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CHAPTER 1- GENERAL INTRODUCTION 

 
 
BACKGROUND 
The accelerated rate of technological innovation in the 21st century has yielded many large data 
sets requiring new methods and approaches for analysis. In the past, data collection was mostly 
done after the development of a hypothesis-based experimental design and project plan (primary 
data based studies). In contrast, data from secondary data-based studies are large data sets, 
potentially big data, collected before the analysis’ method or goal is determined (Sørensen, 1996; 
Olsen, 2008). Secondary data are often collected with the help of automated data collection and 
storage systems and they can lack a predefined experimental design and data management plan 
(Boslaugh, 2007; Van den Broeck, et al., 2013). Both types of data are widely used for parameter 
estimation, prediction modeling and pattern recognition. 
 
It is common for secondary data sets to be used in veterinary epidemiological studies (Emanuelson 
and Egenvall 2014; Egenvall et al., 2009). Animal production data is a great example of secondary 
data with the potential to become big data (Kelton et al, 1997; Penell, 2009). Historic health 
records, and production data of poultry, aquaculture, swine and cattle are routinely extracted for 
epidemiological studies (Kelton et al, 1997; Penell, 2009). Other examples of secondary data in 
veterinary medicine include data from breed registries and associations, medical insurance data 
and medical records from veterinary clinics and hospitals (Egenvall et al., 2009; Penell, 2009). 
 
Data from secondary data-based studies can be limited by the nature of their collection method, 
which can cause several types of bias (Sorensen et al., 1996; Terris et al., 2007; Olsen, 2008; 
Murakami, 2014). However, secondary data benefit from their large sample sizes, and the 
increased detail from larger numbers of variables. These benefits can yield to a significant increase 
in statistical power for inferences compared to primary data-based data sets (Emanuelson and 
Egenvall, 2014). Additional benefits of secondary data sets include how they are fast, inexpensive, 
allow the reuse of data for optimizing resources, and give access to historic data that can be used 
for large scale longitudinal studies (Van den Broeck, et al., 2013; Emanuelson and Egenvall, 2014). 
Secondary data sets also provide new opportunities for pattern discovery, data mining and 
hypothesis generation. 
 
At the same time, large secondary data-based studies are more prone to result in imperfect data 
challenges (Emanuelson and Egenvall, 2014). Imperfect data challenges are those that require 
intensive data preprocessing steps before the data are ready for analysis. Challenges include, but 
are not limited to, imbalances in positive and negative outcomes, rare events, zero inflation, high-
dimensionality, multicollinearity, missing data, multiple significant interactions, variety in 
structure, undefined outcomes, and having additional variables in the dataset not related to the 
question at hand (Parsons, 1996; Pearson, 2005; Kochanski et al., 2012). Given the data challenges, 
analytical methods need to be optimized to result in meaningful inferences.  
 
Epidemiology has a strong foundation in using statistical methods for data analysis (Olsen, 2008; 
Pfeiffer and Stevens, 2015). However, epidemiology has recently followed trends in data science 
such as the emergence of data mining and machine learning (Pfeiffer and Stevens, 2015; Alkhamis 
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et al., 2018). Data mining and machine learning are commonly being used to prepare and analyze 
veterinary epidemiology data (Valdes-Donoso et al., 2017; Esener et al., 2018; Machado et al., 
2019). One of the differences between statistics and data science can be highlighted by the 
disciplines’ movement towards automation (Reid, 2016). Unlike applied statistics, there is the 
growing movement towards automation in data science (Gaber, 2009; Witten et al., 2016; Cearley, 
2019). Several automatic data mining methods and several workflows for full data analysis have 
already been patented and developed (King et al., 2009; Minkin et al., 2018; Hermans et al., 2018; 
Norton and Berckmans, 2018). Automation of data analysis has the potential to increase the 
amount of output, and improve the resulting model performance (Gaber, 2009).  
 
Veterinary epidemiological research, will continue to follow the trends in data sciences towards 
automation due to the growing use of imperfect, secondary, and potentially big data, and the desire 
to develop real-time surveillance and prediction capabilities (VanderWaal et al., 2017; Hermans 
et al., 2018). However, epidemiology will always need to be focused on biological relevance and 
meaningful interpretation of results. There is concern that data mining methods and automation 
will cause the field to move away from deductive reasoning and prohibit the incorporation of 
expert knowledge about biological relevance into the analysis (Dohoo et al., 2003; Faraway, 2016). 
Therefore, epidemiology needs to adapt or develop methods that can be automated in the future, 
and that do not remove the focus of research away from the biological relevance and interpretation 
of the results.  
 
Consequently, there is a need to meet the challenges and special needs of imperfect data from 
secondary data-based studies for both supervised (i.e. parameter estimation, prediction modeling) 
and unsupervised learning (i.e. pattern recognition). Second, there is a need for systematic 
approaches to integrating and comparing of statistical analytical methods to streamline selection, 
and to prevent subjectivity and flawed outcomes when analyzing imperfect data from secondary 
data-based studies.  
 
OBJECTIVES  
In this dissertation, the goal was to develop solutions for the systematic integration for methods 
that address imperfect data. Additionally, the goal was to develop solutions for the systematic 
integration, comparison and selection of methods as a steppingstone towards automation while 
maintaining the focus on the biological relevance and interpretation of the results.  
 
Given these two goals the following objectives were defined: 
 
The first objective of this dissertation is to meet the challenges and special needs of imperfect data 
from secondary data-based studies for both supervised (i.e. parameter estimation, prediction 
modeling) and unsupervised learning (i.e. pattern recognition). This results in incorporating and 
adapting methods from data science, data mining, and machine learning or developing new 
methods for imputing missing values, modeling zero inflated data sets, systematically selecting 
interaction terms, variable selection, addressing imbalances in positive and negative outcomes, 
rare events, data with hierarchical structure, and using the example of principal component analysis 
(PCA) for variable reduction, and clustering for pattern recognition. 
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The second objective is to systematically combine, compare and select the most appropriate 
statistical methods for parameter estimation, prediction modeling, and pattern discovery in the face 
of large imperfect data sets, while maintaining the focus on the biological relevance and 
interpretation of the results.    
 
OUTLINE  
Section 1 
In Chapter 2 the focus is on solutions that address imperfect data and systematic supervised 
learning methods for parameter estimation. In three parts: Chapter 2.1 describes a systematic 
approach to addressing imbalances in positive and negative outcomes (unbalanced data sets) for 
parameter estimation using zero augmented models while in search for the best fitting model. 
These methods are described using surveillance data from the Foodborne Diseases Active 
Surveillance Network (FoodNet) in the United States to build a descriptive model for 
Campylobacter infections. Chapter 2.2 demonstrates a systematic approach to imputation of 
missing data, variable reduction and selection using data from the People, Animals and their 
Zoonoses (PAZ) project out of Kenya to build a description model for Plasmodium falciparum 
infection. Chapter 2.3 focuses on systematic selection and interpretation of interaction terms for 
parameter estimation in search for the best fitting model while maintaining the focus on the 
biological relevance and interpretation of the results. This approach is demonstrated using 
production data from North American automated milking systems (AMS) with the goal of building 
a descriptive model for milk production outcomes.  
 
Chapter 3 shows systematic approaches for supervised learning methods for prediction modeling 
in two parts: Chapter 3.1 introduces a systematic approach to full model selection for prediction 
modeling using regression trees. The method is demonstrated using a data set including data from 
milk Fourier-transform infrared spectroscopy (FTIR), routine milk testing, and from automatic 
milking systems to predict blood nonesterified fatty acids (NEFA) and β-hydroxybutyrate acid 
(BHBA) in dairy cows during early lactation. Chapter 3.2 illustrates the application of regression 
tree full model selection (rtFMS) methods for chapter 3.1 to a milk FTIR data set to predict rare 
events of antibiotic residue in bovine milk. In this chapter the problem of micro-macro multilevel 
modeling is addressed with the development of new method named “Extreme Value Micro-
Macro” (EVMM) multilevel modeling. This method addressed the challenge of multilevel 
modeling when the central tendency of the micro level observations is not a good representation 
of the macro level outcome.  
 
Section 2 
In Chapter 4 applied unsupervised learning methods for pattern recognition. The results were 
confirmed using post-hoc analyses and maintained focus on the biological relevance and 
interpretation of the results. Chapter 4.1 describes a novel classification of poor metabolic 
adaptation in dairy cows called poor metabolic adaptation syndrome (PMAS) discovered using 
cluster analysis. Clinical data, blood samples and milk testing data of Simmental cows in Bavaria 
were used for this purpose. Finally, Chapter 4.2 addresses how decision making processes and 
customized management advice can be facilitated by improved benchmarking within peer groups 
by means of clustering AMS data for a diverse set of locations in North America.  
 
All the data set in this dissertation originate from secondary data-based studies. 
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CHAPTER 2- PARAMETER ESTIMATION INTRODUCTION 

 
 
The starting point for statistical learning is quantifying associations between parameters and an 
outcome, quantifying statistical significance of associations, and interpreting associations given 
their biological relevance, direction and background. This is accomplished by means of parameter 
estimation modeling (James et al., 2013). Parameter estimation modeling is also referred to as 
inference, descriptive or explanatory modeling of an outcome, or dependent variable. For the 
purpose of this introduction the term “parameters” is used to mean the independent variables that 
drive the system. However, different disciplines use different terms including cofactors, risk 
factors, predictors, co-variate, independent variables, attributes, and features. 
 
Assumptions of parameter estimation model 
Parameter estimation models have several constraints. First, parameter estimation models assume 
linear relationships between parameter and the outcome (sometimes achieved using methods such 
as transformations, link functions on the outcome, offsets) and that the effects of multiple 
parameters are additive (Gelman and Hill, 2006). Second, parameter estimation models assume 
independence of errors (homoscedasticity) and normal distributions of residues (Pinheiro and 
bates, 2006; Gelman and Hill, 2006). Third, parameter estimation models are constrained with 
regards to the number of parameter estimates that can be included in the model (Bishop, 2006; 
Kuhn, 2013). Parameter estimation models assume that parameters are not highly correlated. 
Additionally, parameter estimation models rely on having parameters that are meaningful and 
biologically relevant to the associations under study (Gelman and Hill, 2006). The relevance of 
parameters in conjunction with the previously mentioned assumptions will determine the model’s 
goodness of fit and therefore the model’s reliability for representing the real-world observations. 
Representing the real-world situation is also accomplished by having measures of uncertainty for 
parameter estimates such as confidence intervals. 
 
Secondary Imperfect Data Challenges 
High dimensionality, high correlation and interactions among parameters, clustering of data and 
non-normal highly-skewed distributions of observations are some imperfect data challenges that 
violate parameter estimation modeling assumptions. These challenges are frequent aspects of large 
secondary data. High dimensionality refers to data sets that have a large number of parameters 
relative to the number of observations (Hastie, 2009). Including too many parameters can lead to 
overfitting when using the standard least squares or maximum likelihood estimation technique 
(Bishop, 2006; Kuhn, 2013). These data require the number of variables to be reduces as to not 
overfit a model (Kuhn, 2013). Many times, high dimensional data also have variables that are 
highly correlated amongst themselves. High correlation among parameters (multicollinearity) is 
another violation of parameter estimation modeling assumptions that can cause models to become 
unstable, and increase the variance and decrease the accuracy of parameter estimations (Matignon, 
2007; Kuhn, 2013). The term interaction is used to describe when one parameter’s effect on the 
outcome depends on the value of another parameter. Not accounting for interactions within a 
model will lead to non-additive effects in a model and will also cause a model’s parameter 
estimations to become confounded (Hosmer et al., 2013; Faraway, 2016). Finally, clustering 
among observations is another challenge that violates the assumptions of parameter estimation 
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models (Zuur et al., 2009; Gelman and Hill, 2006). Overall, parameter estimation modeling is more 
constricting than prediction modeling. Prediction modeling will be discussed in chapter 3. 
Solutions for these imperfect data challenges given the constraints of parameter estimation models 
need to be accurate, reproducible, transparent, justifiable, and transferable.  
 
Approaches to data imperfections 
Before designing interventions and taking decisions based on the outcome of a parameter 
estimation models imperfect data challenges need to be solved as stated in objective 1 and 2. 
 
In Chapter 2.1, a parameter estimation model for Campylobacter infections in the United States 
was developed using surveillance data from the Foodborne Diseases Active Surveillance Network 
(FoodNet). This surveillance data presented the potential challenge of zero-inflation. A case of 
zero-inflation is characterized by excess zero case counts compared to the positive case counts in 
a model (Dohoo et al., 2012). Zero inflation is associated with overdispersion, which is when the 
variance is larger than the mean of the data (Dobson and Barnett, 2018). The presence of 
overdisperson violates the assumption of a normal error distribution as discussed above (Zuur et 
al., 2009). Therefore, zero-augmented modeling methods including zero-inflated and hurdle 
models were used to address extra zeros in the FoodNet data. Zero-augmented models have two 
different model components: one binomial distribution to model zero case counts and a negative 
binomial distribution to model the positive case counts (Dohoo et al., 2012). To address the second 
objective, from the introduction (page 7), a systematic comparison of the zero-augmented and non-
zero-augmented models was performed using the models’ goodness of fit measures as guides. 
Although only 5 models were compared, the systematic approach to comparing goodness of fit 
of parameter estimation models is a foundation for the automation of systematic 
comparisons. 
 
In Chapter 2.2 a parameter estimation model for Plasmodium falciparum infection was developed. 
The data used in this study originated from the People, Animals and their Zoonoses (PAZ) project 
out of Kenya. A data set that has highly correlated variables, large numbers of parameters and 
missing values is a good representation of large secondary data and their associated imperfections. 
Observations with missing values are normally removed from an analysis (Faraway, 2016). 
However, the same rate of missingness per parameter can have bigger consequence in a high 
dimensional data sets because of the larger number of parameters. Therefore, it is better to address 
missingness in a high dimensional data set. Consequently, imputation was used for this data set to 
address values that were missing at random. When using secondary data, one is more likely to 
come across data detailed at a different level than is desired. This was the case with the wealth 
parameters in the PAZ data set. Instead of having one or two parameters that represented overall 
wealth, this data set had thirty. To deal with variable extraction of disaggregated wealth variables, 
principal component analysis (PCA) was used. Finally, to address variable selection in a high 
dimensional data set an Elastic-Net regularized generalized linear model (glmnet) was used (Hastie 
et al., 2009). The systematic approach to variable extraction, variable selection and 
missingness described in this chapter would make many large datasets more manageable 
and informative for decision-making processes avoiding modeling bias.    
 
In Chapter 2.3, a complex data set with many parameters collected from farms with automatic 
milking systems (AMS) was used. It had many potential interactions and confounding effects 
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among the many parameters when building a model to find associations with milk production. 
Interactions need to be addressed to meet the assumption that there is a linear relationships between 
each parameter and its outcome. Interactions are normally selected to be included in the model by 
using personal knowledge of biological causation involving interactions (Dohoo et al., 2012, 
Faraway, 2016). It has been suggested that automated selection of interactions should be avoided 
(Faraway, 2016). If automated selection is warranted, backwards elimination is commonly used 
(Mantel, 1970; Heinze et al., 2018). In the face of numerous interaction terms, the backwards step 
elimination procedure was not applicable for this data set since the model could not accommodate 
all interaction terms at once for the first step of backwards elimination. Parameter estimation 
models for many large high dimensional data sets suffer from similar limitations. Therefore 
forward selection was utilized for the selection of interactions in this AMS data set aimed at 
optimizing model fit. Although systematic selection of interactions with forward selection does 
not take into consideration the interactions’ biological relevance, the biological relevance was 
emphasized during the interpretation of the selected interactions. This work illustrates the 
potential and need for automated model selection. Finally, this work also illustrates that 
automation of variable selection still requires in-depth interpretation of the biological 
significant of the results. 
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ABSTRACT 
The Foodborne Diseases Active Surveillance Network (FoodNet) is currently using a negative 
binomial regression model to estimate temporal changes in the incidence of Campylobacter 
infection. FoodNet active surveillance in 483 counties collected data on 40212 Campylobacter 
cases between years 2004 and 2011. We explored models that disaggregated these data to allow 
us to account for demographic, geographic, and seasonal factors when examining changes in 
incidence of Campylobacter infection. We hypothesized that modeling structural zeros and 
including demographic variables would increase the fit of FoodNet’s Campylobacter incidence 
regression models. Five different models were compared: negative binomial without demographic 
covariates, negative binomial with demographic covariates, hurdle negative binomial with 
covariates in the count component only, hurdle negative binomial with covariates in both zero and 
count components, and zero-inflated negative binomial with covariates in the count component 
only. Of the models evaluated, the non-zero-augmented negative binomial model with 
demographic variables provided the best fit. Results suggests that even though zero inflation was 
not present at this level, individualizing the level of aggregation and using different model 
structures and predictors per site might be required to correctly distinguish between structural and 
observational zeros and to account for risk factors that vary geographically. 
 
INTRODUCTION   
The Foodborne Diseases Active Surveillance Network (FoodNet) is a collaboration among the 
Centers for Disease Control and Prevention (CDC), 10 state health departments, the U.S. 
Department of Agriculture's Food Safety and Inspection Service (USDA-FSIS), and the Food and 
Drug Administration (FDA). FoodNet conducts active, population-based surveillance for 
laboratory-confirmed infections of nine bacterial and parasitic pathogens transmitted commonly 
through food. The FoodNet surveillance area includes the full states of Connecticut, Georgia, 
Maryland, Minnesota, New Mexico, Oregon, and Tennessee, and selected counties in California, 
Colorado, and New York. One aim of FoodNet is to track changes over time in the incidence of 9 
enteric pathogens commonly transmitted through food. FoodNet is currently using a negative 
binomial regression model to estimate temporal changes (Henao et al., 2010).  
 
The FoodNet model is used on data aggregated by year and FoodNet site to account for the growth 
of the surveillance area from 5 sites in 1996 to 10 sites in 2004, and adjust for site to site variation 
in incidence. This level of aggregation limits one’s ability to explore variations in incidence for 
smaller geographic areas or units of time, or demographic features of individual cases, such as 
patients’ age and sex; all factors that have been shown to describe unique characteristics of 
Campylobacter epidemiology (Ailes et al., 2008; Samuel et al., 2004). Exploration of changes in 
incidence over time associated with specific subgroups may contribute to hypotheses regarding 
geographically- or time-varying sources of Campylobacter infection. However, disaggregating 
data can cause an increase in the proportion of case counts in each subgroup that are zero, because 
the total population in each group is decreased.  
 
Zero-augmented models consist of two separate model components: one for modeling case counts 
(using a negative binomial distribution) and one for modeling the proportion of zeros (using a 
binomial distribution). The zero-inflated and hurdle models differ in whether their count model 
component can yield a count of zero. Zero-inflated models assume zeros can be either structural 
or true observational zeros and therefore zeros are estimated by both binary and count components 
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and have an additional mixing parameter not present in hurdle models. Hurdle models assume that 
all zeros are structural zeros and therefore only model the binary component and use conditionally 
specified versions of the negative binomial distribution which are truncated to begin at a count of 
one (Mullahy, 1986; Desjardins, 2013).  
 
Consequently, zero-augmented models, hurdle and zero-inflated, may be useful to model 
Campylobacter case counts in FoodNet where the high proportion of observed zero counts may be 
attributed to factors that make it impossible to observe a case (structural zeros) as well as factors 
associated with the sampling (observational zeros) (Ridout et al., 1998; Hu et al., 2011). We 
hypothesized that factors such as diagnostic testing performance or population immunity may 
contribute to the presence of structural zeros, and that the size of the surveillance population 
contributes to observational zeros.  
 
We examined zero-augmented modifications (zero-inflated, hurdle) of the regression model used 
by FoodNet to estimate changes over time and added predictors to account for additional sources 
of variation in incidence. We hypothesized that modeling structural zeros and including 
demographic variables would increase the fit of FoodNet’s Campylobacter incidence regression 
models. The objectives were to explore modeling incidence at a finer geographic level, evaluate 
the effect of covariates that vary geographically, and examine the characteristics of zero counts in 
Campylobacter surveillance data.  
 
MATERIALS AND METHODS 
 
Dataset preparation  
 
Data were available for 48088 cases of Campylobacter infection ascertained between 2004 and 
2011 in the FoodNet surveillance system. The county, state, month, and year in which the 
Campylobacter cases were diagnosed and the age and sex of the patient were used for the analysis. 
Sixty-six cases with missing age or sex information were excluded.  
 
Case-patients were classified by age group [Age_Group: less than 5 (1), 5-17 (2), 18-24 (3), 25-
44 (4), 45-64 (5), and 65+ (6) years of age] using categories used in previous FoodNet publications 
and that represent different life stages: preschool age, school age, college age, younger working 
age, older working age, retirement age (Ailes et al., 2008). Month of diagnosis was used to make 
a season variable (Season) which grouped the months into high (High) and low (Low) seasons 
with each season including 6 consecutive months with the highest or lowest case counts, 
respectively. The high season included May to October and the low season included November to 
April. The patients’ sex remained a binary variable (Sex) with two levels: Male and Female.   
 
Campylobacter cases were grouped into one of 24 possible subgroups per county and year arising 
from the total combinations of 6 age groups, 2 seasons, and 2 sex categories (6*2*2). Eight years 
of surveillance for each of 486 counties with 24 subgroups each generated 93312 subgroups 
(8*486*24). Population estimates by year, state, county, age, sex, and race were provided under a 
collaborative arrangement with the U. S. Census Bureau (US Census Bureau, 2011). The 
population data were used to calculate county level incidence by dividing the number of cases by 
the total population of each subgroup per county.  
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The distribution and basic statistics of case counts and incidence were examined for all subgroups. 
The annual observed incidences per county were divided into 4 quartiles. The quartiles were used 
to construct choropleth maps where counties were shaded by incidence quartile using qGIS version 
1.8.0 (QGIS Development Team, 2013). Because California counties were the only surveillance 
area in FoodNet without any subgroup case counts of zero, all data from these 3 counties 
(information on 7810 case-patients) were removed from model analyses. The final dataset had 
40212 observations and 92736 case count subgroups.  
 
Model building and comparison 
The data were evaluated for overdispersion by comparing the overall mean and variance of case 
counts for each subgroup (McCullagh and Nelder, 1989). Models of Campylobacter case counts 
in each subgroup were built using R version 3.1.2 and its MASS, stats and pscl libraries (R Core 
Team, 2013). A negative binomial distribution was assumed for the outcome variable in all the 
models. A histogram of case counts with a negative binomial fitted curve overlay was produced. 
The reference groups selected for State, Age_Group, and Sex were those that represented the 
largest proportion of the population: Georgia, 25-44 years old, and Male, respectively. For Year 
and Season, the earliest year (2004), and the low season (November to April) were used as 
reference groups.  
 
The first model was a negative binomial (NB) that included Year and State as nominal categorical 
predictors. Season, Age_Group, and Sex were added as categorical predictors to produce the next 
model (NB.Plus). To focus on the mixture difference between the zero-inflated (ZINB) and hurdle 
models (Hurdle NB) and to facilitate comparison, the models were built without variables included 
in the models’ component which models the proportion of zeros. This was followed by fitting a 
zero-inflated negative binomial and hurdle model using forward selection. Forward selection was 
used rather than backwards elimination since the saturated models did not converge or were 
overfit. Variables were added individually in both model components separately and any 
significant variables were used in the final combination model (ZINB Full, Hurdle NB Full) (Rao 
and Sumathi, 2011). Each model (NB, NB.Plus, Hurdle NB, Hurdle NB Full, ZINB, ZINB Full) 
was offset with the natural log of the population total in each subgroup (Gelman and Hill, 2006). 
To determine significance of covariates, all models used an error level, alpha, of 0.05.   
 
The zero-augmented and non-zero-augmented models were estimated by a maximum likelihood 
algorithm. The Akaike information criterion (AIC), Bayesian information criterion (BIC), and -2 
log-likelihood were computed for comparison. The BIC-corrected Vuong test was used to compare 
the fit of non-nested models and the likelihood ratio test was used to compare the fit of nested 
models (Vuong, 1989). The zero component intercepts in the zero-augmented models were 
evaluated as a large negative coefficient value does not support the idea of zero inflation in the 
data (Schwadel and Falci, 2012; Erdman et al., 2008). 
 
Model assessment was done by evaluating the mean absolute error using leave-one-out-cross-
validation (Kuhn and Johnson, 2013). The difference between the predicted and observed zero 
case counts were compared for all models. Quantile-Quantile (Q-Q) plot and residual histogram 
for the best fitting model were inspected for normally distributed errors. The source code of all 
analysis steps are available by request. 
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RESULTS  
 
Descriptive Statistics  
On average 5027 (±SD 300) cases of Campylobacter infection were reported to FoodNet each year 
between 2004 and 2011 (Range: 4751 in 2004 to 5636 in 2011). The majority (63.0% ± 0.9%) 
were reported during the high season (May to October). The average annual incidence (all reported 
per 100000 persons) for all sites combined was 11.8 (± 0.5) and ranged between 11.3 in 2008 and 
12.8 in 2011. The average state incidence was 13.4 (± 5.0) and varied from state to state (Range: 
6.8 in Georgia to 19.5 in California). The average age group incidence was 14.2 (± 5.7) and was 
highest for children aged less than 5 years (25.4) and lowest among persons aged 5 to 17 years 
(9.0). Males had higher rates than females (14.6 vs. 11.5).  
 
To provide a visual representation of geographic variation in incidence among counties, quartiles 
of annual county level incidence were mapped for Minnesota, Georgia, New Mexico, and Oregon 
as examples (Figure 1). The average annual incidence per county was 12.8 (± 10.0) per 100000. 
The wide standard deviation was a function of county incidence variation among and within states 
illustrated in Figure 1.  

 
Figure1: Observed county incidence per 100000 in A) Minnesota, B) Georgia, C) New Mexico 
and D) Oregon in 2011. Counties are shaded based on the quartiles of county annual incidence 
per 100000. 
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Building Models 
Variance (1.71) and mean (0.43) of all the Campylobacter counts in the final dataset were 
calculated. The large variance relative to the mean, suggested that the data were overdispersed 
(Rao and Sumathi, 2011). This was further supported by the negative binomial’s estimated 
overdispersion parameter [log(theta)] which was significantly different from zero with a p-value 
less than 0.001 (Cameron and Trivedi, 2013). The histogram in Figure 2 shows the case count 
frequency with a normal negative binomial curve overlay (number of observations= 92736, mean 
= 0.434, theta = 0.213). Out of the 92736 total subgroups, 78.6% had a zero case count. The curve 
mirrors the observed values closely and zero inflation is not apparent.  
 

 
Figure 2: Count frequency of Campylobacter cases in FoodNet (bars) with normal negative 
binomial curve overlay (number of observations= 92736, mean = 0.434, theta = 0.213). Y axis is 
shown using a square root scale. 
 
Model Results 
All variables included in the non-zero-augmented models (NB, NB.Plus), both count and zero 
portions of the Hurdle models, and the count portion of the ZINB model were statistically 
significant predictors in the models. The ZINB Full was not included in the model comparison 
because none of the variables added by forward step selection were significant in the binary portion 
of the model. The individual model results are shown in Appendix. 
 
The count components of all models (NB, NB.Plus, Hurdle NB, Hurdle NB Full, ZINB) had 
similar results in terms of coefficient direction, magnitude, and significance. However, Tennessee, 
year 2010, and age group 65+ were significant in the NB, NB.Plus and the ZINB models but not 
in the count components of the Hurdle NB and Hurdle NB Full models. The other difference was 
that the age group that includes 45-64 year olds was significant in the count component of the 
Hurdle NB and Hurdle NB Full models but not in the count component of the ZINB model. 
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Table 1: Goodness of fit and statistics comparison by model  
Model 1* 

Model 2  Hurdle NB NB Hurdle NB Full ZINB NB.Plus 
M0† 

 
LR  *** *** 

V (BIC) 79.0, *** 79.9, *** 91.5, *** 89.5, *** 89.5, *** 
Hurdle 

NB 
LR  ***  

V (BIC)  9.2, *** 37.6, *** 40.4, *** 40.5, *** 

NB 
LR  *** 

V (BIC) (-9.2), *** 29.6, *** 33.4, *** 33.5, *** 
Hurdle 
NB full 

LR ***  

V (BIC) (-37.6), *** (-29.6), *** 3.7, 0.0001 3.9, 5.1e-5 
ZINB 

 
LR   

V (BIC) (-40.4), *** (-33.4), *** (-3.7), 0.0001 174.2, *** 

NB.Plus 
LR  ***  

V (BIC) (-40.5), *** (-33.5), *** (-3.9), 5.1e-5 (-174.2), ***  

-2 x log likelihood -115539 -114403 -109482 -109525 -109525 
‡ 25 17 47 25 24 
AIC 115589 114437 109576 109575 109573 
BIC 115825 114597 110019 109811 109799 
MAE 
Predicted no. zeros 

0.3963 
72918 

0.4046 
73540 

0.3809 
72918 

0.3798 
73403 

0.3798 
73403 

Models are listed from left to right and top to bottom as their fits improve; * Hurdle NB = Hurdle negative binomial 
with covariates in the count component only, NB = Negative binomial without demographic covariates, Hurdle NB 
Full = hurdle negative binomial with covariates in both zero and count components, ZINB = Zero-inflated negative 
binomial with covariates in the count component only, NB.Plus = Negative binomial with demographic covariates; † 
Null model; LR= Likelihood ratio test; V (BIC) = Vuong BIC corrected Non-Nested Hypothesis Test-Statistic; *** 
= p-value less than 2.2e-16 when testing model 1 versus model2 with alpha < 0.05; ‡Number of parameters 
estimated; AIC = Akaike information criterion; BIC = Bayesian information criterion; MAE = Mean absolute error 
 
Model Assessment and Comparison 
The zero component intercepts in the zero-augmented models all had large negative coefficient 
values which do not support the idea of zero inflation in the data. This is further supported by the 
goodness of fit evaluations summarized in Table 1. The likelihood ratio test led to the same results 
as the Vuong test when applied to nested models. Using the goodness of fit measures the NB.Plus 
model had the best fit. The ZINB and NB.Plus had the same log likelihood but different degrees 
of freedom. The Hurdle-NB model had the worst fit and the Hurdle NB Full had lower fit than 
both the ZINB and NB.Plus models. The residual histogram with a normal curve overlay is shown 
in Figure 3 for the NB.Plus model and displays deviation from homoscedasticity and normality. 
 
Adding the demographic variables to the non-augmented models decreased the mean absolute 
error by 0.0249 (decreased the error). For the zero-augmented NB.Plus model the addition 
increased the mean absolute error by 2.726e-6 for the ZINB and by 0.0165 for the Hurdle NB 
model (increased the error). There were 72918 zero case counts in the dataset and the hurdle 
models predicted the exact number. When we rounded the predicted number of zeros to the nearest 
integer, both the ZINB and NB.Plus models predicted 73403 zeros or 485 more than the observed 
number of zero counts. The hurdle models were superior at predicting zero counts because of their 
truncated structure. 
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Figure 3: Residual boxplot of negative binomial model with demographic covariates (NB.Plus) 
 
DISCUSSION 
The aim of this analysis was to explore different methods to analyze campylobacteriosis case 
counts ascertained by FoodNet surveillance sites at a finer geographic level, to evaluate the effect 
on incidence of covariates that may vary geographically, and examine the characteristics of zero 
counts in FoodNet Campylobacter data. The subgroups selected for analysis represented 
demographic and geographic variables known to influence incidence of Campylobacter infections 
(Ailes et al., 2008). Although a disproportionate number of observations were zero, zero inflation 
was not apparent, and the negative binomial model with inclusion of demographic and seasonal 
variables significantly increased the fit of the model (see Table 1, NB.Plus) compared with the 
model with only year and state included (NB in Table 1). Our findings suggest that the incidence 
of Campylobacter infection varies substantially among the FoodNet counties, making it 
worthwhile to explore differences in surveillance populations, exposures, laboratory practices, or 
other factors that differ among sites. 
 
Zero-augmented modifications (zero-inflated, hurdle) of the regression models were used to 
examine a possible separation of observational and structural zeros. We anticipated that a 
significant proportion of zero case counts were observational; differences in county size and 
population demographics among the FoodNet surveillance sites result in very small subpopulation 
sizes among counties and a high probability that no cases will be observed among many counties. 
Our finding that the hurdle models did not fit the data well supports this assumption. Although we 
hypothesized that several surveillance and epidemiologic factors may contribute to structural zeros 
in the data, our analysis suggests that zero inflation is not apparent at the level of disaggregation 
of demographic covariates we studied; this finding is supported by the observation that inclusion 
of zero-augmentation mixing fractions did not improve the models’ fit.    
 
Although zero inflation was not present in the dataset, zero-augmented modeling techniques are 
likely to be important for future analyses including modeling of other pathogens under FoodNet 
surveillance. Our models included only data ascertained by FoodNet active surveillance activities, 
and it is likely that inclusion of data from sites conducting passive surveillance, as well as data 
obtained from other sources, such as household income and access to healthcare, would contribute 
to the presence of structural zeros in the modeled data. The differences in data collection associated 
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with different surveillance systems and data sources would likely result in excess zero case counts 
where at least a portion (structural zeros) arise from a process different from the positive counts. 
Although both hurdle and zero-inflated models may be used to model this type of data, it is likely 
best modeled by a zero-inflated model because the zeros are modeled as a mixture of both 
observational and structural zeros.  
 
We removed the California observations because there were no zero case counts in any county 
subgroup, complicating our exploration of models for zero case counts. Removal of the California 
data eliminated convergence issues and allowed exploration of the effect of zero inflation. 
Removing the California data decreased the dataset’s variance but overdispersion was still 
prominent. A negative binomial distribution helped in modeling the overdispersed data; however, 
there were still case counts that were outside the expected distribution. These case counts may be 
associated with undetected outbreaks (i.e., clusters of cases originating from a common exposure) 
which were not excluded from the analysis. Further exploration of these outliers, using compound 
distributions, would help better characterize them and might yield more information on risk factors 
of potential outbreaks (Hinde, 1982). 

 
CONCLUSIONS 
The addition of the demographic and seasonal variables when modeling Campylobacter counts 
accounted for more variability and resulted in improved goodness of fit compared with models 
that only included a state factor. However, the complexity and variation in the epidemiology of 
Campylobacter was still not fully addressed, suggesting that differences in surveillance 
populations among the FoodNet sites or other epidemiological factors vary geographically. For 
example, the models did not fully account for the incidence variation among counties and states as 
illustrated in Figure 1. County-level variation associated with differences in county geographic 
size, population and other unmeasured factors could result in additional sources of structural zeros 
in case counts. Although we investigated structural zeros at the state level, the possibility for 
structural zeros to vary by county was not examined. Potentially, the level of aggregation and the 
count distribution could be adjusted per site to better fit the data and further explore structural 
zeros. Therefore, future steps should focus on individual sites.  
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APPENDIX: Model Results 
 
Negative binomial without demographic covariates (NB) 

Parameter Estimate SE† 95% Confidence Interval P value‡  

(Intercept) -9.600 0.023 -9.645 -9.555 < 2.00e-16 ***
Year 2005 (ref: 2004) -0.015 0.026 -0.066 0.036 5.59e-1  
Year 2006 (ref: 2004) 0.001 0.026 -0.050 0.052 9.62e-1  
Year 2007 (ref: 2004) 0.010 0.025 -0.039 0.059 6.88e-1  
Year 2008 (ref: 2004) -0.002 0.026 -0.053 0.049 9.33e-1  
Year 2009 (ref: 2004) 0.040 0.025 -0.009 0.089 1.17e-1  
Year 2010 (ref: 2004) 0.064 0.025 0.015 0.113 1.10e-2 * 
Year 2011 (ref: 2004) 0.107 0.025 0.058 0.156 1.75e-5 ***
State CO (ref: GA) 0.868 0.029 0.811 0.925 < 2.00e-16 ***
State CT (ref: GA) 0.795 0.028 0.740 0.850 < 2.00e-16 ***
State MD (ref: GA) 0.115 0.027 0.062 0.168 1.44e-5 ***
State MN (ref: GA) 0.981 0.021 0.940 1.022 < 2.00e-16 ***
State NM (ref: GA) 1.005 0.027 0.952 1.058 < 2.00e-16 ***
State NY (ref: GA) 0.664 0.024 0.617 0.711 < 2.00e-16 ***
State OR (ref: GA) 1.023 0.024 0.976 1.070 < 2.00e-16 ***
State TN (ref: GA) 0.064 0.024 0.017 0.111 9.00e-3 ** 

† Standard Error, ‡ Significant codes:  ‘***’ < 0.001, ‘**’ < 0.01, ‘*’ < 0.05, ‘.’ < 0.1 
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CHAPTER 2.2 
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ABSTRACT 
Large datasets are often not amenable to analysis using traditional single-step approaches. Here, 
our general objective was to apply imputation techniques, principal component analysis (PCA), 
elastic net and generalized linear models to a large dataset in a systematic approach to extract the 
most meaningful predictors for a health outcome. We extracted predictors for Plasmodium 
falciparum infection, from a large covariate dataset while facing limited numbers of observations, 
using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these 
techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables 
that describe the health, environment, and social factors of the humans, livestock, and the 
homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. 
falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 
predictors make biological sense and are supported by previous studies. This systematic data-
mining approach we used would make many large datasets more manageable and informative for 
decision-making processes and health policy prioritization. 
 
INTRODUCTION 
With the increasing production and availability of large amounts of data, it is common to have 
datasets that cannot be analysed using traditional single-step approaches. For example, it is not 
advisable to build simple regression models from datasets that have thousands of variables or those 
that have incomplete data. Many different data-mining and statistical techniques are commonly 
employed individually to address these issues, but a systematic approach has not been developed 
to take advantage of multiple methods’ strengths and capacities. Our general objective is to apply 
imputation techniques, principal component analysis (PCA), elastic net and generalized linear 
models (GLM) in a systematic approach to extract the most meaningful predictors for a health 
outcome from a large covariate dataset while facing limited numbers of observations. The People, 
Animals, and their Zoonoses (PAZ) dataset will be used to demonstrate these techniques [1]. The 
PAZ project's goal is to explore the epidemiology and burden of a number of neglected zoonotic 
diseases in a sympatric population of animals and people. Currently, PAZ's only study site is in 
Western Kenya. The dataset contained variables that describe the health, environment, and social 
factors of the humans, livestock, and homesteads in which they reside. The specific aim of applying 
this protocol to the PAZ dataset is to develop and apply socioeconomic wealth indices and 
determine the best predictors of falciparum malaria infection exposure prevalence in individuals 
included in the PAZ dataset [2]. We hypothesize that these techniques can be used to develop a 
simplified dataset with the most meaningful predictors from a wide, sparse dataset. If successful, 
this systematic data-mining approach could make many large datasets more manageable and 
informative. 
 
MATERIALS AND METHODS 
Making a complete dataset 
The dataset used in this study which originates from the PAZ project consist of questionnaire data 
from 416 rural homesteads and biological sampling data of 2113 humans and 983 cattle from these 
homesteads in the western Province of Kenya [1]. Homesteads determined to be outliers due to an 
extreme cattle–human ratio were excluded from the analysis. 
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All data analyses were performed using R version 3·0·1 [3]. A case of malaria was defined as a 
subject being positive for Plasmodium falciparum on thick or thin blood smears [4]. The 
homestead malaria prevalence was defined by: 
 
Homestead Malaria Prevalence = (Number of Positive Malaria Cases)/(Total Human Subjects in 
a homestead) 
 
To prepare the dataset for statistical analysis, all categorical variables were expanded into binary 
dummy variables and edited until missing values were all coded as ‘NA’. The number of missing 
values was first calculated per dataset and frequency tables were used to examine the percent 
missingness per variable. Variables with >10% of values missing were removed from the dataset. 
This was important, because the deleted variables could not be determined to be ‘missing at 
random (MAR)’ due to the non-random approach to the data collection, and therefore keeping 
those variable in the dataset would have conflicted with the MAR prerequisite of multiple 
imputations [5]. 
 
After this new dataset was generated and further missingness was assumed to be at random, the 
remaining variables were subjected to piecewise multiple imputations by chained equations using 
the R package ‘mice’ [6, 7]. This package was selected due to its ability to handle both factor and 
continuous variables. After completing the imputation by ‘mice’, variables with missing values 
that could not be imputed were omitted from further statistical testing. 
 
Frequency tables were created for all variables and data were analysed for uniformity. Variables 
where the most frequent value accounted for ⩾99% of the observations were removed to avoid 
variables without contrasts in the dataset. A range of such cut-off percentages for uniformity was 
evaluated and the 99% cut-off resulted in the most consistent removal of variables without 
contrasts across the dataset. 
 
Variables denoting the number of individuals per homestead for cattle and humans were created 
to serve as denominators for calculating prevalences. For each numeric variable in the human and 
cattle dataset, the mean value across each homestead was calculated to subsequently allow the 
dataset to be merged by homestead number. 
 
Ethical considerations 
Human data and samples collected in this study were collected following approval by the KEMRI 
Ethical Review Committee, SC#1701. Animal samples were collected following approval from 
the Roslin Institute Animal Welfare and Ethical Review Committee, AWA004. The Institutional 
Review Board (IRB) approved this study (IRB no. 2013-0072). 
 
Creating wealth indices using PCA 
Because wealth is often a predictor of disease prevalence, selected asset and livestock variables 
descriptive of wealth or socioeconomic status were shrunk into one wealth ranking value per 
homestead [2]. Historically, asset-based wealth indices have been based on household assets, but 
because wealth in rural areas is often dependent upon livestock ownership and the ability to call 
on human assistance, compared to urban areas, in which wealth is often expressed in material 
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possessions, two separate wealth rankings were created: one based on material assets (asset-based 
wealth ranking) and one based on a homestead's livestock (livestock-based wealth ranking) [2]. 
 
Both wealth indices were created using PCA, an ordination method commonly applied during 
wealth-indexing studies [8]. PCA converts a number of non-correlated variables into a number of 
orthogonal principal components (PCs) [9]. The first PC is the ordination of the variables that 
explains the most amount of variance, and each subsequent PC thereafter explains a decreasing 
amount of the variance. The starting subset of variables for each wealth index was selected from a 
previous study by Okell et al. that utilized a preliminary version of the same dataset with fewer 
homesteads [8]. All variables were formatted as numeric, and their respective minima were added 
to each variable set to assure non-negative values. The variables were scaled using the ‘scale()’ 
command in order to assure non-negative values in the dataset used for PCA, i.e. the overall 
minimum value of any observation was added to all values in the dataset. 
 
Because highly correlated variables can skew a PCA analysis, a Pearson correlation matrix was 
used on both the asset-based and livestock-based variables to determine whether any two variables 
were highly correlated, in which case the biologically less relevant variable was removed. A 
correlation ⩾90% was used as our limit [10]. The PCA was run on both the asset-based and 
livestock-based variables separately [11]. Based on the first six PCs of each of the two PCAs, it 
was determined which subset of variables contributed more than expected to the explanation of 
the overall variance in the respective datasets. The PCAs were repeated for the selected subset of 
covariates. The respective first PCs of the outcomes were taken as the livestock-based and asset-
based wealth indices. 
 
To explore the validity of the livestock wealth index, a third wealth index was created based on 
real-world valuation of livestock holdings. Current market value for each category of the livestock 
evaluated was based on interviews with market traders in the study region and subsequently 
multiplied by the number of livestock in the respective livestock categories of the dataset [8]. The 
summation of these values yielded the total livestock value (TLV) for each homestead, which was 
used as a real-world approximation estimate for livestock wealth [8]: 
 
TLV = Σ (number of animals in a category * current market value of animal) 
 
These wealth indices were merged with the final dataset by homestead. Since only 54% of the 
homesteads had cattle, the final dataset including the wealth indices was divided into two datasets 
for further analysis. Subset A was created from the homestead, human, and cattle variables 
containing only the 224 homesteads with cattle. Subset B was created using the homestead and 
human variables of all 415 homesteads only. 
 
Selecting predictors with elastic net and GLM 
Regularized regression models are a commonly accepted method for selecting predictors from 
large data. The elastic net was created by combining the penalties of the lasso and ridge regularized 
regression methods. This combination allows for better performance when the number of variables 
(p) is greater than the observation count (n) and when groups of variables exist that are highly 
correlated while still resulting in a parsimonious model [12]. The number of variables selected is 
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controlled by the alpha (α ) parameter. The regression will more closely resemble a lasso regression 
or a ridge regression as α nears/approaches 1 or 0, respectively [12]. 
 
The glmnet package in R was used to fit the elastic-net regularization path for Poisson regression 
on homestead malaria prevalence for subsets A and B [13]. The model response was the count of 
malaria-positive cases in each homestead and an offset of the log of the total humans per homestead 
was used to model prevalence. A Poisson family was chosen since the response was a count. The 
cross-validation function (cv.glmnet) was used to find the best value of lambda (λ), the 
regularization parameter, and the number of folds was selected to be the number of observations 
(n) minus 1 (leave-one-out cross-validation). To select the best value of α, 50 iterations of 17 
different α values between 0 and 1 were run and summarized. The α value that resulted in the 
lowest mean absolute error (MAE) was selected. The selected λ and α values were subsequently 
used for elastic-net variable selection using the glmnet function. 
 
The variables selected by the elastic-net regularized penalized regression using non-zero 
coefficients were subsetted and included in a GLM using the glm package in R. Further variable 
selection was performed in a stepwise function based on Akaike's Information Criterion (AIC) 
using the step function. Both forward and backward directions were allowed [2]. To determine 
significance of covariates an error level, α = 0·05 was set. A model with only significant variables 
was desired so further backwards elimination was performed based on P value. 
 
RESULTS 
Making a complete dataset 
Homestead 84 was considered an outlier due to a very high cattle–human ratio; therefore, all 
observations from homestead 84 (17 human subjects, 41 cattle) were excluded from the analysis. 
Eleven cattle and one human subject were removed because they did not have a homestead number 
recorded, 415 homesteads, 2095 humans and 931 cattle remained. 
 
In the homestead dataset 2·81% (4753/168 905) of values were missing and there were 24/407 
variables with >10% missingness. In the cattle dataset 16·95% (48 750/287 679) of values were 
missing and there were 78/309 variables with >10% missingness. In the human dataset 8·09% ( 
111 810/1 382 700) of values were missing and there were 105/660 variables with >10% 
missingness. After the variables with >10% missing values were removed, 1169 variables 
remained. The number of variables left and removed per dataset is described in Table 1. 
 
Table 1. Number of variables per dataset at each step 

 Homestead Human Livestock 
1. Starting number of variables 407 660 309 
2. Number of variables removed due to >10% 
missingness 

-24 -105 -78 

3. Number of variables removed due to incomplete 
imputation 

-18 -16 -2 

4. Number of variables removed due to >99% 
uniform 

-93 -188 -97 

5. Final number of variables 272 351 132 
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There were 677 values still missing in the cattle dataset (0·32%, 677/215 061), 14 742 values still 
missing in the human dataset (1·27%, 14 742/1 164 820) and 1296 values still missing in the 
homestead dataset (0·82%, 1295/158 945) after removing variables with >10% missingness. The 
imputation of these missing values was unsuccessful for 36 variables which were removed from 
the analysis. On average the 36 variables were >99·9% (s.d. ± 0·32) uniform which explains the 
incomplete imputation. 
 
The average percent uniformity for the remaining 1133 variables was 89·9%. The 278 variables 
with >99% uniformity were removed. The final variable count in each dataset is shown in Table 
2. The total count of malaria-positive subjects was 621. The average count of malaria-positive 
cases per homestead was 1·50 cases and ranged from 0 to 8 with with >50% having zero positive 
cases. The average number of human subjects per homestead was 5·05 (s.d. ± 2·94) with a 
maximum of 21 people. Malaria prevalence per homestead averaged at 28·25% (s.d. ± 27·35) and 
the overall prevalence was 29·64% (621/2095) for the entire study. 
 
Creating wealth indices with PCA 
One variable in the asset data, ‘number of mud walls’, was found to correlate too highly with two 
other asset variables, ‘number of dwellings’ and ‘number of earth floors’, and was therefore 
omitted from the wealth-indexing PCA. The first six PCs were used to find the subsets of variables 
that explained more than average amount of variance in the data. The 11 and 30 variables selected 
for the livestock and asset subsets, respectively, are listed in Tables 2 and 3. The first PC generated 
using each subset of variables was used to create the wealth indices. The TLV and the livestock 
wealth index were determined to be collinear and therefore provided some evidence of its validity. 
 
Table 2. List of asset wealth variables by variable type 
Count (1-10) Count (11-20) Binary 
Dwellings Cooking fuel - Firewood Radio 
Iron roofs Cooking fuel - Charcoal Television 
Thatch roofs Cooking fuel - Gas stove Cupboard 
Unburnt brick walls Cooking fuel - Paraffin stove Sofa with cushions 
Mud brick walls Latrine on compound Clock 
Cement brick walls Completely closed latrine Wrist watch 
Mud/cement walls Partially closed latrine Sewing Machine 
Earth floors Open pit latrine Torch (flashlight) 
Cement floors Mobile phone charger Bicycle 
Electric solar Mobile phone  Motorbike 
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Table 3. List of livestock wealth variables by variable type 
Count Binary 
Weaned female calves Chickens
Adult castrated male cattle Ducks 
Adult entire male cattle  
Adult female cattle  
Suckling pigs  
Weaned male pigs  
Weaned female pigs  
Sows  
Boars  
Chickens  

 
  
Selecting predictors with elastic net-regularized penalized regression and GLM 
After a total of 50 iterations of cross-validation for each α level, the α values with the lowest MAE 
for subsets A and B were 0·05 and 0·2, respectively. The corresponding λ values used in the elastic-
net modelling are listed in Table 4. There were 143 variables selected out of 757 from subset A 
and 105 out of 626 variables from subset B. The AICs of the starting GLMs with the subset of 
these non-zero coefficient variables are listed in Table 4. After stepwise selection of variables the 
models’ AICs were reduced by 177 and 92 units for subsets A and B, respectively. Further 
backwards stepwise elimination based on P value was performed which reduced the amount of 
variables in the model to 22 for subset A and 25 for subset B. Five variables were found in both 
models. The final models’ estimates are included in Tables 5 and 6. 
 
Table 4. Cross-validation, elastic net and GLM parameters 
Parameter Subset A Subset B 
CV n-folds 223 414 
Alpha (α) 0.05 0.2 
Lambda 1.385 0.2464 
Number of nonzero coefficients 143 105 
AIC- at beginning of GLM 745 1123 
AIC- after Step procedure 568 1031 
AIC- after backwards elimination 578 1043 

GLM, Generalized linear model. 
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Table 5. Subset A: Generalized linear model results*  
Estimate Std. Error RR [95% CI] z value Pr(>|z|) 

(Intercept) -0.3475 0.5563 0.7065 [0.2374 - 2.1019] -0.62 0.5321 
Keep chickens [yes vs. no] -0.6002 0.1963 0.5487 [0.3735 - 0.8062] -3.06 0.0022 
Travel to medical facility by Matatu 

† [yes vs. no] 
-0.7731 0.3183 0.4616 [0.2473 - 0.8614] -2.43 0.0152 

Last bought/acquired cattle 1 to 2 
months age [yes vs. no] 

-1.1209 0.4271 0.3260 [0.1411 - 0.7529] -2.62 0.0087 

Are cattle herded with goats or sheep 
[yes vs. no] 

-0.4025 0.1337 0.6686 [0.5145 - 0.8690] -3.01 0.0026 

Control worms in cattle with drench 
(unknown drug) [yes vs. no] 

-0.2855 0.1313 0.7516 [0.5811 - 0.9722] -2.18 0.0296 

Pigs- use a worm control product 
when they get thin [yes vs. no] 

-1.6077 0.7212 0.2003 [0.0487 - 0.8235] -2.23 0.0258 

Number of houses with brick or 
cement walls  

-0.7013 0.3057 0.4959 [0.2724 - 0.9029] -2.29 0.0218 

Own a bicycle for transportation  
[yes vs. no] 

0.4330 0.1858 1.5419 [1.0713 - 2.2192] 2.33 0.0197 

Number of individuals in the age 
group 5-9 

1.4108 0.3342 4.0992 [2.1293 - 7.8918] 4.22 0.00002 

Samia subgroup [yes vs. no] 0.5738 0.1889 1.7750 [1.2258 - 2.5703] 3.04 0.0024 
Feeding livestock once a week  

[yes vs. no] 
1.0625 0.2577 2.8936 [1.7462 - 4.7950] 4.12 0.00004 

Used to but no longer involved with 
manure preparation [yes vs. no] 

3.7715 1.5590 43.445 [2.0461 - 922.497] 2.42 0.0156 

Human subject milks cow at least 
once a year [yes vs. no] 

1.2721 0.6305 3.5683 [1.037 - 12.2786] 2.02 0.0436 

Seek treatment for breathing problem 
at a hospital [yes vs. no] 

-1.3600 0.5119 0.2567 [0.0941 - 0.7000] -2.66 0.0079 

Currently taking medications  
[yes vs. no] 

-1.1713 0.4627 0.3100 [0.1252 - 0.7676] -2.53 0.0114 

Human fecal positive for Schisto-
soma mansoni [yes vs. no] 

-1.0352 0.4217 0.3552 [0.1554 - 0.8117] -2.45 0.0141 

Cattle fecal positive Trichuris 
(whipworm) [yes vs. no] 

0.0874 0.0361 1.0913 [1.0168 - 1.1713] 2.42 0.0155 

High-grade cattle breed, e.g. Friesian 
cross [yes vs. no] 

-1.6162 0.7112 0.1987 [0.0493 - 0.8007] -2.27 0.0231 

Prophylactic treatment of cattle when 
ticks seen [yes vs. no] 

0.4190 0.1559 1.5204 [1.1201 - 2.0638] 2.69 0.0072 

Average cattle skin elasticity rating 
[yes vs. no] 

-0.4189 0.1809 0.6578 [0.4614 - 0.9377] -2.32 0.0206 

Had fever but didn’t seek treatment 
[yes vs. no] 

0.6547 0.2636 1.9246 [1.1480 - 3.2263] 2.48 0.0130 

Use Nambale cattle market  
[yes vs. no] 

-0.6138 0.2423 0.5413 [0.3367 - 0.8703] -2.53 0.0113 

S.E., Standard error; RR, relative risk; CI, confidence interval. 
* Number of observations = 224. 
† Minibuses, station wagons, vans and pick-up trucks serve as matatus. 
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Table 6. Subset B: Generalized linear model results* 
 Estimate Std. Error RR [95% CI] z value Pr(>|z|) 
(Intercept) 0.0161 0.8778 1.0162 [0.1819 - 5.6778] 0.02 0.9854 
Number of individuals in the age 

group 15-19  
0.0849 0.0405 1.0886 [1.0055 - 1.1785] 2.09 0.0363 

Keep ducks [yes vs. no] -0.2538 0.1287 0.7758 [0.6029 - 0.9984] -1.97 0.0487 
Experienced drought in the last 6 

months [yes vs. no] 
0.3722 0.1151 1.4509 [1.1579 - 1.8181] 3.23 0.0012 

Keep cattle to sell adult cattle  
[yes vs. no] 

-0.2877 0.0996 0.7500 [0.6170 - 0.9117] -2.89 0.0039 

Use Nambale cattle market  
[yes vs. no] 

-0.6991 0.2377 0.4970 [0.3119 - 0.7920] -2.94 0.0033 

Cattle's water collected from river-
dry season [yes vs. no] 

0.3053 0.1331 1.3570 [1.0454 - 1.7615] 2.29 0.0218 

Pigs freeroam in the dry season  
[yes vs. no] 

0.5482 0.2414 1.7301 [1.0780 - 2.7769] 2.27 0.0232 

Waste is cooked prior to being fed to 
pigs [yes vs. no] 

-0.3825 0.1595 0.6822 [0.4990 - 0.9325] -2.40 0.0165 

Number houses with cement floors  -0.2774 0.0777 0.7578 [0.6507 - 0.8824] -3.57 0.0004 
Own a bicycle for transportation  

[yes vs. no] 
0.3894 0.1186 1.4761 [1.1699 - 1.8624] 3.28 0.0010 

Altitude  -0.0015 0.0007 0.9985 [0.9971 - 0.9999] -2.21 0.0273 
Number of individuals in the age 

group 5-9  
1.0692 0.2892 2.9130 [1.6526 - 5.1347] 3.70 0.0002 

Number of individuals in the age 
group 10-15  

1.0027 0.2760 2.7256 [1.5868 - 4.6816] 3.63 0.0003 

Occupation- teacher [yes vs. no] -4.3639 1.4921 0.0127 [0.0007 - 0.2371] -2.92 0.0035 
Occupation- fisherman [yes vs. no] -3.7469 1.4198 0.0236 [0.0015 - 0.3813] -2.64 0.0083 
Occupation- none [yes vs. no] 1.2529 0.5319 3.5005 [1.2342 - 9.9285] 2.36 0.0185 
Feeding livestock once a week  

[yes vs. no] 
0.7506 0.2047 2.1183 [1.4182 - 3.1639] 3.67 0.0003 

Pigs kept in buildings [yes vs. no] 0.8555 0.3267 2.3526 [1.2401 - 4.4630] 2.62 0.0088 
Recent illness- abdominal pain  

[yes vs. no] 
0.5050 0.2359 1.6570 [1.0436 - 2.6310] 2.14 0.0323 

Recent illness- eye problems  
[yes vs. no] 

-2.3010 0.8811 0.1002 [0.0178 - 0.5632] -2.61 0.0090 

Had fever and treated by chemist  
[yes vs. no] 

-0.6691 0.2872 0.5122 [0.2917 - 0.8992] -2.33 0.0198 

Currently taking medications  
[yes vs. no] 

-0.7147 0.3215 0.4893 [0.2606 - 0.9189] -2.22 0.0262 

Recent backache [yes vs. no] -0.5276 0.2410 0.5900 [0.3679 - 0.9462] -2.19 0.0286 
Recent shortbreath [yes vs. no] 0.8706 0.3271 2.3883 [1.2580 - 4.5345] 2.66 0.0078 
Recent adenitis [yes vs. no] -1.2650 0.6213 0.2822 [0.0835 - 0.9538] -2.04 0.0418 

S.E., Standard error; RR, relative risk; CI, confidence interval. 
* Number of observations = 415. 
 
DISCUSSION 
A well-defined protocol for shrinking large datasets to a manageable list of predictors has not yet 
been documented due to the difficultly in accommodating different needs and types of dataset. The 
PAZ data is a good representation of a dataset produced by many disciplines to which this 
methodology could be applied; it encompasses data from several different sources (biological 
sampling, questionnaires, direct observation), both binomial and categorical variables, many 
missing values, and highly correlated variables. The procedure described above successfully 
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reduced 1376 variables to 42 predictors of malaria and produced wealth rankings for all 
homesteads. We believe this protocol is simple and efficient while having enough flexibility in its 
method to accommodate different datasets. 
 
The steps to make a complete dataset were effective and flexible. The original dataset had an 
average of 8·99% missing values and after the limit of 10% missingness was applied, 89·89% of 
those were eliminated from the analysis. This supported the use of the 10% limit and makes the 
imputations process less computationally taxing. This limit could be disregarded or increased with 
other datasets if they can meet the requirement of missing at random. Piecewise multiple 
imputations by chained equations (MICE) successfully imputed the majority of variables with only 
five iterations. The few variables that were not completely imputed were found to be uniform in 
nature and would have been eliminated in the next step, i.e. the elimination of highly uniform 
variables, even if full imputation would have been encouraged by increasing iterations. The 
number of MICE iterations and the uniform limit could be adjusted according to the needs of 
individual dataset. 
 
PCA successfully grouped a subset of asset and livestock variables to create wealth indices. Even 
though the wealth indices were not part of the final models, because of lack of statistical 
significance, several wealth variables were found to be significant which supports the validity of 
the wealth indices. The step of choosing the best α level for the elastic net adds to the flexibility 
of this protocol and will accommodate other datasets that have different numbers of correlated 
variables. The final GLM also has options regarding how variables are eliminated from the model, 
i.e. forward, backward or both directions. Finally, depending on the study's needs, one could 
choose an end point as the model with the lowest AIC or one only having significant variables 
remaining. 
 
In future editions of this protocol, other tools could be added such as Bayesian disease mapping 
and network analysis. Steps to determine if missing observations are missing at random could be 
incorporated in addition to other model types, such as zero-inflated models, which would also add 
variety to its application for outcomes with low prevalence. Elastic net is a good technique for data 
mining of large datasets but can struggle with highly correlated variables sometimes requiring 
correlated variables to be removed from the model in order for other significant predictors to 
emerge. Exploring possible correlations >89% between variables could be performed if highly 
correlated variables are expected and if there was an undesirable effect on the model's output. 
 
The proposed systematic data-mining approach resulted in the selection of 42 risk factors, a portion 
of which were related to exposure, wealth, or age. Increased exposure variables are those that 
increase time spent outside or near water (e.g. ‘own a bicycle for transportation’, ‘feeding livestock 
once a week’, ‘water is collected from the river for cattle in the dry season’). Homesteads that 
‘keep ducks’ and/or ‘keep chickens’ were associated with lower homestead malaria prevalence, 
which may be a result of decreased human exposure to malaria via zooprophylaxis, in which 
mosquitos might feed on animals in the area, making them less likely to feed on humans [14]. 
Cement floors and brick or cement walls were also associated with lower homestead malaria 
prevalence, which may be due to a decrease in the amount of mosquitoes in the home due to 
physical barriers. These homestead characteristics also represent a homestead's wealth which 
aligns with the correlation between wealth and decreased disease incidence [2]. Other variables 
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selected which might represent wealth include having high-grade cattle (e.g. Friesian cross) and 
having access to healthcare such as ‘seek treatment for breathing problem at a hospital’, ‘currently 
taking medications’ and ‘had fever and treated by chemist’ (in Kenya, a chemist is understood to 
be a healthcare professional that practises pharmacy). It has been well documented that children 
have the highest malaria prevalence [15]. Younger age groups (5–9, 10–14, 15–19 years) were 
found to be significant determinants of increased malaria diagnosis, along with variables related 
to being younger (e.g. ‘occupation – none’). While some of these examples are supported by 
previously published associations, confounders and variables not measured in this study could be 
factors; therefore, this approach should be viewed as more of a hypothesis-generating tool. 
 
In conclusion, the proposed approach in which a number of statistical techniques are used 
including multiple imputation of missing values, wealth indexing through PCA, elastic net, and 
generalized linear regression models was successful in reducing a wide, sparse dataset to a more 
useful, simplified set of predictors for falciparum malaria infection prevalence and producing 
socioeconomic wealth indices. The protocol's flexibility suggests that it may be applied to other 
areas of epidemiology and infectious diseases and it also may serve as a hypothesis-generating 
tool to guide more detailed studies. In addition, we can now prioritize variables associated with 
malaria prevalence in the area of study and this can help the Kenyan health policy-makers prioritize 
their resources. 
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ABSTRACT 
Automatic milking systems (AMS) are increasingly popular throughout the world. Our objective 
was to analyze 635 North American dairy farms with AMS for (risk) factors associated with 
increased milk production per cow per day and milk production per robot per day. We used 
multivariable generalized mixed linear regressions, which identified several significant risk factors 
and interactions of risk factors associated with milk production. Free traffic was associated with 
increased production per cow and per robot per day compared with forced systems, and the 
presence of a single robot per pen was associated with decreased production per robot per day 
compared with pens using 2 robots. Retrofitted farms had significantly less production in the first 
4 yr since installation compared with production after 4 yr of installation. In contrast, newly built 
farms did not see a significant change in production over time since installation. Overall, retrofitted 
farms did not produce significantly more or less milk than newly constructed farms. Detailed 
knowledge of factors associated with increased production of AMS will help guide future 
recommendations to producers looking to transition to an AMS and maximize their production. 
 
INTRODUCTION 
Automatic milking systems (AMS) are becoming increasingly popular throughout the world, 
especially in North America. A variety of recommendations have been made for AMS facility 
structure and management to maximize production, but few of these recommendations have been 
explored scientifically (as reviewed by Jacobs and Siegford, 2012). As AMS are integrated into 
farms with larger herds, facility details such as the number of robots per pen and traffic type (i.e., 
how cows move among the AMS, lying stalls, and feeding area) become increasingly important as 
minor effects on milk production in the short term can have major economic implications in the 
long term. 
 
In free traffic barns, each cow decides when to enter the AMS and can move freely among the 
AMS, lying stalls, and feeding area. Non-free traffic (i.e., forced) may vary in the level of guidance 
that is applied during movement, but always directs movement from the lying stalls to the AMS 
before allowing access to the feeding alley. In strictly forced traffic situations, a cow is always 
milked before entering the feeding area, whereas alternative arrangements use selection gates (i.e., 
guided, semi-forced, or select) to select only those cows that have exceeded their milking interval 
(Melin et al., 2006). 
 
Current literature does not give a clear consensus as to the ideal traffic type for maximizing 
production. The few studies published examining the relationship between traffic type and milk 
yield were limited by sample size. Hermans et al. (2003) and Bach et al. (2009) did not find a 
significant difference in milk yield between different traffic types but were limited to 85 cows and 
130 cows, respectively. Similarly, Munksgaard et al. (2011) demonstrated slightly greater 
production with free traffic barns, but this was not a significant finding potentially due to their 
limited sample size (70 cows). Gygax et al. (2007) collected data from 20 cows per farm on 4 free 
traffic type farms and 4 forced traffic type farms each with either Brown Swiss or Holstein cows, 
but found no significant difference between traffic types. 
 
The effect of the number of robots per pen of cows has also never been investigated in AMS herds. 
It has been suggested that producers keep group sizes under 100 cows to ensure that all cows 
recognize each other (Grant and Albright, 2001); however, this value has not been formally 
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evaluated in an AMS (Rodenburg, 2002). Although, no significant difference in milk production 
or behavior was found between group sizes of 6 or 12 cows (Telezhenko et al., 2012), no similar 
studies have examined larger groups. 
 
To date, no large-scale data analyses are available comparing AMS facility structures that account 
for differences in management and specific environments (as reviewed by Jacobs and Siegford, 
2012). The general aim of this study was to apply multivariable generalized mixed linear 
regression models to a data set from 635 North American dairy farms to identify risk factors and 
interaction terms significantly associated with milk production per cow per day and milk 
production per robot per day. Our hypothesis is that traffic type and the number of robots per pen 
are risk factors significantly associated with milk production per robot per day and per cow per 
day. Factors that significantly affect a herd’s maximum production limit could be used to create 
benchmark comparison groups for producers in the future. Detailed knowledge about factors 
associated with increased production of AMS will help guide future recommendations to producers 
looking to transition to an AMS and maximize their production. 
 
MATERIALS AND METHODS 
We analyzed a data set collected from weekly observations collected over 4 yr (2011–2014) at 635 
North American dairy farms with Lely Astronaut AMS (Lely Industries N.V., Maassluis, the 
Netherlands). These data included 71,213 weekly observations containing 21 AMS variables. 
 
Of the 21 available variables, frequencies per category were computed for 9 categorical variables 
(Table 1). Traffic_Type was coded as “Free” or “Forced.” “Forced” Traffic_Type included both 
strictly forced and guided traffic (i.e., semi-forced, select) as both use one-way traffic to guide the 
cows and they have the same effect on low-ranking cows (Thune et al., 2002; Melin et al., 2006). 
The Robots_per_Pen variable represented the number of robots per pen of cows. By default, this 
variable also represents the number of cows in a pen and the pen’s physical dimensions. By design, 
each pen will have about 60 cows per robot. For example, Robots_per_Pen of “1” is designed with 
one robot in a pen of about 60 cows and Robots_per_Pen of “2” is designed with 2 robots in a pen 
of about 120 cows. Because the number of robots per pen was of more interest, the number of 
cows per pen was not included in the regression to avoid multicollinearity. The physical sizes of 
the farms’ pens were not available for our analysis; however, the number of cows per robot was 
included to account for different ratios of cows to robots (Table 2). Observations that were labeled 
as having a Robots_per_Pen of “Unknown” or “0” were coded as missing values. Breed was 
categorized into 3 levels: “Holstein,” “Jersey,” and “Other.” Breed “Other” represents all other 
breeds including Ayrshire, Brown Swiss, Guernsey, Red and White, Crosses, Mixed, and 
Unknown. Farm_Goal was either characterized by the “Quota” system for farms in Canada or 
“Max_Production” for farms in the United States that produce with the goal of maximum milk 
production. Grazing and organic farms (n = 3,768 observations) were not included in the analysis 
because they had relatively few observations. Year_Since_Install represented the time from the 
installation of the robots to the time of each observation. Observations from farms utilizing robots 
for more than 4 yr were grouped together as “> 4 yr.” Robot_Free_Time is the average percentage 
of time per day the robot is unoccupied by a cow (this does not include the time per day the system 
is automatically cleaning the robot and the milk lines to the tank). Robot_Free_Time was broken 
down into 5 levels (Table 1). Record_Year was limited to 2011 to 2014. “Winter” was classified 
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as December through February, “Spring” as March through May, “Summer” as June through 
August, and “Fall” as September through November. 
 
The 12 numeric variables were summarized using descriptive statistics. The names of the numeric 
variables and their explanation are listed in Table 2. Observations with missing values were 
omitted. Observations that had fewer than 10 Cows_per_Robot or greater than 90 
Cows_per_Robot were removed as outliers. The histogram of Average_DIM showed outliers 
beginning at 365 d. After observations with an Average_DIM greater than 365 d were omitted, 
54,065 observations remained representing 529 farms. The number of observations per categorical 
variable and their reference level are detailed in Table 1. Categorical levels were chosen as the 
level we were least interested in estimating an effect while still having a balanced amount of 
observations. The summary statistics of the numeric variables are shown in Table 2. All statistical 
analyses were performed in R version 3.0.1 (R Development Core Team, 2013). 
 
All numeric variables were inspected for normality by creating histograms. Numeric variables 
were log-transformed when normality was not present upon visual inspection of the histogram or 
when the order of magnitude of the values was more than 3 logs higher than the other variables. 
All numeric variables were scaled and centered using the scale function in R (i.e., the mean of each 
variable was subtracted from all values per variable in the data set and then divided by the 
variable’s standard deviation). The correlations between each pair of numeric variables were 
examined. A threshold of 0.7 was used to determine if a pair of variables was too highly correlated 
as this would lead to multicollinearity (Dormann et al., 2013). Based on this threshold criterion, 
the variables Milk_Production_per_Robot_per_Day and Cows_per_Robot are too highly 
correlated and therefore could not be used in the same regression model. 
 
The number of observations differed among the combinations of independent variable levels 
(Table 1). These unequal numbers of observations also led to unequal variances among groups 
which render ANOVA methods unsuitable (Quinn and Keough, 2002). Therefore, we used 
multivariable generalized mixed linear regression models to generate 2 models (Quinn and 
Keough, 2002). Model 1 evaluated Milk_Production_per_Cow_per_Day, whereas model 2 
evaluated Milk_Production_per_Robot_per_Day. The variable Farm_ID was taken as the random 
effect to account for differences between farms and repeated measures between farms. For 
Milk_Production_per_Robot_per_Day regression, Cows_per_Robot was taken as an offset. To 
examine the effect of one predictor upon the other 2-way interactions were selected using forward 
selection and a t-value limit of 4 (Pasta, 2011). Backward elimination of simple main effects was 
performed based on an error level, α, of 0.05 only if the variable was also not a confounder. 
Confounding effects were determined using the change-in-estimate method (Greenland, 1989). 
This method compares the model estimates before and after removal of the potential confounder 
variable from the model and any change in the estimates greater than 10% would signify a possible 
confounding effect. Goodness-of-fit measures were examined for each regression model using 
normality plots of residuals and log-likelihood, Akaike information criterion, Bayesian 
information criterion, and deviance measures. Interaction plots were produced using the R library 
package “effects” (Fox, 2003). 
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Table 1. The number of observations per categorical variable and their reference level 
Categorical  Variable 1 Levels Number of 

observations2 
Traffic_Type Free 

Forced 3 
50,268 

3,797
Robots_per_Pen 1 

2 3 
3+ 

30,946 
20,522  

2,597
Breed Holstein 3 

Jersey 
Other 

49,124  
1,131 
 3,810

New_or_Retro New 3 
Retro 

27,211 
26,854

Farm_Goal  
 

Quota- CAN 3 
Max_Production-USA 

35,641 
18,424

Years_Since_Install  
 

0-1 yr 
1-2 yrs 
2-3 yrs 
3-4 yrs 
> 4 yrs 3 

18,115 
13,643  

8,449  
4,896 
8,962

Robot_Free_Time   
 
 

 

0-5 % 
5-10 % 
10-15 % 3 
15-20 % 
> 20 % 

11,694  
11,413  

7,601 
6,282  

17,075
Record_Year 2011 3 

2012 
2013 
2014 

4,680 
20,450 
16,079 
12,856

Season Winter 3 
Spring 
Summer 
Fall 

12,318  
14,530  
15,991  
11,226

1 Variable explanations: Traffic_Type= how cows are allowed to move among areas of a barn. “Free” refers 
to a system where cows can decide when to enter the AMS and can move freely between the AMS, lying 
stalls and the feeding area. “Forced” traffic type uses a one-way traffic system towards the AMS; 
Robots_per_Pen= number of AMS robots per pen; Breed= breed of cattle; New_or_Retro= newly built or 
retro fitted barn; Farm_Goal= Operate under the “Quota” system for farms in Canada or “Max_Production” 
for farms in the USA that produce with the goal of maximum milk production; Years_Since_Install= how 
recently (in years) the AMS was installed; Robot_Free_Time = percent of time per day the robot is not 
occupied; Record_Year= year at the time of record; Season= “Winter” was classified as December through 
February; “Spring” as March through May, “Summer” as June through August, and “Fall” was classified 
as September through November.   
2 54,065 total observations  
3 reference level. Reference levels were chosen as the level we were least interested in estimating an effect 
while still having a balanced amount of observations. 
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Table 2. Numeric variables explanation and descriptive statistics 
Numeric variables Variable explanation Mean1 SD2 

Milk_Production_per_Cow_per_
Day  

Average kg of milk produced3 31.98 4.91

Milk_Production_per_Robot_per_
Day  

Average kg of milk produced4 1626.8
0

396.9
9

Cows_per_Robot  Number of cows per number of robots 50.53 9.54

Average_DIM  Average days in milk of the herd 177.70 27.87

Concentrates  
 

Average concentrate (kg) consumed in robot or 
automatic feeder per 100 kg of milk yield 

15.86 5.38

Rest_Feed  Average percent of concentrates from the 
cow’s allowance that was not dispensed that 

day (%)5 

7.73 7.38

Refusals3  Average number of non-milking visits3 1.86 1.38

Failures4 Average number of failed milkings4 5.49 3.46

Milkings3 Average number of successful milkings3 2.91 0.36

Milk_Speed Average milk yield (kg) per milking time 
(minutes) 

2.59 0.31

Boxtime3 Average minutes in the AMS3 (milking time 
and treatment time) 

6.84 0.70

Connection_Attempts4  Average number of failure where teats were 
detected, but a quarter was unable  to be 

connected4 

1.41 0.23

1 54,065 total observations 
2 standard deviation 

3 per cow per day 
4 per robot per day 
5 Possible causes include: a cow was not visiting the robot often enough or she was not able to finish her 
meal giving her milking time 
 
RESULTS 
The first multivariable generalized linear mixed regression model incorporated 18 main effects 
and 20 of their 2-way interactions. Farm_ID was kept as a random effect and backward elimination 
removed Robots_per_Pen. Robots_per_Pen was not significant as a main effect (P = 0.75) and was 
not a confounder as the unadjusted model estimates on average only differed by 0.11% (SD 0.286) 
compared with the adjusted estimates. The regression results and equation for model 1 are shown 
in Table 3. The second multivariable generalized linear mixed regression model incorporated 18 
main effects, 22 two-way interactions, Farm_ID as a random effect, and Cows_per_Robot as an 
offset. None of the variables were dropped during backward elimination because all factors were 
involved in significant main or interaction effects. The regression results and equation are shown 
in Table 4. Ten of the interactions were shared by both models. 
 
The results of both models were very similar in terms of the direction of effects of the estimates 
and significance of the variables. Thus, results are described as their effects on Milk_Production 
to allude to both Milk_Production_per_Cow_per_Day and Milk_Production_per_Robot_per_Day 
unless specified. Most of these interaction effects are illustrated using 
Milk_Production_per_Cow_per_Day only. Most variables are also included in interactions. In 
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these cases, the interpretation of interaction effects is considered more important than the main 
effect (Pasta, 2011). The model results are shown in the Tables 3 and 4. 
 
Traffic_Type “Free” was associated with greater Milk_Production (both models P < 0.001) 
compared with “Forced” Traffic_Type. As a main effect, “Free” Traffic_Type produces on 
average 1.11 kg (CI: 0.79–1.43) more Milk_Production_per_Cow_per_Day and 67.2 kg (CI: 48.6–
86.0) more Milk_Production_per_Robot_per_Day than “Forced.” 
 
On average, Robots_per_Pen “2” (2 robots per 120 cows) had greater (P < 0.001) 
Milk_Production_per_Robot_per_Day compared with Robots_per_Pen “1” (one robot per 60 
cows) as a main effect. Robots_per_Pen was included in 2 interactions (Table 4). The interaction 
Robots_per_Pen:Record_Year describes how Robots_per_Pen “3+” and “2” had greater 
Milk_Production_per_Robot_per_Day compared with Robots_per_Pen “1” in Record_Year 2011 
and 2012 (see nonoverlapping confidence intervals in Figure 1). Robots_per_Pen was also in an 
interaction with Milkings. The difference between Robots_per_Pen “1” and Robots_per_Pen “2” 
or “3+” becomes larger as Milkings decreases below its average of 2.91 (SD: 0.36) Milkings (Table 
4). 
 
We found associations between increased Milkings, Milk_Speed, or Boxtime and increased 
Milk_Production (all P < 0.001). The negative estimates for the interactions Milk_Speed:Boxtime 
and Milkings:Milk_Speed in model 1 and Milkings:Milk_Speed and Milkings:Boxtime in model 
2 indicate that the positive effect of the variables on Milk_Production decreases (smaller increase 
in production per unit change) as the value of the other variable in the interaction increases (all P 
< 0.001). For example, the positive effect of Milk_Speed on Milk_Production decreases as 
Milkings increases. All 3 variables were also part of interactions with Connection_Attempts in 
both models that had negative estimates suggesting that the negative effect of 
Connection_Attempts on Milk_Production increases (all P < 0.001) as Milkings, Milk_Speed, or 
Boxtime increase (Tables 3 and 4). 
 
“Jersey” Breed was associated (P < 0.001) with less Milk_Production than “Holstein” Breed, 
whereas the “Other” Breed category was not significantly different from “Holstein” Breed as a 
main effect (model 1, P = 0.31; model 2, P = 0.08). Although Breed was part of 2 interactions in 
both models, as a main effect “Jersey” produces on average 3.72 kg (CI: 3.29–4.14) less 
Milk_Production_per_Cow_per_Day and 216.71 kg (CI: 193.2–239.9) less 
Milk_Production_per_Robot_per_Day compared with “Holstein” (milk production not energy 
corrected). Tables 3 and 4 illustrate the increase in difference in milk production between Holstein 
and Jersey breeds as the number of milkings increases. (model 1 and 2, P < 0.001). When Refusals 
decreases, the difference in Milk_Production_per_Cow_per_Day between “Holstein” and 
“Jersey” increases (P < 0.001). When Connection_Attempts increases, the difference in 
Milk_Production_per_Robot_per_Day between “Holstein” and “Jersey” increases (P < 0.001). 
 
Increases in Average_DIM, Failures, Concentrates, Refusals, and Connection_Attempts are all 
associated (all P < 0.01) with decreased Milk_Production (all of the above variables are also 
included in interactions), whereas an increase in Rest_Feed is associated with increased 
Milk_Production (models 1 and 2, P < 0.01). The Farm_Goal:Record_Year interaction implies 
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that “Max_Production” farms (United States) had more Milk_Production_per_Cow_per_Day 
compared with “Quota” farms (Canada) in all years except for 2011 (all P < 0.001). 
 

 
Figure 1. Interaction effects between predictor variables Robots_per_Pen and Record_Year with 
Milk_Production_per_Cow_per_Day as the response variable.   
 
The interactions between Concentrates and 5 other numeric variables all have negative 
coefficients. Three out of the 5 interactions are included in both models as illustrated in Tables 3 
and 4. This means that the positive effects of Milkings, Milk_Speed, and Boxtime diminish as 
Concentrates increases (all P < 0.001) and that the negative effects of Refusals and 
Connection_Attempts increases (all P < 0.001) as Concentrates increases (Figure 2). 
 
Cows_per_Robot has a significant main effect (P < 0.001) in the 
Milk_Production_per_Cow_per_Day model and is included in 3 interactions with Farm_Goal, 
Milkings, and Boxtime (all P < 0.001). As Boxtime and Milkings decrease below 6.1 min or 2.4 
milkings per cow per day, respectively, with other variables held at their mean, an increase in 
Cows_per_Robot will transition to having a negative effect on 
Milk_Production_per_Cow_per_Day (Figures 3 and 4). 
 

 
Figure 2. Interaction effects between predictor variables Concentrates and Refusals with 
Milk_Production_per_Cow_per_Day as the response variable. 
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Figure 3. Interaction effects between predictor variables Cows_per_Robot and Boxtime with 
Milk_Production_per_Cow_per_Day as the response variable. 
 

 
 
Figure 4. Interaction effects between predictor variables Cows_per_Robot and Milkings with 
Milk_Production_per_Cow_per_Day as the response variable. 
 
Figure 5 illustrates the interaction New_or_Retro:Years_Since_Install for 
Milk_Production_per_Cow_per_Day, although the effect holds true for both models. The trend in 
Milk_Production_per_Cow_per_Day estimates and confidence intervals for the “New” farms, 
demonstrates that Milk_Production does not change significantly between Years_Since_Install 
groups (depicted by overlapping confidence intervals in Figure 5). In contrast, for “Retro” farms, 
the right-handed side of Figure 5 shows that Milk_Production is significantly greater in “> 4 yr” 
compared with all other categories of Years_Since_Install (depicted by nonoverlapping confidence 
intervals in Figure 5). On average, “Retro” farms do not produce significantly more or less than 
“New” farms, which is demonstrated by a nonsignificant P-value for the main effect (P = 0.06; 
Table 3). The confidence intervals for Milk_Production between “New” and “Retro” farms overlap 
in all groups except for the “1-2 yr” group. After 2 yr, the Milk_Production for “New” or “Retro” 
farms are not significantly different (Figure 5). 
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Figure 5. Interaction effects between predictor variables New_or_Retro and Years_Since_Install with 
Milk_Production_per_Cow_per_Day as the response variable.  
 
The “Spring” Season had greater (P < 0.001) Milk_Production compared with Season “Winter.” 
Season “Fall” was associated with less (P < 0.001) Milk_Production compared with “Winter.” The 
effect of “Summer” on Milk_Production_per_Cow_per_Day was not significantly different from 
“Winter” (P = 0.10). In the Milk_Production_per_Robot_per_Day model, Season was part of an 
interaction with Farm_Goal wherein “Max_Production” had decreased seasonal effects (all P < 
0.001) compared with Farm_Goal “Quota.” This causes “Summer” to have on average greater 
milk production than “Winter” in “Quota” farms (Canada) but less than “Winter” in 
“Max_Production” farms (United States). 
 
Robot_Free_Time was significant in both models (all levels P < 0.001) but depended highly on its 
interaction with Record_Year. There were relatively few observations with Robot_Free_Time 
greater than 15% in Record_Year 2011 and 2012 (480 observations from 43 farms). All 
Robot_Free_Time categories for year 2013 and 2014 had more than 2,000 observations except the 
2014 “0-5%” category, which had 225 observations. Record_Year 2013 and 2014 did not have 
any significant differences in Milk_Production_per_Cow_per_Day by Robot_Free_Time category 
(non-overlapping confidence intervals). Significantly greater 
Milk_Production_per_Robot_per_Day is seen within the “> 20%” category in 2013 and 2014 
compared with the reference group “10-15%” (Table 4). 
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Table 3. Milk_Production_per_Cow_per_Day Regression Model Results1 

 Estimate SE2 p-value
(Intercept) -0.261 0.066 7.12E-05
Traffic_Type- Free (ref. Forced) 0.216 0.062 5.45E-04
Cows_per_Robot3 0.021 0.003 2.06E-13
Average_DIM3 -0.053 0.001 <2.00E-16
Rest_Feed 0.005 0.002 1.78E-03
Concentrates3 -0.083 0.003 <2.00E-16
Refusals3 -0.082 0.002 <2.00E-16
Failures3 -0.004 0.001 2.38E-03
Milkings3 0.671 0.002 <2.00E-16
Milk_Speed3 0.570 0.002 <2.00E-16
Boxtime3 0.508 0.002 <2.00E-16
Connection_Attempts3 -0.046 0.002 <2.00E-16
Farm_Goal- Max Production (ref. Quota) 3 -0.005 0.034 8.86E-01
New_or_Retro- Retro (ref. New) 3 0.062 0.033 5.78E-02
Breed- Jersey (ref. Holstein) 3 -0.785 0.095 1.07E-16
Breed- Other (ref. Holstein) 3 -0.059 0.058 3.13E-01
Years_Since_Install- 0-1yrs (ref. > 4 yrs) 3 -0.060 0.012 3.03E-07
Years_Since_Install- 1-2 yrs (ref. > 4 yrs) 3 0.013 0.010 1.94E-01
Years_Since_Install- 2-3 yrs (ref. > 4 yrs) 3 0.001 0.009 9.16E-01
Years_Since_Install- 3-4 yrs (ref. > 4 yrs) 3 -0.022 0.007 2.15E-03
Robot_Free_Time - 0-5% (ref.10-15%)3 0.085 0.015 3.64E-08
Robot_Free_Time - 5-10% (ref.10-15%)3 0.082 0.015 1.12E-07
Robot_Free_Time - 15-20% (ref.10-15%)3 -0.440 0.107 3.82E-05
Robot_Free_Time - >20% (ref.10-15%)3 -0.024 0.006 2.29E-05
Season- Spring (ref.Winter) 0.041 0.003 <2.00E-16
Season- Summer (ref.Winter) -0.005 0.003 1.03E-01
Season- Fall (ref.Winter) -0.044 0.003 <2.00E-16
Record_Year- 2012 (ref. 2011) 3 0.078 0.016 1.29E-06
Record_Year- 2013 (ref. 2011) 3 0.118 0.016 1.42E-13
Record_Year- 2014 (ref. 2011) 3 0.163 0.017 <2.00E-16
Milk_Speed:Boxtime -0.054 0.001 <2.00E-16
Milkings:Milk_Speed -0.053 0.001 <2.00E-16
Concentrates:Boxtime -0.034 0.001 <2.00E-16
Concentrates:Milkings -0.014 0.001 <2.00E-16
Boxtime:Connection_Attempts -0.030 0.001 <2.00E-16
Milkings: Connection_Attempts -0.015 0.001 <2.00E-16
Farm_Goal: Record_Year  
Max_Production (ref.Quota): 2012 (ref. 2011) 0.051 0.008 1.66E-10
Max_Production (ref.Quota): 2013 (ref. 2011) 0.052 0.008 4.51E-11
Max_Production (ref.Quota): 2014 (ref. 2011) 0.087 0.008 <2.00E-16
Refusals:Breed- Jersey (ref. Holstein) 0.192 0.011 <2.00E-16
Refusals:Breed- Other (ref. Holstein) 0.030 0.007 2.00E-05
Milkings:Breed- Jersey (ref. Holstein) -0.178 0.009 <2.00E-16
Milkings:Breed- Other (ref. Holstein) -0.034 0.006 8.29E-08
Milk_Speed: Connection_Attempts -0.023 0.002 <2.00E-16
Concentrates: Connection_Attempts -0.028 0.002 <2.00E-16
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Concentrates: Refusals -0.019 0.002 <2.00E-16
Average_DIM: Refusals 0.019 0.001 <2.00E-16
Average_DIM:Boxtime 0.015 0.001 <2.00E-16
Robot_Free_Time :Record_Year 
0-5% (ref.10-15%): 2012 (ref. 2011) -0.088 0.017 1.21E-07
5-10% (ref.10-15%): 2012 (ref. 2011) -0.070 0.017 4.54E-05
15-20% (ref.10-15%): 2012 (ref. 2011) 0.624 0.109 1.06E-08
>20% (ref.10-15%): 2012 (ref. 2011) -0.032 0.017 6.57E-02
0-5% (ref.10-15%): 2013 (ref. 2011) -0.090 0.017 6.65E-08
5-10% (ref.10-15%): 2013 (ref. 2011) -0.065 0.016 7.58E-05
15-20% (ref.10-15%): 2013 (ref. 2011) 0.428 0.107 6.42E-05
>20% (ref.10-15%): 2013 (ref. 2011) 0.009 0.007 1.68E-01
0-5% (ref.10-15%): 2014 (ref. 2011) -0.032 0.022 1.44E-01
5-10% (ref.10-15%): 2014 (ref. 2011) -0.049 0.017 3.16E-03
15-20% (ref.10-15%): 2014 (ref. 2011) 0.433 0.107 5.13E-05
Failures:Milkings -0.003 0.001 2.72E-03
Cows_per_Robot:Boxtime 0.029 0.001 <2.00E-16
Cows_per_Robot:Milkings 0.023 0.001 <2.00E-16
Cows_per_Robot:Farm_Goal- Max Production (ref.Quota) 0.039 0.005 <2.00E-16
New_or_Retro:Year_Since_Install  
Retro (ref. New): 0-1yrs (ref. > 4yrs) -0.112 0.012 <2.00E-16
Retro (ref. New): 1-2yrs (ref. > 4yrs) -0.155 0.012 <2.00E-16
Retro (ref. New): 2-3yrs (ref. > 4yrs) -0.128 0.011 <2.00E-16
Retro (ref. New): 3-4yrs (ref. > 4yrs) -0.095 0.010 <2.00E-16

1 Regression model equation: Milk_Production_per_Cow_per_Day ~ Traffic_Type + Cows_per_Robot + 
Average_DIM + Rest_Feed + Concentrates + Refusals + Failures +  Milkings + Milk_Speed + Boxtime + 
Connection_Attempts +  Farm_Goal + New_of_Retro + Breed + Years_Since_Install + 
Robot_Free_Time  +  Season + Record_Year + (1|Farm_ID) + Milk_Speed:Boxtime + Milkings: 
Milk_Speed + Concentrates: Boxtime + Concentrates:Milkings + Boxtime: Connection_Attempts +   
Milkings:Connection_Attempts + Farm_Goal: Record_Year + Refusals:Breed +  Milkings:Breed + 
Milk_Speed:Connection_Attempts + Concentrates: Connection_Attempts +  Concentrates:Refusals + 
Average_DIM: Refusals +  Average_DIM:Boxtime + Robot_Free_Time : Record_Year + 
lognr_failures:Milkings +  Cows_per_Robot:Boxtime + Cows_per_Robot: Milkings +  
Cows_per_Robot:Farm_Goal + New_or_Retro:Year_Since_Install) 
2 Standard error 
3 The variable is also included in an interaction 
Italics and grey: Not a significant effect (P > 0.05) 
 
Table 4: Milk_Production_per_Robot_per_Day Regression Model Results1 

 Estimate Std. Error2 p-value
(Intercept) 0.086 0.049 7.63E-02
Traffic_Type- Free (ref. Forced) 0.158 0.043 2.72E-04
Average_DIM -0.027 0.001 <2.00E-16
Rest_Feed 0.023 0.001 <2.00E-16
Concentrates3 -0.073 0.002 <2.00E-16
Refusals3 -0.047 0.003 <2.00E-16
Failures -0.007 0.001 7.52E-11
Milkings3 0.416 0.002 <2.00E-16
Milk_Speed3 0.310 0.003 <2.00E-16
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Boxtime3 0.344 0.004 <2.00E-16
Connection_Attempts3 -0.043 0.002 <2.00E-16
Farm_Goal- Max Production (ref.Quota)3 -0.016 0.024 4.90E-01
New_or_Retro- Retro (ref. New) 0.036 0.023 1.17E-01
Breed- Jersey (ref. Holstein)3 -0.560 0.065 <2.00E-16
Breed- Other (ref. Holstein)3 -0.071 0.040 7.91E-02
Years_Since_Install- 0-1yrs (ref. > 4 yrs)3 -0.050 0.009 8.05E-09
Years_Since_Install- 1-2 yrs (ref. > 4 yrs)3 -0.008 0.008 2.75E-01
Years_Since_Install- 2-3 yrs (ref. > 4 yrs)3 -0.016 0.006 1.16E-02
Years_Since_Install- 3-4 yrs (ref. > 4 yrs)3 -0.038 0.005 1.57E-12
Robots_per_Pen- 1 (ref. 2)3 -0.146 0.023 4.54E-10
Robots_per_Pen- 3+ (ref. 2)3 -0.009 0.053 8.65E-01
Robot_Free_Time - 0-5% (ref.10-15%)3 -0.089 0.011 2.11E-15
Robot_Free_Time - 5-10% (ref.10-15%)3 -0.038 0.011 5.71E-04
Robot_Free_Time - 15-20% (ref.10-15%)3 0.502 0.076 5.18E-11
Robot_Free_Time - >20% (ref.10-15%)3 0.052 0.004 <2.00E-16
Season- Spring (ref.Winter) 0.034 0.002 <2.00E-16
Season- Summer (ref.Winter) 0.022 0.002 <2.00E-16
Season- Fall (ref.Winter) -0.024 0.003 <2.00E-16
Record_Year- 2012 (ref. 2011)3 -0.003 0.012 8.09E-01
Record_Year- 2013 (ref. 2011)3 -0.148 0.011 <2.00E-16
Record_Year- 2014 (ref. 2011)3 -0.124 0.012 <2.00E-16
Milkings :Milk_Speed -0.030 0.001 <2.00E-16
Milkings :Boxtime -0.012 0.001 <2.00E-16
Boxtime: Connection_Attempts -0.029 0.001 <2.00E-16
Milkings : Connection_Attempts -0.018 0.001 <2.00E-16
Robot_Free_Time :Record_Year 
0-5% (ref.10-15%): 2012 (ref. 2011) 

 
-0.068

 
0.012 3.03E-08

5-10% (ref.10-15%): 2012 (ref. 2011) -0.048 0.012 8.95E-05
15-20% (ref.10-15%): 2012 (ref. 2011) -0.381 0.078 1.03E-06
>20% (ref.10-15%): 2012 (ref. 2011) -0.156 0.013 <2.00E-16
0-5% (ref.10-15%): 2013 (ref. 2011) 0.089 0.012 2.38E-13
5-10% (ref.10-15%): 2013 (ref. 2011) 0.058 0.012 9.92E-07
15-20% (ref.10-15%): 2013 (ref. 2011) -0.499 0.077 6.82E-11
>20% (ref.10-15%): 2013 (ref. 2011) 0.005 0.005 2.73E-01
0-5% (ref.10-15%): 2014 (ref. 2011) 0.140 0.016 <2.00E-16
5-10% (ref.10-15%):: 2014 (ref. 2011) 0.055 0.012 6.14E-06
15-20% (ref.10-15%): 2014 (ref. 2011) -0.496 0.077 9.30E-11
Milk_Speed: Connection_Attempts -0.035 0.001 <2.00E-16
Concentrates: Connection_Attempts -0.017 0.001 <2.00E-16
Robots_per_Pen: Record_Year 
1 (ref. 2): 2012 (ref. 2011) 

 
0.059

 
0.006 <2.00E-16

3+ (ref. 2): 2012 (ref. 2011) 0.122 0.013 <2.00E-16
1 (ref. 2): 2013 (ref. 2011) 0.090 0.006 <2.00E-16
3+ (ref. 2): 2013 (ref. 2011) 0.060 0.013 3.86E-06
1 (ref. 2) 2014 (ref. 2011) 0.088 0.006 <2.00E-16
3+ (ref. 2): 2014 (ref. 2011) 0.006 0.014 6.70E-01
Concentrates :Boxtime -0.021 0.001 <2.00E-16
Concentrates : Milkings -0.015 0.001 <2.00E-16
Boxtime: Record_Year- 2012 (ref. 2011) -0.014 0.003 3.74E-07
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Boxtime : Record_Year- 2013 (ref. 2011) -0.028 0.003 <2.00E-16
Boxtime : Record_Year- 2014 (ref. 2011) -0.034 0.003 <2.00E-16
Milkings : Breed- Jersey (ref. Holstein) -0.074 0.006 <2.00E-16
Milkings : Breed- Other (ref. Holstein) -0.007 0.004 7.87E-02
Boxtime : Farm_Goal- Max Production (ref. Quota) -0.046 0.002 <2.00E-16
Years_Since_Install: New_or_Retro 
0-1 yrs (ref. > 4 yrs) : Retro (ref.  New) 

 
-0.088

 
0.009 <2.00E-16

1-2 yrs (ref. > 4 yrs) : Retro (ref. New) -0.113 0.009 <2.00E-16
2-3 yrs (ref. > 4 yrs) : Retro (ref. New) -0.085 0.008 <2.00E-16
3-4 yrs (ref. > 4 yrs) : Retro (ref. New) -0.051 0.008 1.59E-11
Milkings : Robots_per_Pen- 1 (ref. 2) 0.028 0.002 <2.00E-16
Milkings : Robots_per_Pen-3+ (ref. 2) 0.030 0.005 2.80E-08
Farm_Goal:Season 
Max Production (ref. Quota): Spring (ref. Winter) 

 
-0.018

 
0.004 9.85E-06

Max Production (ref. Quota): Summer (ref. Winter) -0.045 0.004 <2.00E-16
Max Production (ref. Quota): Fall (ref. Winter) -0.022 0.004 5.22E-07
Refusals:  Years_Since_Install- 0-1 yrs (ref. > 4 yrs) 0.057 0.004 <2.00E-16
Refusals : Years_Since_Install- 1-2 yrs (ref. > 4 yrs) 0.030 0.004 1.04E-16
Refusals : Years_Since_Install- 2-3 yrs (ref. > 4 yrs) 0.032 0.004 <2.00E-16
Refusals : Years_Since_Install- 3-4 yrs (ref. > 4 yrs) 0.021 0.004 7.11E-08
Milk_Speed:  Years_Since_Install- 0-1 yrs (ref. > 4 yrs) 0.042 0.004 <2.00E-16
Milk_Speed : Years_Since_Install- 1-2 yrs (ref. > 4 yrs) 0.019 0.004 3.94E-08
Milk_Speed : Years_Since_Install- 2-3 yrs (ref. > 4 yrs) 0.020 0.004 2.68E-08
Milk_Speed : Years_Since_Install- 3-4 yrs (ref. > 4 yrs) 0.017 0.004 6.49E-06
Connection_Attempts : Breed- Jersey (ref. Holstein) -0.087 0.007 <2.00E-16
Connection_Attempts : Breed- Other (ref. Holstein) -0.009 0.006 1.37E-01
Concentrates:Milk_Speed -0.012 0.001 <2.00E-16
Connection_Attempts: Farm_Goal- Max Production (ref. 
Quota) 

0.045 0.004 
<2.00E-16

Boxtime:  Years_Since_Install- 0-1 yrs (ref. > 4 yrs) 0.037 0.003 <2.00E-16
Boxtime : Years_Since_Install- 1-2 yrs (ref. > 4 yrs) 0.031 0.003 <2.00E-16
Boxtime : Years_Since_Install- 2-3 yrs (ref. > 4 yrs) 0.022 0.004 4.40E-10
Boxtime : Years_Since_Install- 3-4 yrs (ref. > 4 yrs) 0.025 0.004 9.43E-11

1 Regression model equation: Milk_Production_per_Robot_per_Day ~ Traffic_Type + Cows_per_Robot 
+ Average_DIM + Rest_Feed + Concentrates + Refusals + Failures +  Milkings + Milk_Speed + Boxtime 
+ Connection_Attempts +  Farm_Goal + New_or_Retro + Breed + Years_Since_Install + 
Robots_per_Pen + Robot_Free_Time  +  Season + Record_Year + (1|Farm_ID) + Milkings:Milk_Speed 
+ Milkings: Boxtime + Boxtime: Connection_Attempts + Milkings: Connection_Attempts + 
Robot_Free_Time :Record_Year + Milk_Speed: Connection_Attempts + Concentrates: 
Connection_Attempts + Robots_per_Pen:Record_Year + Concentrates: Boxtime + Concentrates: 
Milkings + Boxtime:Record_Year + Milkings:Breed  + Boxtime: Farm_Goal + New_or_Retro: 
Years_Since_Install + Milkings: Robots_per_Pen + Farm_Goal:Season + Refusals: Years_Since_Install + 
Milk_Speed: Years_Since_Install + Breed: Connection_Attempts + Concentrates: Milk_Speed + 
Connection_Attempts: Farm_Goal + Boxtime: Years_Since_Install, offset= Cows_per_Robot) 
2 Standard error 
3 The variable is also included in an interaction 
Italics and grey: Not a significant effect 
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DISCUSSION 
Goal-oriented production processes such as milk production in dairy herds can benefit from 
predictive models that correctly incorporate the effects of multiple risk factors and interactions of 
such factors simultaneously. Interactions facilitate the understanding of diverse relationships 
among management factors and improve our understanding of different management styles. Often 
the modeling approaches reported in literature are limited to the analysis of selected interactions. 
In contrast, the approach reported here systematically mined through all possible interactions to 
determine the most meaningful ones. Multivariable generalized mixed linear regression models 
identified sources of variation in Milk_Production for a large number of farms utilizing AMS 
across North America. Despite a large diversity of environments and management styles, several 
associations were consistent. 
 
We found that “Free” Traffic_Type was associated with greater Milk_Production than “Forced” 
Traffic_Type in model 1 and model 2. A possible explanation for this is that forced traffic 
decreases the total feed a cow consumes, the total amount of time eating, and the number of times 
a cow visits the feed bunk (Ketelaar-de Lauwere et al., 2000; Harms et al., 2002; Melin et al., 
2007). These changes in feeding behavior could potentially lead to rumen acidosis (Bach et al., 
2009). Hermans et al. (2003) and Rodenburg (2012) suggested that forced traffic might negatively 
affect the behavior of timid cows more than dominant cows and Thune et al. (2002) found longer 
waiting periods for the AMS per cow in forced compared with free traffic type. Winter and 
Hillerton (1995) found that cows spent less time resting with forced traffic type although 
Munksgaard et al. (2011) did not find a significant difference in milking frequency, production, 
lying time, or feeding time between traffic type in a study with 70 cows. 
 
Limited sample size has been a common problem in previous studies comparing traffic types. The 
largest sample size of any of the previous studies mentioned was 160 cows and most other studies 
included fewer than 100 cows. Furthermore, many of these studies did not correct for confounders 
and other risk factors in the applied modeling approaches. For example, Gygax et al. (2007) 
collected data on 160 cows from 2 different traffic type farms each with either Brown Swiss or 
Holstein cows. Although no significant difference between traffic types was found, the herds in 
the study were not matched by breed nor did the investigators correct for breed in their model. The 
majority of free traffic type herds (3/4 herds) were Brown Swiss herds, whereas 3 out of 4 forced 
traffic type herds were Holstein herds. Even though both Brown Swiss and Holstein breeds are 
high yielding, Holsteins still produce significantly more milk than Brown Swiss (De Marchi et al., 
2008). Many studies also have low numbers of cows per robot or did not correct for differences in 
cows per robot among study groups. For example, the Munksgaard et al. (2011) study had only 35 
cows per robot, and Gygax et al. (2007) did not correct for the variation in cows per robot in spite 
of a range from 30 to 56 cows per robot. Our study showed Cows_per_Robot had a significant 
effect on Milk_Production and was included in several significant interactions with other risk 
factors. The number of cows per robot could affect results because the hierarchic structure of the 
herd and its influence on timid cows is suspected to play a lesser role in small groups and to have 
a greater effect in large groups. This effect may further increase under normal farm circumstances 
with little Robot_Free_Time. 
 
We found that Robots_per_Pen “2” was associated with greater 
Milk_Production_per_Robot_per_Day than Robots_per_Pen “1.” Although this difference was 
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not significant for all years (Figure 1), the trend is consistent. A possible cause for this difference 
is that Robots_per_Pen “2” allows timid cows to have more opportunities for milking if dominant 
cows monopolize one of the robots. Timid cows have been shown to wait longer to use the robot 
than higher-ranking cows (Ketelaar-de Lauwere et al., 1996; Thune et al., 2002; Melin et al., 2006). 
Another benefit of having more than one robot per pen is that down time due to daily maintenance 
of a robot does not necessarily disrupt behavior because cows can still be milked in the other robot 
(Rodenburg, 2004). In addition, the effect of Robots_per_Pen could be representing the effect of 
the physical dimensions of the pens or the total group size, although these distinctions cannot be 
made based on this data set. Having 2 robots per pen will not be feasible for all farms especially 
those with low numbers of cows. As this is the first study examining the difference in number of 
robots per pen, subsequent studies are needed to understand the effects of pen dimensions and 
group size. It is important to consider additional arguments for or against increased 
Robots_per_Pen, which may reflect labor requirement, animal well-being and health, cow 
handling, as well as economics. 
 
We found that increases in Boxtime and Milkings are associated with increased Milk_Production, 
but Boxtime and Milkings rarely increase simultaneously. As Cows_per_Robot increases, the 
Milkings will decrease and Boxtime will increase. Including interactions in the models allowed us 
to examine how cows with high Milk_Speed can help manage the conflicting goals of max 
production and cost efficiency. Cows with high Milk_Speed can be in a pen with greater 
Cows_per_Robot without negatively affecting production because cows with high Milk_Speed 
spend less time in the AMS and require fewer Milkings, while concurrently maintain greater 
production than cows with average Milk_Speed, Milkings, and Boxtime (Tables 3 and 4). 
Therefore, selection for faster Milk_Speed may balance milk production with efficiency and a 
farm’s ability to increase their Cows_per_Robot will depend on the average Milk_Speed of their 
herd. 
 
We found that an increase in Concentrates is associated with decreased Milk_Production. This 
association most likely reflects environments that do not support the production of high-quality 
feed such as corn silage. The use of low-energy basic forages in the feed bunk ration increases the 
amount of concentrate that needs to be supplemented in the robot. Farms that must feed high 
volumes of concentrate in their robots due to their geographic circumstance experience greater 
reductions in productivity due to increases in refusals or connection attempts (Figure 2). Another 
possible cause of the effect of Concentrates on Milk_Production may be the variation in milk yield 
among cows in the herd. A herd with high milk yield and low variation can successfully lessen the 
volume of concentrate fed in the AMS and maintain the robot attractiveness for the majority of the 
cows. A herd with a greater variation in milk production may require a higher volume of 
Concentrates to keep the low-yielding cows attracted to the robot. 
 
Although it is suggested to maintain the refusals above 1 per cow per day (Kozlowska et al., 2013), 
the negative effect of refusals on Milk_Production should not be overlooked. Stefanowska et al. 
(2000) found refusals negatively affected behavior because cows went through fewer complete 
behavioral cycles (eating and lying down) after nonmilking visits (refusals) versus after milking 
visits. The number of refusals per cow per day is not a very good indication of overcrowding. Not 
only was the interaction Refusals:Cows_per_Robot not selected in the forward selection process, 
but refusals can be a positive sign of cows’ interest and curiosity in coming to the robot. Therefore, 
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we suggest using the relationships between boxtime, milk speed, and number of milkings to 
develop overcrowding standards (Figure 3 and 4). This strategy could complement the evaluation 
of overcrowding based on number of refusals alone. 
 
To our knowledge, this is the first attempt to assess the differences in the use of AMS between 
new and existing farms. We found that both scenarios can result in high milk production per cow 
or per robot, only that the “Retro” fitted farm need about 2 yr to reach the production levels of a 
“New” barn. Also, “Retro” fitted farms have significantly greater production in “> 4 yr” 
Years_Since_Install compared with all other categories of Years_Since_Install (Figure 5). The 
difference in “New” and “Retro” fitted barns might reflect differences in the average lactation 
numbers of the cows. When new barns are constructed, a sharp increase in herd size often occurs 
consisting of many replacement heifers that are introduced to the robots during their first lactation. 
Retrofitted barns often must adapt older cows to the robot after those cows were previously trained 
for in-parlor milking. Heifers have been shown to learn to use the AMS quicker than cows (Jago 
and Kerrisk, 2011). The population of cows that were originally trained on robots as heifers will 
slowly increase in relative numbers over the years on retro farms. In addition, retrofitted farms 
also reflect a more gradual genetic improvement in the herd through culling and replacement rather 
than a sudden expansion. These factors may explain why the “Retro” fitted barns, unlike the “New” 
barns, have a significantly greater production in “> 4 yr” Years_Since_Install compared with all 
other categories of Years_Since_Install. 
 
The main effects of Robot_Free_Time are contrary to what would be expected. The low number 
of observations with greater than 15% Robot_Free_Time in 2011 and 2012 increases the 
uncertainty of the estimates and the data only represent relatively few farms, which increases the 
chance of a single farm creating bias in the estimates. Therefore, the years 2013 and 2014 should 
be examined as a more reliable representation of the differences among the Robot_Free_Time 
levels compared with 2011 and 2012. A likely reason for Milk_Production_per_Robot_per_Day 
increasing with greater Robot_Free_Time is the existence of an unknown confounder not included 
in the model. One such confounding effect might be automatic cleaning time. Farms trying to 
increase total production might decrease the number of times the system is cleaned to increase the 
time the robot is available for milking cows. Therefore, the robot is available more time per day to 
milk cows, but it still maintains a greater Robot_Free_Time. Another possible confounder is 
treatment time (time it takes the robot to clean, prep the udder, and postdip). Because Boxtime is 
made up of both milking time and treatment time, it is possible to maintain the same Boxtime and 
Milk_Speed by decreasing treatment time which yields longer milking time and more production. 
This is an example for a hypothesis-generating relationship that could be evaluated further in the 
future. 
 
Although the 2 models included an extensive number of risk factors, they did not include every 
possible cause for variation, confounder, or type of farms. In addition to treatment time and 
cleaning time, variables such as lactation, milk components, herd size, cow health, robot model, 
nutrition, and other facility factors such as flooring, stall size, bedding, and ventilation were not 
part of the available data. The number of cows fetched into the AMS and cost efficiency were not 
included in the analysis, but could affect a farmer’s decision between the 2 traffic systems, 
although the gain in milk per cow per day in free traffic type is potentially a substantial contributor 
to profit. Random effect of Farm_ID accounts for some differences between these unknown factors 
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including the level of genetic value in herds. Grazing and organic herds were not included as their 
analysis might require different risk factors examined compared with the current cohort of farms. 
Including additional interactions in the model would most likely improve the model fit, but would 
also make interpretation more difficult. 
 
The current study, looking at differences in milk production across farms utilizing AMS, has 
benefitted from a large sample of farms in diverse locations applying very different management 
strategies, breeds, and additional associated risk factors. The resulting associations are relatively 
robust and should contribute to the benchmarking processes in the industry. The results could be 
used to advise the benchmarks regarding AMS farms, a subject that has not been fully addressed 
in literature where benchmarks are generated across AMS and conventional milking technology 
on farms alike. It remains to be seen whether AMS farms need their own set of benchmarks and 
decision support structures, because of their specialized production systems. The analysis of large 
cohorts of AMS farms for the association of risk factors with milk production is a step in the right 
direction of customizing advice for AMS farms based on their individual management 
characteristics that could cluster them into distinct groups. 
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CHAPTER 3- PREDICTION MODELING INTRODUCTION 

 
 
Goal  
Prediction models are used for forecasting outcomes for new observations (i.e., external data) and 
obtaining measures of uncertainty for the forecasts. Prediction models are used in many realms 
including economics, business, politics, romantic partner searches, finance and health care. Now 
that a model’s goal is to make predictions, the model’s parameters are referred to as predictors.  
 
Assumptions 
Some assumptions previously discussed for parameter estimation modeling are relaxed for 
prediction modeling. For example, addressing multicollinearity and interactions are assumptions 
that prevent confounded estimates in a parameter estimation model. However, these assumptions 
are relaxed for prediction modeling since predictive models are not used to interpret associations 
(Kutner et al., 2005; Shmueli, 2010). Although these assumptions are relaxed for prediction 
modeling, addressing multicollinearity and interactions might lead to a significant improvement 
in the models’ predictive performance. Moreover, prediction models generally require better 
model goodness of fit for improved performance compared to parameter estimation models 
(Shmueli, 2010). Prediction models also require more data partly due to the need for validation 
(Shmueli, 2010). In addition, when building prediction models one needs to consider that the 
model is developed with the goal of being applied to future data. Therefore, the predictors included 
in the model need to be those that will be or are routinely measured and are easily attainable. 
Finally, prediction models still depend on having predictors that are biologically relevant. 
 
Challenges 
Prediction modeling results in many challenges, among which: selecting among the large amount 
of methodological options available when building the prediction model, preventing model 
overfitting, variable selection, and using data from different levels of observations such as having 
the outcome at the population level (i.e., macro level) and the predictors at the individual level 
(i.e., micro level).  
 
The goal in prediction modeling is to build the best performing model for the purpose of making 
predictions given the previously mentioned assumptions; however, all of the available choices of 
methods might perform slightly differently. In parameter estimation modeling even if two models 
have slightly different goodness of fit measures, most of the time both models estimates will have 
the same direction and order of magnitude, interpretation and translation into interventions. But 
with predictive modeling, a slightly better model performance can have significant effects on 
prediction performance leading to fewer false positives or false negative predictions.  Therefore, 
the current approaches to model selection that rely on subjective preferences and decisions to select 
methods is prone to introduce bias and can lead to a lesser performing prediction model. In 
addition, this selection bias can prevent direct comparisons among studies. 
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The second challenge discussed in this dissertation are prediction models for multilevel data, 
which is data from different levels of observations. The majority of multilevel modeling is 
concerned with macro-micro modeling (Bennink, 2014). This is very commonly addressed with 
the addition of random effects in the models (Dohoo et al., 2003; Pinheiro and Bates, 2006). The 
lesser known multilevel modeling variation is the micro-macro model, which is faced with the 
outcome variable being at the population level (i.e., macro level) and the predictors being at the 
individual level (i.e., micro level). Although, the ideal situation would be to obtain data at the same 
level of observation, the cost or time to collect such data can be prohibitive. In addition, there are 
some outcomes that cannot be measured at the same level as the micro level observations. For 
example, when modeling the presence or absence of an outbreak of a specific disease per 
geographic region, data at the individual level of observations cannot be associated with an 
outcome value of “yes” or “no”. This type of outcome variable is only associated with the macro 
level. There are methods available to address this type of problem called “micro-macro multilevel 
models” (Croon and Veldhoven, 2007). However, the current version of this method assumes that 
the central tendency of the micro level data (e.g., the mean) is a good representation of changes in 
the outcome variable at the macro level (Bennink, 2014). However, sometimes the extreme cases 
at the micro level are the best representation of the changes in the outcome variable at the macro 
level. For example, extreme cases of a variable quantifying international travel at the individual 
level might prove to be the best risk factor for a geographic region’s disease outbreak outcome 
variable. Therefore, there is a need for a micro-macro multilevel modeling technique that accounts 
for the possible importance of extreme values at the micro level used to predict macro level 
outcomes. 
 
Approaches to data imperfections 
 
The challenge of selecting among the large amount of methodological options available when 
building a prediction model was addressed in Chapter 3.2. This was accomplished with regression 
tree full model selection (rtFMS). As stated in objective 2 (on page 9 in the introduction), the 
rtFMS method provides a method that systematically combines, compares and selects the most 
appropriate statistical methods for prediction modeling. When only two models are compared, the 
small sample size and their confidence intervals result in not enough statistical power to find 
significant differences between the models. But by building models for many combinations of 
options we gain the sample size and statistical power to find significant differences among method 
options. The rtFMS method removed selection bias and will enable the selection of the best 
performing model by comparing all available options and combinations of method options. 
This method was built with the intention of becoming part of a future automated full model 
selection process that will help remove selection bias from prediction modeling as it selects 
the best performing model. 
 
The challenge of multilevel modeling when the central tendency of the micro level observations is 
not a good representation of the macro level outcome was addressed in Chapter 3.3. Chapter 3.3 
described using extreme values of micro level observations to predict macro level outcomes. This 
method is called extreme value micro-macro (EVMM) multilevel modeling. The two micro-macro 
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modeling methods were compared using rtFMS analysis. In doing so, the rtFMS method illustrated 
the significantly better performance of the EVMM method compared to the current micro-macro 
multilevel modeling method that uses the mean of the micro level observations. The EVMM 
method will allow more secondary data sets that combine data from multiple levels to be 
used to build better performing prediction models and could also be used for micro-macro 
parameter estimation models. 
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ABSTRACT 
Data preprocessing options and model algorithms are commonly selected empirically in 
epidemiological studies even though these decisions can significantly affect model performance. 
Accordingly, full model selection (FMS) methods were developed to provide a systematic 
approach to select predictive modeling methods; however, current limitations of FMS, such as its 
dependency on user-selected hyperparameters, have prevented their routine incorporation into 
analyses for model performance optimization. 
 
Here we present the use of regression trees as an innovative method to apply FMS. Regression tree 
FMS (rtFMS) constructs a model for every combination of predictive modeling method options 
under consideration. The iterated, cross-validation performances of these models are then passed 
through a regression tree for selection of a final model. We demonstrate the benefits of rtFMS 
using a milk Fourier transform infrared spectroscopy dataset, wherein we build prediction models 
for two blood metabolic health parameters in dairy cows, nonesterified fatty acids (NEFA) and β-
hydroxybutyrate acid (BHBA).  
 
In contrast to previously reported FMS methods, rtFMS is not a black box, is simple to implement 
and interpret, it does not have hyperparameters, and it illustrates the relative importance of 
modeling options. Additionally, rtFMS allows for indirect comparisons among models developed 
using different datasets.  Finally, rtFMS eliminates user bias due to personal preference for certain 
methods and rtFMS removes the dependency on published comparisons of methods. Thus, rtFMS 
provides clear benefits over the empirical selection of data preprocessing options and model 
algorithms.  
 
INTRODUCTION 
Currently, empirical selection is the standard method to select among predictive modeling method 
options including different preprocessing techniques, and model algorithms (Harrell et al., 1996; 
Kuhn and Johnson, 2013); however, these options and the order of decisions about predictive 
modeling methods can significantly influence model performance (Han et al., 2011; Horn et al., 
2018; Rinnan, 2014; Shi and Yu, 2017; Weissenbacher et al., 2009). Consequently, full model 
selection (FMS) was developed to provide a systematic approach to eliminate bias in selecting 
predictive modeling method options for machine learning (Escalante et al., 2009). In short, FMS 
builds models for every combination of modeling methods under consideration (i.e., options), 
followed by comparisons of iterated cross-validated performances which yields a final optimized 
model. This system has been implemented in machine learning, but has largely been overlooked 
in predictive modeling in applied epidemiology. Applied epidemiology might benefit from 
incorporating FMS. 
 
Current FMS methods in machine learning use evolutionary algorithms and swarm intelligence 
algorithms, most notably particle swarm optimization (PSO) (Escalante et al., 2009). PSO is a 
black box method in which one final model is selected. However, the options’ influence on making 
this selection is not visible to the user. In addition, PSO has hyperparameters, those are parameters 
of a prior distribution (e.g. inertia weight, acceleration coefficients, velocity clamping), that can 
change the output and be difficult to select, and these methods are not easily applied without 
advanced machine learning experience. These facts have slowed the incorporation of FMS into 
applied epidemiology. 
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In this paper, we describe the use of regression trees as an innovative FMS method (rtFMS) in 
applied epidemiology predictive modeling during supervised learning. Regression trees use 
recursive partitioning to repeatedly separate data into subsets most distant from each other, which 
results in a decision tree (Hothorn et al., 2017). We propose the use of regression trees for the 
separation of model performance measures to optimize a final combination of options that results 
in the best final model. Unlike PSO, rtFMS is not a black box, it is easy to implement, does not 
have hyperparameters, and is straightforward to interpret.  
 
Our objective was to illustrate that rtFMS results in an optimized prediction model and in addition 
provides the following information and benefits: (i) rtFMS illustrates the relative importance of 
modeling options. (ii) It allows indirect comparisons among models that were fit to different 
datasets by examining their terminal node location in the regression tree. (iii) rtFMS allows for the 
comparison of a much larger number of preprocessing and model algorithm options 
simultaneously than would be feasible without FMS.  (iv) Finally, it also removes user bias due to 
familiarity or personal preference for certain methods on prediction performance.  
 
Our aim was to demonstrate rtFMS by applying it to a Fourier-transform infrared spectra (FTIR) 
dataset to optimize prediction models, because spectrometry research has many preprocessing 
options that are commonly chosen empirically (Belay et al., 2017; Botelho et al., 2015; Dehareng 
et al., 2012; Etzion et al., 2004).  
 

MATERIALS AND METHODS 
 
A methods overview is available in Table 1. All data analyses were done in R 3.4.2 (R 
Development Core Team, 2017). 
 
Step 1 Data preparation:  
The FMS approach is described using the example of a data set previously reported by Tremblay 
et al. (2018). Briefly, a total of 1505 observations were collected from 381 predominantly 
Simmental cows located on 26 Bavarian robotic milking farms. Farm and cow identification 
numbers, date, days in milk, breed, lactation number, and milk production records were collected. 
Blood samples were collected, and nonesterified fatty acids (NEFA) and β-hydroxybutyrate acid 
(BHBA) were measured using the Cobas c311-Analyzer (Roche Diagnostics, Rotkreuz, 
Switzerland). Milk fat and protein percent, urea, and lactose were measured using the MilkoScan 
FT-6000 (FOSS GmbH, Hamburg, Germany), and milk somatic cell count was determined using 
the Fossomatic 5000 (FOSS GmbH, Hamburg, Germany). The milk samples were subjected to 
Fourier Transform Infrared (FTIR) spectrometry on 12 different MilkoScan FT-6000 machines 
calibrated using FOSS standards (FOSS GmbH, Hamburg, Germany). Fatty acid predictions were 
produced by Qlip N.V. (Leusden, the Netherlands). FTIR data was used to produce FOSS’s ketosis 
screening tool predictions of BHBA and acetate (FOSS Analytical A/S, Hillerød, Denmark).  
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Table 1. Overview of regression tree full model selection (rtFMS) methods 
Step Method 
1 Data preparation: A dataset is prepared by formatting variables, and removing outliers, 

repeats, and errors. 
2 Outcome selection: An outcome variable is selected according to the project’s goal. 
3 Standard methods: A set of “standard methods”, which are methods that will be applied 

to all models and will not benefit from comparisons of different options, are selected 
reflective of the data. For example, if a dataset had missing data, applying imputation 
would be selected as a standard method, although different imputation functions could be 
compared in step 4. 

4 Comparison categories: Categories relating prediction model methods and multiple 
options within each category are selected for comparison. Examples of categories include 
input data subsets, feature extraction and model algorithms (see Table 2).  

5 Modeling: A model is run for every combination of options per category described in 
step 4. All models are run with same fold index for validation. 

6 Performance measure: A performance measure is selected depending on a dataset’s 
characteristics and the use of the final prediction model. For example, if a dataset is 
imbalanced, balanced accuracy or kappa coefficient would be the preferred performance 
of the final model. 

7 Regression tree: Then the models’ performance measures are run through a regression 
tree to visualize the best combination of options and which selections made significant 
differences and which order these selections were prioritized. A nonparametric regression 
tree was selected to be the most inclusive in cases where the outcome variable does not 
follow a normal distribution (Hothorn et al., 2017). 

8 Final model: A final model is selected based on the regression tree selections. If there 
were no significant difference among options, then personal preference can be used and 
justified in making a selection. 

 
 
Only the milk sample collected nearest to the time of the blood collection within the previous 24 
hours was used. Therefore, 254 observations representing earlier milk samples were removed. 
Thirty observations were removed due to missing milk production data from the robot. The final 
dataset for the BHBA model contained 1035 observations. One observation had a missing NEFA 
value leaving 1034 observations in the final dataset for the NEFA outcome. 
 
Step 2  
Outcome selection NEFA: Blood NEFA ≥ 0.7 mmol/L served as the case definition for the 
prediction models (Andrews et al., 2008; Tremblay et al., 2018). This would allow the detection 
of poor metabolic adaptation syndrome (PMAS) and also conditions such as displaced abomasum 
(NEFA ≥ 1.0 mmol/L) and ketosis (> 1.5 mmol/L) where cows are off-feed or have decreased feed 
intake, and increased fat mobilization (Andrews et al., 2008; LeBlanc et al., 2005; Tremblay et al., 
2018). In the final dataset, 210 observations had blood NEFA ≥ 0.7 mmol/L, and 824 observations 
had blood NEFA < 0.7 mmol/L. 
 
Outcome selection BHBA: Blood BHBA ≥ 1.2 mmol/L was used as the case definition for the 
prediction models (McArt et al., 2012; Overton et al., 2017; Suthar et al., 2013). In the final dataset, 
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105 observations had blood BHBA ≥ 1.2 mmol/L, and 930 observations had blood BHBA < 1.2 
mmol/L. 
 
Step 3 Standard methods: Standard methods are methods that will be applied to all models and 
will not benefit from comparisons of different options as done in step 4. For the data presented 
here, standard methods included removing wavenumbers representing water: the O-H bending 
region 1615-1692 cm-1, the O-H stretching region 3057-3689 cm-1 (Afseth et al., 2010). Also, 
observations were flagged for potential FTIR equipment errors if they did not have a max 
absorbance within the instrument’s working range of 0.1-1.0 absorbance units (Beleites and Sergo, 
2017). No error observations were identified in this dataset. Variables with zero or near zero 
variances needed to be removed from the analysis, but none were present in this dataset (Kuhn and 
Johnson, 2013).  
 
The groupKFold function within the caret library was used to make sure cross-validation folds 
were split by farm (Kuhn, 2008). Out of 1034 total observations, cross-validation folds for the 
NEFA model averaged 930.6 (SD 23.6) observations in the training sets. Out of 1035 total 
observations, cross-validation folds for the BHBA model averaged 931.5 (SD 24.3) observations 
in the training sets. Since the variables were on different scales, auto-scaling was used to obtain 
zero mean values and standard deviations equal to one (Gelman and Hill, 2006). 
 
Our datasets were faced with class imbalance due to the low prevalence within the outcome classes, 
only 20.3% and 10.1% of observations being in the NEFA and BHBA minority class, respectively 
(He and Ma, 2013). To address the class imbalance, Synthetic Minority Over-sampling Technique 
(SMOTE) was used to balance the number of observations in the training set (Chawla et al., 2002). 
The minority classes were over-sampled by 200% as suggested by Chawla et al. (2002), and the 
majority classes were under-sampled by 150% to obtain a one-to-one ratio between the majority 
and minority classes’ observations.  
 
Step 4  
All of the options per categories of predictive modeling methods are listed in Table 2. Categories 
of predictive modeling methods were separated into 3 areas: (4.1) input subsets, (4.2) 
preprocessing methods, and (4.3) algorithms (Table 2).  
 
4.1. Input subset 
The milk data subset category (4.1.A) includes 4 options: the component (COMP), FTIR, fatty 
acid predictions (FA), and FOSS’s ketosis screening tool predictions (FOSS) subset. The selection 
of these 4 options was guided by how milk data are generated and their availability for future 
model application; Milk testing agencies and automatic milking systems generate the COMP 
subset, the milk analyzers produce the FTIR data, and Qlip N.V. (Leusden, the Netherlands) and 
FOSS Analytical A/S (Hillerød, Denmark) calibration models using FTIR data produce the FA 
and FOSS subsets, respectively.  
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Table 2. Options per corresponding category and area (step 4) selected for comparison using 
regression tree full model selection when applied to a milk Fourier transform infrared spectroscopy 
dataset to build prediction models for two blood metabolic health parameters in dairy cows: 
nonesterified fatty acids (NEFA) and β-hydroxybutyrate acid (BHBA) 

* BHBA models only 
 
 
The COMP subset included the following variables: milk fat (%), protein (%), urea (mg/dL), 
somatic cell count (1000 cells/mL), and lactose (%). FTIR subset included 874 wavenumbers 
between 925.2-1611.39 cm-1, 1696.2-3053.16 cm-1, and 3693.09-5007.645 cm-1. The FA subset 
included prediction of blood BHBA (mmol/L), three ratios of blood fatty acids [C16:0/C16:1, 
(C16:0 + C18:0)/C18:1, and C18:0/C18:1], and the following blood fatty acids measured in 
µmol/L: C13:0, C14:0, C14:1, C15:0 result 1, C15:0 result 2, C15:0_total, C16:0, C16:1, C16:2, 
C17:0, C17:1 result 1, C17:1 result 2, C17:1_total, C17 to C24, C18:0, C18:1, C18:2, C18:3, 
C18:4, C19:0, C19:1 result 1, C19:1 result 2, C19:1_total, C19:2, C19:3, C20:0, C20:1, C20:2, 
C20:3, C20:4, C20:5, C21:0, C21:1, C21:3, C21:4, C22:0, C22:1, C22:3, C22:4, C22:5, C22:6, 
C23:0, C23:1, C24:0, C24:1, C24:5, C24:6, C25:0, C25:1 result 1, C25:1 result 2, C25:1_total, 

Area Category Options 
1. Input 
Subset 

A. Milk Data 
Subset 

Component (COMP) 
Fatty acid predictions (FA) 
Fourier transform infrared spectroscopy (FTIR) 
FOSS’s ketosis screening tool predictions (FOSS)* 

B. Cow 
Information  

Include cow information (+CowInfo) 
Exclusion of cow information (-CowInfo) 

2. Pre-
processing 

A. Standardization Raw absorbance values (Raw-FTIR) 
1st derivative (FD) 
2nd derivative (SD) 

 B. Feature 
Extraction 

Performed a PCA (+PCA)  
Did not perform a PCA (-PCA) 

C. Wavenumber 
Subset 

Removed “no-information” wavenumbers (excl.WN) 
Included all wavenumbers (AllWN) 

D. High 
Correlation 

Removed highly correlated predictors (excl.HighCorr) 
Did not remove highly correlated predictors 
(incl.HighCorr) 

3. Algorithm Algorithm generalized linear models (GLM) 
lasso and elastic-net regularized generalized linear 
models (GLMNET) 
linear discriminant analysis (LDA) 
linear support vector machines (SVM) 
nearest neighbor methods (KNN) 
naive Bayes (NB) 
classification trees (RPART) 
neural networks (NNET) 
gradient boosting machine (GBM) 
random forests (RF) 
multivariate adaptive regression splines (MARS) 
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C25_3, C25:5, C26:0, C26:1, C26:2, C27:0, C27:1, C27:3, C28:0, C28:1, C29:0, C29:4 result 1, 
C29:4 result 2, C29:4_total, C29:6 result 1, C29:6 result 2, C29:6_total, C30:1, total long chain (≥ 
C18), mono-unsaturated, poly-unsaturated, total saturated, total NEFA, and total unsaturated. The 
FOSS subset included predictions of milk BHBA (mmol/L) and milk acetone (mmol/L). 
 
Finally, including (+CowInfo) or not including cow information (-CowInfo) were compared within 
the cow information category (4.1.B). Cow information includes the following: days in milk 
(DIM), milk production (kg/day), and lactation number. 
 
4.2. Preprocessing 
A standardization method is necessary to adjust for instrumental differences since the data in this 
dataset come from 12 different machines, and the goal is to apply the model to external data that 
will also be from different machines calibrated at different times. The standardization category 
(4.2.A) compared the raw absorbance FTIR values (raw-IR) with two baseline corrections: first 
derivative (FD) and second derivative transformations (SD) (Baker et al., 2014; Beleites and 
Sergo, 2012; Duckworth, 2004; Smith et al., 2018). The FD is very effective for removing baseline 
offset and SD is very effective for both the baseline offset and linear trends in spectra (Duckworth, 
2004; Rinnan, 2014). 
 
Three categories of dimension reduction methods, also a pre-processing method, were included 
for comparision using FMS as part of pre-processing: feature extraction (4.2.A), wavenumber 
subset (4.2.B), and high correlation (4.2.C).  
 
A feature extraction category (4.2.B) compared performing principal component analysis (PCA) 
(+PCA) or not performing PCA (-PCA). When PCA was applied, the number of components 
representing 95% of the features’ variance were selected (Kuhn and Johnson, 2013). As a feature 
selection step, a wavenumber subset category (4.2.C) was used to compare performance with 
(AllWN) or without wavenumber variables (excl.no-infoWN) that are thought to not represent any 
information (“no information regions”). These are regions from 1800.285 cm-1 to 2798.73 cm-1 
and 3693.09 cm-1 to 5007.645 cm-1 (Andersen et al., 2002; Dagnachew et al., 2013; Iñón et al., 
2004). A high correlation category (4.2.D) was also included that compared including 
(incl.HighCorr) or excluding highly correlated variables (excl.HighCorr). A high correlation filter 
was applied using the findCorrelation function within caret (Kuhn, 2008) with a tolerance set to 
0.1 (limit at 0.9), which corresponds to a VIF of 10 (Hair, 2007). 
 
4.3. Algorithms 
The algorithm category included 11 algorithms to compare: generalized linear models (GLM), 
lasso and elastic-net regularized generalized linear models (GLMNET), linear discriminant 
analysis (LDA), linear support vector machines (SVM), nearest neighbor methods (KNN), naive 
Bayes (NB), classification trees (RPART), neural networks (NNET), gradient boosting machine 
(GBM), random forests (RF), and multivariate adaptive regression splines (MARS). These 
algorithms were run using the caret model methods “glm”, “glmnet”, “lda”, “svmLinear”, “knn”, 
“nb”, “rpart”, “nnet”, “gbm”, “rf”, and “earth”, respectively (Kuhn, 2008).  A random grid search 
with a tune length = 10 was applied for hyperparameter tuning related to the algorithms (and not 
the selection method) for 7 out of 11 model algorithm: GLMNET, SVM, GBM, NB, RF, NNET, 



Pattern Recognition and Modeling with Imperfect Data M. Tremblay, 2019 

  
Page 68 of 150 

KNN. (Bergstra and Bengio, 2012; Kuhn, 2008). The default convergence criteria for each model 
algorithm were used (Kuhn, 2008). 
 
Step 5 & 6. A total of 660 and 704 models for NEFA and BHBA models, respectively, were run 
for every combination of options per category described in step 4 (Table 2). We performed 10 
repeated iterations of 10-fold cross-validation (Bali and Sarkar, 2016). Balanced accuracy was the 
selected performance parameter because it performs well when the data sets are imbalanced 
(Japkowicz and Stephen, 2002). See Table 3 for a list of possible performance measures that were 
available. The average of the 100 cross-validation folds’ balanced accuracies were used as the 
models’ point estimate to be used in the regression tree. 
 
Table 3. Final models’ performance measures with 95% confidence intervals 

 
Blood nonesterified fatty 

acids final model 
Blood β-hydroxybutyrate 

acid final model 
Performance measure estimate 95% CI estimate 95% CI 
Apparent prevalence, % 33.7 (30.8-36.6) 29.2 (26.4-32.1) 
True prevalence, % 20.3 (17.9-22.9) 10.1 (8.4-12.1) 
Sensitivity, % 77.1 (70.9-82.6) 84.8 (76.4-91) 
Specificity, % 77.4 (74.4-80.2) 77.1 (74.3-79.8) 
Diagnostic accuracy, % 77.4 (74.7-79.9) 77.9 (75.2-80.4) 
Balanced accuracy, % 77.3 (72.6-81.4) 80.9 (75.3-85.4) 
Positive predictive value, % 46.6 (41.2-51.9) 29.5 (24.4-35) 
Negative predictive value, % 93.0 (90.8-94.8) 97.8 (96.5-98.7) 
Likelihood ratio of a positive test 3.42 (2.95-3.96) 3.70 (3.21-4.27) 
Likelihood ratio of a negative test 0.295 (0.230-0.380) 0.198 (0.126-0.311) 
Kappa 0.438 (0.381-0.496) 0.338 (0.288-0.388) 

CI= confidence interval 
 
Step 7. The models’ performance measures were run through a nonparametric regression tree 
(Equation 1), available through the party R package, using equation 1 (Hothorn et al., 2017).  
 + Balanced Accuracy ~ Milk Data Subset + Cow Information + Standardization	.1	݊݋݅ݐܽݑݍܧ 
Feature Extraction + Wavenumber Subset + High Correlation + Algorithm 
 
A bonferonni correction for multiple comparisons of means was applied. A p-value of 0.05 was 
used as the limit to visualize branching.  
 
Step 8. The regression tree was inspected to locate the terminal node with the best performance, 
i.e. highest balance accuracy. The decision nodes leading to the best performing terminal node 
were described. If a category did not have an option selected by the regression tree then personal 
preference was justified in making those decisions since they would not make a statistically 
significant difference in model performance. The selected final model was applied to the entire 
original dataset for final performance measures and measures of uncertainty. The 20 most 
influential predictors were extracted and ranked for each final model using the varImp function in 
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caret (Kuhn, 2008). Their importances were scaled to 100 so that the most influential predictor had 
a value of 100 and the least influential had a value near zero.  
 
RESULTS 

 
NEFA 
Step 5 & 6. Nine NEFA models did not converge according to each model’s convergence criteria 
(Kuhn, 2008). The remaining 651 NEFA models had a mean balanced accuracy of 66.48 (SD 
4.84).  
 
Step 7. The NEFA FMS regression tree had 25 decision nodes and 26 terminal nodes (Figure 1). 
The average number of models per terminal node was 25.0 (SD 16.4). The 25th terminal node had 
the highest performance. It contained 8 models with an average balanced accuracy of 74.5 (SD 
0.56). The final model was selected after 3 decision nodes. (i) The first decision node selected the 
FA subset (p-value < 0.001). (ii) The second decision node selected the following model 
algorithms (p-value < 0.001): GLMNET, SVM and NNET. (iii) The final decision node selected 
the GLMNET model algorithm (p-value = 0.017) (Figure 1).   
 
If the FA subset had not been available, as is often the case in practice, then the models represented 
in the fifth terminal node would have resulted in the best performance. It contained 16 models with 
an average balanced accuracy of 73.20 (SD 0.79). This model would have been selected after 4 
decision nodes: (i) the following model algorithms were selected (p-value < 0.001): MARS, GBM, 
GLMNET, LDA, NNET, SVM. (ii) The derivative-transformed (FD, SD) FTIR input subsets were 
selected (p-value < 0.001). (iii) The next decision node selected the GLMNET model algorithm 
(p-value < 0.001). (iv) Finally, not performing a PCA (-PCA) was selected (p-value < 0.001) 
(Figure 1).  
 
Step 8. Options within the cow information, feature extraction and high correlation categories 
were not selected by the NEFA FMS regression tree. This leaves room to make these decisions 
empirically. It was decided to include cow information, to not remove highly correlated variables, 
and to not perform a PCA. The final NEFA model (options: FA, +CowInfo, -PCA, incl.HighCorr, 
GLMNET) had a final balanced accuracy of 77.3 (95% CI: 72.6 – 81.4), sensitivity of 77.1 (95% 
CI: 70.9 – 82.6), specificity of 77.4 (95% CI: 74.4 – 80.2) and diagnostic accuracy of 77.4 (95% 
CI: 74.7 – 79.9) (Table 3). The final hyperparameter values used in the model were alpha = 0.4 
and lambda = 0.0117. The most influential predictors in the final NEFA model were ranked and 
listed in Table 4.  
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Figure 1. Blood nonesterified fatty acids (NEFA) rtFMS regression tree results 

 
 
Figure 1 legend: n = number of models in each terminal node. boxplot showing mean and quartile 
of balanced accuracy of models per terminal model; Subset= Milk Data Subset category; COMP= 
component; FA= fatty acid predictions; FTIR= Fourier transform infrared spectroscopy; FOSS= 
FOSS’s ketosis screening tool predictions; Cow Info= Cow information category; +CowInfo= 
Include cow information; -CowInfo= Exclusion of cow information; Stand. = Standardization 
category; Raw-FTIR= Raw absorbance values; FD= 1st derivative; SD= 2nd derivative; F.Ext.= 
Feature Extraction category; +PCA= Performed a PCA; -PCA = Did not perform a 
PCA;WaveNum. = Wavenumber Subset category; excl.WN = Removed “no-information” 
wavenumbers; AllWN = Included all wavenumbers; HighCorr = High Correlation category; 
excl.HC= Removed highly correlated predictors; incl.HighCorr= Did not remove highly correlated 
predictors; Algorithm= Algorithm category; GLM= generalized linear models algorithm; 
GLMNET= lasso and elastic-net regularized generalized linear models algorithm; LDA= linear 
discriminant analysis algorithm; LDA= linear discriminant analysis algorithm; SVM= linear 
support vector machines algorithm; KNN= nearest neighbor methods algorithm; NB= naive Bayes 
algorithm; RPART = classification trees algorithm; NNET= neural networks algorithm; GBM= 
gradient boosting machine algorithm; RF= random forests algorithm; MARS= multivariate 
adaptive regression splines algorithm 
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Figure 2. Blood β-hydroxybutyrate acid (BHBA) rtFMS regression tree results 

 
Figure 2 legend: n = number of models in each terminal node. boxplot showing mean and quartile 
of balanced accuracy of models per terminal model; Subset= Milk Data Subset category; COMP= 
component; FA= fatty acid predictions; FTIR= Fourier transform infrared spectroscopy; FOSS= 
FOSS’s ketosis screening tool predictions; Cow Info= Cow information category; +CowInfo= 
Include cow information; -CowInfo= Exclusion of cow information; Stand. = Standardization 
category; Raw-FTIR= Raw absorbance values; FD= 1st derivative; SD= 2nd derivative; F.Ext.= 
Feature Extraction category; +PCA= Performed a PCA; -PCA = Did not perform a 
PCA;WaveNum. = Wavenumber Subset category; excl.WN = Removed “no-information” 
wavenumbers; AllWN = Included all wavenumbers; HighCorr = High Correlation category; 
excl.HC= Removed highly correlated predictors; incl.HighCorr= Did not remove highly correlated 
predictors; Algorithm= Algorithm category; GLM= generalized linear models algorithm; 
GLMNET= lasso and elastic-net regularized generalized linear models algorithm; LDA= linear 
discriminant analysis algorithm; LDA= linear discriminant analysis algorithm; SVM= linear 
support vector machines algorithm; KNN= nearest neighbor methods algorithm; NB= naive Bayes 
algorithm; RPART = classification trees algorithm; NNET= neural networks algorithm; GBM= 
gradient boosting machine algorithm; RF= random forests algorithm; MARS= multivariate 
adaptive regression splines algorithm 
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Table 4: The 20 most important predictors in the blood nonesterified fatty acids (NEFA) final 
prediction model (options: FA, +CowInfo, -PCA, incl.HighCorr, GLMNET) and their relative 
importance 
Predictor Importance*  Predictor Importance*
C14:0, µmol/L 100 C25:0, µmol/L 22.30
C30:1, µmol/L 83.35 C17:0, µmol/L 18.54
Milk production, kg 71.94 C29:4 result 1, µmol/L 14.81
Lactation number 66.08 C24:5, µmol/L 14.71
C20:4, µmol/L 61.14 C25:1 total, umol/L 11.54
BHBA, mmol/L 54.83 C22:6, µmol/L 11.19
C16:0, µmol/L 47.72 C19:1 total, umol/L 10.56
C22:5, µmol/L 40.42 C15:0 result 1, µmol/L 9.94
Days in milk (DIM)  35.73 C25:3, µmol/L 9.30
C25:1 result 1, µmol/L 24.89 C23:0, µmol/L 9.25
* Importance scaled to 100; FA= fatty acid predictions; +CowInfo= Include cow information; -
PCA = Did not perform a PCA; incl.HighCorr= Did not remove highly correlated predictors; 
GLMNET= lasso and elastic-net regularized generalized linear models algorithm 
 
BHBA 
Step 5 & 6. The 704 BHBA models had a mean balanced accuracy of 66.31 (SD 4.58).  
 
Step 7. The BHBA FMS regression tree had 27 decision nodes and 28 terminal nodes (Figure 2). 
The average number of models per terminal node was 25.1 (SD 29.7). The eighteenth node had 
the highest performance. It contained 8 models with an average balanced accuracy of 74.2 (SD 
1.03). The final model was selected after 5 decision nodes. (i) The first decision node selected the 
following model algorithms (p-value < 0.001): MARS, GBM, GLMNET, LDA, NNET, SVM. (ii) 
The second decision node selected the derivative-transformed (FD, SD) FTIR, COMP and FA 
subset (p-value < 0.001). (iii) The third decision node selected the GLMNET model algorithm (p-
value < 0.001). (iv) Next, the derivative-transformed (FD, SD) FTIR subsets were selected over 
the COMP and FA subsets (p-value < 0.001). (v) Finally, not performing a PCA (-PCA) was 
selected (p-value < 0.024). 
 
Step 8. Options within the cow information, wavenumber subset and high correlation criteria were 
not selected by the BHBA FMS regression tree. Therefore, it was appropriate to make these 
decisions empirically. It was decided to include cow information, to not subset the no-information 
wavenumbers, and to not remove highly correlated variables. The BHBA FMS regression tree did 
not discern between the FD and SD FTIR standardizations. Therefore, we empirically decided to 
select the FD standardization.  
 
The final BHBA model (options: FTIR, +CowInfo, FD, -PCA, incl.HighCorr, AllWN, GLMNET) 
had a final balanced accuracy of 80.9 (95% CI: 75.3 – 85.4), sensitivity of 84.8 (95% CI: 76.4 – 
91.0), specificity of 77.1 (95% CI: 74.3 – 79.8) and diagnostic accuracy of 77.9 (95% CI: 75.2 – 
80.4) (Table 3). The final hyperparameter values used in the model were alpha = 0.3 and lambda 
= 0.0735. The most influential predictors in the final BHBA model were ranked and listed in Table 
5.  
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Table 5: The 20 most important predictors in the blood β-hydroxybutyrate acid (BHBA) final 
prediction model (options: FTIR, +CowInfo, FD, -PCA, incl.HighCorr, allWN, GLMNET) and 
their relative importance 
Predictor Importance*  Predictor Importance* 
1549.71 cm-1 100  1125.66 cm-1 29.72 
1214.325 cm-1 69.72  4668.405 cm-1 29.59 
Lactation number 63.46  1372.38 cm-1 26.45 
1333.83 cm-1 49.45  1545.855 cm-1 25.64 
2629.11 cm-1 40.93  1299.135 cm-1 24.26 
1210.47 cm-1 39.61  4336.875 cm-1 22.30 
1491.885 cm-1 35.16  4888.14 cm-1 19.97 
Milk production, kg 33.38  2270.595 cm-1 15.85 
2043.15 cm-1 30.93  1164.21 cm-1 15.81 
4891.995 cm-1 29.96  2764.035 cm-1 15.25 
* Importance scaled to 100; FTIR= Fourier transform infrared spectroscopy; +CowInfo= Include 
cow information; FD= 1st derivative; -PCA = Did not perform a PCA; incl.HighCorr= Did not 
remove highly correlated predictors; AllWN = Included all wavenumbers; GLMNET= lasso and 
elastic-net regularized generalized linear models algorithm 
 
DISCUSSION 
 
FMS 
Our proposed rtFMS method provides a systematic and unbiased approach to optimizing 
prediction model performance given many possible options for algorithms and preprocessing 
methods. Our method demonstrated how different combinations of decisions led to statistically 
significant differences in model performance. The rtFMS selected different preprocessing options 
for different model outcomes (NEFA, BHBA) within the same dataset, which illustrates the 
importance of incorporating this technique into all prediction modeling efforts.  
 
Unlike PSO-FMS, rtFMS does not contain hyperparameters and user-friendliness is further 
improved by the visual representation of the results. In addition, the rtFMS method provides 
information about the relative importance of options when selecting the final model selection. The 
relative location of nodes in the tree reflects the importance of the decision on the performance of 
the prediction model. Our method also allows indirect comparisons among models developed 
using different datasets, by examining the terminal node location of different option combinations 
in a regression tree. The ability to eliminate bias by performing these indirect comparisons is 
important when teams with different personal preferences and experiences are collaborating.  This 
information is key when developing future study designs, and when determining future exploration 
of additional modeling methods. 
 
FMS removes user bias due to familiarity and personal preference with regards to certain 
prediction models methods. In contrast to PSO-FMS, rtFMS allows for empirical decisions when 
appropriate; however, it removes this source of bias on performance when a significantly superior 
performing model would be possible. We expect that the benefits and flexibility of rtFMS will 
accelerate its incorporation into the field of applied epidemiology. 
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We performed 10 repeated iterations of 10-fold cross-validation to obtain accurate estimates of 
model performance. This method is most appropriate for small dataset (Chollet, 2017).  A one-
time hold-out test set could have been used to estimate model performance; however, a hold-out 
test set is only appropriate for large data sets to assure the test set has enough data to minimize the 
confidence intervals of performance measures (Chollet, 2017).  
 
rtFMS only depends on being supplied an outcome variable such as a goodness of fit or 
performance measure; therefore, any type of model can be optimized using rtFMS. rtFMS can be 
applied to longitudinal models, multinomial models, and even unsupervised learning. When 
applied to prediction models, the performance measure used as the outcome variable in the 
regression tree can be selected according to the user’s needs regarding performance (e.g. high 
sensitivity, specificity, accuracy, positive predictive value, or negative predictive value). 
Categorical performance outcomes could also be accommodated by using classification trees 
(Therneau et al., 2015).  
 
The current rtFMS method optimized a single performance measure but multiple performance 
measures could be optimized simultaneously using multi-target regression tree (Aho et al., 2012; 
Osojnik et al., 2015). In some cases, the ease of applying a model to new data or having a 
transparent model that is easily interpretable can be just as important as its performance. A user 
could chose to select a final model based on both optimal accuracy and computational time or 
interpretability. The resulting performance landscapes of multi-target regression tree reflect the 
many facets of model preferences, selection and application. 
 
Final models 
A general overview of rtFMS findings 
Glmnet was consistently one of the best-performing model algorithms. This is most likely because 
both the FTIR and FA input subsets have many highly correlated variables, which glmnet 
addresses with the elastic-net penalty, alpha (James et al., 2013; Zou and Hastie, 2005). The final 
selection of a glmnet algorithm is in contrast to Fernandez-Delgado et al. (2014) who found the 
random forest algorithm performed the best when applied to over 100 datasets. However, this study 
assumed that preprocessing would affect all algorithms similarly and that algorithms would be 
ranked similarly for all dataset. The differences between this study and ours suggests that findings 
from published non-FMS comparisons of model algorithms or preprocessing options cannot be 
applied to other datasets without FMS comparisons.  
 
Discussion of findings for the FTIR data sets and their application in practice 
There are two broad categories of FTIR standardization methods (Wise, 1996; Wise et al., 2007). 
First, direct standardization uses a transformation that maps the response of a ‘slave’ FTIR 
instrument onto a ‘master’ instrument as done by Grelet et al. (2017). Second, preprocessing 
standardization applies the same preprocessing methods, such as a derivative transformation, to 
data from all FTIR instruments such that any shifts and differences in calibrations due to 
instrumental differences are no longer an issue. For a standardization method to be suitable for this 
study, it needed to be rapid, simple, outcome dependent, require no additional samples, applicable 
to data already collected, and applicable to new observations individually without depending on 
the remaining dataset. Therefore, only standardization by preprocessing was appropriate because 
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direct standardization methods require many additional samples for mapping, such methods are 
not continuous over time, and they do not easily expand to data already collected (Feudale et al., 
2002). First or 2nd derivative transformations were consistently favored over the raw FTIR data in 
both models. This suggests that standardization is needed to adjust for changes in calibration over 
time and differences among instruments.  
 
The next step for the prediction modeling of FTIR data sets is to perform a comparison among 
more standardization methods including the piece-wise direct standardization method reported by 
Grelet et al. (Grelet et al., 2017) using rtFMS. In addition, rtFMS could be used to compare 
SMOTE to other methods of balancing the minority and majority classes of observations. 
 
The component dataset did not perform as well as the FTIR and fatty acid subsets in both the 
NEFA and BHBA models. This is most likely because fatty acid and FTIR data provide more 
detailed information, such as wavenumbers representing the fatty acid composition of milk fat, 
compared to component data that only reports total milk fat. This finding supports that it is 
necessary to invest in incorporating FTIR data and fatty acid calibrations for routine milk analysis. 
Selection of a model utilizing the FTIR subset would require farms to produce in-line FTIR 
measurements. In contrast, the fatty acid prediction subset (FA) would require the additional step 
of sending FTIR data to Qlip N.V. (Leusden, the Netherlands) to produce the fatty acid panel prior 
to its use in a prediction model.  
 
NEFA model 
The NEFA regression tree selected the fatty acid input subset for the final model. This indicated 
that the additional calibrations for more than 60 different fatty acids by Qlip NV (Leusden, the 
Netherlands) improved the information gathered by FTIR. We hypothesize that these calibrations 
are acting as a targeted feature extraction step. Fatty acids that are synthesized de novo from 
ketones in mammary epithelial cells and are distinguished by the presence of fewer than 16 carbon 
atoms (Bauman and Davis, 2013). Pre-formed fatty acids on the other hand, have more than 16 
carbons and originate from NEFA or lipoproteins in the circulation (Barber et al., 1997; Neville 
and Picciano, 1997). Thirdly, mixed fatty acids have 16 carbons and can be pre-formed or 
synthesized de novo. Blood NEFA has been found to be highly correlated with milk C18:1 cis-9, 
and also inversely correlated with the proportion of de novo fatty acids in milk (Bell, 1995; 
Friedrichs et al., 2015; Jorjong et al., 2014). The use of ratios between the different fatty acids in 
milk has been shown to perform better than measurements of single fatty acid in predicting blood 
NEFA (Dórea et al., 2017; Mann et al., 2016). These findings support our results that the most 
important predictors in our NEFA model represent all types of fatty acids including de novo, 
preformed, and mixed fatty acids. 
 
BHBA model 
Some of the most important predictors in the final BHBA model are located in the acetone region 
of the FTIR spectra between 1450 and 1200 cm-1 (Hansen, 1999; Heuer et al., 2001). This is in 
line with the previous finding of a high correlation between milk acetone and blood BHBA (Steger 
et al., 1972). Acetone information was not available in the fatty acid or component datasets, which 
could explain why the rtFMS selected the FTIR input subset to predict blood BHBA. In addition 
to acetone, the other highly important predictor of blood BHBA was wavenumber 1542 cm-1 that 
represents milk protein. Other important predictors in the final model were wavenumbers in the 
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“no information regions” of the spectra. Fatty acids have been shown to increase the baseline of 
the spectra in the “no information” spectral regions, (e.g. wavenumbers greater than 4000 cm-1) 
(Grabska et al., 2017). Taken together, this suggests it is necessary to further investigate FTIR 
patterns in the so-called ‘non-information” regions and to study how those regions of the FTIR 
spectrum relate to milk composition. In contrast, the FTIR wavenumbers associated with milk fat 
(i.e., 2927, 2862, 1743, 1454 and 1390 cm−1) were not among the important predictors in our model 
(Socrates, 1980). This finding suggests that fatty acid information is more important than overall 
fat composition when predicting blood BHBA. These findings will improve the recommendations 
for cow health and well-being that can be made based on milk testing data in the near future. 
 
Previous BHBA prediction models based on FTIR data used datasets with different breeds of 
cattle, geographic regions, sampling structure (DIM), and cross-validation methods, wherein direct 
comparisons were not possible. However, our rtFMS method allows for indirect comparisons of 
models using different datasets. Our final BHBA model performance measures overlapped or were 
significantly better than those of previously published prediction models of blood BHBA that used 
FTIR data including van Knegsel et al. (2010) and Chandler et al. (2017) that used FOSS milk 
acetone and milk BHBA predictions in their model. The FOSS input subset did not perform as 
well in our analysis compared to the FA, COMP, and derivative-transformed IR input subsets. We 
suspect that this is the case because FOSS calibrations were developed for milk BHBA as the 
outcome variable rather than blood BHBA used for the current analysis, wherein the correlation 
between milk and blood BHBA varies widely from 0 to 0.88 (Geishauser et al., 1998). Belay 
(2017), reported a regression prediction model for blood BHBA that applied feature extraction via 
partial least squares regression (PLS) regression, akin to PCA. Our rtFMS results showed that 
eliminating feature extraction using PCA yielded a better performing BHBA model. Therefore, we 
hypothesize that the use of rtFMS would benefit Belay’s model performance for these data through 
the inclusion of additional comparisons of preprocessing and model algorithm options. Most 
recently, Pralle et al. (2018) compared 3 model algorithms and 2 data inputs subsets to predict 
blood hyperketonemia (BHBA ≥ 1.2 mmol/L). Based on our results, improved predictive 
performance could be achieved for this dataset by the addition of a derivative transformation of 
the spectral data and the use of the glmnet algorithm without variable reduction.  
 
Outlook 
The benefit and robustness of rtFMS should be evaluated with additional types of data including 
those with various dimensionalities and different dataset sizes. We foresee additional applications 
of rtFMS to deep learning networks, which are popular for modeling outcome predictions from 
large data sets. Indeed, the optimization of deep learning models through multiple iterations of k-
fold cross-validation and extensive hyperparameter tuning could benefit from the rtFMS approach 
described in this manuscript. We recognize that access to the computational capacity necessary to 
apply FMS can be limited; however, we suspect that this issue will be resolved in the near future. 
Automation of these methods would also be beneficial for incorporating rtFMS in standard 
prediction modeling efforts in applied epidemiology. 
 
CONCLUSION 
In conclusion, rtFMS will allow for the consistent application of FMS to applied epidemiology to 
improve and optimize prediction model performance and rtFMS will eliminate the bias associated 
with empirical selection of method options. Other research areas depending on prediction models 
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such as diagnostic imaging, spatial analyses, surveillance, single-nucleotide polymorphism, and 
microbiome analyses will greatly benefit from applying rtFMS. In the future, rtFMS will continue 
to provide simplicity and structure to FMS during prediction modeling. 
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INTRODUCTION 
Antimicrobials are used in the dairy industry to treat a number of infections. Antimicrobial residues 
can be found in cows’ milk during and after receiving such treatments. The most common 
antimicrobial used in dairy cattle is penicillin, a beta-lactam (Sundlof et al., 1995; USDA, 2008; 
Andrew et al., 2009; De Briyne et al., 2014). Testing for antimicrobial residues in milk is an 
established standard in many countries to prevent contaminated milk from entering the food chain. 
This testing is of great importance for public health, as antimicrobial residues pose health risks to 
consumers such as the potential for allergic reactions (Beyene, 2016). It is also important to prevent 
inhibition of bacterial growth needed during the production of fermented milk products (Albright 
et al., 1961; Kebede et al., 2014). 
 
FTIR 
Fourier transform mid-infrared (FT-MIR) spectrometry is currently used to estimate milk 
components, such as fat and protein percentages, during routine raw milk analyses. Routine milk 
testing using FT-MIR, commonly performed monthly, is done for individual cows by milk testing 
laboratories. Since FT-MIR data are already being routinely collected, there is the opportunity for 
their use as a proxy for additional milk characteristics. FT-MIR has not yet been used to predict 
penicillin antimicrobial residues in milk; However, Sivakesava and Irudayaraj (2002) were able to 
successfully use FT-MIR to predict tetracycline residues in milk. The aim of this study was to 
evaluate the potential use of cow level FT-MIR spectral measurements to predict herds at 
high risk for having samples positive for antimicrobial residues, specifically penicillin. 
However, unlike FT-MIR data being collected at the cow level, testing for antimicrobial residues 
is performed at the herd level by testing bulk tank milk samples. 
 
Micro-Macro 
Using individual level data (micro level) to predict population level outcomes (macro level) 
requires regression modeling methods called multilevel modeling (Dohoo et al., 2003). Multilevel 
modeling, or micro-macro models, were developed to analyze structurally hierarchical data (Croon 
& Van Veldhoven, 2007). The current micro-macro model method uses the mean, or other 
measures of central tendency, of the micro level observations as predictors in the model for a 
macro level outcome (Gelman and Hill, 2006 Bennink, 2014). This method will be referred to in 
this study as the “mean micro-macro” (MMM) multilevel modeling method. However, this 
method is only appropriate when changes in the outcome that is being predicted is associated with 
changes in the mean of the micro-level observations. In cases such as antimicrobial residues in 
bulk milk, only one cow with antimicrobial residues in her milk can change the outcome from a 
negative (no antimicrobial residues present) to a positive outcome (tested positive for antimicrobial 
residues). However, the FT-MIR value of one cow positive for antimicrobial residues from an 
entire herd of cows would not likely significantly change the herd’s mean value of FT-MIR 
wavenumbers. Therefore, the FT-MIR characteristics of negative cows would overshadow the 
possibly unique FT-MIR characteristics of positive cows when cow level data are averaged 
together in the usual micro-macro models. Therefore, a micro-macro method is necessary that 
uses extreme observations for each predictor at the micro level as predictors for the macro 
level outcome. According to the authors, the application of extreme values as predictors in micro-
macro multilevel models have not been reported in literature. 
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In this study, the isolation of the unique FT-MIR risk factors of milk samples positive for 
antimicrobial residues was attempted by assuming that positive samples would have the extreme 
values, such as the maximum or minimum value, of at least one FT-MIR wavenumber. Therefore, 
the first objective in this study was to develop a new method of micro-macro modeling that would 
use extreme values in addition to mean values of the micro-level data as predictors in the model 
for a macro-level outcome. In this study, this method will be referenced to as the “extreme value 
micro-macro” (EVMM) multilevel modeling method. It was hypothesized that the EVMM 
multilevel modeling method would perform significantly better compared to the currently 
available MMM modeling methods.  
 
rtFMS 
With the availability of many machine learning algorithms, data mining and preprocessing 
methods, comparing and selecting a final model optimized for performance in this study needs to 
be done systematically. Tremblay et al. (2018) illustrated the benefit of using the regression tree 
full model selection method (rtFMS) to compare and select among different classification 
algorithms and preprocessing techniques. rtFMS allowed the comparison of many method options 
simultaneously and systematically to remove user bias when selecting the best final model. 
Therefore, the second objective of this study was to compare and select the best final model from 
many possible combinations of methods by means of rtFMS.  
 
We hypothesized that using a systematic approach, rtFMS, to compare multiple optimized 
machine learning methods would lead to the development of a meaningful model able to predict 
herds at high risk of having milk sample positive for antimicrobial residues. Also, it was 
hypothesized that the comparisons of many modeling options would lead to the discovery of 
significant differences in performances among those method options. 
 
Impact  
A model able to predict herds at high risk for antimicrobial residues in bulk milk using cow level 
data would benefit producers, testing agencies and public health. It would aid testing agencies in 
decisions relating to test scheduling and could justify higher or lower frequency sampling and 
testing for some locations. In addition, such a model that uses routinely generated data would not 
be cost prohibitive for producers and testing agencies. Finally, an EVMM modeling method able 
to distinguish extreme values’ influence on a macro outcome would improve the analysis of many 
multilevel data sets in the future where the central tendency values of the micro level observations 
do not accurately reflect changes in macro level outcomes.  
 
 
MATERIALS AND METHODS 
Data analyses were performed in R 3.5.0 (R Core Team, 2018) using Amazon Web Services 
(AWS) cloud computing service Amazon Elastic Compute Cloud (Amazon EC2) 
(http://aws.amazon.com/ec2/). The study used the following R packages: DMwR, MLmetric, 
party, partykit, glmnet, randomForest, gbm, earth, klaR, epiR, fastICA, caret (Liaw and Wiener, 
2002; Weihs et al., 2005; Hothorn et al., 2006; Friedman et al., 2010; Torgo, 2010; Hothorn and 
Zeileis, 2015; Yachen, 2016; Marchini et al., 2017; Ridgeway, 2017; Kuhn, 2018; Milborrow, 
2018; Stevenson et al., 2018).The following functions available within the caret package were 
used: preprocess, groupKFold, findCorrelation, sbf, trainControl, and train. The functions ctree 
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and SMOTE were available within the party and DMwR packages, respectively. The rtFMS 
protocol is described in more detail in Tremblay et al. (2018). 
 
STEP 1 & 2: Data Preparation and Outcome Selection 
For 5 years, between July 2013 and August 2018, all bulk milk collected from Bavarian farms 
were tested for antimicrobial residues (i.e., penicillin) randomly 4 to 6 times per month using a 
brilliant black reduction test (BRT) (AIM-Analytik in Milch Produktions- und Vertriebs GmbH, 
Munich, Germany) and cow level FT-MIR data were collected during monthly routine milk testing 
at those same farms. The current maximum residues limit (MRL) for penicillin is 4 µg kg 
(Commission Regulation (EU) No. 37/2010, 2010). During that time, a total of 1,165,609 herd 
level BRT penicillin residues results were collected and a total of 11,025,962 cow level FT-MIR 
observations were collected from 4824 farms. In this study, the term antimicrobial residues is used 
interchangeably with penicillin residues. 
 
The herd level antimicrobial residues testing data and cow level FT-MIR data were matched 
according to two limits: 1) when they occurred within 7 days of each other and 2) when they 
occurred within 1 day of each other (Table 1). The first dataset included 108 samples positive for 
antimicrobial residues and 220,002 negative herd level samples when matched within 7 days (7d). 
The second dataset included 50 samples positive for antimicrobial residues and 99,657 negative 
herd level samples when matched within 1 day (1d). 
 
Cow level FT-MIR measurements included 1060 wavenumbers between 925.2 nm and 5007.645 
nm. The application of a standardization method is necessary to adjust for instrumental and 
calibration differences since the aim of this study is to develop a model able to be used with 
external data also challenged with calibration differences. In this study the raw absorbance FT-
MIR values (Raw) were compared with standardized FT-MIR data (Table 1). Standardization was 
accomplished by applying a derivative calculation to the spectra. The first derivative (FD) of 
spectra helps address baseline offsets and the second derivative transformations (SD) effectively 
addresses baseline offsets and linear trends in spectra (Duckworth, 2004; Beleites and Sergo, 2012; 
Baker et al., 2014; Smith et al., 2018; Rinnan, 2014). 
 
We attempted to isolate the unique FT-MIR characteristics of milk samples from cows positive for 
antimicrobial residues by assuming that a positive cow would be extreme with respect to at least 
one FT-MIR wavenumber on a farm positive for antimicrobial residues. Therefore, FT-MIR results 
were summarized for all cows on a farm for each sample by calculating the mean, minimum and 
maximum of each of the 1060 FT-MIR wavenumbers for each herd per test date. When building 
MMM models, only the variables representing the means of the FT-MIR wavenumbers were used 
as predictors. However, when building EVMM models, the variables representing the mean, 
maximum and minimum values of the FT-MIR wavenumbers were used as predictors together in 
the same model. The means as predictors were also included in the EVMM models as offsets or 
contrasts to the extreme values to serve as a baseline correction for the maximum and minimum 
values.  
 
STEP 3: Standard Methods 
Highly correlated variables were removed using the findCorrelation function within the caret 
package with a tolerance set to 0.1 which is equivalent to a limit of 0.9 (Kuhn, 2018). Data were 
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centered and scaled (auto-scaling) to obtain mean values of zero and standard deviations of one 
for all variables (Gelman and Hill, 2006).  As described in more detail in Tremblay et al. (2018), 
10 repeated iterations of 10-fold cross-validation was performed by specifying method = 
"repeatedcv", number = 10, and repeats = 10 in the trainControl command within the caret package 
(Bali and Sarkar, 2016; Kuhn, 2018). In addition, the groupKFold function within the caret 
package was applied to make sure the models were not biased due to observations from the same 
farm being included in both the training and test sets in a cross-validation fold (Kuhn, 2018).  
 
Table 1. The predictive modeling method options per corresponding category and area (step 4) 
selected for comparison using regression tree full model selection when applied to a cow level 
milk Fourier-transform infrared spectroscopy dataset to build prediction models for herd level 
penicillin antimicrobial residues in bulk tank milk samples. 

 
 
STEP 4: Comparison categories 
There were many input data set, preprocessing and algorithm options to compare when building a 
prediction model for milk samples positive for antimicrobial residues at the herd level using cow 
level FT-MIR data. All of the predictive modeling method options compared in this study are listed 

Area Category Options 
4.1. Input data A. Data Subset +- 7 days (7d) 

+- 1 day (1 d) 
 B. Micro-Macro Modeling 

Method 
Mean micro macro (MMM) 
Extreme value micro macro (EVMM) 

4.2. Pre-processing A. Standardization Raw absorbance values (Raw) 
1st derivative (FD) 
2nd derivative (SD) 

 B. Feature Selection  Sbf univariate filter (SBF) 
Included all wavenumbers (AllWN) 

 C. Feature Extraction  None (none) 
Performed a PCA (PCA)  
Performed a ICA (ICA)  

 D. Outcome Class 
Balancing with SMOTE 

200% up and 150% down sampling (200) 
500% up and 120% down  sampling (500) 

4.3.  Algorithm   generalized linear models (GLM) 
lasso and elastic-net regularized generalized 
linear models (GLMNET) 
linear discriminant analysis (LDA) 
linear support vector machines (SVM) 
nearest neighbor methods (KNN) 
naive Bayes (NB) 
classification trees (RPART) 
neural networks (NNET) 
gradient boosting machine (GBM) 
random forests (RF) 
multivariate adaptive regression splines (MARS) 



Pattern Recognition and Modeling with Imperfect Data M. Tremblay, 2019 

  
Page 86 of 150 

in Table 1. The predictive modeling method options were separated into 4 main areas: (4.1) input 
subsets, (4.2) preprocessing methods, and (4.3) algorithms (Table 1). 
 
The input subset section (4.1) compared the use of two different input data sets (4.1.A) and two 
different modeling methods (4.1.B). The input data set category (4.1.A) compared the previously 
described 7 days (7d) or 1 day (1d) matched data set. The modeling method category (4.1.B) 
compared the EVMM and MMM modeling method (Table 1).  
 
The preprocessing section (4.2) included categories for standardization (4.2.A), feature selection 
(4.2.B), feature extraction (4.2.D), and for data set balancing using SMOTE (4.2.D) (Table 1). As 
previously described, the three standardization options were compared for possible standardization 
methods: raw-IR, FD, SD (4.2.A). As a feature selection step, step 4.2.B compared modeling 
results when all wavenumber where used (AllWN) after removal of highly correlated variables or 
when using a wavenumber subset selected by the selection by filter (SBF) univariate filter 
available in the caret package in R (Kuhn and Johnson, 2013). The SBF filter is applied at each 
cross-validation fold. For each cross-validation fold, the variables are individually evaluated as a 
predictor for the outcome using a univariate ANOVA model. Only the variables with an ANOVA 
model p-value less than 0.05 are retained for the multivariable modeling for that specific cross-
validation fold (Kuhn and Johnson, 2013). A feature extraction category (4.2.C) compared 3 
options: performing principal component analysis (PCA) (+PCA), independent component 
analysis (ICA) (+ICA), or not performing any feature extraction (none). When applying PCA, the 
default 95% variance threshold was used to select the number of resulting components (Kuhn and 
Johnson, 2013). When applying ICA, the number of independent components used was equal to 
the number of predictors in the dataset (Kuhn and Johnson, 2013; Marchini et al., 2017).  
 
Due to the low prevalence of observations positive for antimicrobial residues, this data set is 
considered imbalanced. Depending on the classification algorithm used, data sets will be 
considered imbalanced when the ratio between the two outcome classes reach 1:2 to 1:10 (Sun et 
al., 2009; He and Ma, 2013). Not only do rare event cause imbalances between the number of 
observations per outcome classes (i.e., positive and negative) but this is also often associated with 
a small number of observations in the minority class. Common classification algorithms are not 
well suited to handle small sample sizes per outcome class and imbalanced data (Sun et al., 2009). 
However, sampling techniques such as the synthetic minority over-sampling technique (SMOTE) 
have been used successfully to address these issues (Sun et al., 2009; Batista, 2004). The synthetic 
minority over-sampling technique (SMOTE) generates new observations of the minority class 
(positive observations) and under samples the majority class to obtain a balanced dataset for 
training (Chawla et al., 2002). The balancing step (4.2.B) compared the use of two different amount 
of up sampling amounts when applying SMOTE. During each iteration of the model training, 
SMOTE was applied by over-sampling the minority classes by 500% and 200% and under-
sampling the majority class by 120% and 150%, respectively. The up and down sampling 
percentages resulted in one-to-one ratios between the number of observations in the majority and 
minority classes.  
 
The algorithm section (4.3) included the comparison of the following eleven machine learning 
algorithms available through the caret library (Kuhn, 2008) were compared:  logistic generalized 
linear models (GLM), lasso and elastic-net regularized generalized linear models (GLMNET), 
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linear discriminant analysis (LDA), linear support vector machines (SVM), nearest neighbor 
methods (KNN), naive Bayes (NB), classification trees (RPART), neural networks (NNET), 
gradient boosting machine (GBM), random forests (RF), and multivariate adaptive regression 
splines (MARS). These algorithms were run using the following commands in the caret package 
and default convergence criteria were used: “glm”, “glmnet”, “lda”, “svmLinear”, “knn”, “nb”, 
“rpart”, “nnet”, “gbm”, “rf”, and “earth”, respectively (Kuhn, 2018). The hyperparameters for 
following 7 model algorithms were automatically selected (i.e., fine-tuned) using a grid search: 
GLMNET, SVM, GBM, NB, RF, NNET, KNN. The grid search compares 10 hyperparameter 
values that span a meaningful range for each hyperparameter (Bergstra and Bengio, 2012; Kuhn, 
2018). A probability threshold of 0.5 was used to differentiate between positive and negative 
predictions (Hastie et al., 2009).  
 
Step 5 & 6: Modeling and Performance Measure. A model was run for every combination of 
options described in step 4 and in Table 1. A total of 1584 models were run. Since the goal of this 
model was to predict a herd’s overall risk of having a sample positive for residues and due to the 
imblanced nature of the data set, balanced accuracy was selected as the performance parameter for 
the regression tree (Japkowicz and Stephen, 2002). The 100 cross-validation folds’ balanced 
accuracies were average together for each model. This value was used as the models’ performance 
estimate in the regression tree. 
 
Step 7: Regression Tree. As described in step 7 of Tremblay et al. (2018), the models’ 
performance measures were used as the outcome variable in a nonparametric regression tree. The 
regression tree was building using the ctree function from the party package in R (Hothorn et al., 
2006). The categories described in step 4 became the predictors in the regression tree (Equation 
1). The factor levels of the variables used in equation 1 are described in Table 1.  
 
Equation 1. Balanced Accuracy ~ Data Subset + Micro-Macro Modeling Method + 
Standardization + Feature Selection + Feature Extraction + Outcome Class Balancing using 
SMOTE + Algorithm 
 
The regression tree discovers the independent variable most associated with the dependent 
outcome variable (i.e., Balanced Accuracy) with a p-value less than 0.05.  If such an association 
exists, the data is split into two according to the selected variable. These subsets are represented 
by branches and nodes in the regression tree. This is repeated until no more significant differences 
are found between independent variable and the outcome variable. As described by Tremblay et 
al. (2018), a bonferonni correction for multiple comparisons of means was used and pruning of the 
tree was not performed (Hothorn et al., 2006).  
 
Due to the regression tree’s large size, only the half of the tree with the better performance was 
shown. The half of the tree with the lesser performance (i.e., representing the models having used 
the AllWN option in step 4.2.B) was not included. The resulting regression tree was shown in 
Figure 1. 
 
Step 8: Final Model. The terminal node with the best performance, i.e. highest balance accuracy 
was located and the options selected by the regression tree that led to this final node were noted 
and described. The number of models remaining in the final node are those that were not separated 
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by significant differences in modeling options listed in Table 1. Personal preference was used to 
select the final model from the models represented by the final node with the best performance. 
The selected final model was applied to the entire original dataset for final performance measures 
and measures of uncertainty. The final model’s performance measure were then listed in Table 2. 
 
 
RESULTS 
Step 5-7. The first half of the regression tree (32 terminal nodes) is shown in (Figure 1). This half 
of the regression tree represents the half with the better performing branches due to the selection 
of the SBF option (p-value < 0.001). Within this half of the regression tree, the average number of 
models per terminal node was 23.3 (SD 20.4), and the average balanced accuracy was 54.6% (SD 
2.91). The 1st terminal node had the highest performance. It contained 10 models with an average 
balanced accuracy of 60.9 (SD 0.59). The final model was selected after 6 decision nodes. (i) The 
first decision node selected the SBF feature selection option over using all wavenumbers (p-value 
< 0.001) (not shown in Figure 1). (ii) The second decision node selected the following model 
algorithms (p-value < 0.001): GLM, GLMNET, LDA, NNET, and SVM (p-value < 0.001). (iii) 
The third decision node selected the ICA feature extraction option over the PCA and no feature 
extraction options (p-value < 0.001). (iv) The fourth decision node selected the FD option over the 
SD and Raw standardization options (p-value < 0.001). (v) The fifth decision node selected the 
EVMM modeling method over the MMM modeling method (p-value < 0.001). (vi) The final 
decision node selected the 1 day data subset option over the 7 day data subset option (p-value < 
0.02) (Figure 1).   
 
Step 8. Options within the Outcome Class Balancing with SMOTE (4.2.D) categories were not 
selected by the regression tree. No significant differentiation was made among the following model 
algorithms: GLM, GLMNET, LDA, NNET, and SVM. The final model selected had the following 
options: 1 day, EVMM, FD, SBF, ICA, 200%, and GLMNET. The initial dataset for this model 
had 99707 observations and 3177 predictors. Each cross-validation fold had on average 45 (SD 
1.9) positive observations and 89691 (SD 465.3) negative observations. Applying a 200% up-
sampling and 150% down-sampling SMOTE percentages resulted in a balanced dataset with an 
average of 270 (SD 11.5) total observations. On average, SBF used 122 (SD 42.4) predictors per 
fold. The 10 most commonly selected predictors include: the minimum of wavenumbers 1048.56, 
1052.415, 1056.27, and 1060.125; the mean of wavenumber 2679.225, 2683.08, 2686.935, 
1403.22, and 2675.37; and the maximum of wavenumber 2683.08. The final model cross-validated 
performances when predicting herd level outcomes are listed in Table 2. The herd level data set 
had a true prevalence of 0.05%, while the final model had a balanced accuracy of 62.5 (95% CI: 
54.9 – 69.3), sensitivity of 62.0 (95% CI: 47.2 – 75.4), and specificity of 62.9 (95% CI: 62.6 – 
63.2) (Table 2). The final model’s hyperparameter values were alpha = 0.7 and lambda = 
0.0001862347.  
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Figure 1. rtFMS regression tree results. Due to space, only the half of the regression tree with the 
better performing models was shown (only the models using SBF feature selection option); 
n=number of models in each terminal node; boxplots visually represent the balanced accuracy of 
models per terminal model. The bottom and top of the box represent the 25th and 75th percentiles, 
respectively, and the horizontal line inside the box is the median; Subset= Data Subset category; 
7d= +- 7 days; 1d = +- 1 day; Micro-Macro = Micro-Macro Modeling Method category; MMM = 
Mean micro macro modeling method; EVMM= Extreme value micro macro modeling method; 
Stand. = Standardization category; Raw= Raw absorbance values; FD= 1st derivative; SD= 2nd 
derivative; Feat.Ext = Feature Extraction category; none = no feature extraction performed; PCA= 
Performed a PCA; ICA = Performed a ICA; SMOTE= Outcome Class Balancing with SMOTE 
category; 200= 200% up and 150% down-sampling; 500 = 500% up and 120% down-sampling; 
Algorithm=Algorithm category; GLM=logistic generalized linear models algorithm; 
GLMNET=lasso and elastic-net regularized generalized linear models algorithm; LDA=linear 
discriminant analysis algorithm; LDA=linear discriminant analysis algorithm; SVM=linear 
support vector machines algorithm; KNN=nearest neighbor methods algorithm; NB=naive Bayes 
algorithm; RPART=classification trees algorithm; NNET=neural networks algorithm; 
GBM=gradient boosting machine algorithm; RF=random forests algorithm; MARS=multivariate 
adaptive regression splines algorithm. 
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Table 2. Final models’ performance measures with 95% confidence intervals. 

Performance Measure Estimate 
95% Confidence Interval 

Lower Upper 
Apparent prevalence, % 37.12 36.82 37.42 
True prevalence, % 0.050 0.037 0.066 
Sensitivity, % 62.00 47.17 75.35 
Specificity, % 62.90 62.59 63.20 
Diagnostic accuracy, % 62.90 62.59 63.20 
Balanced accuracy, % 62.45 54.88 69.27 
Positive predictive value, % 0.084 0.057 0.119 
Negative predictive value, % 99.97 99.95 99.98 
Likelihood ratio of a positive test 1.67 1.34 2.08 
Likelihood ratio of a negative test 0.60 0.42 0.86 
Kappa 0.0007 0.0003 0.0010 

 
 
DISCUSSION 
In this study a new method of micro-macro modeling, EVMM, was developed. EVMM was 
demonstrated by the development of a model for the prediction of herds’ risk for antimicrobial 
residues (penicillin) in raw bulk milk using cow level FT-MIR spectrometry data. The rtFMS 
method was successful in systematically comparing and selecting modeling methods.  
 
EVMM 
For this study, EVMM was found to perform consistently better compared to the current MMM 
multilevel modeling approach. These results suggest that EVMM is an appropriate alternative to 
current MMM methods specifically when a small proportion or even just one of the micro level 
(individual level) observations can cause a change in the macro level (population level) outcome.  
 
This data set included repeated measurements at the cow and farm level. However, random effects 
or corrections for within cluster correlations and repeated measures per farm were not used in this 
study. This is because if the models would have corrected for repeated measures per farm and cow, 
the effect of the extreme values would have been mitigated by the random effects (Gelman and 
Hill, 2006; Clark and Linzer, 2015). An antimicrobial residues violation by a single cow on an 
otherwise average farm with regards to FT-MIR wavenumbers is a single, short lived exception 
that could be represented by an extreme value. Such a unique occurrence would be lost if it was 
averaged across the farm and cow’s other data using random effects. However, not correcting for 
repeated measures can overfit a model by overinflating parameter estimates and overestimating 
effects’ statistical significance and underestimating standard errors (Dohoo et al., 2003; Gelman 
and Hill, 2006; Crawley, 2013). Nonetheless, since this study built prediction models and not 
parameter estimation models the focus was more on the performance of predictions, and not so 
much on the significance of estimated effects. Additionally, the cross-validation method employed 
did not use data from the same farm in both the training and test sets per cross-validation fold. This 
guaranteed that the repeated measures did not cause model overfitting. Finally, as a prediction 
model, it is not advisable to be restricted to only applying the model to data from the farms that 
were used in building the model. Therefore, bypassed mixed effect modeling were bypassed or the 
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sake of developing an optimized prediction model able to make meaningful predictions of external 
data for single, short-lived exceptions like antimicrobial residues violations.  
 
An example of when the EVMM method would be appropriate is when modeling the presence or 
absence of a disease at the population level with individual level data. In some scenarios where 
the transmission rate is high, the population is susceptible and the contact rate is high, it only takes 
one or very few transmission events or infectious individuals to introduce a disease into a new 
population (Anderson and May, 1992). The individuals responsible for the introduction of a 
disease might have extreme values of the number of past international travel, contacts with 
livestock, or might have been mingling with large groups of people. The EVMM modeling 
technique might find an association with these parameters’ extreme values and the introduction of 
a disease, while the mean of the individual level of the same variables might not be significantly 
associated with the outcome.  Additionally, in finance, one company or industry’s extreme event 
can be the best predictor of significant changes in the overall financial market (Embrechts et al., 
2013). These examples of extreme events might be better predictors for the macro level outcome 
compared to the central tendency of all the data. In such cases using an EVMM model could help 
identify the characteristics of the unique event, individual or mutation that correspond to an 
outcome change at the macro level.  

 
In the future, EVMM could be investigated as a first step toward developing micro level models 
when micro level outcomes are not available. For example, in this study the same model built for 
herd level outcomes could be applied to cow level observations to predict which individual cows 
are most likely contributing to a herd sample positive for antimicrobial residues. To accomplish 
this, a cow’s single FT-MIR data value per FT-MIR wavenumber would serve both as an extreme 
value and as a mean value per FT-MIR wavenumber. Future on-farm measurements of FT-MIR 
data could facilitate this cow flagging in real time. This jump between levels of observation from 
cow to herd level and back is at the core of applications for EVMM. 
 
In future studies, other combinations or other types of summary statistics could be used for the 
purpose of identifying extreme events for the analysis. Possible examples for alternative 
parameters from summary statistics that could represent extreme events include quartiles, standard 
deviation and other measures of variation, and the mode or median as well as other measures of 
central tendency. Additionally, methods that are usually employed to identify outliers such as a 
limit of plus or minus 3 standard deviations could be used in future EVMM modeling methods to 
identify extreme values (Ben-Gal, 2005). Prediction models using different combinations or other 
types of summary statistics warrants systematic comparisons of their performance. 
 
Final Model 
The use of rtFMS for the comparison and selection of modeling methods resulted in a final model 
for predicting herds’ risk for penicillin residues in herds’ raw bulk milk. Given the extremely low 
prevalence of the event of samples positive for antimicrobial residues (0.05%), a sensitivity of 
61.4% and a specificity of 61.8% was notable given the challenges belonging to these data, among 
which: a rare event with imbalanced data, multilevel data that included mismatched data in time 
(cow and herd level data were not collected nor tested on the same day). Although, the final model 
had suboptimal performance, this study suggests that there is meaningful information present in 
milk FT-MIR data relating to the presence of antimicrobial residues (specifically penicillin).  
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The MMM models were able to reach 59% (CI- 58.5 - 60.6) balanced accuracy; Although not 
notable, it did signify that there was some information available for predictions by averaging the 
cow level data together. This information is most likely associated with the farm-level 
management, such as overall lesser total milk solids and greater SCC at the herd level. These 
characteristics have been shown to be associated with antimicrobial residues in bulk milk (Althaus 
et al., 2003). However, the EVMM models consistently performed significantly better than the 
MMM models. This signifies that working towards isolating the extreme values from the cow(s) 
responsible for the residue positive result performs better than finding the average herd-level FTIR 
characteristics associated with antimicrobial residues. The EVMM models could also be finding 
associations with milk characteristics associated with residues among which total solids or greater 
SCC but now at the cow level (Althaus et al., 2003). However, EVMM models could also be 
representing the true chemical effects of the residue on the spectra. These results will initiate 
further research aimed at discovering such patterns and information in more detail. 
 
One of the reasons for the relatively low predictive performance of the current model could be 
associated with the fact that most herd and cow level samples were not taken or analyzed on the 
same day. Significant changes in the presence of antimicrobial residues among several consecutive 
days is likely. However, given the low prevalence of samples positive for antimicrobial residues, 
it was impossible to limit the data used to data where the herd and cow level were collected on the 
same day. Therefore, there is a chance that the FT-MIR data did not always correctly represent the 
herd level testing result. Since violations of antimicrobial residues in milk are short-lived, cow 
level data analyzed for FT-MIR spectra would not be representative for the herd level test results 
when measurements are too far apart. In future studies, it is advisable to take cow level FT-MIR 
samples on same day as the herd level bulk tank residues testing. 
 
The current BRT diagnostic test does not have 100% specificity. BRT’s false positive rates were 
found to be 3.75% in sheep’s milk and 2.5% in goats’ milk (Althaus et al., 2003; Romero et al., 
2016). Although this could influence the final EVMM model’s performance, it most likely does 
not account for all of the final false negative sample results. Additionally, the detection level of 
the current diagnostic test for penicillin residues is 2 µg/kg (Fejzić et al., 2014). Therefore, there 
is the potential for the milk of one residues positive cow to be diluted in the bulk tank past the 
detection level of the current diagnostic tests. If this is the case, it could suggest that some of the 
final model’s false positives could in fact be correctly identifying residues at a level lower than the 
MRL of 4 µg/kg. Especially, since the FT-MIR data are available at the cow level, the FT-MIR 
technique might prove more sensitive than bulk tank testing. If this is the case, a quantitative test 
would be needed as a second step to determine if the level of the residues is above the MRL at the 
herd level.  
 
rtFMS and FT-MIR  
The first, and therefore the most important, decision selected by the regression tree was the use of 
a univariate filter, SBF, to select variables to go into the model instead of using all wavenumbers 
after the highly correlated variables were removed. This ensures that subsequent feature extraction 
methods extract signals associated with the outcome and not other information present in FT-MIR 
data such as fat and protein content. This is the first published comparison of FT-MIR results when 
using all available wavenumbers versus using a SBF filter. The significant improvement from the 
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resulting model is an argument in favor of applying this method more commonly for the analyses 
of big, high-dimensional data in the future. 
 
Similarly to the SBF results, ICA performed significantly better compared to both PCA and not 
performing feature extraction. The use of ICA for analyzing FT-MIR data has been described 
previously by Hahn and Yoon (2006). The results suggest that ICA is able to separate out distinct 
signals from the complex FT-MIR spectrum; On the other hand, PCA, which can be seen as 
compressing the many data signals from FT-MIR data (Sun, 2012), was not selected as the better 
performing approach to feature reduction by rtFMS. To the best of the author’s knowledge, this is 
the first comparison between ICA and PCA preprocessing techniques during FT-MIR data 
modeling. Significance of the three options for feature extraction were not always the same among 
the branches of the rtFMS. Therefore, the results of the current study highlight the importance of 
a comparison and systematic approach to full model selection.  
 
Tremblay et al., 2018 found that using either FD or SD transformations were preferred over raw 
FT-MIR data. However, in this study, the FD transformation was preferred over both the SD 
transformation and the raw data for improved model performance. Similar finding were reported 
by Soyeurt et al. (2011), Dal Zotto et al. (2008), and De Marchi et al. (2014). This suggests that 
correcting for baseline shifts by using a FD transformation significantly improves the model 
performance, but that removing linear trends using a SD actually removes information that is 
important when analyzing for AMR signals. In addition, many of the linear models tended to 
perform significantly better compared to many non-linear models. This suggests the presence of a 
linear and additive correlation between the most influential predictors and the outcome variable as 
discussed in literature (Gelman and Hill, 2006).  
 
CONCLUSIONS 
In this study, the EVMM modeling method was shown to perform significantly better compared 
to the MMM modeling approach. This suggests that extreme observations at the micro level were 
better predictors for the macro level outcome compared to the predictors’ mean value when 
modeling a single, short-lived exception (i.e., outlier event) like antimicrobial residues in milk 
events. This finding, among many others, was made possible by the use of rtFMS that allowed 
systematic comparisons of many modeling options. Finally, this study provided evidence that cow 
level FT-MIR spectral data hold information that could be used to predict herds’ risk for positive 
penicillin residues at the herd level.  
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CHAPTER 4- UNSUPERVISED LEARNING INTRODUCTION 

 
 
Goal  
In the supervised learning section (Chapters 2 and 3), there was still the buttress of associations 
between risk factors and an outcome. However, for the pattern recognition section, an outcome 
variable was not available and so unsupervised learning methods needed to be employed. The goal 
of unsupervised learning is to discover grouping of observations based on the variance explained 
by the input parameters and the patterns among the input parameters (Bishop, 2006; Hastie et al., 
2009). Unsupervised learning techniques can be invaluable and necessary during the initial process 
of understanding and grasping the different aspects of a dataset before moving on to a supervised 
learning task (Chollet, 2018). 
 
Assumptions  
Unsupervised learning methods work under the assumption that there is an underlying grouping 
pattern to find, that the data set is representative of the population, that collinearity is not present 
among the input parameters, that they are normally distributed and that the variables are 
meaningful for explaining the underlying pattern (Jain and Dubes, 1988; Hair et al., 2006; Hastie 
et al., 2009).  

 
Challenges 
The major challenge with unsupervised learning is how to validate the results especially since the 
methods will always produce results. Since an outcome variable is not available, testing the 
biological relevance of the results is not straight-forward (Hastie et al., 2009; Hair et al., 2006). In 
addition, unsupervised learning methods can be limited in their ability to be generalized because 
the results are dependent on the parameters used in the analysis (Jain and Dubes, 1988). Finally, 
challenges associated with unsupervised learning techniques such as cluster analysis include 
selecting the number of clusters, quantifying the degree of misclassifications, and selecting the 
input parameters (Hair et al., 2006; Jain and Dubes, 1988). 
 
Approaches  
In Chapter 4.1 a cluster analysis was performed on blood metabolic parameters of early lactation 
Simmental cows in Bavaria, Germany. To validate the findings of the cluster analysis, post-hoc 
regression models were used. The post-hoc regression analysis examined associations between the 
observations’ cluster classification and other clinical, milk and blood parameters that were not 
used in the cluster analysis. The post-hoc findings supported and aided in the interpretation of the 
clustering results. The cluster analysis with the addition of these post-hoc steps lead to the 
description of a novel syndrome for poor metabolic adaptation in dairy cows called “Poor 
Metabolic Adaptation Syndrome” (PMAS).  
 
In Chapter 4.2, a data set was analyzed that included data from 529 dairy farms with automatic 
milking systems (AMS) in North America. Only the variables that had been shown to be associated 
with farms’ performance in Chapter 2.3 were used as input parameters. This assured that the cluster 
analysis would focus on the pattern of interest related to farms’ performance in the data. The 
common concern about how generalizable the results of clustering are to a larger population was 
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mitigated in two ways: 1) by only suggesting for these results be applied to the farms that were 
used in the cluster analysis, 2) by using 80% of all the farms with the same brand of AMS to 
perform the cluster analysis. To validate the findings of the cluster analysis, a comparison was 
made between the resulting cluster classification and the current method that is used to classify 
these farms for benchmarking. The cluster analysis classification was a better predictor for a farm’s 
milk production than was the current benchmarking method.  
 
Unsupervised learning is a key step for the understanding of a data set’s characteristics 
before engaging in a supervised learning task. Therefore, it should be included in systematic 
approaches to data analysis. However, post-hoc analyses of unsupervised learning results 
and the careful interpretation of the results also need to be included in the systematic 
approach to unsupervised learning methods. 
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CHAPTER 4.1 

 
 
 
Identifying poor metabolic adaptation during early lactation in dairy cows using cluster 
analysis 
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ABSTRACT 
Currently, detection of cows with poor metabolic adaptation during early lactation, or poor 
metabolic adaptation syndrome (PMAS), are often identified based on detection of 
hyperketonemia. Unfortunately, elevated blood ketones do not manifest consistently with 
indications of PMAS. Expected indicators of PMAS include elevated liver enzymes and bilirubin, 
decreased rumen fill, reduced rumen contractions, and a drop in milk production. Expected 
characteristics of cows with PMAS are higher producing, older cows earlier during lactation with 
greater BCS at the start of lactation. 
 
It was our aim to evaluate commonly used measures of metabolic health (input variables) that were 
available (i.e., blood beta-hydroxybutyrate acid, milk fat to protein ratio, blood non-esterified fatty 
acids (NEFA)) to characterize PMAS. Bavarian farms (n=26) with robotic milking systems were 
enrolled for weekly visits for on average of 6.7 weeks. Physical examinations of the cows (5 to 50 
days in milk) were performed by veterinarians during each visit and blood and milk samples were 
collected. Resulting data included 790 observations from 312 cows (309 Simmental). Principal 
component analysis (PCA) was conducted on the three input variables, followed by K-means 
cluster analysis of the first two orthogonal components. The five resulting clusters were then 
ascribed to “Low”, “Intermediate” or “High” PMAS classes based on their degree of agreement 
with expected PMAS indicators and characteristics in comparison with other clusters. 
 
Results revealed that PMAS classes were most significantly associated with blood NEFA levels. 
Next, we evaluated NEFA values that classify observations into appropriate PMAS classes in this 
dataset, which we called separation values. Our resulting NEFA separation values (< 0.39 [0.360 
- 0.410] mmol/L to identify Low PMAS observations, and ≥ 0.7 [0.650 - 0.775] mmol/L to identify 
High PMAS observations) were similar to values determined for Holsteins in conventional milking 
settings diagnosed with hyperketonemia and clinical symptoms such as anorexia and a reduction 
in milk yield as reported in literature. Data from additional locations, breeds, and milking systems 
should validate the findings. Future studies evaluating additional clinical and laboratory data are 
needed to validate these finding. The aim of future studies would be to build a PMAS prediction 
model to alert producers of cows needing attention and help evaluate on-farm metabolic health 
management at the herd level. 
 
INTRODUCTION 
 
Detection of cows with poor metabolic adaptation during early lactation, or poor metabolic 
adaptation syndrome (PMAS), are often identified based on detection of hyperketonemia (blood 
BHBA ≥ 1.2 mmol/L). In spite of initial observations (Sjollema and Van der Zande, 1923; Shaw, 
1956), elevated blood ketone levels do not manifest consistently with indications of poor metabolic 
adaptation during early lactation (Andersson, 1984; Simensen et al., 1990; Duffield et al., 2009). 
The indications for poor metabolic adaptation to negative energy balance (NEB) during early 
lactation are secondary to the high energy demands of milk production (Baird, 1982). Expected 
indications of PMAS include elevated liver enzymes and bilirubin, decreased rumen fill, reduced 
rumen contractions, and a drop in milk production (Sevinç et al., 1998; Sahinduran et al. 2010; Issi 
et al., 2016; Ghanem et al. 2016; Cao et al., 2017). Expected characteristics of cows with PMAS 
are higher producing, older cows, earlier during lactation, and with greater BCS at the start of 
lactation (Baird, 1982; Rukkwamsuk et al., 1999; Andrews et al., 2004; Ghanem et al. 2016).  
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The need for an accurate measurement associated with PMAS has not been addressed. It was our 
aim to re-evaluate the commonly-used measures of metabolic health (input variables) that were 
available (i.e., blood beta-hydroxybutyrate acid, milk fat to protein ratio, blood non-esterified fatty 
acids (NEFA)) to characterize patterns of PMAS. Unlike some infectious diseases with clear case 
definitions (present or absent), cases of metabolic disease are more defined as syndromes observed 
on a spectrum of signs. A strictly binomial outcome variable such as "diseased or healthy" can be 
difficult to define for the purpose of prediction models. Principal Component Analysis (PCA) and 
cluster analysis do not require an outcome variable. A PCA detects important patterns among cases 
by generating linear combinations of meaningful potential predictors that represent the data’s 
variance associated with disease. The PCA is followed by a cluster analysis that systematically 
groups the most similar observations into clusters that best explain the data’s variance and 
therefore disease states (Brocard et al, 2011).  
 
We hypothesized that performing a PCA and a cluster analysis using the input variables would 
differentiate groups of cattle with regards to patterns of PMAS. A clear understanding of PMAS 
is needed to further study the underlying mechanisms, possible prevention and treatment options, 
and to provide better indicators of genetic selection for metabolic health. 
 
MATERIALS AND METHODS 
Data Collection 
Sixty farms equipped with Lely or Lemmer-Fullwood automatic milking systems (AMS) up to 70 
kilometers from Munich were asked to participate in the study (Lely Industries N.V., Maassluis, 
the Netherlands; Lemmer-Fullwood GmbH, 53790 Lohmar, Germany). Twenty-six Bavarian 
farms (10 Lely, 16 Lemmer-Fullwood) were enrolled between May 2015 and December 2015. 
Data were collected as farms were enrolled between May 2015 and February 2016. On average, 
farms were visited for 6.65 (SD 1.16) consecutive weeks (range: 3 to 10).  
 
Up to 8 early lactation cows between 5 and 50 days in milk (DIM) were evaluated during each 
visit. If more than 8 cows were between 5 and 50 DIM, the 8 cows earliest in their lactation were 
sampled. There was no minimum number of cows sampled to be included in the analysis. Milk 
samples were collected from all milkings on the day before the visit using an automatic sample 
collecting system attached to the automatic milking system for a minimum duration of 12 hours 
(7:00-19:00 hrs or 8:00-20:00 hrs). Milk collection had to be from voluntary milkings (sample are 
not to be collected by hand, and cows are not to be fetched into milking robot for collection). 
 
Physical exams of the cows and blood sample collection were performed by the same two 
veterinarians (SP and HL). To screen animals for negative health conditions other than PMAS, 
physical exams included evaluating behavior, hygiene, and conformation, measuring internal body 
temperature, heart rate, and respiration rate, and performing heart auscultation, lung auscultation, 
complete udder examination, abdominal auscultation, percussion, and rectal palpation. Farm and 
cow identification numbers, date, DIM, breed and lactation number were recorded. 
 
Clinical information documented for use in the analysis was the frequency of rumen contractions 
as described by Dirksen (1979), milk reduction compared to the day before, back fat measured by 
ultrasound as described by Staufenbiel (1992), change in back fat in one week, and rumen fill was 
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scored between 1 and 5 with 5 representing the most fill (Zaaijer and Noordhuizen, 2003; 
Appendix).  
 
Blood samples were analyzed using the Cobas c311-Analyzer (Roche Diagnostics, Rotkreuz, 
Switzerland) for total blood protein, albumin, cortisol, bilirubin, aspartate aminotransferase (AST), 
gamma-glutamyl transferase (GGT), glutamate dehydrogenase (GLDH), creatine kinase (CK), 
beta-hydroxybutyrate (BHBA), and non‐esterified fatty acids (NEFA). Milk production (kg) was 
calculated using the AMS mid-24 hour milk production measurement. Corresponding milk 
samples were analyzed for milk fat and protein percent, urea, and lactose using the MilkoScan FT-
6000 (FOSS GmbH, Hamburg, Germany), and somatic cell count was measured using the 
Fossomatic 5000 (FOSS GmbH, Hamburg, Germany). 

 
Data Editing 
Several criteria were used to select data for the analysis. Observations were removed if any non-
PMAS related health event was suspected or diagnosed at the time of the physical exam and if 
milk data were not collected from the robot. The earlier observations were removed if multiple 
milk samples were collected from a cow within the previous 12 hour period. Outliers, most likely 
due to data entry errors, were identified by visual inspection of each variables’ histogram. Finally, 
observations were removed if it had a missing value for an input variable. The descriptive statistics 
(mean, standard deviation, and number of missing values) and variable descriptions of the final 
dataset were examined.  
 
 PCA and Cluster Analysis 
All analyses were performed using the program R version 3.0.1 (R Development Core Team, 
2013). The princomp and kmeans functions were used to perform the PCA and cluster analysis, 
respectively. The assumption of PCA is that input variables are normally distributed and that they 
have linear relationships (Borcard et al., 2011). The statistical assumption about the independence 
of observations can be relaxed with heuristic procedures (non-inference methods) such as PCA 
and cluster analysis (Jolliffie, 2002). The three input variables, those are: NEFA, BHBA, and FPR, 
were scaled and centered to standardize the data using the scale function in R. The scale function 
subtracts the mean of each variable from all the variable’s values and then divides each value by 
the variable’s standard deviation. Furthermore, scatter plots of the input variables were inspected 
for non-linear relationships. 
 
A principal component analysis (PCA) was performed to transform the data into a number of 
orthogonal principal components (PCs) (Borcard et al., 2011). The PCs are ordered in descending 
order based on the amount of the variance they explain. The PCA results were examined by means 
of a scree plot that shows the decreasing amount of variance explained by PCs sorted by the amount 
of variance explained. The “elbow rule” was applied to determine how many PCs would be used 
in the cluster analysis. Briefly, the “elbow rule” selects PCs up until the elbow of the plot that is 
where the slope between PCs begins to increase most prominently (Johnson and Wichern, 2002; 
Jackson, 1993). 
 
A cluster analysis was performed using K-means, a least-squares method. K-means is a linear 
method and as such requires normally distributed input variables which are not highly correlated 
(Borcard et al., 2011); therefore, the resulting PCs were visually inspected for normality by 
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creating histograms and pairwise Pearson correlations were calculated. The wrapper cascadeKM() 
calculated the simple structure index (ssi) criterion 1000 times per cluster number between 2 and 
10 clusters (Borcard et al., 2011). The final number of clusters was selected by applying the elbow 
rule to the ssi plot. This was done to balance the minimum number of clusters with the maximum 
ssi criteria (Hothorn and Everitt, 2014). The silhouette plot was used to identify 
misclassifications, those are any observations with negative silhouette widths, and to evaluate the 
distribution of observations among clusters.  
 
Comparison of External Variables per Cluster or PMAS Class 
External variables are all the variables available that were not used as input variables for the PCA 
and cluster analysis: DIM, lactation, clinical information and blood and milk data excluding 
BHBA, FPR, and NEFA. Linear mixed-effect regression models were used to test for statistically 
significant associations between each of the external variables and the clusters with an alpha of 
0.05. Cow ID and Farm ID were included as random effects on the intercept. Because there was 
no within-cow variation in lactation number, duplicate cow-cluster observations were removed 
and only farm ID was included as a random effect when modeling lactation number (see footnote 
in Table 2 and Table 3). A fixed effect of DIM and an interaction between DIM and cluster number 
were added if they significantly improved the models’ goodness of fit using a log-likelihood ratio 
test. Goodness of fit was evaluated using diagnostic plots of the residuals among which the 
predicted versus fitted values. External variables were log transformed to normalize residuals, but 
the model estimates were transformed into the original scale for reporting the results. Results were 
presented as least-squares means and standard errors per cluster and post hoc comparisons among 
clusters’ estimates were adjusted for multiple comparisons using Tukey’s HSD method (Gelman 
and Hill, 2006). The significance of cluster number as a fixed effect was based on type III sum of 
squares and used an alpha level of 0.05 to determine significance. Post-hoc estimates for Back Fat 
were also reported at the beginning of lactation (DIM =5) when the interaction between cluster 
number and DIM was significant. Linear mixed-effect regression models were used again to 
quantify associations among each of the external variables and the 3 PMAS classes described in 
the next paragraph. 
 
Classification of Clusters to PMAS Classes 
The clusters’ external variable characteristics were compared to expected indicators and 
characteristics of PMAS including: elevated liver enzymes and bilirubin, decreased rumen fill, 
reduced rumen contractions, and a drop in milk production (Sevinç et al., 1998; Sahinduran et al. 
2010; Issi et al., 2016; Ghanem et al. 2016; Cao et al., 2017). Expected characteristics of cows 
with PMAS are higher producing, older cows, earlier during lactation, and with greater BCS at the 
start of lactation (Baird, 1982; Rukkwamsuk et al., 1999; Andrews et al., 2004; Ghanem et al. 
2016). The clusters were then ascribed to “Low”, “Intermediate” or “High” PMAS classes based 
on their degree of agreement with expected PMAS indicators in comparison with other clusters.  
 
Separation of PMAS Classes 
The PCA biplot was examined to identify how the input variables influenced the cluster separation, 
and how clusters separated into the new PMAS classifications. The most influential input 
variable(s) was selected as the PMAS measure to be used to identify values that classify 
observations into appropriate PMAS classes in this dataset, which we called separation values. 
Separation values that maximized the accuracy of classification were selected. Accuracy is the 



Pattern Recognition and Modeling with Imperfect Data M. Tremblay, 2019 

  
Page 104 of 150 

proportion of correctly classified observations out of all observations (Dohoo et al., 2012). First, 
separation values of the selected PMAS measure were evaluated for correctly predicting the PMAS 
classifications of Intermediate PMAS observations compared to Low PMAS observations in this 
dataset. Second, separation values of the PMAS measure were evaluated for correctly predicting 
the PMAS classifications of the High PMAS observations compared to Intermediate PMAS 
observations in this dataset. 
 
RESULTS 
Data Collection 
On average, there were 14.65 (SD 3.68) cows sampled per farm (range: 9 to 21). A total of 381 
cows were evaluated. There was an average of 57.88 (SD 20.50) observations collected per farm 
(range: 22 to 116). Each cow was evaluated on average 3.95 times (SD 2.50).  
 
Data Editing 
The starting dataset contained 1505 observations. Four hundred and twenty-seven observations 
were removed due to a negative health condition other than PMAS having been suspected. 
Examples of such conditions include mastitis, retained placenta, milk fever, and displaced 
abomasum. In addition, 254 observations were removed because of multiple milk samples 
corresponding to a blood sample, and 30 observations were removed due to missing milk data 
from the robot. Outlier observations were removed including two observations with CK values 
above 12,000 U/l, and one outlier sample with a blood protein less than 5 g/l. One sample was 
removed due to a missing NEFA value. 
 
The resulting data set contained 790 observations from 26 farms and represented 312 cows of 
which 309 were German Simmental cows, 1 was a Red Holstein cow and 2 were Holstein cows. 
On average, there were 12 (SD 2.99) cows sampled per farm (range: 8 to 19). There were on 
average of 30.38 (SD 7.81) observations collected per farm (range: 13 to 42). Each cow was 
evaluated on average 2.53 times (SD 1.32). Of those, there were 67 cows in their first lactations, 
81 cows in their second lactations, and 164 cows in their third or later lactations. There was 260 
missing Change in Back Fat values because the calculation of this value depended on having two 
consecutive measurements.  
 
The descriptive statistics (mean, standard deviation, and number of missing values) of the final 
dataset are shown in Table 1. On average, cows in this study were in 27.51 DIM (SD 12.01) and 
produced 32.02 kg of milk per day (SD 7.10). Mean FPR was 1.28 (SD 0.25), BHBA mean was 
0.80 mmol /L (SD 0.38), and NEFA mean was 0.45 mmol /L (SD 0.35). 
 
 PCA and Cluster Analysis 
The standardized input variables (i.e., BHBA, FPR, NEFA) met the linearity assumption and were 
then transformed into PCs by means of a PCA to be used in the cluster analysis. The first and 
second component (PC1, PC2) explained 76.5% of the variance in the data and the second 
component was identified as the elbow in the scree plot. The loadings of NEFA, BHBA, and FPR 
in PC1 were -0.55, -0.59 and -0.59, respectively. The loadings of NEFA, BHBA, and FPR in PC2 
were 0.84, -0.38 and -0.40, respectively. 
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Table 1: Descriptive statistics of all variables in a data set of n= 790 observations originating 
from 312 cows and 26 of Bavarian herds sampled between 5 and 50 DIM 
Variable Description (units) Mean SD1 #NA2

Lactation Lactation number  3.00 1.60 0 
DIM Days in milk 27.5 12.0 0 
Milk  
Production 

Mid-24 hour milk calculated  
from robot data (kg) 

32.0 7.1 0 

Milk Fat Fat content (%) 4.16 0.83 0 
Milk Protein Protein content (%) 3.27 0.32 0 
FPR Milk fat protein ratio 1.28 0.25 0 
SCC Somatic cell count (1000 cells/mL) 158.8 488.4 0 
Urea Urea content (mg/dL)  23.8 8.7 0 
Lactose Lactose content (%) 4.83 0.17 0 
Blood Protein (g/L) 71.2 5.1 0 
Albumin (g/L) 36.5 2.8 0 
Bilirubin (µmol/L) 1.21 1.08 0 
AST Aspartate aminotransferase (U/L) 84.2 25.1 0 
GGT Gamma-glutamyl transferase (U/L) 19.8 6.1 0 
GLDH Glutamate dehydrogenase (U/L) 12.4 11.2 0 
CK Creatine kinase (U/L) 281 452 0 
BHBA Beta-hydroxybutyric acid (mmol/L) 0.80 0.38 0 
NEFA Non‐esterified fatty acids (mmol/L) 0.45 0.35 0 
Cortisol (ng/mL) 26.0 20.2 1 
Rumen  
Contractions 

Number of rumen contractions  
in two minutes  

2.02 0.33 0 

Rumen Fill3 Diagnostic rumen fill score (TR4: 1-5) 3.08 0.68 1 
Back Fat Back fat measured by ultrasound (mm) 12.1 3.9 15 
Milk Production Reduction Milk production reduction in one day (kg) 0.012 0.055 15 
Change in Back Fat Difference in back fat in one week (mm) -0.63 2.37 260 

1 SD= standard deviation 
2 #NA= number of missing values (total number of observations= 790) 
3 Scoring system described in the Appendix 
4 TR = Theoretical Range 
 
A feature of PCA is that the resulting orthogonal PCs are normally distributed and not correlated 
(Borcard et al., 2011); therefore, PC1 and PC2 met the assumptions for cluster analysis. The cluster 
analysis results were visualized by means of an ssi plot. Based on the elbow rule, the elbow in the 
ssi plot was identified at five clusters (ssi =1.21). Therefore, five clusters were selected for our 
final clustering results. No misclassifications were recognized in the silhouette plot, and the 
number of observations and silhouette widths were similar among clusters. Cluster 1 included 234 
observations, Cluster 2 included 157 observations, Cluster 3 included 137 observations, Cluster 4 
included 142 observations and Cluster 5 included 120 observations. Boxplots of the input variables 
per cluster number are described in Table 2. On average, a cow had observations in 1.776 
difference clusters (SD 0.838).  
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Table 2: Results of the linear mixed-effects regression models including least-squares means and 
standard errors by cluster number and type III sum of squares P-values. Multiple comparisons 
among cluster numbers are adjusted using Tukey’s HSD method; the data set originated from 312 
cows and 26 Bavarian herds sampled 5 to 50 DIM (n=790) 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 P-value
Lactation 1 2.70a  (0.17) 2.84a (0.19) 3.11a (0.20) 3.09a (0.19) 2.87a (0.19) 0.16 
DIM 30.6a (1.03) 30.5a (1.17) 23.2b (1.24) 23.5b (1.20) 26.3b (1.26) < 0.001
Milk Prod., kg2 31.2bc (0.73) 31.4bc (0.74) 32.7a (0.76) 32.1ab (0.75) 30.9c (0.75) < 0.001
Milk Fat, % 3.76d (0.053) 4.44b (0.060) 4.23c (0.064) 4.89a (0.062) 3.56e (0.064) < 0.001
Milk Protein, %3 3.34a (0.031) 3.24b (0.033) 3.18bc (0.035) 3.11c (0.034) 3.36a (0.034) < 0.001
FPR4,5 1.12c (0.012) 1.36b (0.014) 1.33b (0.015) 1.57a (0.015) 1.06d (0.016) < 0.001
SCC, 1000 
cells/mL 

66.7a (6.70) 81.5a (8.87) 66.0a (7.59) 72.3a (8.04) 74.6a (8.45) 0.17 

Urea, mg/dL 23.9a (1.11) 23.5a (1.16) 23.7a (1.20) 23.7a (1.18) 22.8a (1.20) 0.68 
Lactose, % 4.85a (0.013) 4.82ab (0.015) 4.82ab (0.016) 4.80b (0.016) 4.83ab (0.016) 0.058 
Blood Protein, 
g/L 

71.2a (0.47) 70.7a (0.50) 71.5a (0.52) 70.7a (0.51) 71.8a (0.52) 0.061 

Albumin, g/L 36.1a (0.25) 36.1a (0.27) 36.6a (0.28) 36.3a (0.27) 36.2a (0.27) 0.15 
Bilirubin, 
µmol/L3 

0.86c (0.071) 0.77c (0.086) 1.90a (0.092) 1.33b (0.091) 1.38b (0.092) < 0.001

AST, U/L 3,6 81.7b (1.97) 79.9b (2.24) 89.8a (2.41) 89.2a (2.31) 83.8ab (2.38) < 0.001
GGT, U/L 7 20.0a (0.38) 19.3a (0.42) 20.3a (0.44) 19.9a (0.43) 20.0a (0.43) 0.15 
GLDH, U/L3,8 9.28a (0.47) 9.48a (0.53) 10.24a (0.60) 10.50a (0.60) 9.71a (0.55) < 0.001
CK, U/L 9 179a (9.7) 175a (11.3) 205a (14.4) 205a (13.8) 186a (13.2) 0.24 
BHBA,  
mmol/L 10,5 

0.68c (0.029) 0.86b (0.032) 0.79b (0.034) 1.11a (0.033) 0.60c (0.034) < 0.001

NEFA, 
mmol/L3,5,11 

0.264c (0.016) 0.242c (0.020) 0.889a (0.021) 0.516b (0.021) 0.490b (0.021) < 0.001

Cortisol, ng/mL 18.6a (1.51) 17.8ab (1.62) 23.1a (2.24) 14.2b (1.33) 19.5a (1.89) < 0.001
Rumen 
Contractions 12 

2.00a (0.024) 2.02a (0.029) 1.99a (0.031) 2.01a (0.030) 2.06a (0.032) 0.52 

Rumen Fill 13  3.17a (0.058)  3.21a (0.065)  2.92b (0.070) 3.09ab (0.067)  2.95b (0.069) < 0.001
Back Fat, mm3 12.2a (0.41) 12.3a (0.43) 12.5a (0.44) 12.1a (0.43) 12.1a (0.44) < 0.001

DIM= 5 13.2bc (0.54) 12.8c (0.64)  15.1a (0.57)  14.7ab (0.57) 13.8abc (0.56)  
MPR, kg 14 0.019a (0.004) 0.005a (0.004) 0.010a (0.005) 0.012a (0.005) 0.010a (0.005) 0.18 
Change in Back 
Fat, mm 

-0.18b (0.189) -0.51ab (0.217) -0.87ab (0.244) -1.25a  (0.248) -0.74ab (0.273) 0.010 

a–d Means within a row with different superscripts differ (P < 0.05); 1 duplicate cluster-cow 
combinations removed due to a lack in variance per cow, n=554; 2 Prod.= Production; 3 Significant 
interaction between cluster and DIM (P < 0.05); 4 FPR = milk fat to protein ratio; 5 These variables 
were used as input variables for the cluster analysis and are therefore expected to be significantly 
associated among clusters; 6 AST = aspartate aminotransferase; 7 GGT = gamma-glutamyl 
transferase; 8 GLDH = glutamate dehydrogenase; 9 CK = creatine kinase; 10 BHBA = blood beta-
hydroxybutyric acid; 11 NEFA = blood non‐esterified fatty acids; 12 number of rumen contractions 
in two minutes; 13 The description of the scoring system is available in Table 1 and the Appendix; 
14 MPR = Milk Production Reduction
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Comparison of External Variables per Cluster 
SCC, GLDH, CK, and Cortisol were log transformed to normalize residuals. All regression models 
of the external variables include DIM as a fixed effect except DIM, FPR, BHBA, Rumen Fill, and 
Change in Back Fat. The only regression model that included an interaction between cluster 
number and DIM were Milk Protein, Bilirubin, AST, GLDH, NEFA and Back Fat. All external 
variables, with the exception of Urea, SCC, Albumin, GGT, CK, Rumen Contractions, and Milk 
Production Reduction were significantly associated with cluster assignment (p-value < 0.05) 
(Table 2). The input variables’ linear mixed-effects regression model results were also reported 
for comparison (Table 2), although it is to be expected that they would be significantly associated 
with the cluster classifications (Legendre and Legendre, 2012). 
 
Classification of Clusters to PMAS Classes 
Cluster 1 and 2 had the greatest rumen fill, and were younger cows and cows later in lactation 
compared to the other clusters (Table 2). Cluster 1 and 2 had low bilirubin, AST, GLDH, CK and 
NEFA. These characteristics align with characteristics of healthy cows. Cluster 3 had greater milk 
production, greater back fat at the beginning of lactation (DIM=5) and earlier DIM compared to 
Clusters 1 and 2 (Table 2). These risk factors in addition to decreased rumen fill, and elevated 
bilirubin, AST, GLDH, CK and NEFA align with expected characteristics of cows with PMAS. 
Cluster 4 and 5 had intermediate back fat at the beginning of lactation (DIM=5), rumen fill, 
bilirubin and NEFA (Table 2). These intermediate levels of liver values and clinical results during 
early lactation placed Cluster 4 and 5 between the levels of agreement of the other clusters. 
Therefore, Clusters 1 and 2 were classified together as “Low”, Clusters 4 and 5 as “Intermediate” 
and Cluster 3 was redefined as the only cluster with “High” agreement with expected PMAS 
indicators.  
 
On average, cows had observations in 1.532 PMAS classes (SD 0.641). Eighty-seven cows had at 
least one observation classified in the High PMAS class. Thirty-one cows had more than one 
observation classified in the High PMAS class.  
 
Comparison of External Variables per PMAS Class  
SCC, GLDH, CK, and Cortisol were log transformed to normalize residuals. All regression models 
of the external variables include DIM as a fixed effect except DIM, Rumen Fill, and Change in 
Back Fat. The only regression model that included an interaction between cluster number and DIM 
were Milk Protein, Bilirubin, AST, GLDH, BHBA, NEFA and Back Fat. All external variables, 
with the exception of Lactation, urea, SCC, lactose, blood protein, GGT, CK, rumen contractions, 
milk production reductions were significantly associated with the PMAS classifications (p-value 
< 0.05) (Table 3). The input variables’ linear mixed-effects regression model results were also 
reported for comparison, although it is to be expected that they would be significantly associated 
with the PMAS classifications (Legendre and Legendre, 2012). The Low PMAS class had 
significantly lower average FPR, bilirubin, AST, and NEFA compared to the Intermediate and 
High PMAS classes (Table 3). The Low PMAS class also had significantly greater DIM, rumen 
fill and milk protein compared to the Intermediate and High PMAS classes (Table 3). Although 
not significantly different, the Low PMAS class had lower average lactation number, milk 
production, and albumin compared to the Intermediate and High PMAS classes. The High PMAS 
class had significantly lower BHBA and greater milk production, bilirubin, NEFA, and cortisol 
compared to the Intermediate PMAS class (Table 3). Although not significantly different, the High 
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PMAS class had the lowest rumen fill, and greatest back fat at beginning of lactation compared to 
Low and Intermediate PMAS classes. NEFA and bilirubin were the only variables significantly 
different among all three PMAS classifications. 
 
Table 3: Results of the linear mixed-effects regression models including least-squares means and 
standard errors by poor metabolic adaptation syndrome (PMAS) classification and type III sum of 
squares P-values. Multiple comparisons among PMAS classification are adjusted using Tukey’s 
HSD method; the data set originated from 312 cows and 26 Bavarian herds sampled 5 to 50 DIM 
(n=790) 
 PMAS Classification 1  
Variable Low  Intermediate  High P-value 
Lactation 2 2.76a (0.158) 2.97a (0.164) 3.12a (0.202) 0.15 
DIM 30.5a (0.93) 24.8b (1.00) 23.2b (1.24) < 0.001 
Milk Prod., kg 3 31.3b (0.72) 31.5b (0.72) 32.7a (0.76) < 0.001 
Milk Fat, % 4.03b (0.064) 4.27a (0.068) 4.20ab (0.084) < 0.001 
Milk Protein, % 4 3.30a (0.030) 3.24b (0.031) 3.18b (0.035) 0.028 
FPR5,6 1.22b  (0.018) 1.33a  (0.019) 1.32a  (0.025) < 0.001 
SCC, 1000 cells/mL 72.0a  (6.71) 73.4a  (7.13) 65.8a  (7.56) 0.51 
Urea, mg/dL 23.8a  (1.08) 23.3a  (1.10) 23.7a  (1.20) 0.69 
Lactose, % 4.84a  (0.012) 4.81a  (0.013) 4.82a  (0.016) 0.12 
Blood Protein, g/L 71.0a  (0.45) 71.3a  (0.46) 71.5a  (0.53) 0.41 
Albumin, g/L 36.1b  (0.24) 36.3ab  (0.25) 36.6a  (0.28) 0.037 
Bilirubin, µmol/L4 0.83c  (0.060) 1.38b  (0.068) 1.90a  (0.093) < 0.001 
AST, U/L 4,7 80.4b  (1.76) 86.3a  (1.90) 87.9a  (2.44) < 0.001 
GGT, U/L 8 19.7a (0.35) 20.0a  (0.37) 20.3a  (0.44) 0.31 
GLDH, U/L4,9 9.38a (0.456) 10.10a  (0.508) 10.21a  (0.602) < 0.001 
CK, U/L 10 177a  (8.1) 196a  (10.1) 204a  (14.3) 0.12 
BHBA, mmol/L 11,6 0.761b  (0.032) 0.847a  (0.033) 0.771ab  (0.041) < 0.001 
NEFA, mmol/L4,6,12 0.256c  (0.014) 0.507b  (0.015) 0.889a  (0.021) < 0.001 
Cortisol, ng/mL 18.1b  (1.35) 16.5b  (1.31) 23.3a  (2.28) < 0.001 
Rumen Contractions 13 2.01a  (0.020) 2.03a  (0.023) 1.99a  (0.031) 0.46 
Rumen Fill 14 3.19a (0.054) 3.02b (0.057) 2.92b (0.070) < 0.001 
Back Fat, mm4 12.2a (0.40) 12.0a (0.40) 12.4a (0.44) < 0.001 
DIM= 5 13.1b (0.49) 14.1a (0.48) 15.1a (0.56) 
MPR, kg 15 0.013a (0.003) 0.011a (0.003) 0.010a (0.005) 0.77 
Change in Back Fat, mm -0.32b (0.143) -1.02a (0.184) -0.87ab (0.244) 0.007 

a–d Means within a row with different superscripts differ (P < 0.05); 1 PMAS Classification= degree 
of agreement with expected PMAS indicators in comparison with other clusters; 2 duplicate 
cluster-cow combinations removed due to a lack in variance per cow, n=478; 3 Prod.= Production; 
4 Significant interaction (P < 0.05); 5 FPR = milk fat to protein ratio; 6 These variables were used 
as input variables for the cluster analysis and are therefore expected to be significantly associated 
among clusters; 7 AST = aspartate aminotransferase; 8 GGT = gamma-glutamyl transferase; 9 
GLDH = glutamate dehydrogenase; 10 CK = creatine kinase; 11 BHBA = blood beta-
hydroxybutyric acid; 12 NEFA = blood non‐esterified fatty acids; 13 number of rumen contractions 
in two minutes; 14 The description of the scoring system is available in Table 1 and the Appendix; 
15 MPR = Milk Production Reduction
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Figure 1: Biplot of the principal components analysis results by cluster number and assigned 
PMAS classification; PC = principal component; var. = variance; PMAS= poor metabolic 
adaptation syndrome; PMAS Classification= degree of agreement with expected PMAS indicators 
in comparison with other clusters; Cluster number: C1= Cluster 1, C2= Cluster 2, C3= Cluster 3, 
C4= Cluster 4, C5= Cluster 5; the data set originated from 312 cows and 26 Bavarian herds 
sampled 5 to 50 DIM (n=790)  
 
Separation of PMAS classes 
Examining the biplot of the PCA, it is apparent that NEFA’s direction of influence is what 
separated out the three PMAS classifications in our dataset (Figure 1). The influence of BHBA 
was in the same direction as the one of FPR (arrows overlap in Figure 1).  BHBA and FPR’s 
direction of influence separated out Cluster 1 from Cluster 2, and Cluster 4 from Cluster 5 within 
their own classification of Low and Intermediate PMAS, respectively. NEFA was selected as the 
PMAS measure for this dataset because NEFA’s direction of influence in the biplot was 
responsible for separating out Low, Intermediate and High PMAS classifications, and NEFA was 
the only input variable significantly different among all three PMAS classifications. The greatest 
accuracy of separation between Low and Intermediate PMAS observations was at a value of 0.390 
[0.360 - 0.410] mmol/L NEFA (Figure 2). The greatest accuracy of separation between 
Intermediate and High PMAS observations in this dataset was at a value of 0.700 [0.650 - 0.775] 
mmol/L NEFA (Figure 3).  
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Figure 2: Classification performance measures (accuracy, sensitivity and specificity) for 
classifying Low PMAS and Intermediate PMAS observations by NEFA value. The box surrounds 
values that have overlapping confidence intervals with the separation value that has greatest 
accuracy; the data set originated from 312 cows and 26 Bavarian herds sampled 5 to 50 DIM 
(n=790); PMAS= poor metabolic adaptation syndrome. 
 

 
 
Figure 3: Classification performance measures (accuracy, sensitivity and specificity) for 
classifying Intermediate PMAS and High PMAS observations by NEFA values. The box surrounds 
separation values that have overlapping confidence intervals with point that has greatest accuracy; 
the data set originated from 312 cows and 26 Bavarian herds sampled 5 to 50 DIM (n=790); 
PMAS= poor metabolic adaptation syndrome 
 
DISCUSSION 
 
Metabolic Adaptation to NEB 
The three levels of agreement with expected PMAS indicators did not follow differences in BHBA 
levels.  This was highlighted by the differences between Cluster 3 and Cluster 4 wherein Cluster 
3 had the highest agreement with expected PMAS indicators, while Cluster 4 had the highest 
BHBA values. The contrast between PMAS classes and BHBA measurements may be due to the 
fact that the majority of cows experience NEB during the first months post-partum due to the 
demands of high milk production. Ketogenesis, and resulting ketonemia, are a normal 
physiological response to compensate for NEB, and do not necessarily reflect pathological 
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changes. Indeed, keto-adaptation is a well-known phenomenon; in humans, ketones become the 
major fuel source following a period of adaptation to low carbohydrate intake. Furthermore, 
endurance athletes have been shown to be in nearly a constant state of ketonemia during NEB 
(Volek et al., 2016). As ketonemia does not necessarily reflect pathology, it becomes important 
for veterinary clinicians to be able to distinguish between appropriate and inappropriate responses 
to NEB. 
 
Klein et al (2012) propose that cows may compensate for NEB in one of two ways: either by 
reducing fat in milk or by increasing fat mobilization from adipose tissue. Only the latter group 
consistently developed hyperketonemia (Klein et al., 2012). Our data support this hypothesis. 
Cluster 5, a group with intermediate NEFA levels had low milk fat but no elevation in BHBA 
compared to Cluster 4 that had similar NEFA levels. This suggests that Cluster 5 adapts to NEB 
by either limiting milk fat, or by being limited in ketogenesis, which in turn limits milk fat 
(Baumgard et al., 2000). Cluster 4 had the highest BHBA level as well as the highest milk fat of 
any cluster. This suggests that Cluster 4 adapts to NEB by increasing ketogenesis and not by 
limiting milk fat. Cluster 3 had the highest agreement with expected PMAS indicators.  These 
observations did not have decreased milk fat like Cluster 5, or mobilized ketones like Cluster 4, 
which suggests that they did not adapt appropriately to NEB. At the same time, Cluster 3 exhibited 
higher NEFA values than either Cluster 4 or 5.  
  
NEFA Separation Values 
NEFA values are currently used during the pre-partum period to indicate the success of transition 
cow management programs (Oetzel, 2007). The majority of studies have focused on the use of 
NEFA values to predict negative sequellae during lactation (e.g., displaced abomasum, retained 
placenta, metritis, culling, reduced reproduction performance etc). These outcomes can result from 
elevated NEFA which can impair immune, liver and ovarian function (Adewuyi et al., 2005). 
Furthermore, NEFA values above 0.4 mmol/L during the pre-partum period are associated with 
negative outcomes during the subsequent lactation (Whitaker, 2004; McArt et al., 2013). When 
measured during the post-partum period, the NEFA cut-off value used to predict negative 
outcomes is > 0.7 mmol/L (Whitaker, 2004; McArt et al., 2013). The separation values we 
determined for these data (NEFA < 0.39 [0.360 - 0.410] mmol/L to identify Low PMAS 
observations, and ≥ 0.7 [0.650 - 0.775] mmol/L to identify High PMAS observations) were similar 
to those values used to predict negative health outcomes later during lactation.   
 
Cao et al. (2017) suggest NEFA values greater than 0.82 mmol/L as the cut-off for diagnosing 
cows with BHBA greater than 1.2 mmol/L and clinical symptoms such as anorexia and a reduction 
in milk yield. Considering that Cao et al. (2017) examined Holsteins exclusively, and used a case 
definition of cows with BHBA greater than 1.2 mmol/L and clinical symptoms, their reported cut-
off values for NEFA were surprisingly similar to the High PMAS separation value determined in 
our study that examined predominately Simmentals. However, 0.82 mmol/L is not included in our 
separation value’s confidence intervals of 0.650 - 0.775 mmol/L. In addition to differences in breed 
and case definitions, the difference in NEFA separation values between Cao et al (2017) and our 
study could be due to the difference in ability to identify subtle indications of PMAS of the 
individual performing the exam.  
 
Outlook 
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The number of rumen contractions was not significantly associated with the clusters in our study. 
This finding was surprising and could be caused by several factors including large individual 
variation among cows, differences in time between feeding and sampling, as well as differences 
in nutrition. The most likely reason for the lack of detectable difference in rumen contractions 
among clusters is due to short intervals of measurements of 2 minutes as described by Dirksen 
(1975) versus 5 minutes used by Issi et al. (2016) used when describing a significant difference in 
rumen contractions. Reduced milk production was not significantly associated with PMAS 
classifications in our study, although it was an expected indication of PMAS (Ghanem et al., 2016). 
The lack of an association between PMAS and reductions in milk production in our study may be 
due to fluctuations in milk production that were not detected during weekly visits, or because the 
differences in milk production were not adjusted for the expected milk production of each cow. 
To better characterize the clusters, future studies should count the number of rumen contractions 
for at least 5 minutes, and record milk production every day to improve the ability to detect reduced 
milk production. 
 
Our study was limited by the fact that we did not include observations from cows experiencing 
negative health conditions other than PMAS. It is possible that other health events could also cause 
elevated NEFA, in which case the NEFA values from these cows could affect the accuracy of the 
chosen separation values to identify PMAS cows. In our final dataset, all cows were Simmental 
cows except three, and these data were only from AMS herds. Thus, it is possible that our findings 
are particular to this breed and milking system. In this analysis we did not consider feed intake; 
time between feeding and sampling of cows; or previous treatments, interventions, and health 
events because these data were not available in the provided dataset. These missing variables 
would have been useful to characterize the clusters in more detail and could have a significant 
influence on cluster classification. 
 
It is necessary to further investigate the effects of genetics on the development of PMAS as well 
as the various physiological mechanisms by which cows compensate for NEB in order to develop 
selection criteria against cows that are predisposed to developing PMAS. The most appropriate 
management strategy may vary depending on the physiological compensation mechanism. Our 
resulting NEFA separation values for are similar to those determined for Holsteins with BHBA 
greater than 1.2 mmol/L and clinical symptoms in conventional milking settings, but follow-up 
analyses are required to determine if these separation values should be adjusted further to account 
for additional variables such as location, DIM, breed, milking system and season. Further 
adjustments may also be necessary to differentiate PMAS from other health conditions. The 
selection of separation values should result in a balance between the needs for high sensitivity or 
high specificity or both. Finally, future studies are needed to validate these findings in different 
populations, breeds, seasons, and locations. Since NEFA is expensive to measure, future studies 
could also evaluate milk Fourier-transform infrared spectroscopy data for its ability to distinguish 
PMAS classes. This would allow routine in-line measurements to be used for PMAS prediction. 
Beyond individual cow detection, these separation values should be tested at the herd detection 
level as well to determine a herd prevalence alarm level.  

 
CONCLUSION 
A cluster analysis was able to differentiate groups of cattle in terms of NEB compensation 
mechanisms and PMAS classifications: Low, Intermediate, and High. NEFA was the best indicator 
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of PMAS classifications for these data and separation values were selected at < 0.39 [0.360 - 0.410] 
mmol/L to identify Low PMAS observations, and ≥ 0.7 [0.650 - 0.775] mmol/L to identify High 
PMAS observations. Future prospective studies are needed to validate these findings and to 
evaluate other possible predictors for metabolic health, such as FTIR data from milk. The aim of 
future studies would be to build a prediction model for PMAS to alert producers of cows needing 
attention in addition to helping evaluate on-farm metabolic health management (e.g., transition 
cow management, nutrition).  
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APPENDIX 
 
Appendix. Description of the Rumen Fill scoring system quoted from Zaajer and Noordhuizen 
(2003) 
Rumen 
Fill Score 

Description1 

1 The para lumbar fossa2 cavitates more than a hand’s width behind the last rib and 
also a hand’s width inside under the transversal processes.  

2 The para lumbar fossa cavitates a hand’s width behind the last rib and to a lesser 
extent inside under the transversal processes.  

3 The para lumbar fossa cavitates less than a hand’s width behind the last rib and 
falls about a hand’s width vertically downwards from the transversal processes 
and then bulges out.  

4 The para lumbar fossa skin is covering the area behind the last rib and arches 
immediately outside below the transversal processes due to an extended rumen.  

5 The rumen is quite distended and nearly obliterates the fossa; the last rib and the 
transversal processes are not visible. 

The rumen fill scoring system was developed and described by Zaajer and Noordhuizen (2003); 
Scoring was performed when standing at the left hind side of the cow.  
1 Please refer to Zaajer and Noordhuizen (2003) for more information and example photographs 
2 The para lumbar fossa is between the last rib, the transversal processes and the hipbone 
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Customized recommendations for production management clusters of North American 
automatic milking systems. 

 
Journal of dairy science, 99(7), pp.5671-5680. 

https://doi.org/10.3168/jds.2015-10153 
 

Tremblay, M.,* Hess, J.P.,* Christenson, B.M.,* McIntyre, K.K.,* Smink, B.,†  
van der Kamp, A.J., ‡ de Jong, L.G.‡ and Döpfer, D.* 

 
*Department of Medical Sciences, Food Animal Production Medicine Section, School of 
Veterinary Medicine, University of Wisconsin-Madison, 
2015 Linden Drive, Madison 53706 
†Lely North America, 775 250th Avenue, Pella, IA 50219 
‡Lely International N.V., Cornelis van der Lelylaan 1, 3147 PB, Maassluis, the Netherlands 
 
  



Pattern Recognition and Modeling with Imperfect Data M. Tremblay, 2019 

  
Page 117 of 150 

ABSTRACT 
Automatic milking systems (AMS) are implemented in a variety of situations and environments. 
Consequently, there is a need to characterize individual farming practices and regional challenges 
to streamline management advice and objectives for producers. Benchmarking is often used in the 
dairy industry to compare farms by computing percentile ranks of the production values of groups 
of farms. Grouping for conventional benchmarking is commonly limited to the use of a few factors 
such as farms’ geographic region or breed of cattle. We hypothesized that herds’ production data 
and management information could be clustered in a meaningful way using cluster analysis and 
that this clustering approach would yield better peer groups of farms than benchmarking methods 
based on criteria such as country, region, breed, or breed and region. By applying mixed latent-
class model-based cluster analysis to 529 North American AMS dairy farms with respect to 18 
significant risk factors, 6 clusters were identified. Each cluster (i.e., peer group) represented unique 
management styles, challenges, and production patterns. When compared with peer groups based 
on criteria similar to the conventional benchmarking standards, the 6 clusters better predicted milk 
produced (kilograms) per robot per day. Each cluster represented a unique management and 
production pattern that requires specialized advice. For example, cluster 1 farms were those that 
recently installed AMS robots, whereas cluster 3 farms (the most northern farms) fed high amounts 
of concentrates through the robot to compensate for low-energy feed in the bunk. In addition to 
general recommendations for farms within a cluster, individual farms can generate their own 
specific goals by comparing themselves to farms within their cluster. This is very comparable to 
benchmarking but adds the specific characteristics of the peer group, resulting in better farm 
management advice. The improvement that cluster analysis allows for is characterized by the 
multivariable approach and the fact that comparisons between production units can be 
accomplished within a cluster and between clusters as a choice. 
 
INTRODUCTION 
Automatic milking systems (AMS) are increasing in popularity and number around the world (de 
Koning, 2010). As systems become more advanced under constraints of well-being, technical 
improvements, and economic feasibility, the variety in dairy management systems increases—
from organic grazing to standard herds, from tie stalls to AMS, and from small family farms to 
large freestall herds. Even with the best technology in place, it is necessary to know one’s strengths 
and weaknesses to make continuous improvements and set appropriate management and 
production goals. The dairy industry is similar to other production systems in which benchmarking 
is used to compare herds and motivate producers to set goals for their farm (Khade and Metlen, 
1996; Boda, 2006; von Keyserlingk et al., 2012), but it is important for benchmarking to be based 
on the correct comparison group given the wide variety in the dairy industry. 
 
Many dairy record systems, benchmarking programs, and benchmarking results have been 
published in non-peer-reviewed publications that enable producers to compare themselves with 
others and monitor their production progress. Benchmarking uses percentile ranks of the 
production values of groups of farms to compare farms within peer groups. However, grouping for 
conventional benchmarking is commonly limited to the use of a few factors such as farms’ 
geographic region or breed of cattle. For example, the USDA’s National Agricultural Statistics 
Service (NASS) summarizes yearly production by region or by herd size (USDA NASS, 2014). 
Similarly, the DHI’s executive analysis “Udder Health Monitor” report compares a herd’s SCC 
with that of herds of a similar size broken down into 3 groups: 1–199, 200–999, and >999 cows 
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(Dairy Records Management Systems, 2014). In addition, DHI’s “Herd Management 
Comparison” report uses breed averages (Holstein or Jersey) by region and the industry’s standard 
goals (Dairy Records Management Systems, 2014). More advanced programs, such as 
DairyMetrics, can be used to select smaller comparison groups but with the additional restriction 
items being limited to data found in DHI reports such as SCC and milking frequency (Dairy 
Records Management Systems, 2012). Specific to AMS, the social network “Benchmark” (Lely 
Industries N.V., Maassluis, the Netherlands) allows farmers to compare performance variables to 
that of others in their social network or from selecting others in the same region or with the same 
farm size. However, these benchmarking methods rely on personal judgment to create peer groups, 
and the restrictions used (e.g., country, breed, region, or breed and region) do not account for the 
wide range of systems and conditions in today’s dairy industry. 
 
In contrast to the previously mentioned methods, cluster analysis is used to make groups of similar 
observations that can be based on many different variables (Borcard et al., 2011). Brotzman et al. 
(2015)) used 16 performance values to cluster large Wisconsin dairies into 6 groups that were then 
characterized into best, good, and poor performance. In a similar industry, the dairy goat farming 
systems in Italy was successfully characterized into 3 major groups separated into 5 clusters using 
a cluster analysis of a variety of performance, facility, and management data (Usai et al., 2006). 
Clusters define neighbors not necessarily as geographic neighbors but neighbors in “similarity of 
farm characteristics.” 
 
Given the wide range in conditions in the dairy industry, to make comparison groups, many factors 
that significantly affect a herd’s production ability need to be assessed simultaneously. In 
Brotzman et al. (2015)), many other limiting factors exist, although herd size was limited to those 
with at least 200 cows and some environmental variation was limited by only examining 
Midwestern US dairy herds. In addition, many factors unique to AMS that might affect production 
are not included in these aforementioned benchmarking and clustering methods. For example, 
traffic type and the number of robots per pen have been shown to significantly affect milk 
production in AMS farms (Tremblay et al., 2016). Also, some criteria, such as milking frequency 
(2 or 3 times per day), do not apply to AMS because cows in an AMS are free to regulate their 
milking frequency individually. In addition, most benchmarking tools are based on data collected 
via DHI databases, which is based on measurements taken only once every 3 to 4 wk. Automatic 
milking systems or parlor systems and sensor technology provides an opportunity to use results 
collected on a daily basis. 
 
There is a need to compare AMS farms based on relevant variables in an unbiased fashion, which 
is not currently being provided for these specialized farms. The goals of this study were to 
characterize farming patterns of AMS herds to prioritize and customize advice for producers 
regarding their farm management. We hypothesized that herds’ production data and management 
information could be grouped into meaningful multivariable clusters and that this clustering 
approach would produce better peer groups than conventional benchmarking methods that create 
peer groups based on criteria such as country, region, breed, or breed and region alone. The specific 
aim was to perform a cluster analysis of hundreds of North American AMS dairy farms with 
respect to significant risk factors identified by a generalized mixed linear model. Identifying a 
farm’s nearest neighbor in terms of production patterns and management limitations would allow 
advice to be tailored to these modern specialized producers. 
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MATERIALS AND METHODS 
A total of 529 North American dairy farms with Lely Astronaut AMS (Lely Industries N.V., 
Maassluis, the Netherlands) had weekly data collections for 4 yr (2011–2014), which produced 
54,065 observations. A previous study found 20 variables from this data set to be significantly 
associated with changes in milk production (kg) using a generalized linear mixed regression model 
(Tremblay et al., 2016). 
 
Of the 20 available variables, 5 were categorical variables. The numbers of farms per categorical 
variable levels and variable explanations are detailed in Table 1. Traffic type (i.e., how cows move 
through the pen among the AMS, freestalls, and feed fence) can be free or forced. With free cow 
traffic, cows decide when to enter the AMS, whereas with forced cow traffic, the producer creates 
one-way traffic toward the AMS. The variable Traffic_Type was coded as “free” or “forced.” The 
Robots_per_Pen variable represented the number of robots per pen of cows. By default, this 
variable also represents the number of cows in a pen and the pen’s physical dimensions. By design, 
each pen will have about 60 cows per robot. For example, Robots_per_Pen of “1” is designed with 
1 robot in a pen of about 60 cows and Robots_per_Pen of “2” is designed with 2 robots in a pen 
of about 120 cows. Breed was categorized into 3 levels: “Holstein,” “Jersey” and “other.” Breed 
“other” represents all other breeds: Ayrshire, Brown Swiss, Guernsey, Red and White, crosses, 
mixed, and unknown. Farm_Goal was characterized either by the “quota” system for farms in 
Canada or “maximum production” for farms in the United States that produce with the goal of 
maximum milk production. Grazing and organic farms were not used in the previous analysis of 
this data set because they had relatively few observations. The New_Retro variable was either 
“new” for AMS robots that were installed in newly built barns or “retro” for AMS robots that were 
retrofitted in existing barns. 
 
Table 1. The number of farms per categorical variable  
Categorical  Variable1 Levels Number of farms2 
Traffic_Type Free 

Forced  
493 
36 

Robots_per_Robots 1 
2  
3+ 

295 
208 
26 

Breed Holstein  
Jersey 
Other 

473 
15 
 41 

Farm_Goal  
(country) 

Quota (Canada)  
Max_Production (USA)

350 
179 

New_Retro 
(newly built barn or retro fitted) 

New 
Retro  

266 
263  

1 Variable explanations: Traffic_Type= how cows are allowed to move among areas of a barn. 
“Free” refers to a system where cows can decide when to enter the AMS and can move freely 
between the AMS, free stalls and the feeding area. “Forced” traffic type uses a one-way traffic 
system towards the AMS; Robots_per_Pen= number of AMS robots per pen; Breed= breed of 
cattle; Farm_Goal= Operate under the “Quota” system for farms in Canada or “Max_Production” 
for farms in the USA that produce with the goal of maximum milk production; New_or_Retro= 
newly built or robots retro-fitted in an existing barn; 2 529 total observations  
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Thirteen numeric AMS variables were available: Milk_Production_per_Cow_per_Day, 
Cows_per_Robot, Average_DIM, Concentrates, Rest_Feed, Refusals, Failures, Milkings, 
Milk_Speed, Boxtime, Connection_Attempts, Robot_Free_Time, and Days_Since_Installation. 
The variable explanations are presented in Table 2. The data set was previously limited to 
observations that had >10 Cows_per_Robot and <90 Cows_per_Robot. Observations with an 
Average_DIM greater than 365 d were also removed as outliers. All weekly numeric observations 
were averaged per farm to produce a final data set for clustering with one observation per farm (n 
= 529). The summary statistics and explanations of the numeric variables are shown in Table 2. 
All statistical analyses were done using the program R version 3.0.1 (R Development Core Team, 
2013). 
Table 2. Numeric variables explanation and descriptive statistics 

Numeric variables Variable explanation Mean1 SD2 

Milk_Production_per_Cow_per_Day  Average kg of milk produced3 31.82 4.37 

Cows_per_Robot  Number of cows per robot 49.80 8.91 

Average_DIM  Average days in milk of the herd 176.98 19.94 

Concentrates  
 

Average concentrate (kg) consumed in robot or 
automatic feeder per 100 kg of milk yield 

15.64 4.93 

Rest_Feed  Average percent of concentrates from the cow’s 
allowance that was not dispensed that day (%)4 

7.85 5.40 

Refusals3  Average number of non-milking visits3 1.94 1.17 

Failures5 Average number of failed milkings5 5.87 2.63 

Milkings3 Average number of successful milkings3 2.90 0.28 

Milk_Speed Average speed of milk flow during the milking 
(kilogram per minute) 

2.61 0.27 

Boxtime3 Average minutes in the AMS3 (milking time and 
treatment time) 

6.78 0.55 

Connection_Attempts5  Average number of times the robot arm moved up 
to get connect teats per milking5 

1.42 0.20 

Days_Since_Installation how many days ago the automatic milking system 
was installed 

683.98 839.81 

Robot_Free_Time percent of time per day the robot is not occupied by 
a cow6 

19.42 11.23 

1 529 total observations; 2 standard deviation; 3 per cow per day; 4 Possible causes include: a cow 
was not visiting the robot often enough or she was not able to finish her meal giving her milking 
time; 5 per robot per day; 6 The denominator does not include the time per day the system is 
automatically cleaning the robot and the milk lines to the tank 
 
The variables Season and Record_Year were not included as they were not meaningful when 
working with farm as the unit of observation. A cluster analysis was performed using the 18 
variables. Due to the mixture of continuous and categorical variables, 2 of which had more than 2 
factor levels, a mixed latent-class model-based approach was chosen (Hennig, 2010). Another 
benefit of model-based clustering is that normalization and scale differences among variables do 
not affect the outcome (Vermunt and Magidson, 2002). The method was computed by the function 
flexmixedruns in the R package fpc (Hennig, 2010). Maximum likelihood estimation was used to 
determine the best model and the Bayesian information criterion (BIC) determined the best number 
of clusters. One hundred starts of the expectation-maximization (EM) algorithm with random 
initialization were compared during a sensitivity analysis to optimize the model for each number 
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of clusters between 2 and 20 (Hennig, 2010). Because only variables previously selected from 
Tremblay et al. (2016)) were used in the cluster analysis, and the number of variables was not 
larger than the number of observations, the mixed latent-class model-based approach did not 
require further variable selection (Dean and Raftery, 2010; Poon et al., 2010). 
 
Categorical variables were examined per cluster, and the χ2 test was used to test for significant 
changes in proportions between variable levels in each cluster compared with the entire population.  
Averages of the numeric production variables were calculated from all farms in each cluster. 
Testing for significant differences between clusters based on variables that were used in the 
clustering is inappropriate because cluster analysis separates observations based on these variables 
(Legendre and Legendre, 2012). Therefore, we did not perform significance testing of the 
variables’ means per cluster. Average values were ranked across clusters and color-coded for 
visual identification in a cross table. All of the farms represented in the final data set were mapped 
using a heat map to keep individual farm identity anonymous. Farms in each cluster were mapped 
to look for geographic patterns. 
 
To simulate commonly applied grouping methods in the industry, 4 other grouping classification 
were assigned based on commonly used criteria: country, breed, region and a combination of breed 
and region. Regions were defined as Midwest, East, Northeast and Northwest. Midwest states 
included Iowa, Illinois, Indiana, Michigan, Minnesota, Missouri, North Dakota, Ohio, South 
Dakota, and Wisconsin. East states included Massachusetts, New York, Pennsylvania, Virginia, 
and Vermont. Northeast provinces included New Brunswick, Nova Scotia, Ontario, and Quebec. 
Northwest provinces included Saskatchewan, Manitoba, Alberta, and British Columbia. There 
were no Jersey farms in the Northwest region and only one Jersey farm in the Eastern region, 
which was reassigned to the Jersey Midwest group for the breed and region classification. In 
addition, there was only one “other” breed farm in the East region; therefore, it was reassigned to 
the “other” Midwest group. In the end, there were 9 breed and region groups. 
 
The amount of milk produced per robot per day was not used for the cluster analysis; however, it 
is one of the major determinants of income for dairy farms including AMS farms. Thus, the 
external variable Milk_Production_per_Robot_per_Day was used for validation (Aldenderfer and 
Blashfield, 1984; Yang, 2012) when comparing the following grouping variables for predictions: 
farm clusters generated by cluster analysis and groups of farms based on the conventional 
benchmarking criteria (i.e., country, region, breed, and a combination of region and breed). The 5 
grouping variables (see Table 5) were used to predict milk production per robot per day by means 
of a generalized linear regression model with the number of farms per group as an offset. The fit 
of the regression models and their predictive ability were compared among the 5 grouping methods 
in addition to the null model using these criteria: log-likelihood, BIC, Akaike information criterion 
(AIC), mean absolute error, and root mean square error. 
 
RESULTS 
The 5 categorical variables are described in Table 1. The 13 numeric variables used in the cluster 
analysis are described in Table 2. The cluster analysis resulted in a latent-class model with a log-
likelihood of −9,817.368 with 203 df, an AIC of 20,040.74, and a BIC of 20,907.75. This model 
resulted in 6 clusters with an average of 88 farms per cluster (range: 50–124). 
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Table 3. Number of farms per cluster by categorical variable (n=529) 
   Cluster 

Variable Level1 Total  1 2 3 4 5 6 

Traffic_ 
Type 

Forced 
36 

(6.81%)2 
7  

(5.65%)3 
11 4 

(22.00%)  
1 4 

(1.12%) 
7 

(9.33%) 
8 

(6.67%) 
2 

(2.82%) 

Free 
493 

(93.19%) 
117 

(94.35%) 
39 4 

(78.00%)  
88 4 

(98.88%) 
68 

(90.67%) 
112 

(93.33%) 
69 

(97.18%) 

Robots_
per_Pen 

1 
295 

(55.77%) 
41 4 

(33.06%) 
31 

(62.00%) 
60 4 

(67.42%) 
55 4 

(73.33%) 
74 

(61.67%) 
34 

(47.89%) 

2 
208 

(39.32%) 
71 4 

(57.26%)  
14 

(28.00%) 
27 

(30.43%) 
18 4 

(24.00%) 
43 

(35.83%) 
35 

(49.30%) 

3+ 
26 

(4.91%) 
12 4 

(9.68%)  
5 

(10.00%) 
2 

(2.25%) 
2 

(2.67%) 
3 

(2.50%) 
2 

(2.82%) 

Breed 

Holstein 
473 

(89.41%) 
98 4 

(79.03%) 
38 4 

(76.00%) 
84 

(94.38%) 
68 

(90.67%) 
115 4 

(95.83%) 
70 4 

(98.59%) 

Jersey 
15 

(2.84%) 
5 

(4.03%) 
10 4 

(20.00%) 
0 

(0.00%) 
0 

(0.00%) 
0 

(0.00%) 
0 

(0.00%) 

Other 
41 

(7.75%) 
21 4 

(16.94%) 
2 

(4.00%) 
5 

(5.62%) 
7 

(9.33%) 
5 

(4.17%) 
1 4 

(1.41%) 

Farm_ 
Goal 

Quota 
350 

(66.16%) 
64 4 

(51.61%) 
45 4 

(90.00%) 
89 4 

(100.0%) 
57 

(76.00%) 
31 4 

(25.83%) 
64 4 

(90.14%) 

Max_ 
Production 

179 
(33.84) 

60 4 
(48.39%) 

5 4 
(10.00%) 

0 4 
(0.00%) 

18 
(24.00%) 

89 4 
(74.17%) 

7 4 
(9.86%) 

New_ 
Retro 

New 
266 

(50.28%) 
55 

(44.35%) 
18 

(36.00%) 
56 4 

(62.92%) 
34 

(45.33%) 
57 

(47.50%) 
46 4 

(64.79%) 

 Retro 
263 

(49.72%) 
69 

(55.65%) 
32  

(64.00%) 
33 4 

(37.08%) 
41 

(54.67%) 
63 

(52.50%) 
25 4 

(35.21%) 

Total  529 124 50 89 75 120 71 
1 Variable explanations: Traffic_Type= how cows are allowed to move among areas of a barn. 
“Free” refers to a system where cows can decide when to enter the AMS and can move freely 
between the AMS, lying stalls and the feeding area. “Forced” traffic type uses a one-way traffic 
system towards the AMS; Robots_per_Pen= number of AMS robots per pen; Breed= breed of 
cattle; Farm_Goal= Operate under the “Quota” system for farms in Canada or “Max_Production” 
for farms in the USA that produce with the goal of maximum milk production; New_or_Retro= 
newly built or retro fitted barn; Years_Since_Install= how recently (in years) the AMS was 
installed; Robot_Free_Time = percent of time per day the robot is not occupied; Record_Year= 
year at the time of record; Season= “Winter” was classified as December through February; 
“Spring” as March through May, “Summer” as June through August, and “Fall” was classified as 
September through November; 2 (%) Percent of total farms; 3 (%) Percent of farms per cluster; 4 
significantly different compared to the total population 

 
The distribution of herds among each categorical variable level was examined per cluster (Table 
3). Several differences were found in the proportions of farms per variable level of each cluster 
compared with the overall population of 529 farms (Table 3). Compared with all the farms, cluster 
1 had a higher proportion of farms with 2 or more robots per pen and farms with breeds other than 
Jerseys and Holsteins. Cluster 2 had a higher proportion of farms with forced traffic and Jerseys 
under the quota system compared with the entire population. Cluster 3 farms were exclusively 
under the quota system (Canadian). Cluster 4 had a high proportion of farms with 1 robot per pen 
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compared with all farms. Cluster 5 had a high proportion of Holstein and maximum production 
farms in the United States, whereas cluster 6 had a high proportion of newly built barns and 
Holstein farms under the quota system compared with the entire population. See Table 3 for all 
results. 
 
Table 4. Averages and standard deviation (SD) of 13 numeric variables for all farms in each cluster 

 Cluster 

Variable 
1  

(n= 124)1 
2 

(n=50) 
3 

(n=89) 
4 

(n=75) 
5 

(n=120) 
6 

(n=71) 
Milk_Production_
per_Cow_per_Day 

31.10  
± 3.49 

25.04 ± 
3.85 

32.21 ± 
2.9 

29.71 ± 
3.15 

35.52 ± 
2.65 

33.30 ± 
3.88 

Cows_per_Robot 
49.89  
± 6.88 

48.54 ± 
11.09 

48.84 ± 
5.62 

55.01 ± 
6.86 

55.82 ± 
4.11 

36.01 ± 
4.98 

Boxtime 
6.61  

± 0.42 
6.57 ± 
0.64 

6.54 ± 
0.37 

7.24 ± 
0.51 

7.07 ± 
0.44 

6.49 ± 
0.54 

Robot_ Free_Time 
21.55 ± 

8.09 
31.04 ± 
12.61 

17.02 ± 
5.61 

9.90 ±  
4.69 

11.56 ± 
4.82 

33.90 ± 
9.77 

Milk_Speed 
2.63 ± 
0.24 

2.32 ± 
0.27 

2.55 ± 
0.19 

2.44 ± 
0.28 

2.79 ±  
0.20 

2.68 ± 
0.23 

Milkings 
2.89 ± 
0.24 

2.68 ± 
0.36 

3.11 ±  
0.20 

2.70 ±  
0.20 

2.82 ±  
0.20 

3.15 ± 
0.23 

Refusals 
1.84 ± 
0.67 

2.51 ± 
1.33 

2.64 ± 
0.92 

1.48 ± 
0.71 

1.01 ± 
0.35 

2.89 ± 
1.71 

Failures 
7.73 ± 
2.26 

9.09 ±  
3.70 

5.00 ±  
1.28 

5.07 ± 
2.21 

4.83 ± 
1.57 

4.03 ± 
1.32 

Connection_ 
Attempts 

1.51 ± 
0.08 

1.28 ± 
0.58 

1.40 ±  
0.07 

1.40 ±  
0.10 

1.42 ± 
0.09 

1.41 ±  
0.10 

Concentrates 
14.77 ± 

2.24 
17.37 ± 

5.98 
18.93 ± 

7.18 
17.53 ± 

5.78 
13.34 ± 

1.86 
13.75 ± 

3.14 

Rest_Feed 
6.98 ± 
3.19 

11.44 ± 
8.32 

8.17 ± 
3.77 

10.63 ± 
7.22 

5.84 ± 
2.77 

6.91 ± 
6.35 

Average_DIM 
179.84 ± 

20.65 
187.42 ± 

24.56 
174.11 ± 

16.81 
181.98 ± 

24.79 
170.04 ± 

14.18 
174.69 ± 

16.20 
Days_Since_ 
Installation 

305.51 
 ± 344.63 

1807.64  
± 1781.79

521.60  
± 445.28 

1207.32 ± 
720.89 

543.10  
± 380.02 

442.51  
± 518.57 

Darker gray or white shading indicate extremely high or low values per column. In general, lighter 
shading means preferred averages, and darker shading means less preferred averages but these 
typical conventions might not be true for each clusters’ situation. 1 total number of observations 
per cluster (one observation per farm) 
 
The average numeric variables values of each farm are shown per cluster in Table 4. Cluster 1 had 
the greatest Connection_Attempts and the most recent installation of AMS robots. Cluster 2 had 
the lowest average of Milk_Production_per_Cow_per_Day, Milkings, Milk_Speed, and 
Connection_Attempts. The greatest average of Rest_Feed, Failures, Days_Since_Installation, and 
Average_DIM were present in cluster 2. Cluster 3 had the greatest average of Concentrates, and 
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cluster 4 had the greatest average of Boxtime and lowest average of Robot_Free_Time. 
Milk_Production_per_Cow_per_Day, Milk_Speed, and Cows_per_Robot had the greatest average 
in cluster 5. Cluster 5 herds had the lowest average of Concentrates, Rest_Feed, Refusals, and 
Average_DIM. Cluster 6 had the lowest Cows_per_Robot, Boxtime, and Failures; 
Robot_Free_Time, Milkings, and Refusals had lowest average in cluster 6. 

 

 
Figure 1. Heat map of all farm locations (n = 529) 
 
A map of the 529 farms is shown in Figure 1. The highest concentrations of farms were in the 
Midwest United States (Minnesota and Wisconsin), southern Ontario (between Detroit and 
Toronto), and lower Quebec (between Ottawa and Quebec City). Other concentrations of farms 
were located outside Vancouver, outskirts of Winnipeg, between Edmonton and Calgary, and 
eastern Pennsylvania. 
 
Cluster 5 herds were mainly located in the Midwest (see Figure 2E). Cluster 2 and 6 farms were 
centered in the east, whereas cluster 1 and 4 farms had an even distribution in all concentrations 
of farm locations (see Figure 2A and D). The most northern cluster of the study group was cluster 
3 (see Figure 2C). 
 
Table 5 describes the results of the 5 regression models predicting production per robot per day 
using the grouping methods as independent variables. The cluster analysis external validation 
model had the best fit with the largest log-likelihood, and lowest residual deviance, AIC, BIC, 
mean absolute error, and root mean square error. 
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Figure 2. Heat map of farm location by cluster: (A) Cluster 1 (n=124), (B) Cluster 2 (n=50), (C) 
Cluster 3 (n=89), (D) Cluster 4 (n=75), (E) Cluster 5 (n=120), (F) Cluster 6 (n=71) 
 
 
Table 5. Goodness of fit parameters and predictive ability of the linear regression models 

Model 1 df 2 logLik 3 Res. Dev. 4 AIC 5 BIC 6 MAE 7 RMSE 8 
Cluster  523 -3659.46 31594133 7332.9 7362.8 192.5 244.4 

Breed and Region 520 -3806.23 55030856 7632.5 7675.2 262.7 322.5 
Region 525 -3816.24 57153025 7642.5 7665.2 268.5 328.7 
Breed 526 -3861.71 67872296 7731.4 7748.5 293.2 358.2 

Country 527 -3827.56 59651230 7661.1 7673.9 271.9 335.8 
Null Model 9 528 -3867.35 69336252 7738.7 7747.3 297.2 362.0 

1 Linear regression model with Milk_Production_per_Robot_per_Day (kilograms) as the 
dependent variable, comparison groups (Cluster, Breed and Region, Region, Breed, Country) as a 
discrete independent variable, and an offset as the number of farms per comparison group; 2 
Degrees of freedom; 3 -2 x log likelihood; 4 residual deviance; 5 AIC = Akaike information 
criterion; 5 BIC = Bayesian information criterion; 7 MAE = Mean absolute error, 8 RMSE= Root 
mean square error; 9 Milk_Production_per_Robot_per_Day ~ 1. 
 
  



Pattern Recognition and Modeling with Imperfect Data M. Tremblay, 2019 

  
Page 126 of 150 

DISCUSSION 
The need to compare industry standards for AMS is great because of the investments made in these 
specialized systems. Current benchmarking tools do not compare AMS based on all relevant 
variables or lend specialized advice based on multiple variables simultaneously. Eighteen variables 
significantly associated with milk production per day (Tremblay et al., 2016) were used to cluster 
529 automatic milking farms. We compared the predictive ability of 6 farm clusters generated by 
cluster analysis to groups of farms based on the conventional benchmarking criteria (i.e., country, 
region, breed, and a combination of region and breed). Cluster analysis comparison groups were 
better at predicting milk production per robot than benchmarking comparison groups. Better AMS 
peer groups allow for improved comparison within groups because farms within clusters are more 
similar compared with the general average across all farms. Allowing farms to set appropriate 
goals according to individual situations (e.g., recent robot installation, environmental, facilities 
constraints) minimizes the potential for goals to be unrealistic. Each of the 6 clusters had different 
farm characteristics and therefore the clusters can benefit from different recommendations 
following on the priorities of the cluster member herds. Next, we will discuss the characteristics 
and recommendations per cluster. 
 
Cluster 1 
On average, cluster 1 farms had the most recent robot installations (see Table 4). Recent 
installation has been shown to significantly decrease milk production compared with systems that 
have been in place for >4 yr (Tremblay et al., 2016). As cluster 1 herds become established during 
their start-up period, they will need to continue selecting cows that are best for AMS milking. 
 
Cluster 1 farms represented breeds other than Holstein (21/41 “other” breed farms, 5/15 Jersey 
breed farms) with high average Failures and Connection_Attempts (see Table 4). Although a 
previous analysis of this data set did not find a significant difference in 
Milk_Production_per_Cow_per_Day between the “other” and “Holstein” breed groups, this might 
be a result of all the other breeds having been grouped together (Ayrshire, Brown Swiss, Holstein 
Crosses, Guernsey, Red and White, mixed; Tremblay et al., 2016). When breeds were examined 
separately, average milk yield varied among breeds (Cerbulis and Farrell, 1975; VanRaden and 
Sanders, 2003; USDA-AIPL, 2013). Ayrshire, Jersey, and Holstein breeds were also found to vary 
in milking speed and milking temperament (Sewalem et al., 2010). In addition, the difference 
between small breeds (Jersey, Guernsey, Ayrshire) and large breeds (Holstein, Brown Swiss) could 
affect how cows fit and align in a milking robot, and their difference in udder conformation could 
make one breed, such as a large or small breed, more prone to failed connections (Norman et al., 
1988; Rodenburg, 2002; Capper et al., 2009). Therefore, it might not be advisable to formulate 
production goals for all “other” breed herds based on subsets that include “Holstein” breed herds. 
It is recommended that cluster 1 herds examine whether their settings are correctly adjusted 
according to their non-Holstein cows. 
 
Cluster 2 
Cluster 2 consisted of farms with the lowest Milk_Production_per_Cow_per_Day and 
Milk_Speed. Cluster 2 also had the highest average Failures (see Table 4). This cluster had 10 of 
the 15 Jersey breed farms. Jersey farms most likely fit in best with low-producing Holstein herds 
because of their lower milk yield on an equal boxtime, which results in lower average milk speed 
(Prendiville et al., 2010; Tremblay et al., 2016). These low-production Holstein farms in cluster 2 
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could be characterized as farms with mediocre management, farms that have made a clear choice 
for low input, or farms where the major income is from something other than dairy production. 
 
Cluster 2 farms had the highest proportion of forced Traffic_Type. Forced traffic type has been 
shown to result in significantly less milk per cow and per robot per day compared with free traffic 
type (Tremblay et al., 2016). The recommendation for these farms is to check with their robot 
consultant whether it is feasible to open up all space to the robots and change the gates in the barn 
to move into a free cow traffic system. 
 
If a cluster 2 farm is faced with high Rest_Feed, they should assess feed allowance settings to 
ensure that each cow is allotted sufficient milkings per day. This is important to allow enough time 
to finish their concentrate in the robot. These farms may also need to increase the density of the 
concentrate feed (for faster energy intake) or add additional feed dispensers in the robot for high-
density concentrates. 
 
Cluster 3 
Cluster 3 farms fed high levels of concentrates and were generally the most northern farms of the 
study group (see Figure 2C). Their environment and feed availability offer unique challenges, as 
they can offer only basic forages at the feed bunk compensated with additional higher concentrate 
feed in the robot; therefore, they should be compared with other farms facing similar challenges. 
It is especially important for cows in these farms to receive all of their allotted concentrate. These 
farms could add separate automatic feeding stations outside of the robot so that cows can finish 
their allowance in between milkings. 
 
Cluster 4 
A high proportion of cluster 4 farms had only 1 robot per pen. These farms need to make sure that 
the downtime or inaccessibility of the robot is minimized, whereas farms with 2 or more robots 
per pen can shut down one robot for daily maintenance and keep milking cows in the other robot 
(Tremblay et al., 2016). Also, a single robot per pen has a greater effect on timid cows compared 
with 2 robots because a single robot does not allow timid cows additional opportunities for milking 
when dominant cows crowd the single robot. Timid cows have been shown to wait longer to go to 
the robot compared with higher-ranking cows (Ketelaar-de Lauwere et al., 1996; Thune et al., 
2002; Melin et al., 2006), and the presence of a single robot does not allow these cows alternative 
opportunities for milking. This effect on a small number of cows can severely affect the overall 
average of the herd’s AMS variable values. Advice for cluster 4 farms includes identifying 
individual cows that are not suited for AMS milking (e.g., too timid for milking in a pen with a 
single robot or need to be fetched often). 
 
Cluster 5 
Compared with the entire population of 529 farms, cluster 5 had a higher proportion of Holstein 
breed farms, farms located in the Midwest, and farms with a Farm_Goal of maximum production 
(see Table 3 and Figure 2E). They had, on average, the highest 
Milk_Production_per_Cow_per_Day of all the clusters (see Table 4). This cluster was the most 
intense in terms of Cows_per_Robot but continued to meet the recommendations for average 
milkings of >2.6 milkings per cow per day (Sitkowska et al., 2015). As the highest producing 
farms, cluster 5 farms had well-run AMS in place. Customized advice to cluster 5 should consist 
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of small adjustments; for example, decreasing Failures, because failures can disturb a cow’s time 
budget (Stefanowska et al., 2000). Milking failures lead to interrupted milkings and have been 
shown to cause milk leakage, a potential risk factor for mastitis (Elbers et al., 1998; Stefanowska 
et al., 2000). In addition, these farms will need to select cows for high milk speed and cow-robot 
efficiency to gain milk production. 
 
Cluster 6 
Clusters 6 farms had high Milk_Production_per_Cow_per_Day and Milk_Speed averages but had 
a low average number of Cows_per_Robot (see Table 4). The low number of Cows_per_Robot in 
cluster 6 could reflect low available milk quotas, given that cluster 6 had a higher proportion of 
farms located in Canada compared with the entire population (Table 3). A low ratio of 
Cows_per_Robot negatively affects Milk_Production_per_Robot_per_Day and Boxtime while 
increasing Refusals, because there is a large surplus of robot capacity (Tremblay et al., 2016). 
Although extreme values exist, secondary to their values of Cows_per_Robot, all other values 
were well controlled and they had the lowest average Failures of all clusters. Advice for cluster 5 
and cluster 6, given the limited available quota, would focus on optimizing the efficiency of milk 
production by producing more milk with less cows and resources such as feed, cost of operation, 
and reproduction. 
 
Although the 18 variables used for the clustering of farms were readily available through the Lely 
T4C (Time for Cows) herd management system (Lely Industries N.V.) and represent important 
performance indicators for dairy farms, other variables could be included in a larger scale study. 
For instance, the many breed variations mentioned above suggest that breaking down the “Breed” 
variable would add to the analysis. Variables pertaining to animal health, herd genetics, farm 
economics, reproduction, facilities, and feeding management could be examined as potential risk 
factors for different production levels. Including the grazing and organic farms and data from other 
AMS companies and countries would also broaden the impact of a future data analysis project. In 
addition to increasing the number of risk factors included in the cluster analysis, follow-up surveys 
could be used to analyze each cluster in more depth for the sake of validating the outcomes of the 
current study. 
 
Adding these techniques to current benchmarking and management tools available to individual 
farms would greatly benefit the farms’ management but would also raise some challenges. For 
example, missing data would need to be addressed to ensure quality without eliminating 
participants from the analysis. Data imputation techniques could be used to estimate values for 
missing data. Some degree of misclassifications (i.e., assigning a farm to an inappropriate cluster) 
will always be present when clustering is applied, irrespective of the choice of technique. Also, as 
data sets evolve with time, the most appropriate clustering technique might change. The clusters 
describe the average farm within a cluster, and caution must be taken in interpreting the results of 
this study to one individual farm. The current results regarding characteristics of the clusters are 
meant as decision aids and orientation for customized expert advice in the field of AMS dairy 
herds. 
 
CONCLUSIONS 
A cluster analysis of 529 North American AMS herds with respect to significant predictors for 
milk production identified 6 clusters of production patterns and management characteristics. 
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Unlike current benchmarking grouping techniques, cluster analysis produces more appropriate 
peer groups among diverse farms. Each cluster exhibited a unique multivariable production pattern 
and management style that can result in distinct recommendations per farm. In addition, farms can 
set realistic goals according to comparisons within each cluster. 
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CHAPTER 5- GENERAL DISCUSSION 

  
SUMMARY 
This dissertation addresses how analytical methods should be optimized for analyzing imperfect 
data to address their associated challenges, while still benefitting from the use of secondary data. 
This work developed methods for systematically comparing and selecting the most appropriate 
statistical methods available to optimize selected performance measures, streamline selection, and 
to prevent subjectivity, bias and flawed outcomes. Collectively, these methods provide an unbiased 
framework in which to approach the analysis of large data, without losing the emphasis on the 
biological relevance and sound interpretation of the results. This work is a steppingstone towards 
automation and towards ensuring that future data analyses are not hindered by large data 
imperfections. Instead, this work ensures that having many possible methods available from 
statistics and data sciences becomes an advantage and not a hurdle. Finally, this work suggests that 
automation of data analysis can coincide with a focus on biological relevance and sound 
interpretation. 
 
APPROACH 
A large variety of data sets from secondary data-based studies that were available for analysis were 
used to reach the objectives. A range of methods from various disciplines were applied, and new 
methods and protocols were developed to address imperfect data challenges in these large, 
imperfect data sets from secondary data-based studies. The studies had diverse goals that fit into 
three main areas: parameter estimation (descriptive modeling), prediction modeling, and pattern 
discovery. The data sets used, the methods applied and the goals for each study were representative 
of what is needed by epidemiology.  
 
MAJOR FINDINGS  
Large epidemiological data sets from secondary data-based studies share many similarities among 
each other and with primary data-based studies in terms of imperfect data challenges and goals. 
This work is a foundation for a future systematic approach that addresses many potential data 
imperfections with methods addressed in this work including:  imputing missing values, modeling 
zero inflated data sets, systematically selecting interaction terms, variable selection, addressing 
imbalances in positive and negative outcomes, rare events, data with hierarchical structure, and 
using the example of principal component analysis (PCA) for variable reduction, and clustering 
for pattern recognition. A systematic approach to comparing goodness of fit of parameter 
estimation models would make many large datasets more manageable and informative for 
decision-making processes avoiding modeling bias. This work illustrates the potential and need 
for automated data preparation and model selection. However, this work also illustrates that 
automation of data analysis would still require in-depth interpretation of the biological significance 
of the results. 
 
Different methods developed to address the same need can have significantly different 
performances. This work illustrates the importance of comparing performance and model fit 
among different methods to obtain the best and improved results when analyzing imperfect data. 
The rtFMS method removed selection bias and enabled the selection of the best performing model 
by comparing all available options and combinations of method options. This method was built 
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with the intention of becoming part of a future automated full model selection process that will 
help remove selection bias from prediction modeling as it selects the best performing model. This 
work left no doubt that the current method of empirical method selection is deficient and should 
be replaced by a more objective and systematic approach as shown in this dissertation. 
 
Finally, this work illustrated how unsupervised learning can be a key step for the understanding of 
a data set’s characteristics before engaging in a supervised learning task. Therefore, unsupervised 
learning could be included in systematic approaches to data analysis. However, post-hoc analyses 
of unsupervised learning results and the careful interpretation of the results also need to be included 
in the systematic approach to unsupervised learning methods. 
 
MAIN FINDINGS PER CHAPTER  
In Chapter 2.1 a study was presented that applied a systematic approach to zero augmented models. 
This was done to address possible zero inflation in a surveillance data set from the Foodborne 
Diseases Active Surveillance Network (FoodNet) in the United States. The goal was to build a 
descriptive model for Campylobacter infections. Several common types of zero-augmented 
models (i.e., Hurdle, zero-inflated models) were compared to each other and to a nonzero-
augmented negative binomial model. The 5 models compared for this study were ranked and 
compared using a likelihood ratio test and Vuong BIC non-nested hypothesis test statistic. The 
results showed that the nonzero-augmented negative binomial model was the better fitting model. 
The systematic approach to dealing with a data sets with zero-inflation in this study was able to 
rank models in terms of fit and also demonstrate the lack of zero-inflation. This approach addressed 
the possibility of zero inflation without neglecting other modeling options. This was demonstrated 
using a dataset that had not been analyzed previously using routine methods due to the fear of zero-
inflation. Although only 5 models were compared, the systematic approach to comparing goodness 
of fit of parameter estimation models is a foundation for the automation of systematic comparisons. 
 
In Chapter 2.2 a study was presented that developed the first systematic approach to addressing 
missing data, high dimensionality and high correlation among variables in the same data. The data 
used in this study originated from the People, Animals and their Zoonoses (PAZ) project out of 
Kenya. These data were a good representation of data produced by many disciplines to which this 
methodology could be applied. The goal for these data was to build a description model for 
Plasmodium falciparum infection. The systematic approach developed combined multiple 
methods needed to address the challenges faced in this data set including imputation of missing 
data, variable extraction using PCA, and variable reduction and selection using an elastic-net 
regularized generalized linear model (glmnet). The sequential and parallel application of methods 
was successful in reducing a wide, sparse dataset with 1376 variables to a more useful, simplified 
set of 42 predictors for Plasmodium falciparum infection prevalence and producing socioeconomic 
wealth indices from many highly correlated variables. The protocol’s flexibility and ability to 
accommodate other additional methods within its approach suggests that it may be easily applied 
to a variety of other imperfect data. This approach addressed several imperfect data challenges 
while still benefitting from the large amount of data in this data set.  
 
In Chapter 2.3 a study was presented that applied a systematic selection process and systematic 
interpretation of interaction terms. The methods addressed an overwhelming amount of significant 
interactions while in search for the best fitting parameter estimation model. This was demonstrated 
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using production data from North American automated milking systems with the goal of building 
two descriptive models of milk production. The 2-way interactions were selected using forward 
selection with a t-value limit of 4. A total of 20 and 22 interactions were included in the final 
models. The interactions significantly increased the fit of the model and led to a very meaningful 
discussion on the interactions among variables. This method of selecting interactions could be 
beneficial to many projects to improve their models’ fit and improve their understanding of the 
complex relationships in the data. This work illustrated the potential and need for automated model 
selection. Finally, this work also illustrated that automation of variable selection still requires in-
depth interpretation of the biological significance of the results. 
 
In Chapter 3.1 a study was presented that described a novel systematic approach to full model 
selection for prediction modeling using regression trees. The method was demonstrated using a 
data set comprised of data from milk Fourier-transform infrared spectroscopy (FTIR), routine milk 
testing, and from automatic milking systems to predict blood nonesterified fatty acids (NEFA) and 
β-hydroxybutyrate acid (BHBA) in dairy cows during early lactation. Regression tree full model 
selection (rtFMS) constructs a model for every combination of predictive modeling method 
options under consideration. The iterated, cross-validation performances of these models are then 
passed through a regression tree for selection of a final model. Using rtFMS, a significantly better 
performing model was obtained compared to what would have been obtained if method options 
had been selected subjectively. In addition, rtFMS provides simplicity and structure to FMS to 
improve and optimize prediction model performance. Finally, rtFMS eliminates the bias associated 
with empirical selection of method options. This method was built with the intention of becoming 
part of a future automated full model selection process that will help remove selection bias from 
prediction modeling as it selects the best performing model. 
 
In Chapter 3.2 a study was presented that described a novel micro-macro multilevel modeling 
method using a data set of antibiotic residues in bovine milk. Micro-macro modeling methods are 
applicable when the data set has predictors on the individual (micro) level while the outcome 
variable is on the population (macro) level. The new method presented in Chapter 3.2 is called 
extreme value micro-macro (EVMM) multilevel modeling. It was developed to address when the 
central tendency of the micro level observations is not a good representation of the macro level 
outcome. In the case of EVMM, extreme values of the micro level observations are used to predict 
macro level outcomes. Two micro-macro modeling methods were compared using rtFMS. For the 
antimicrobial residues in milk data set, the EVMM method performed significantly better 
compared to the current micro-macro multilevel modeling method that uses the mean of the micro 
level observations. The EVMM method will allow more secondary data sets that combine data 
from multiple levels to be used to build better performing prediction models. 
 
In Chapter 4.1 a study was presented that described how to gain meaningful results without the 
benefit of an outcome variable. It was demonstrated using clinical data, blood samples and milk 
testing data of Simmental cows in Bavaria.  The goal was to reexamine the classification of 
metabolic adaptation in dairy cows. To validate the findings of the cluster analysis, post-hoc 
regression models were used. The post-hoc regression analysis examined associations between the 
observations’ cluster classification and other clinical, milk and blood parameters that were not 
used in the cluster analysis. The post-hoc findings supported and aided in the interpretation of the 
clustering results. The cluster analysis with the addition of these post-hoc steps led to the 
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description of a novel syndrome for poor metabolic adaptation in dairy cows called “Poor 
Metabolic Adaptation Syndrome” (PMAS). These methods were able to describe a novel 
classification of data without the benefit of an outcome variable. In addition, an indicator blood 
parameter was able to be selected to classify future observations into the aforementioned metabolic 
health classifications. Finally, this work illustrated how unsupervised learning can be a key step 
for the understanding of a data set’s characteristics before engaging in a supervised learning task.  
 
When having access to large data, it might be instinctual to group all the data together during the 
analysis to gain extra statistical power. However, it might be more beneficial to separate data into 
different groups. Again, without a defined outcome variable for grouping data unsupervised 
learning is necessary. In Chapter 4.2 a study is presented that describes how decision making 
processes and customized management advice can be facilitated by improved benchmarking 
within peer groups through clustering. By applying mixed latent-class model-based cluster 
analysis to 529 North American automated milking systems (AMS) dairy farms with respect to 18 
significant risk factors, 6 clusters were identified. The resulting clusters of data represented groups 
of farms with unique management styles, challenges, and production patterns. When compared 
with peer groups based on criteria similar to the conventional benchmarking standards, the 6 
clusters better predicted milk production per robot per day. Therefore, separating data into subsets 
made for better results and subsequent recommendations to the producers. This study highlights 
that large data do not always benefit from their large size. This study also illustrates the benefit of 
comparing results when using all data and when first separating the data into smaller subsets.  
 
SIMILARITIES NEEDS AMONG DATA SETS 
The same dataset will be considered imperfect to different degrees for different projects, goals, 
methods, and disciplines resulting in personal subjectivity. No matter which method is applied to 
imperfect data challenges, they should be able to significantly improve analytical results. This 
improvement should be quantified by means of systematic comparisons of model performance and 
fit. After performance and fit comparisons have been exhausted, model complexity and 
computation time are the decision guides for selection of methods that solve imperfect data 
challenges. 
  
An extreme degree of missingness is the lack of an outcome variable. And unsupervised learning 
is the way of pattern recognition when the outcome variable is missing. Unsupervised learning has 
great opportunity for cross-over and has great potential for becoming part of an integrated approach 
that resolves imperfect data challenges. Unsupervised learning, or cluster analysis, could have been 
applied to the data in Chapters 2.1, 2.2, and 2.3. Unsupervised learning in Chapter 2.1 could have 
been used to discover different patterns in Campylobacter cases among states that might have 
different risk factors per region. When examining Plasmodium falciparum infection risk factors in 
Chapter 2.2, clustering could have led to more targeted recommendations and outreach 
implementation for groups of homesteads based on each groups’ particular risk factors for 
infection. Finally, different parameter estimation models could have been built for each AMS 
cluster described in Chapter 4.2 resulting in different risk factors of milk production per cluster.  
 
In addition to missingness and unbalanced data sets, multilevel modeling is a commonly faced 
challenge because data are merged from many different sources collected at different time points 
or at different levels of observations. This challenge was evident in the datasets used in this 
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dissertation. The Campylobacter data set in Chapter 2.1 had census data at the county level and 
Campylobacter cases at the individual patient level. PAZ questionnaire data in chapter 2.2 were at 
the homestead level while the biological sampling data of humans and cattle were collected at the 
individual level. In addition, the original AMS dataset in chapter 2.3 had robot milk production at 
the robot or farm level while specific robot milking data, such as milking speed and boxtime, were 
at the cow level. In such complex systems, the more extreme observations per variable at the micro 
level can be a better reflection of the characteristics at the macro level. Averaging of the 
observation at the micro can result in loss of information. The different types of micro-macro 
modeling could be used in these cases to identify whether extreme observations, or averaging of 
the observations per variable, leads to better model outcome. 
 
Choices for modeling with regards to levels of observations and clustering are numerous. Taking 
this to the extreme, one can foresee many opportunities for the applications of rtFMS. Additional 
applications of rtFMS, as described in Chapter 3.1, can be applied to a variety of statistical learning 
projects including the following examples in this dissertation. Chapter 2.1 includes a comparison 
among hurdle and zero-inflation model types, and Poisson and negative binomial model 
distributions. However, rtFMS would allow the comparison of other options such as performing 
clustering (unsupervised learning) before modeling to select states or regions that require separate 
models. In Chapter 2.2, rtFMS would help to compare results for using data imputation or not, and 
for using PCA to make wealth indices compared to backwards elimination of highly correlated 
wealth variables. Additionally, rtFMS could compare different limits for removing highly-
correlated variables, and among different hyperparameters value in the glmnet model.  
 
Another chapter that could have benefitted from rtFMS is chapter 2.3. rtFMS would allow the 
comparison of correlation limits and t-value limit when forward selection of interaction terms is 
performed. In addition, the forward selection method could have been compared to other selection 
methods such as backwards selection of interactions and to performing a network analysis instead 
of a generalized linear model. Ideally, interactions would have been also included in all models in 
this dissertation, including for Campylobacter and Plasmodium falciparum infections, to increase 
the models’ goodness of fit and therefore also increase the accuracy of the risk factor estimations.  
 
The flexibility of rtFMS is reflected in the fact that a multitude of performance measures can be 
chosen. Alternative to the currently used balance accuracies in the prediction modeling section 
(see chapter 3.1), akaike information criterion (AIC), bayesian information criterion (BIC), mean 
absolute error (MAE), and -2xlog likelihood could be used for parameter estimation models.  
 
It is commonly noted that secondary data will be more prone to biases including selection, random 
and misclassification biases (Fan et al. 2014; Harford 2014; Haine et al., 2018). It is sometimes 
mentioned that big data could compensate for some biases through sheer numbers of observations 
(Seely-Gant and Frehill, 2015). However, that has not been shown to be the case (Lazer 2014). In 
this work, certain biases were encountered and mitigated. Selection bias is sometimes referred to 
as availability bias in data mining. In Chapter 4.1, selection bias was present since only data from 
Simmental cows were available. This bias was acknowledged and the potential for the results to 
also apply to Holsteins was discussed. Second, in Chapter 4.2, the farms included in the study only 
originated from one brand of AMS. This bias was mitigated since the results were not generalized 
to other brands of AMS or non-AMS farms. Future studies will collect data from different breeds 
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and milking systems. Additionally, the results were only used to provide peer groups for the farms 
used in the study. In Chapter 2.2, random error was present due to the many missing values. The 
missing data was deemed to be missing at random and were therefore imputed. However, if the 
missingness had been systematic and not random, attempting a solution by imputation would have 
only introduced more bias. Finally, misclassification bias was encountered in Chapter 3.2 when 
prediction models for antimicrobial residues were developed. The outcome values in the training 
data were determined using an imperfect test (the brilliant black reduction test) that could lead to 
misclassification of the observations. Epidemiology training includes identifying, acknowledging 
and addressing bias. This emphasis needs to continue to be applied to studies where data science 
methods and secondary data are used. 
 
In summary, the many examples of secondary data sets in this dissertation illustrate the similarities 
for imperfect data challenges including having imbalances in positive and negative outcomes, rare 
events, zero inflation, high-dimensionality, multicollinearity, missing data, multiple significant 
interactions, variety in structure, and undefined outcomes. 
 
SIMILARITIES AND DIFFERENCES AMONG DATA DISCIPLINES 
Within each discipline, researchers will always be dependent on having data that are relevant to 
their research question.  This leads to many similarities within divergent data disciplines such as 
data sciences and statistics. One of the differences between statistics and data science can be 
highlighted by the disciplines’ movement towards automation (Reid, 2016). Unlike applied 
statistics, there is the growing movement towards automation in data science (Gaber, 2009; Witten 
et al., 2016; Cearley, 2019). Data science is also more associated with “big data” than is 
mathematical statistics (Reid, 2016). 
 
The term “big data” is often defined by three “V” terms: Volume, Variety and Velocity (Mooney 
et al., 2015). Epidemiology has many overlapping features with big data which are highlighted in 
this thesis. In term of volume, several data sets used in this dissertations’ studies had over 40,000 
observations. In addition, variety is a big component of these studies. These chapters covered many 
outcomes from human Campylobacter infections in the USA, Plasmodium falciparum infection in 
Kenya, to metabolic health and milk production in cattle. Other than outcome, there was a lot of 
variety seen among the studies in this dissertation in terms of data size, location, goal, study design, 
time frame, disease, goal, data type, outcome, technique, and population. Finally, although 
epidemiology has most commonly dealt with historical data instead of real-time data, real time 
data is also used. This could be the case in the future with the AMS data in Chapter 2.3. AMS 
production and milk data are routinely collected and so prediction models could be incorporated 
into normal real-time routines. 
 
Although epidemiology overlaps with data sciences in many facets, epidemiology has more 
emphasis on the biological relevance and interpretation of results. In addition, epidemiology has a 
stronger foundation in study designs and is more hypothesis driven, which originate from the 
influence of statistics (Dohoo et al., 2003). For example, there is more emphasis in epidemiology 
for evaluating if data meet statistical test assumptions such as independence of observations, 
normal distributions, and addressing potential autocorrelation and random effects. These strengths 
of epidemiology can offer a lot in interdisciplinary collaborations. However, there is concern that 
data mining methods and automation will cause the field to move away from deductive reasoning 
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and prohibit the incorporation of expert knowledge about biological relevance into analyses 
(Dohoo et al., 2003; Faraway, 2016).  
 
Although data mining methods do not originate from deductive reasoning, the unsupervised 
methods can expose investigators to new ways of looking at a research area. In addition, the use 
of data science methods does not inhibit biological relevance from coming into play at other stages 
of a study. This fact was illustrated in many chapters of this work. First, although the automated 
selection of interactions was used in Chapter 2.3, biological relevance was key in selecting which 
interactions were discussed and explored further in the study. Secondly, Chapter 4 used 
unsupervised methods to find patterns in large sets of data without specific outcome variables. 
Although deductive reasoning did not initiate the studies, the results were subjected to post-hoc 
analyses. The post-hoc analyses were pivotal in how the results were interpreted and allowed the 
biological relevance to be incorporated. At this stage of interpreting results, the possible biases 
and errors, that were previously discussed (page 136), are also taken into consideration. Although 
data mining does not originate from deductive reasoning, its results initiate many new hypotheses. 
These new hypotheses can then be investigated in a more formal hypothesis driven process in 
follow-up primary studies. 
 
Veterinary epidemiological research, will continue to follow the trends in data sciences towards 
automation due to the growing use of imperfect, secondary, and potentially big data, and the desire 
to develop real-time surveillance and prediction capabilities (VanderWaal et al., 2017; Hermans 
et al., 2018). This work suggests that systematic methods can lead to automation of 
epidemiological data analyses, and can coincide with a focus on biological relevance and sound 
interpretation.  
 
MOVING TOWARDS A UNIFIED AUTOMATED METHOD 
The idea of systematic protocols for method selection was consistent throughout the dissertation. 
One can imagine the future development of a comprehensive rtFMS procedure to embrace and 
compare all potential data imperfection challenges. Alternatively, a new algorithm could be 
developed that encompasses many imperfections discussed in this work, similar to glmnet 
accounting for high-dimensionality and highly correlated variables at the same time. In this case, 
automation of such an all-encompassing rtFMS procedure or algorithm would be the obvious next 
step. The ideal situation of such a procedure or algorithm would only require the user to select the 
outcome variable for optimization and the goal of the data analysis such as parameter estimation, 
prediction modeling, forecasting, pattern recognition, or survival analysis. The automation of these 
methods would make many diverse methods from a variety of disciplines available to many more 
users. Especially with cloud computing becoming more accessible, even computationally taxing 
methods will not hold users back.   
 
The rtFMS method prevents overfitting by means of systematic iterated cross-validation. Also, the 
method incorporates multiple comparison corrections to adjust the results for the rate of false 
discoveries. However, there are some potential down-sides of using rtFMS for selection modeling 
methods. First, the performance measures that are currently used to optimize models and make 
selections (e.g. balanced accuracy) are based only on model performance in terms of predictive 
ability. However, as methods continue to develop, the best performing model might not be an 
easily interpretable model. Models that are not easily interpretable are sometimes referred to as 
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“black box” methods because direct associations between predictors and outcomes are not easily 
extracted from the model (Chollet, 2018). Algorithms difficult to interpret include deep learning 
and neural networks. When this occurs, researchers would be faced with a decision between 
performance and interpretability. However, rtFMS is very flexible in term of the outcomes that it 
can use for optimization. In the future, a new performance parameter could be developed that 
balances performance and simplicity. This could be accomplished similarly to how the Bayesian 
information criterion (BIC) is used in parameter estimation models to balance model goodness of 
fit and simplicity. 
 
LIMITATIONS 
Several limitations need to be examined when considering this work. One of the major limitations 
of this work is that although the aim was to cover the most common types of data imperfection, 
there are other types of imperfections that were not addressed. For example, working with data 
coming from different sources that do not have a common identifier for merging is a challenge 
currently faced in data mining.  It is sometimes referred to as the data fusion problem (Bareinboim 
and Pearl, 2016). Secondly, not all available methods for dealing with specific data imperfections 
were addressed within this work. For example, when faced with large number of significant 
interactions, a network analysis might be more appropriate than a generalized linear model. 
Thirdly, there are more areas of statistical learning that were not addressed in this dissertation such 
as forecasting, survival and simulation, in addition to deep learning and reinforcement learning. 
Although this work could not exhaust all the possible types or combinations of data imperfections 
one could face, or give examples in all types of statistical learning areas, the tools provided in 
Chapter 3, rtFMS, could be used for all of these statistical learning areas and combination of data 
imperfection challenges.  
 
Although this work provide the tools to make such comparisons among methods in the prediction 
modeling (Chapter 3), rtFMS was not applied to methods described in the parameter estimation 
(Chapter 2) or unsupervised learning (Chapter 4). Due to the succession of the work, this method 
was not available at the time. Data sciences are more commonly used for the goal of prediction 
modeling rather than parameter estimation. However, applying machine learning for parameter 
estimation is an obvious extension of machine learning methods that is done by optimizing model 
fit instead of optimizing for predictive ability. The potential for overfitting still needs to be 
addressed, but this could be done using a limit of the number of parameters that could be included 
as a ratio to the number of observations in the dataset. Recommended limits lie between a 1:5 and 
a 1:25 ratio (Peduzzi et al., 1996; Babyak, M.A., 2004; Hair et al., 2009; Harrell, 2015). For 
parameter estimation models, interactions can be important additions to a model. Interactions are 
not commonly included in machine learning models since some algorithms such as the neural 
network already account for such relationships (Chollet, 2018). In addition, machine learning 
methods do not currently include a step that uses unsupervised learning to disaggregate the data 
into more representative groups before modeling. It would be worth investigating if including 
certain parameters estimation aspects such as interactions and unsupervised learning prior to 
modeling would benefit the performances of some types of machine learning algorithms. The 
resulting performances could be easily compared using the rtFMS method presented in this 
dissertation. 
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Additionally, this work did not include comparisons between results with and without applying 
specific data imperfection methods in all chapters. For example, results with and without applying 
SMOTE were not compared in Chapter 3.1, and the results with and without imputing missing 
data were not compared in Chapter 2.2. These comparisons are important to put into perspective 
at what point these methods became necessary. The rtFMS method described in Chapter 3 should 
include these comparisons in the future. Readers should embrace the idea that imperfections of 
data can be dealt with in many ways, but that a formal comparison of methods is needed to obtain 
the best results.  
 
FUTURE PERSPECTIVES 
It is to be expected that the amount of technological innovation to continue to accelerate in the 
future. As new technologies are embraced and become ubiquitous, the amount of data collected 
and analyzed will only increase and will become a rich source of potential data for epidemiologists 
in the future. As such, imperfect data challenges will also rise in quantity and variety. Therefore, 
it is necessary to further develop and compare modeling and pattern recognition methods that 
address imperfect data challenges commonly faced in this discipline. In addition, preparations are 
needed for new types of imperfect data challenges that will arise in the future such as the data 
fusion problem (Bareinboim and Pearl, 2016). However, this challenge is not yet commonly seen 
in epidemiological studies. It should become apparent that much more research is needed in this 
discipline to improve imperfect data methods, as these data and challenges become more common 
and complex in the future.  
 
Future studies are needed to determine thresholds of data imperfection in which the use of specific 
analytical techniques yield significant improvements in the performance of the resulting model. In 
addition, new methods should determine if they have individual limits of how much imperfection 
it can handle. For example, the method of multiple imputation by chained equations (MICE) has 
determined a limit of 10% missingness or less for the method to be used successfully (in addition 
to a requirement from missingness to be random). Other methods should aim to reach similar 
understanding of their limitations. Balancing methods such as SMOTE might have distinct limits 
as well. Pairing the degrees of imperfection with the data set’s intended use should be considered 
more systematically. This would also be helpful to limit the amount of methods that are applied 
and compared in an rtFMS procedure to reduce the complexity of the analysis.  
 
With the similarities in the data disciplines’ needs and with a rise in data and their corresponding 
imperfect data challenges in the future, interdisciplinary collaborations will become more 
common. This can already be observed with secondary data-based studies in human medicine and 
epidemiology. For example, citizen research has been used to monitor air quality and social media 
have been used to better monitor and detect influenza infections (Broniatowski et al., 2013, Snik 
et al., 2014). These studies have routinely incorporating data mining methods. However, 21st 
century tools are also part of primary data-based studies. For example, Genome-wide association 
studies (GWAS) are commonly employed in epidemiology. Genetics statistics have been merged 
with human epidemiology to better understand disease (McGrath et al., 2013). Microbiome studies 
are being performed across all of veterinary medicine and require intensive bioinformatics support 
(Barko et al., 2018). Sensor technologies in precision farming that were developed for their ability 
to improve welfare and production are being adopted throughout the world (Berckmans, 2014; 
Norton and Berckmans, 2018). Finally, epidemiology’s future is heading in the direction of 
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exposomology, which examines individuals’ exposures over a lifetime to get the most accurate 
estimates on risks and associations for disease (Niedzwiecki et al., 2019). The goal of exposomes 
will dependent on approaches from data disciplines such as data science, data mining, machine 
learning and the development of new methods such as advanced multilevel modeling techniques. 
Citizen research, GWAS, microbiomes, sensor technologies in animals and exposome studies are 
perfect examples for the future of epidemiology that will require regular large interdisciplinary 
team efforts. This degree of interdisciplinary collaboration has large consequences for teaching of 
epidemiology.  
 
Informed decisions have to be made if classic epidemiologist will lead the way during the 
development of methods from data sciences or whether they will adopt automated models from 
the cloud or recruit the help of data scientists for analyses. Furthermore, epidemiology leaders 
should discuss if topics such as data mining, data science, and machine learning need to be added 
to the epidemiology curriculum. If this does not occur, the future will most likely include the 
automation of a unifying method for such analyses or the farming-out of big imperfect data to data 
scientists. If the future of epidemiology does not focus on methods as described in this dissertation, 
the discipline could focus on the meaningful interpretation and biological relevance of the results. 
 
PRACTICAL IMPLICATIONS 
This dissertation provides a framework to address common imperfect data challenges in parameter 
estimation, predictive modeling, and pattern recognition. These systematic procedures and 
methods are comprehensive and flexible enough to account for different data sets, data 
imperfections, and goals for analysis. This dissertation guides those faced with imperfect large 
data sets into optimized data analyses despite imperfect data challenges. Consequently, data sets 
from primary or secondary data-based studies are equally usable for the primary goals of modeling 
and pattern recognition based on this work. 
 
Finally, this dissertation provides systematic procedures for comparing a multitude of methods 
available within and across disciplines such as data science, data mining and machine learning to 
optimize selected performance measures. Applying rtFMS facilitates the incorporation of more 
advanced statistical analytical methods resulting in improved models and outcomes. Future 
models’ performance and fit will benefit from the widespread of rtFMS in epidemiology. 
 
CONCLUSIONS 
• This work illustrates and describes the similar needs and challenges across large imperfect data 

sets. This work illustrated several new methods for addressing the challenges of large imperfect 
data sets which were applied to parameter estimation, predictive modeling, and pattern 
recognition. 
 

• This work developed methods for systematically combining, comparing and selecting the most 
appropriate statistical methods available to optimize selected performance measures, 
streamline selection, and to prevent subjectivity, bias and flawed outcomes. Systematic 
approaches to analysis make the presented methods and working with large, imperfect, 
secondary data more accessible. 
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• This work is a steppingstone towards ensuring that future data analyses are not hindered by 
large data imperfections and that the many possible methods available become an advantage 
and not a hurdle. 
 

• This work is an example for how utilizing methods from discipline such as data science and 
machine learning can improve models’ performance and fit.  
 

• Finally, as large data sets from secondary data-based studies become more widely available, 
interdisciplinary methods will prove crucial for the discipline of epidemiology to maintain 
forward momentum. 
 

• This thesis has shown that imperfect data challenges can be solved, and in the name of 
improved model performance and fit, systematic model choices are crucial. 
 

• Collectively, these methods provide an unbiased framework in which to approach the analysis 
of large data, without losing the emphasis on the biological relevance and sound interpretation 
of the results.  
 

• This work suggests that systematic methods can lead to automation of epidemiological data 
analyses, and can coincide with a focus on biological relevance and sound interpretation.  

 
 
IMPACT 
The challenges of comparing and selecting pattern recognition, descriptive or prediction models 
and methods using large, imperfect data sets are realities seen in many disciplines. This is also true 
for the need to make inferences for decision-making processes based on these models. In addition, 
the use of large, imperfect data from secondary data-based studies will only become more common 
in the future. Finally, the number of different methodological options available for each type of 
data imperfection will also increase. Therefore, the methods described and used in this dissertation 
will allow more access to data for analysis while gaining the benefit of a large data set.  
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SUMMARY 

 
 
The accelerated rate of technological innovation in the 21st century has yielded many large data 
sets requiring new methods and approaches for analysis. In the past, data collection was mostly 
done after the development of a hypothesis-based experimental design and project plan (“primary 
data-based studies”). In contrast, data from secondary data-based studies are large data sets, 
potentially big data, collected before the analysis’ method or goal is determined. While data from 
secondary data-based studies can be limited by the nature of their collection method, they can 
compensate with their large sample sizes, and the increased detail from larger numbers of 
variables. At the same time, large secondary data-based studies are more prone to result in 
imperfect data challenges including: rare events, high-dimensionality, missing data, multilevel 
data, and undefined outcomes.  Routinely collected animal health and production data are good 
examples of secondary data commonly used in veterinary epidemiology.  
 
Epidemiology has a strong foundation in using statistical methods for data analysis. However, 
epidemiology has recently followed trends in data science such as the emergence of data mining 
and machine learning. Unlike statistics, there is the growing movement towards automation in data 
science. Automation of data analysis has the potential to increase the amount of output, and 
improve the resulting model performance. We can assume that some portions of veterinary 
epidemiological research will continue to follow the trends in data sciences towards automation. 
This is due to the growing use of imperfect, secondary, and potentially big data, and the desire to 
develop real-time surveillance and prediction capabilities in epidemiology. However, 
epidemiology will always need to be focused on biological relevance and meaningful 
interpretation of results. Therefore, epidemiology needs to prepare for the trend towards automatic 
data analyses. This could be accomplished by adapting or developing methods that can be 
automated in the future and that do not remove the focus of the research from the biological 
relevance and interpretation of the results. In this dissertation, the goal was to develop methods for 
analyzing imperfect data and solutions for the systematic integration, comparison and selection of 
methods to streamline selection, and to prevent subjectivity when analyzing imperfect data. 
 
A large variety of data sets were used from large, secondary data-based studies that were available 
for analysis. A range of methods to address imperfect data challenges were applied, and new 
methods and systematic protocols were developed all while being focused on biological relevance 
and sound interpretation of the results. The studies had diverse goals that fit into three main areas: 
parameter estimation modeling, prediction modeling, and pattern discovery.  
 
In Chapter 2 the focus was on systematic supervised learning methods for parameter estimation 
while addressing data imperfections. Chapter 2.1 described a systematic approach to addressing 
the excess of zero case counts for parameter estimation using zero augmented models while in 
search for the best fitting model. Chapter 2.2 demonstrated a systematic approach to imputation of 
missing data, variable reduction and selection in a high-dimensional data set. The sequential and 
parallel application of methods was successful in reducing a wide, sparse dataset to a more useful, 
simplified set of predictors while still benefitting from the large amount of data in this data set. 
Chapter 2.3 focused on systematic selection and interpretation of interaction terms for parameter 
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estimation in search for the best fitting model. The interactions significantly increased the fit of 
the regression model and did not prevent meaningful discussion on the biological relevance and 
interpretation of interactions among parameters.  
 
In Chapter 3 a systematic approach for supervised learning methods for prediction modeling was 
developed that allows systematic comparisons of many modeling options. Chapter 3.1 introduced 
the systematic approach to full model selection for prediction modeling using regression trees: 
regression tree full model selection (rtFMS). A significantly better performing model was obtained 
using rtFMS compared to what would have been obtained if method options had been selected 
subjectively. In addition, rtFMS eliminated the bias associated with empirical selection of method 
options. Chapter 3.2 described the development of new method of micro-macro multi-level 
modeling developed named “Extreme Value Micro-Macro” (EVMM) multilevel modeling. This 
method addressed the challenge of multilevel modeling when the central tendency of the micro 
level observations is not a good representation of the macro level outcome. The rtFMS method 
illustrated the significantly better performance of the EVMM method compared to the current 
micro-macro multilevel modeling method that uses the mean of the micro level observations.  
 
In Chapter 4 unsupervised learning methods for pattern recognition were applied while the results’ 
biological relevance were confirmed with post-hoc methods. In Chapter 4.1, to validate the 
findings of the cluster analysis, post-hoc regression models were used to examine associations 
between the cluster classifications and other parameters that were not used in the cluster analysis. 
The post-hoc findings supported and aided in the interpretation of the clustering results. In Chapter 
4.2, to validate the findings of a cluster analysis of dairy farm observations, a comparison was 
made between the predictive performance of the resulting cluster classification and the current 
method that is used to classify these observations. The cluster analysis classification was a better 
predictor for a farm’s milk production than was the current benchmarking method.  
 
This work illustrated several new methods for addressing the challenges of large imperfect data 
sets which were applied to parameter estimation, predictive modeling, and pattern recognition. 
Collectively, these methods provide an unbiased framework in which to approach the analysis of 
large data, without losing the emphasis on the biological relevance and sound interpretation of the 
results. This work developed methods for systematically combining, comparing and selecting the 
most appropriate statistical methods available to optimize selected performance measures, 
streamline selection, and to prevent subjectivity, bias and flawed outcomes. This work is a 
steppingstone towards ensuring that future data analyses are not hindered by large data 
imperfections and that the many possible methods available become an advantage and not a hurdle. 
 
The challenges of comparing and selecting pattern recognition, descriptive or prediction models 
and methods when using large, imperfect data sets are realities seen in many disciplines. This is 
also true for the need to make inferences for decision-making processes based on these models. In 
addition, the use of large, imperfect data from secondary data-based studies will only become more 
common in the future. Therefore, the methods described and used in this dissertation aimed at 
addressing the challenges associated with imperfect data sets in a systematic way will allow access 
to more data for analysis while gaining the benefit of a large data set. This work suggests that 
automation of data analysis can coincide with a focus on biological relevance and sound 
interpretation.  
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SUMMARY- DUTCH 

 
 
Het versnelde tempo van technologische innovatie in de 21e eeuw heeft geleid tot veel grote 
gegevenssets die nieuwe methoden en benaderingen voor analyse vereisen. In het verleden werd 
het verzamelen van gegevens meestal gedaan na de ontwikkeling van een op hypothesen gebaseerd 
experimenteel ontwerp en projectplan ("primaire op gegevens gebaseerde studies"). Gegevens van 
secundaire, op gegevens gebaseerde studies daarentegen zijn grote gegevenssets, mogelijk big 
data, verzameld voordat de methode of het doel van de analyse is bepaald. Hoewel gegevens van 
secundaire, op gegevens gebaseerde onderzoeken kunnen worden beperkt door de aard van hun 
verzamelmethode, kunnen ze compenseren met hun grote steekproefgroottes en de toegenomen 
details van grotere aantallen variabelen. Tegelijkertijd zijn grote secundaire, op gegevens 
gebaseerde studies meer vatbaar voor imperfecte gegevensuitdagingen, waaronder: zeldzame 
gebeurtenissen, hoge dimensies, ontbrekende gegevens, multiniveau-gegevens en niet-
gedefinieerde resultaten. Routinematig verzamelde diergezondheids- en productiegegevens zijn 
goede voorbeelden van secundaire gegevens die gewoonlijk worden gebruikt in de veterinaire 
epidemiologie.  
 
Epidemiologie heeft een sterke basis in het gebruik van statistische methoden voor data-analyse. 
De epidemiologie heeft echter recent trends in de gegevenswetenschap gevolgd, zoals de opkomst 
van datamining en machine learning. In tegenstelling tot statistieken is er de groeiende beweging 
naar automatisering in de gegevenswetenschap. Automatisering van data-analyse heeft het 
potentieel om de hoeveelheid output te vergroten en de resulterende modelprestaties te verbeteren. 
We kunnen aannemen dat sommige delen van veterinair epidemiologisch onderzoek de trends in 
data-wetenschappen richting automatisering zullen blijven volgen. Dit komt door het toenemende 
gebruik van imperfecte, secundaire en potentieel big data en de wens om real-time surveillance- 
en voorspellingsmogelijkheden in de epidemiologie te ontwikkelen. De epidemiologie zal echter 
altijd gericht moeten zijn op biologische relevantie en zinvolle interpretatie van de resultaten. 
Daarom moet de epidemiologie zich voorbereiden op de trend naar automatische 
gegevensanalyses. Dit kan worden bereikt door methoden aan te passen of te ontwikkelen die in 
de toekomst kunnen worden geautomatiseerd en die de focus van het onderzoek niet verwijderen 
van de biologische relevantie en interpretatie van de resultaten. In dit proefschrift was het doel om 
methoden te ontwikkelen voor het analyseren van imperfecte gegevens en oplossingen voor de 
systematische integratie, vergelijking en selectie van methoden om selectie te stroomlijnen en om 
subjectiviteit te voorkomen bij het analyseren van imperfecte gegevens. 
 
Een grote verscheidenheid aan gegevenssets werd gebruikt van grote, secundaire, op gegevens 
gebaseerde onderzoeken die beschikbaar waren voor analyse. Een reeks methoden om 
onvolmaakte gegevensuitdagingen aan te pakken werden toegepast en nieuwe methoden en 
systematische protocollen werden allemaal ontwikkeld, terwijl ze gericht waren op biologische 
relevantie en een goede interpretatie van de resultaten. De studies hadden verschillende doelen die 
in drie hoofdgebieden passen: parameterschattingmodellering, voorspellingsmodellering en 
patroonontdekking. 
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In Hoofdstuk 2 lag de focus op systematische gesuperviseerde leermethoden voor 
parameterschatting bij het aanpakken van onvolkomenheden in de gegevens. Hoofdstuk 2.1 
beschreef een systematische aanpak voor het aanpakken van de overschrijding van nul casus-
tellingen voor parameterschatting met behulp van nul-vergrote modellen terwijl op zoek was naar 
het best passende model. Hoofdstuk 2.2 toonde een systematische aanpak van de imputatie van 
ontbrekende gegevens, variabele reductie en selectie in een hoogdimensionale 
gegevensverzameling. De sequentiële en parallelle toepassing van methoden was succesvol in het 
reduceren van een brede, schaarse dataset tot een meer bruikbare, vereenvoudigde set van 
voorspellers, terwijl toch profiteerde van de grote hoeveelheid gegevens in deze dataset. Hoofdstuk 
2.3 was gericht op systematische selectie en interpretatie van interactietermen voor 
parameterschatting bij het zoeken naar het best passende model. De interacties verhoogden 
significant de fit van het regressiemodel en verhinderden geen zinvolle discussie over de 
biologische relevantie en interpretatie van interacties tussen parameters. 
 
In Hoofdstuk 3 is een systematische aanpak voor begeleidende leermethoden voor 
voorspellingsmodellering ontwikkeld die systematische vergelijkingen van vele modelleeropties 
mogelijk maakt. Hoofdstuk 3.1 introduceerde de systematische benadering van volledige 
modelselectie voor voorspellingsmodellering met behulp van regressiebomen: regressieboom 
volledige modelselectie (rtFMS). Een significant beter presterende model werd verkregen met 
behulp van rtFMS in vergelijking met wat zou zijn verkregen als de methode-opties subjectief 
waren geselecteerd. Bovendien elimineerde rtFMS de bias die samenhangt met empirische selectie 
van methode-opties. Hoofdstuk 3.2 beschreef de ontwikkeling van een nieuwe methode van micro-
macro multi-level modeling ontwikkeld met de naam "Extreme Value Micro-Macro" (EVMM) 
multilevel modellering. Deze methode ging over de uitdaging van multilevel modellering wanneer 
de centrale tendens van de microniveau-waarnemingen geen goede weergave is van de uitkomst 
op macroniveau. De rtFMS-methode illustreerde de aanzienlijk betere prestaties van de EVMM-
methode in vergelijking met de huidige micro-macro multilevel modelleringsmethode die het 
gemiddelde van de microniveau-waarnemingen gebruikt. 
 
In hoofdstuk 4 werden niet-gecontroleerde leermethoden voor patroonherkenning toegepast, 
terwijl de biologische relevantie van de resultaten werd bevestigd met post-hoc-methoden. In 
Hoofdstuk 4.1, om de bevindingen van de clusteranalyse te valideren, werden post-hoc 
regressiemodellen gebruikt om associaties te onderzoeken tussen de clusterclassificaties en andere 
parameters die niet werden gebruikt in de clusteranalyse. De post-hocbevindingen ondersteunden 
en ondersteunden de interpretatie van de clusteringresultaten. In Hoofdstuk 4.2, om de bevindingen 
van een clusteranalyse van observaties van melkveebedrijven te valideren, werd een vergelijking 
gemaakt tussen de voorspellende prestaties van de resulterende clusterclassificatie en de huidige 
methode die wordt gebruikt om deze waarnemingen te classificeren. De clusteranalyseclassificatie 
was een betere voorspeller voor de productie van boerderijmelk dan de huidige 
benchmarkmethode. 
 
Dit werk illustreerde verschillende nieuwe methoden voor het aanpakken van de uitdagingen van 
grote imperfecte gegevenssets die werden toegepast op parameterschatting, voorspellende 
modellering en patroonherkenning. Gezamenlijk bieden deze methoden een onbevooroordeeld 
kader om de analyse van grote gegevens te benaderen, zonder de nadruk te verliezen op de 
biologische relevantie en de correcte interpretatie van de resultaten. Dit werk ontwikkelde 



Pattern Recognition and Modeling with Imperfect Data M. Tremblay, 2019 

  
Page 148 of 150 

methoden voor het systematisch combineren, vergelijken en selecteren van de meest geschikte 
beschikbare statistische methoden om geselecteerde prestatiemetingen te optimaliseren, selectie te 
stroomlijnen en subjectiviteit, vertekening en gebrekkige resultaten te voorkomen. Dit werk is een 
springplank om ervoor te zorgen dat toekomstige gegevensanalyses niet gehinderd worden door 
grote onvolkomenheden in de gegevens en dat de vele mogelijke methoden een voordeel worden 
en geen hindernis. 
 
De uitdagingen van het vergelijken en selecteren van patroonherkenning, beschrijvende of 
voorspellingsmodellen en methoden bij het gebruik van grote, imperfecte gegevenssets zijn 
realiteiten die in veel disciplines worden gezien. Dit geldt ook voor de noodzaak om conclusies te 
trekken voor besluitvormingsprocessen op basis van deze modellen. Bovendien zal het gebruik 
van grote, imperfecte gegevens uit secundaire, op gegevens gebaseerde studies pas in de toekomst 
meer voorkomen. Daarom zullen de methoden die in dit proefschrift worden beschreven en 
gebruikt om de uitdagingen van imperfecte gegevenssets op een systematische manier aan te 
pakken, toegang bieden tot meer gegevens voor analyse, terwijl het voordeel van een grote 
gegevensset wordt behaald. Dit werk suggereert dat automatisering van data-analyse kan 
samenvallen met een focus op biologische relevantie en correcte interpretatie. 
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