �xed solvophobic block length (m = 24) we consider a crew-cut and
a starlike micelle with n = 45 and n = 450, respectively. In Table 8.1 the parameters
that de�ne the architecture of the diblocks and guest polymers are speci�ed.

To assess the e�ects of the homopolymer-mediated micelle–micelle interactions,
we introduce the size ratio of the (guest) homopolymer to the undistorted micelle
size:

q ≡
Rg

Ro
h

, (8.1)

whereRo
h is the hydrodynamic radius of an isolated micelle in absence of homopolymer

(see Chapter 1 for details on the calculation of Rh). The radius of gyration of the free
homopolymer composed of N segments in solution is approximated as 15:

Rg = 0.309bN 1/2
[
1 +

√
1 + 6.5N 1/2(1 − 2χGW)

]0.352
, (8.2)

whereb is the monomer size which equals the size of a lattice site, . The experimentally-
resolvable value for Ro

h qualitatively agrees with theoretical predictions for diblock
copolymer micelle systems.250 Though approximated, Eq. (8.2) captures the SCF-
predicted trends for the radius of gyration of an isolated guest homopolymer chain.
The q-value is commonly used to rationalise depletion phenomena. 15 Provided Ro

h is
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known, the size of the homopolymer can be obtained via Eqs. (8.1) and (8.2) for a certain
(imposed) q-value. Finally, we conducted our computations at �xed homopolymer
bulk concentration ϕbulk

G . The homopolymer concentration relative to overlap is
de�ned as:

ϕ∗G =
Nb3

vG
(8.3)

with

vG =
4π
3
R3

g (8.4)

the estimated volume occupied by a (guest) homopolymer coil in the bulk solution. The
guest (G) polymer is considered to be in the same solvent condition as the solvophilic
block segments (χGW ≡ χAW = 0.4), and the solvophobic segment–homopolymer
interaction is considered as the one between A and B segments (χGB ≡ χAB = 1).
The e�ective a�nity of the guest compound to the corona of the micelle is varied
through χAG, where χAG = 0 corresponds to athermal (excluded volume) corona–
homopolymer interactions.

8.3 Results and discussion

We �rst discuss the equilibrium properties of micelles and the concentration distri-
bution of a dilute homopolymer solution as a function of the homopolymer–corona
e�ective a�nity. Subsequently, homopolymer concentration e�ects on the micelle
equilibrium are studied for di�erent guest polymer–micelle combinations (crew-cut,
starlike, depleted, adsorbed). Representative homopolymer-mediated micelle–micelle
interactions are rationalised based on the micelle–unimer equilibrium shifts upon
addition of homopolymer. Additionally, the stability of association colloid–polymer
mixtures (ACPMs) is investigated, and results are discussed in terms of the second
virial coe�cient B2.

8.3.1 Dilute homopolymer in a micellar suspension

The SCF-computed characteristics of isolated crew-cut and starlike micelles are presen-
ted in Table 8.2. The di�erent architecture of the unimers leads to distinct properties
of the assemblies, re�ected in their aggregation number дp, undistorted hydrodynamic
size Ro

h, critical micelle concentration (CMC), and sharpness of the corona (expressed
through the maximum concentration of solvophilic blocks ϕmax

A ). Due to the (much)
lower дp-value but larger Ro

h-value of the starlike micelle compared to the crew-cut
one, the available surface area per diblock of a starlike micelle is signi�cantly larger
than for a crew-cut one. Hence, the peripheral region of the starlike micelle is more
di�use than for the crew-cut one. Due to the larger solvophilic to solvophobic block
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Figure 8.2 Top panels: Micelle-forming diblock segment concentration profiles from the
centre of a micelle, computed using SCF theory in a spherical la�ice considering a crew-
cut (B24A45, le� panels) and a starlike (B24A450, right panels) micelle. Core (orange) and
corona (purple) regions are indicated; dashed lines indicate the core radius (Rc, grey) and
the calculated hydrodynamic radius (Rh, black). Insets as main plots, but in a linear scale.
Bo�om panels: homopolymer concentration profiles relative to the bulk concentration. All
results refer to calculations for a dilute homopolymer solution (ϕbulk

G /ϕ∗G = 10−4) with relative
size q ≡ Rg/R

o
h = 0.2. In the insets, the adsorption thickness δ as a function of the corona–

homopolymer e�ective a�inity χAG is plo�ed. The χAG-values used in the main plot are
indicated with discs: {0.25, 0,−0.25,−0.5}.

size ratio of the starlike micelle, its CMC (expressed here via the diblock bulk volume
fraction ϕbulk

p ) is about 360 times larger. Consequently, the unimer–micelle equili-
brium upon addition of guest homopolymer is expected to be greatly a�ected for a
starlike micelle. Equilibrium concentration pro�les are shown on the top panels of
Fig. 8.2 as a function of the distance from the centre of the micelle z. The maximum
concentration of solvophilic blocks ϕmax

A roughly coincides with the position of the
core–corona interface, used here as estimated core radius [Rc ≡ z(ϕ

max
A )]. The corona

thickness (de�ned asT = Ro
h−Rc) is obviously larger for the starlike micelle, which has

a smaller Rc due to the much lower value of дp. The lower ϕmax
A -value also indicates

that the outer region of the starlike micelle is overall less dense than for the crew-cut
assembly.
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Table 8.2 Equilibrium properties of the example crew-cut and starlike micelles considered:
aggregation number дp, critical micelle concentration CMC (ϕbulk

p ), maximum concentration
of solvophilic blocks ϕmax

A , undistorted hydrodynamic size Ro
h, core radius Rc, and coronal

thickness T . Dimensions are expressed in la�ice units [l.u.].

type unimer дp ϕbulk
p ≈ CMC ϕmax

A Ro
h Rc T

crew-cut B24A45 134 3.6 × 10−8 0.31 19.5 11 8.5
starlike B24A450 37 1.3 × 10−5 0.20 48.3 8 40.3

Not only the relative size of the homopolymer and its concentration modulate the
e�ective micelle–micelle interactions, but also the a�nity between the homopolymer
and the colloidal surface.29 Homopolymers in solution are either depleted from or
adsorbed to the corona domain, depending on the a�nity between the corona blocks
and the homopolymer. In the bottom panels of Fig. 8.2, the normalised homopolymer
segment concentration (ϕG/ϕ

bulk
G ) is plotted as a function of z at �xed ϕbulk

G /ϕ∗G = 10−4.
We de�ne here the adsorption thickness from the discrete SCF density pro�le ϕG(z)

as:

δ

b
=

Nlat∑
z=z0

ϕG(z)

ϕbulk
G
− 1, (8.5)

where z0 is the considered o�set layer (z = {1, 2, ...,Nlat}, with Nlat the lattice size
considered). For comparison with depletion and adsorption between hard surfaces,
this o�set layer was chosen as the closest layer to Ro

h; z0 ≈ Ro
h. A negative δ -value

is associated with depletion phenomena, whilst δ > 0 is indicative of homopolymer
adsorption. For χAG ≥ 0 homopolymers are depleted (ϕG < ϕ

bulk
G ) from the micelle,

with ϕG(z = Rc) ≈ 0. Due to the entropic penalty of homopolymers being near or
within the micelle, ϕG decreases with respect to ϕbulk

G if χAG attains a su�ciently large
value.

For χAG = −0.25, ϕG(z . Ro
h) is larger than for χAG = 0.25 or χAG = 0. For

the crew-cut micelle the homopolymer practically does not adsorb at z > Ro
h for

χAG = −0.25, and is still partially depleted from Rc (note there is a �nite homopolymer
concentration at Rc). For the starlike micelle, ϕG reaches a maximum value above
ϕbulk

G within the corona; yet it is also partially depleted close to the core (z → Rc).
This suggests that the degree of penetration of the added polymer into the coronal
domains modulates the stability of ACPMs. For χAG = −0.5, ϕG is always greater than
ϕbulk

G for z-values within the corona: homopolymer adsorption to the corona occurs.
The transition from homopolymer depletion to adsorption is observed in the

insets of the bottom panels of Fig. 8.2 in terms of δ as a function of χAG. Around
χAG = −0.25, the sign of δ switches from negative (depletion) to positive (adsorption).
The thickness of the depletion layer |δ | increases with increasing χAG until it reaches
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Figure 8.3 Equilibrium aggregation number variation ∆дp of the considered crew-cut (right
panel) and starlike (le� panel) micelles with increasing homopolymer bulk concentration
ϕbulk

G . Solid curves correspond to depleted homopolymers with athermal interactions with
the corona (χAG = 0). Homopolymer–to–micelle size ratio q varied as indicated. Dashed
curves correspond to a homopolymer with more repulsive interaction with the coronal blocks
(χAG = 0.5).

a plateau, in concordance with what is expected for depletion from a hard surface. The
dramatic increase in δ upon homopolymer adsorption is also in line with observations
of homopolymer adsorption at a hard surface.66

8.3.2 Depletion in ACPMs

Firstly, we focus on cases where depletion of the homopolymer is observed in Fig. 8.2.
Particularly, we study the e�ect of homopolymer concentration ϕbulk

G on the micelle–
unimer equilibrium and on the local density pro�les near and within an isolated
micelle. In Fig. 8.3 the variation in aggregation number, expressed in terms of

∆дp = дp(ϕ
bulk
G ) − дp(ϕ

bulk
G = 0), (8.6)

is shown for di�erent depletion cases. As observed, with increasing ϕbulk
G the aggrega-

tion number of both kinds of micelles increases. This agrees with previously reported
experimental observations.264 The increase in дp is weaker when the homopolymer
size is larger (i.e., increasing q). The reason for this is two-fold. On the one hand, the
un-normalised ϕbulk

G -value decreases with increasing q [see Eq. (8.3)]. On the other
hand, larger q-values imply that less homopolymers can penetrate into the coronal
domain. Interestingly, the micelle size is hardly a�ected by these changes in дp. In
fact, upon averaging over all considered q-values and ϕbulk

G concentrations in Fig. 8.3,
we �nd for the crew cut micelle 〈Rh〉 = 19.8 ± 0.2 [l.u.] and for the starlike micelle
〈Rh〉 = 48.0± 0.9 [l.u.]. These values are fairly close to the depletant-free, undistorted
micelle sizes presented (see Table 8.2). This increase on дp relates to unfavourable
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Figure 8.4 Homopolymer (depletant) segment concentration profiles as a function of the
distance from the centre of a micelle z as computed using SCF theory in a spherical la�ice
considering crew-cut (le� panel) and starlike (right panel) micelles. The homopolymer conside-
red is of the same nature as the corona (χAG = 0). Dashed curves correspond to the depletion
profiles of polymers in Θ-solvent condition from a hard sphere 15, considering the hard sphere
radius either as the core radius (Rc, grey) or the hydrodynamic radius of the undistorted
micelle (Ro

h, black). The relative polymer size is q ≡ Rg/R
o
h = 0.2. Results are given for the

indicated homopolymer concentrations ϕbulk
G . The coloured grey areas are used to illustrate

the depletion thickness δ from z0 ≈ Ro
h for the lowest homopolymer concentration.

interactions between the homopolymers and the diblocks in bulk. Addition of homo-
polymer to the bulk shifts the micelle–unimer equilibria towards the micelle, thus
increasing дp. This is con�rmed by the fact that for q = 0.2 and χAG = 0.5, дp is larger
than for χAG = 0 at the same ϕbulk

G . The steeper increase of дp for the starlike micelle
follows from its (much) higher ϕbulk

p (see Table 8.2).

Homopolymer segment concentration distributions for selected ϕbulk
G -values are

shown in Fig. 8.4. The observed partial penetration of homopolymers in the coro-
nal domain has been previously reported265, and such interpenetration also occurs
between polymer brushes and free homopolymer263,270. With increasing homopo-
lymer bulk concentration, |δ | decreases due to the increasing osmotic pressure that
bulk homopolymers exert onto those in the vicinity or within the di�use micelle’s
peripheral region. This e�ect is well-known for non-adsorbing polymers near a hard
surface. 136,271 As depletants penetrate through the coronal region, this compression
of the depletion layer is weaker for a micelle than for a hard colloidal surface. As
can be observed, the shape of the depletion pro�le resembles that of non-adsorbing
homopolymers in Θ-solvent around a hard sphere 15,272 [tanh2 (z − z0) /|δ |]. However,
in this case the depletion density pro�le extends in between the limits of a ‘classical’
depletion pro�le from hard spheres with radii Ro

h and Rc (dashed vertical lines in
Fig. 8.4). A broader coronal thickness leads to a wider depletion pro�le for the starlike
micelles.
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Figure 8.5 Homopolymer-mediated interaction potentials between micelles, considering
athermal homopolymer–corona interactions (χAG = 0, top panels) and an additional repulsion
(χAG = 0.25, bo�om panels) for the relative homopolymer concentrations ϕbulk

G /ϕ*
G indicated.

The relative polymer size is q ≡ Rg/R
o
h = 0.2.

In Fig. 8.5 the micelle–micelle interactions in presence of depleted homopolymers
are presented. At low depletant concentrations (ϕbulk

G /ϕ∗G = 0.01), the micelle–micelle
interactions can be described as a hard-core Yukawa repulsion (see Chapter 7). At
higher ϕbulk

G , pure excluded volume interactions of the homopolymer with the coronal
blocks (χAG = 0) induce a shallow minimum in the micelle–micelle interaction
between crew-cut micelles. This minimum is due to the homopolymer-induced
depletion attraction between micelles. The position of this minimum shifts towards
r = 2Ro

h with increasing ϕbulk
G due to the compression of the depletion layer (inset,

left panel). For the starlike micelle considered, χAG = 0 is insu�ciently repulsive
to induce an attractive minimum in the interaction potential between the micelles
(inset, right panel); the micelle–micelle interaction is only repulsive. However, this
micelle–micelle repulsion signi�cantly weakens in r < 2Ro

h with increasing ϕbulk
G .

These e�ects are further rationalised in Section 8.3.4. For χAG = 0.25, a minimum in
the homopolymer-mediated micelle–micelle interactions is present for the two kinds
of micelles as a result of more repulsive corona–homopolymer interactions, which
e�ectively shifts the depletion zone towards the outer micelle region: there is not
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Figure 8.6 Equilibrium aggregation number variation ∆дp of the considered crew-cut (right
panel) and starlike (le� panel) micelles with increasing homopolymer bulk concentration ϕbulk

G .
The homopolymer–corona a�inity χAG is indicated. Relative homopolymer-to-micelle size
ratio is q = Rg/R

o
h = 0.2.

only an entropic, but also an enthalpic penalty whenever depletants penetrate into
the coronal domain.

Experimentally, depletion e�ects decrease the e�ective (hard-sphere equivalent)
colloidal size of the micelle, which may relate to the lack of a repulsive contribution
to the micelle–micelle interaction observed for the starlike micelle at high enough
homopolymer concentrations.264 We note here that whereas |δ | decreases with ϕbulk

G ,
this decrease is not enough (in hard colloidal suspensions) to re-stabilize the depletion
attraction, whose strength increases with ϕbulk

G . The overlap of depletion zones when
micelles get closer does not lead to full depletion of the guest homopolymer, even if an
added enthalpic penalty is considered (pro�le details in Section 8.A). From the trends
of the depletion pro�les and of the micelle–micelle interactions, we conclude that the
depletion attraction is weaker in micellar suspensions than in hard colloidal systems
due to the inherent steric repulsion and the penetration of the depletants into the
colloidal domain. Insights into micelle–micelle interactions may be of relevance for
further understanding the e�ects of depletion phenomena in systems where micelles
are present, such as drug-delivery systems228 or foodstu�s260.

8.3.3 Coronal physisorption in ACPMs

First, we study the e�ect of corona-adsorbing homopolymers on the equilibrium
micelle properties at �xed (homo)poloymer-to-micelle size ratio q. In Fig. 8.6, the
variation of дp due to polymers with an enthalpic preference for the corona is reported,
and compared to guest polymers with athermal interaction with the corona. For
isolated micelles and low guest polymer concentrations, adsorption to the corona
of the starlike micelle is much higher than to the crew-cut one (detailed pro�le in
Section 8.A). Contrary to the depletion case, the micelle–unimer equilibrium shifts
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towards the unimer side due to favourable diblock–homopolymer interactions in
the bulk. When a su�ciently strong corona–homopolymer a�nity is considered,
homopolymers adsorbed at the core–corona interface screen the solvophobic core.273

These two arguments su�ce for explaining the decrease in дp with increasing ϕbulk
G

observed for crew-cut micelles, show in Fig. 8.6.
The e�ect of adsorption onto the corona of starlike micelles is more intricate due

to the more di�use peripheral domain. A polymer with a strong a�nity for the (large)
corona may actually stick solvophilic brushes together, hence overcompensating the
entropic penalty associated with the interpenetration of the homopolymers in the
corona. This leads to the observed increase of дp at very low ϕbulk

G . At low ϕbulk
G the

micelle–unimer equilibrium displaces to the micelle: there is a strong preference
of the homopolymer for the corona (дp increases). Saturation of the corona with
homopolymers then leads to a decrease of дp at higher ϕbulk

G , hence the micelle–
unimer equilibrium shifts towards the unimer state: homopolymer–diblock contacts
in the bulk become, again, more favourable than in the saturated micelle. The curves
for χAG = −0.45 and χAG = −0.55 for the starlike micelle corroborate this explanation.
The same e�ect on дp could be observed for stronger attractions (χAG ≈ −0.7) of the
homopolymer with the coronal domain of the crew-cut micelle. From our theoretical
investigations [see also273 for encapsulation of small (q � 0.1) guest compounds],
it is clear that the changes on дp and Rh can be used to experimentally assess the
distribution of adsorbing compounds over micelles.

In Fig. 8.7, example micelle–micelle interactions mediated by corona-adsorbing
homopolymers are shown. For crew-cut micelles, a slight preference for the coronal
blocks (χAG = −0.25) hardly a�ects the micelle–micelle interactions upon increasing
ϕbulk

G ; even close to ϕ∗G, the micelle–micelle interaction mostly remains una�ected.
For a stronger homopolymer–corona a�nity (χAG = −0.5), a shallow attraction at
low ϕbulk

G -values appears, which then weakens with increasing ϕbulk
G (inset of Fig. 8.7).

This can be explained by a bridging attraction mechanism66: at low concentration
homopolymers simultaneously adsorb onto the coronas of di�erent micelles, which le-
ads to attraction between them. This trend of the bridging attraction between micelles
with increasing ϕbulk

G is similar to that observed between hard colloids (see Chapter 4).
With increasing ϕbulk

G , the coronal domains get saturated with homopolymer, leading
to a restabilisation of the micelle solution.

As for the depletion cases, the e�ect of adsorbing polymer is more convoluted
for starlike micelles due to their broader corona. For the q-value considered (q = 0.2),
the relative volume of the (undistorted) homopolymer per coronal block is about four
times larger for the starlike micelle than for the crew-cut one (see Section 8.A). Note
that at �xed q and χAG, adsorption is much higher for the starlike micelle than for the
crew-cut one (see pro�les in Section 8.A). Hence, bridging e�ects are strong for starlike
micelles as they get closer. The large and �u�y corona prevents saturation of the
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Figure 8.7 Homopolymer-mediated interaction potentials between micelles, considering
a�ractive homopolymer-corona interactions: χAG = −0.25, top panels; and χAG = −0.5,
bo�om panels. Homopolymer concentrations relative to overlap ϕbulk

G /ϕG* are indicated. The
relative polymer size is q ≡ Rg/R

o
h = 0.2.

peripheral colloidal domain, at least within the considered ϕG-values. Thus, contrary
to the crew-cut micelle, re-stabilisation of the bridging �occulation is not observed in
the micelle–micelle interactions even at high ϕG. The steric micelle–micelle repulsion
gets screened due to the presence of adsorbing homopolymer, leading to a transition
from repulsive to attractive micelle–micelle interaction. In the next Section, the
relevance of the relative size of the added homopolymer to the coronal thickness is
addressed: penetration of homopolymer is rationalised not in terms of q ≡ Rg/R

o
h, but

in terms of Rg/T .

8.3.4 Corona thickness and colloidal stability

It is clear from the computed micelle–micelle interactions that a high degree of in-
terpenetration of either adsorbing or depleted compounds into the coronal domain
leads to destabilisation of the micelle suspension with increasing guest homopolymer
concentration ϕbulk

G . For the relative size q = 0.2, the starlike micelle–micelle steric re-
pulsion practically vanishes atϕbulk

G /ϕ∗G = 0.75 considering corona-like homopolymers
(χAG = 0, see Fig. 8.5, top right panel). Within the model here considered, the stron-
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Figure 8.8 Homopolymer-mediated interaction potentials between micelles, considering
athermal homopolymer-corona interactions (χAG = 0) for starlike micelles in presence of
homopolymer with relative size q = 0.4.

gest repulsive contribution to the (homopolymer-free) micelle–micelle interaction
arises from the expel of diblocks (core compression, see Chapter 7). Independently
of the value of χAG, the presence of homopolymers in the corona may screen this
strongly-repulsive core compression, leading to micelle–micelle attractions even for
r < 2Ro

h. For the crew-cut micelle considered, q ≈ 0.2 corresponds to the situation
where the diameter of the added homopolymer roughly equals the coronal thickness
(2Rg = T ). For a starlike micelle, this situation is retained for q ≈ 0.4.

We present in Fig. 8.8 the homopolymer-mediated starlike micelle–micelle inte-
raction for q = 0.4 and χAG = 0. These micelle–micelle interactions are similar to
those between crew-cut micelles at q = 0.2 (for which Rg = T /2): for larger q, fewer
polymer chains �t into the corona, and a repulsive contribution to the homopolymer-
mediated micelle–micelle interaction remains. The much higher ϕbulk

G -value for the
starlike micelle renders all guest homopolymer e�ects on the micelle equilibria stron-
ger due to the lower energy required to remove a diblock from the starlike micelle as
compared to the crew-cut one. This leads to a clear decrease of the repulsive contri-
bution to the micelle–micelle interaction, which decreases fromW (r = 2Ro

h) ≈ 10kBT

in absence of homopolymer to W (r = 2Ro
h) ≈ 5kBT at ϕbulk

G /ϕ∗G = 0.75. It follows
from this short Section that it is the ratio of the corona thickness to the diameter of
the added homopolymer which determines whether a repulsive contribution to the
micelle–micelle interaction is present upon addition of homopolymer. Therefore, the
ratio T /Rg might be of relevance in the design of controlled experiments.

8.3.5 On the phase stability of ACPMs

In this last results Section, the colloidal phase stability of association colloid–polymer
mixtures (ACPMs) is assessed in terms of the second osmotic virial coe�cient B2,
calculated from the polymer-mediated micelle–micelle interactions. We consider the
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Figure 8.9 Second virial coe�icient normalised by the undistorted micelle volume for q ≡
Rg/R

o
h = 0.2 for crew-cut (le�) and starlike (right) panel. The e�ective a�inity between the

homopolymer and the coronal domain is indicated.

colloidal particle volume as the one of an isolated micelle and without any added
homopolymers, vc ≡ v

o
h = (4π/3)(R

o
h)

3. In Fig. 8.9, B∗2 ≡ B2/vc is shown for q = 0.2
as a function of the homopolymer concentration ϕbulk

G /ϕ∗G at �xed homopolymer-to-
micelle size q = 0.2. These B∗2-values follow from interactions as those presented in
Figs. 8.5, 8.7 and 8.8. We focus �rst on homopolymers which only interact via excluded
volume with the coronal domain, χAG = 0. Both for crew-cut and starlike micelles,
B2 decreases only weakly upon addition of homopolymer: the depletion zone spans
through the coronal domains and hardly on the outside of the micelles, rendering
depletion e�ects weak. The colloidal stability decreases dramatically from ϕbulk

G /ϕ∗G ≈

0.1 when depletion e�ects arise via a corona–homopolymer e�ective a�nity with an
enthalpic repulsion beyond the excluded volume (χAG = 0.25). Hence, it is expected
that a suspension of micelles gets unstable at high homopolymer concentrations. Due
to the wider coronal region, depletion-induced destabilisation of a starlike micelle–
depletant mixture occurs at slightly higher homopolymer bulk concentration. For
starlike micelles, the depletion e�ects are weaker due to the deeper penetration of
homopolymer into the corona, in line with our discussion in Section 8.3.2.

As hinted at in Fig. 8.7, adding weakly-adsorbing homopolymers (χAG = −0.25)
to a crew-cut micelle suspension leads to a mostly ϕbulk

G -independent micelle–micelle
interaction. For stronger homopolymer–solvophilic block attraction (χAG = −0.5),
bridging attraction and restabilisation is observed in terms of B2. The trends observed
considering (weakly) adsorbing homopolymers show that starlike micelles destabilize
more easily than the crew-cut analogues. For adsorbing polymers at highϕbulk

G , starlike
micelles are more easily destabilized. In micelle applications (such as drug-delivery
systems), components with di�erent a�nities for the corona blocks may be present.
By virtue of their shorter relative hydrophilic block length, we expect that crew-cut
micelles are overall more stable in multicomponent systems due to, in essence, a
denser and narrower coronal region.
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Figure 8.10 Le� panel: pictures shown at the experimental parameters corresponding to the
arrows on the right panels; φ is used for the experimental homopolymer concentration. Right
panels: phase stability predicted through B2 from SCF-computations considering χAG = 0
for the crew-cut micelle studied. (a): at fixed homopolymer concentration relative to overlap
(ϕbulk

G /ϕ∗G = 0.2), the relative size of the homopolymer (q) is varied. (b): at fixed q = 0.3,
homopolymer concentration is increased.

We eventually veri�ed the SCF predictions empirically. The set of interaction para-
meters used in this study is suitable to describe polycaprolactone-polyethylene glycol
(PCL-PEO) diblock copolymer micelles in water. 79 An aqueous suspension of such
spherical micelles was prepared (CL12EO45, which may be mapped onto our B24A45

model crew-cut micelle), and mixed with free PEO homopolymers of di�erent molar
masses at di�erent concentrations. A CL block is roughly twice as large as an EO block,
which we account for in our SCF comparison. In the left panels of Fig. 8.10 we show
photographs of solutions of micelles (diblock copolymer concentration is 5 mg/ml) and
pure PEO at �xed concentration for various (weight-averaged) molar masses: I, Mw=2
kDa; II, Mw=6 kDa; and III, Mw=10 kDa. We use φ to denote experimentally-resolved
PEO concentrations, φ∗ being the overlap concentration. Photographs IV, II, and V
refer to a single type of PEO (Mw=6 kDa, corresponding to N = 136) for various
PEO concentrations. In the right panels we plot the SCF-predicted B2 values as a
function of the relative polymer size (upper panel) and polymer concentration (lower
panel). As experimentally observed, for theoretically-calculated B∗2 . −6 the micellar
solution gets unstable. Sample II is stable but clearly more turbid than samples I and
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IV. This can be explained by a signi�cant free PEO-induced micelle–micelle attraction
(B∗2 / 0), although the attractions are not yet su�ciently strong to induce demixing.

8.4 Conclusions

In this Chapter, homopolymer-meditated micelle–micelle interactions were studied.
Our approach explicitly considers the associative nature of the micelles. We quanti�ed
how the addition of soluble homopolymer in bulk shifts the unimer–micelle equili-
brium and studied the e�ect of di�erent a�nities between the homopolymer and the
outer coronal blocks on the structure of the micelle. The resulting changes of the bulk
unimer concentration determines the micelle properties, particularly the aggregation
number. In line with previous experimental observations, homopolymer depletion
leads to an increase of the aggregation number which can be rationalised in terms
of the micelle–unimer equilibrium. For added homopolymers which are attracted
to the solvophilic blocks, weak adsorption leads to a decrease of the aggregation
number with increasing homopolymer bulk concentrations. Above a certain a�nity
threshold, the aggregation number �rst (drammatically) increases and then decreases
with increasing homopolymer bulk concentration.

In case of non-adsorbing homopolymers, the di�use micellar outer region leads
to small e�ective depletion layers because they penetrate into the coronas. Despite
the broader depletion zone as compared to near hard spheres, depletion e�ects are
weaker as the overlap of depletion layers is screened by the presence of the �u�y
corona. Even at intermicelle distances in the order of their (undistorted) diameter, full
homopolymer depletion may not be observed. Not surprisingly, an added enthalpic
repulsion between the corona-forming blocks and the guest homopolymer enhances
depletion e�ects. A strong enough guest polymer a�nity to the corona leads to an
almost classical polymer-mediated interaction between crew-cut micelles: bridging
�occulation at low concentrations, and restabilisation upon saturation of the corona.
Remarkably, weakly-adsorbing polymers may not a�ect the stability of the micellar
suspension if the enthalpic and entropic e�ects of homopolymers in the coronal
domain are balanced. For starlike micelles, bridging within the coronal domains
leads to attractions which only increase with increasing polymer bulk concentration
(up to the near-overlap concentrations studied). The packing of the homopolymer
in the corona determines whether the micelle–micelle steric repulsion vanishes at
high enough homopolymer concentrations. If the corona thickness is of the order of
the added homopolymer diameter, a repulsive contribution to the micelle–micelle
interaction is expected to be present.

From the second virial coe�cient (B2) we observe that both crew-cut and starlike
micelles are destabilized at high enough non-adsorbing homopolymer concentration
due to a (weak) depletion attraction. In case of added adsorbing homopolymer, the
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B2-value of the crew-cut micelle–homopolymer mixture is less sensitive than for the
starlike case. The trends predicted by our SCF computations for the crew-cut micelles
are qualitatively con�rmed experimentally using biocompatible PCL-PEO diblock
copolymer micelles in water and added free PEO homopolymer. We deduce from our
investigation that a narrower coronal domain makes spherical micelles more suitable
for applications, such as drug-delivery systems, where multiple macromolecular
components are present.

8.A Packing arguments and concentration profiles

The relative volume of a corona block in the micelle per undistorted homopolymer
volume (Q) can be derived from geometrical arguments:

Q =
дpR

3
g

(Ro
h)

3 − (Rmax
A )

3 . (8.7)

For q = 0.2, we get for the crew-cut micelleQ = 1.25 and for the starlike one Q = 0.3.
We present in Fig. 8.11 the homopolymer concentration pro�les upon varying the
intermicelle-distance. Homopolymer depletion pro�les for isolated (r � 2Ro

h) micelles
were discussed in details in the main text. Homopolymer adsorption, particularly
within the corona, is much stronger for the starlike micelle. Both for the crew-cut
and starlike micelles, depletion of the homopolymer leads to values of ϕG < ϕ

bulk
G at

small enough intermicelle distances r . Furthermore, at the same intermicelle distance
r depletion e�ects are clearly stronger for the crew-cut than for the starlike micelle
(ϕG at z = 0 is smaller for the crew-cut micelle for any r ). This relates, once again, to
the more di�use peripheral colloidal domian (corona) of the starlike micelle. With
increasingϕbulk

G , the depletion zones get compressed also when micelles approach each
other (except for distances r < 2Ro

h). On the bottom panels of Fig. 8.11 homopolymer
concentration pro�les for adsorption cases are presented. Contrary to the depletion
cases, when micelles get close to each other ϕG > ϕ

bulk
G . While depletion e�ects are

stronger for the crew-cut micelle (near full-depletion for r = 2Ro
h), adsorption e�ects

are clearly more pronounced between starlike micelles.
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List of symbols and acronyms

Symbols1

β ≡ 1/(kBT ) : the inverse of the thermal unit of energy kBT , with kB Boltzmann’s constant and
T the absolute temperature
r : centre–to–centre distance between colloids
σ : colloidal diameter (σ ≡ 2R, with R the colloidal radius)
W : interaction potential
qY : range of the HCY interaction
ϵ : strength (contact potential) of the HCY interaction
κ̂ : screening length of the HCY interaction
ϕR

d : polymer bulk volume fraction
q : relative size of polymer to colloidal particle
δ : adsorption (and depletion) thickness
ζ : strength of the penetrable sphere (PS) interaction
B2 : second osmotic viral coe�cient
vc : colloidal particle volume
B∗2 ≡ B2/vc : normalised second virial coe�cient
F : Helmholtz (free) energy
V : system volume
ΛB : De Broglie thermal wavelength
ϕc : colloid volume fraction
ϕ

cp
c : colloid volume fraction at close packing

Nc : number of colloids
γY, γ1, γ2, QY, LY: set of equations de�ning the free energy following the FMSA
µi : chemical potential of component i
Π : osmotic pressure
Ω : (semi) grand-potential
α : free volume fraction for depletants in the FVT framework
ϕS

d : depletant volume fraction in the colloid-polymer mixture
vd : volume of a depletant
ω : work
〈Vfree〉o : undistorted free volume for depletants in colloidal system
vexc : excluded volume
Qs : shape-dependent term in FVT upon applying SPT to the probability of inserting a depletant
y ≡ ϕc/(1 − ϕc): an auxiliary function commonly used in FVT derivations
NR

d : number of depletants in R considered in FVT
λ : scaling factor of the SPT approach used to calculate α

1Many symbols used in Sections 3.2, 6.A and 6.B are intentionally left out of this list.
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Symbols

κ : total number of depletion zones overlaps within a UC
ϕ∗c : ϕc from which depletion zones overlap for HSs in a FCC lattice
o: undistorted properties (depletant-free system, isolated micelle)
ϕk : volume fraction of components in the SCF-lattice, such that: ϕA=solvophilic block; ϕB,
solvophilic block; ϕp, micelle forming polymer; ϕG, added guest homopolymer to the colloidal
suspension; and ϕW, solvent (never graphically presented).
Nlat : number of lattice sites considered (i.e., the size of the lattice)
b : size of a lattice site
z : lattice layer considered, independently of the lattice geometry
K : number of nearest micelles from a central one
n : solvophilic block length
m : solvophobic block length
χi j : Flory–Huggins interaction parameter between segments i and j , with {i, j} = {A,B,G,W,C},
where C is a lattice site belonging to the colloidal particle
Rh : hydrodynamic radius of a micelle
ᾱ, ρ̄ : auxiliary functions used for evaluating Rh
ϕbulk

p : micelle-forming polymer bulk concentration
ϕbulk

G : guest (homo)polymer bulk concentration
ϕ∗G : guest (homo)polymer overlap concentration
дp : aggregation number of amphiphilic molecules in a micelle; the number of building blocks
(unimers) per micelle
Rg : radius of gyration of a homopolymer in solution
vG : volume of the guest homopolymer added to a colloidal suspension
h : distance between two �at surfaces
∆χ : e�ective a�nity surface–polymer
m : shape parameter of a superball,m = 2 corresponds to a sphere andm = ∞ to a cube
f (m) : function de�ning the volume of a superball
r : maximum distance from the centre of a superball
sc : surface area of a colloid
cc : surface-integrated mean curvature of a colloid
r : maximum distance from the centre of a superball
γ : asphericity parameter
Q,R,S : functions of γ used for the EOS of convex particles
Vf : volume that a colloid explores within the UC without overlapping with others
VUC : volume of the crystalline unit cell
Λ ≡ L/σ : aspect ratio of a cylinder, with L its length
ρc : number density of colloid
ρR

d : number density of depletants in bulk
z̃ : depletant fugacity
C : number of components in a system
GP : Parsons–Lee scaling factor
‖ : parallel to the columnar direction vector (i.e., intra-columnar direction)
⊥ : perpendicular to the columnar direction vector (i.e., inter-columnar direction)
r ‖ : intra-columnar direction
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r⊥ : intre-columnar direction
д
i−j
⊥ : distribution function of particle-pair {i, j} in r⊥, with {i, j} the colloid (c) or depletant (d)
дc-c,00
‖

: colloid–colloid distribution function in r ‖ for colloids within the same column

дc-c,01
‖

: colloid–colloid distribution function in r ‖ for colloids in di�erent columns
∆⊥ : spacing between platelets in r⊥
∆ ‖ : spacing between platelets in r ‖

ϕ
‖
c : ϕc from which depletion zones start to overlap in r ‖
ϕ⊥c : ϕc from which depletion zones start to overlap in r⊥
Acronyms
CPM : colloid–polymer mixture
ACPM : association colloid–polymer mixture
HS : hard sphere
PHS : penetrable hard sphere
SCF : self-consistent �eld, used here to reefer to the Scheutjens–Fleer SCF theory
FVT : free volume theory
EOS : equation of state
FMSA : �rst order mean spherical approximation
CS : Carnahan-Starling EOS
LJD : Lennard-Jones-Devonshire EOS
AOV : Asakura–Oosawa–Vrij
SPT : scaled particle theory
VL: Vliegenthart–Lekkerkerker criterion
CP : critical point
CEP : critical end point
TP : triple point
QP : quadruple point
UC : unit cell of a crystalline structure
cp : close packing
CP : critical point
CMC : critical micelle concentration
F : colloidal �uid phase
G : colloidal gas phase
L : colloidal liquid phase
S : colloidal solid phase, actually referring to a FCC phase
FCC : face centred cubic crystalline phase
SC : simple cubic crystalline phase
I : isotropic phase
N : nematic phase
C : columnar phase
ODF : orientation distribution function
R : FVT reservoir of depletants
S : system of interest
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Samenva�ing

Ik zei tegen de amandelboom, “Vertel mij over God”.
En de amandelboom kwam tot bloei.

Nikos Kazantzakis

Men kan doen alsof men de complexe processen begrijpt die de amandelbloesem
haar karakteristieke schoonheid geeft. Een dergelijke hoogmoedige stelling staat lijn-
recht tegenover de wetenschappelijke methode. Om de werkelijkheid te doorgronden
moet men deze vereenvoudigen. Het is e�ectiever om enkele afzonderlijke, relevante
parameters te onderzoeken en daar een theoretisch model voor te ontwikkelen en te
bestuderen of de voorspellingen overeenkomen met de werkelijkheid. Hierbij dient
opgemerkt te worden dat zelfs experimenteel onderzoek in een laboratorium een
vertekend beeld geeft van deze werkelijkheid.

In dit proefschrift is getracht de essentiële parameters te duiden die de evenwicht-
seigenschappen, zoals het fasegedrag, van colloïd–polymeermengsels beschrijven. De
term ‘colloïd’ slaat op een systeem waarin een materiaal �jn verdeeld (gedispergeerd)
is in een ander medium en waarbij de typische lengte-schaal van de gedispergeerde
deeltjes in minimaal één dimensie tussen de 1 nm en 1 µm ligt. Polymeren zijn ma-
cromoleculen bestaande uit vele aan elkaar geregen segmenten. Het aantal en soort
segmenten en de interactie met het oplosmiddel bepaalt of een polymeer oplost in een
oplosmiddel of dat er fasescheiding plaatsvindt. Colloïd–polymeermengsels komen
veelvuldig voor in zowel biologische systemen (denk aan bloed, het cytoplasma van
een levende cel en de vloeistof in planten) als in industriële producten zoals drinkyog-
hurt, verf en vloeistof voor printers). Voor de ontwikkeling van nieuwe toepassingen
is het essentieel om de fasestabiliteit van deze mengsels te begrijpen onder verschil-
lende omstandigheden. In bovenstaande voorbeelden kunnen meerdere colloïden,
polymeren en andere componenten aanwezig zijn. Het begrijpen van het fasegedrag
van dispersies met één soort colloïdale deeltjes en mengsels met een toegevoegde
tweede component is een logisch startpunt. Dit proefschrift bestaat uit drie delen,
waarbij in ieder deel een andere eigenschap van de onderzochte colloïden centraal
staat.

In deel I wordt het meest eenvoudige modelsysteem bestudeerd: harde bollen met
daaraan toegevoegde niet-adsorberende polymeren die beschreven worden als voor
elkaar doordringbare bollen. Er is onderzocht hoe directe zachte interacties tussen
de colloïdale deeltjes bovenop de harde interactie tussen de colloïden het fasegedrag
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van colloïd–polymeermengsels beïnvloedt (hoofdstuk 2) en concluderen hieruit dat
aanvullende interacties tussen de colloïdale deeltjes de fasenovergangen verschuiven.
Zachte attracties leiden tot een kleiner gebied waarin de mengsels stabiel zijn, terwijl
extra zachte afstoting tussen de deeltjes het stabiele gebied juist vergroot. In hoofdstuk
3 is het fasegedrag van mengsels van colloïdale harde bollen en zeer kleine polyme-
ren onderzocht. Dit systeem kan relevant zijn voor het begrijpen van bijvoorbeeld
eiwitkristallisatie. Door het opnieuw bestuderen, ver�jnen en verbeteren van een
bekende (relatief eenvoudige) theorie is deze beter in overeenstemming gebracht met
resultaten van computersimulaties en experimenten. Waar in hoofdstukken 2 en 3 de
polymeren vereenvoudigd werden als doordringbare bollen, worden de polymeren
veel preciezer beschreven in hoofdstuk 4. In dat hoofdstuk wordt het e�ect bestudeerd
van de interacties tussen het oppervlak van het colloïdale deeltjes en de polymeer-
segmenten op het fasegedrag van colloïd–polymeermengsels. Er is aangetoond dat
het mogelijk is om colloïd–polymeermengsels te bereiden waarin bij zelfs zeer hoge
polymeerconcentraties geen fasescheiding plaatsvindt. Dit is interessant en relevant
voor industriële toepassingen, denk aan verf en levensmiddelen.

In deel II ligt de focus op de vorm van de colloïdale deeltjes. Vloeibaar-kristallijne
fasen in dispersies met colloïdale deeltjes kan men induceren door bepaalde anisotrope
deeltjes te kiezen. Het is dan ook niet verwonderlijk dat voor verven en coatings de
vorm van de toegevoegd deeltjes de uiteindelijke eigenschappen van deze producten
beïnvloeden. In dit deel zijn dispersies met anisotrope harde deeltjes gemengd met
niet-adsorberende polymeren bestudeerd. Onderzoek aan kubusvormige (hoofdstuk
5) en plaatvormige (hoofdstuk 6) colloïden laat een zeer rijk fasegedrag zien, met
als bijzondere situatie de voorspelling van vier-fasenevenwichten in een e�ectief
twee-componenten systeem. Verder worden inzichten van hoofdstuk 3 gebruikt om in
hoofdstuk 6 aan te tonen dat het voorkomen van twee columnaire fasen in evenwicht
met verschillende polymeer en plaatjesconcentraties bijna kwantitatief in overeen-
stemming is met computersimulaties. Dit kan van belang zijn bij de toekomstige
ontwikkeling van fotonische materialen.

Tot slot worden in deel III eigenschappen van associatieve colloïden onderzocht. In
de hoofdstukken 7 en 8 worden (associatieve) colloïdale deeltjes bestudeerd die worden
gevormd vanuit zelf-assemblerende diblokcopolymeren in een selectief oplosmiddel.
Blokcopolymeren zijn polymeren die bestaan uit een deel met segmenten die goed
oplosbaar zijn en een andere deel met segmenten die niet oplosbaar zijn in het gekozen
oplosmiddel. Diblok-copolymeren vormen de bouwstenenen van een uiteindelijke
associatieve evenwichtsstructuur die bekend staat als een micel. Deze micellen worden
toegepast in bijvoorbeeld de cosmetica en worden ook gebruikt als transportmiddel
om medicijnen af te geven, bijvoorbeeld ter bestrijding van tumorcellen. De interacties
tussen de micellen en hoe de blokcopolymeersamenstelling de colloïdale stabiliteit
beïnvloedt, zijn onderzocht in hoofdstuk 7. In hoofdstuk 8 is bestudeerd welke
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invloed het toevoegen van extra polymeren heeft op de interacties tussen micellen en
de fasestabiliteit. De associatieve en zachte aard van micellen maken het probleem
complex, maar de vindingen leidden tot enkele inzichten over de fasestabiliteit van
micellen. Er kon worden geconcludeerd dat bolvormige micellen met relatief korte
goed-oplosbare blokken bruikbaarder zijn voor toepassingen dan micellen met relatief
lange oplosbare blokken.

In dit proefschrift zijn, door middel van vereenvoudigde modellen, voorspellin-
gen verkregen over de stabiliteit van colloïd–polymeermengsels. Deze kennis kan
bijdragen aan verdere ontwikkelingen, bijvoorbeeld wanneer niet twee, maar vele
componenten aanwezig zijn in een mengsel. Verdere verbeteringen van de modellen
kan de beschrijving van praktische systemen verbeteren. De auteur hoopt dat de kleine
toegeveogde puzzelstukjes in dit proefschrift bijdragen aan de grote kennispuzzel, en
anderen zullen inspireren en nuttig voor hen mogen zijn. 2

2 N.B. De eerste en laatste delen van deze samenvatting zijn sterk beïnvloed door het artikel van de auteur
in ‘Cultural Resuena‘: ‘Nikos Kazantzakis y el espíritu cientí�co’ (Spaans): http://www.culturalresuena.
es/2016/10/kazantzakis-espiritu-cientifico/
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Summary

I said to the almond tree, “Sister, speak to me of God”.
And the almond tree blossomed.

Nikos Kazantzakis

One may pretend to understand the complex processes that ultimately give the
almond tree �ower its functional aesthetic characteristics. Such an act of vanity
re�ects the opposite of the scienti�c method. In order to grasp the real world, one must
simplify it. An e�ective approach is to select a small number of relevant parameters,
and test how robust the predictions extracted from the experimental, computational
or theoretical method followed are compared with real-life observations. Note that
even experimental laboratory research provides a simpli�ed picture of real systems.

In this thesis, we have isolated some key parameters governing the (in)stability
of colloid–polymer mixtures. The term ‘colloid’ refers to a state of matter in which
a certain amount of material (with one of its dimensions between one nanometre
to one micrometre) is dispersed in another medium. Polymers are macromolecules
constituted of many repeating units called segments; depending on the number
and nature of these segments, polymers may dissolve or phase-separate in solution.
Colloid–polymer mixtures are widespread in biological systems (including blood, the
cytoplasm of a living cell, and plant sap), as well as in man-made products (such as
paints, drinking yogurt, and printing inks). Better control over the stability limits
during product development is possible via a fundamental understanding of the
e�ect of some relevant parameters in the system at hand. In the examples given
above, multiple colloids, polymers, and other components are often present. Building
knowledge on the interactions between components of the same nature, and pairs of
di�erent components is a logical starting point. Based on the characteristics of the
colloidal particles investigated, we sequester this thesis into three parts.

In Part I, we took the simplest model system: mixtures of hard spheres (like
billiard balls) with added polymers simpli�ed as ghost-like spheres. We studied how a
direct soft interaction beyond the hardcore interaction modulates the phase stability
of a model colloid–polymer mixture (Chapter 2). We conclude that soft repulsive
interactions widen the stable region and direct soft attractions decrease the stability
of a colloid–polymer mixture. We also paid attention to mixtures of such colloidal
hard spheres with added tiny polymers (Chapter 3): such a model system may be of
relevance for instance in protein crystallisation. Upon revisiting a well-established
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(relatively simple) free volume theory, we improved it for the solid phase state, which
brought it closer to more convoluted ones, simulations, and experiments. In Chapters
2 and 3 we (over)simpli�ed the polymers (we took them as a ghost-like sphere),
while in Chapter 4 we describe them in more detail. In that Chapter, we extract how
the strength of the interaction between the surface of the colloidal particle and the
polymer segments a�ects the phase behaviour of a colloid–polymer mixture. We
elucidate the possibility of colloid–polymer mixtures which do not phase-separate,
even at high polymer concentrations, which is appealing for industrial applications
such as paint or foodstu�.

In Part II we focus on the in�uence of the shape of the colloidal particle on the
phase behaviour of colloid–polymer mixtures. Liquid crystalline phases in nondilute
colloidal dispersions may emerge as a consequence of the anisotropic shape of particles.
Not surprisingly, the pigment’s shape a�ects the �nal properties of paints and coatings.
We consider anisotropic hard particles, and study the e�ects of adding ghost-like
spheres to mimic polymer chains. Investigations of cube-like (Chapter 5) and platelet-
like (Chapter 6) colloids reveal a rather rich phase behaviour. We highlight the
unexpected presence of up to four phases in coexistence in e�ective two-component
systems, reported for the �rst time in this thesis. Furthermore, we elucidate the
relevance of compartmentalisation of tiny compounds in highly concentrated systems.
This could be of interest, for instance, in the future development of photonic materials
with two di�erent optical paths, and may serve as a model to study crowded living
environments.

Finally, in Part III, we studied association colloids. We focus on associative colloidal
particles formed by diblock copolymers: polymers composed of well-soluble segments
and of poorly soluble segments divided into two blocks. In a selective solvent, diblock
copolymers can constitute the building blocks of equilibrium structures known as
micelles. We focus on self-organised spherical micelles, used in applications ranging
from cosmetics to targeted drug delivery to, for instance, tumoral cells. We studied
micelle–micelle interactions, and particularly focus on how the building block com-
position a�ects colloidal stability (Chapter 7) and how it is a�ected by the addition of
a second (non-blocky) polymer (Chapter 8). The associative and soft nature of associ-
ation colloids render the problem at hand complex, yet insights could be extracted
about the phase stability of micelles. We concluded that spherical micelles resulting
from diblocks with a short soluble block are more suitable for applications than those
with a large soluble block.

By virtue of these simpli�ed models, a collection of predictions governing the
(in)stability of colloid–polymer mixtures has been extracted. These may serve for
further developments, considering, for instance, not only two but multi-component
mixtures. Further tuning of the accuracy of the models could bring them closer to
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Summary (ENG)

reality. The author hopes that the small pieces that this thesis has added to the puzzle
of knowledge may inspire and be of utility to others. 3

3 Note: The �rst and last parts of this Summary are (heavily) in�uenced by the author’s article in
Cultural Resuena, ‘Nikos Kazantzakis y el espíritu cientí�co’ (only in Spanish):
http://www.culturalresuena.es/2016/10/kazantzakis-espiritu-cientifico/
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