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Introduction

A combinatorial problem is a problem in which, from a finite set of possibilities, we
are asked to pick a solution that is optimal (e.g., lowest cost) or has other desirable
properties. Such problems occur frequently in daily life: finding the fastest route to
drive from home to work, determining where to purchase what items to take optimal
advantage of store promotions and creating a seating map for a celebratory dinner
following a PhD defence are all examples of combinatorial problems.

An algorithm is a systematic approach to solve a given problem. Algorithms are
often implemented as computer programs (e.g., as the shortest path computation in
a navigation system or as a sorting algorithm to organize files by creation date) but
can also be procedures carried out by hand: for example, when children are taught to
multiply two numbers, what they are being taught is a multiplication algorithm.

When we design algorithms, we aim to make them efficient: we want to do as little
work as possible to arrive at the desired result. A very naive method to compute the
product of two numbers A x B is to simply add B to itself A — 1 times. The product
5 x 6 might be computed by first computing 6 +6 =12, 1246 =18, ..., 24 + 6 = 30.
This is a rather tedious process, and quickly becomes infeasible if we want to compute
a larger product, such as 153 x 12. Long multiplication, as taught in primary school, is
much more efficient. Instead of adding 153 to itself 12 times, we can instead compute
153 x 10 4+ 153 x 2 = 1530 4+ 306 = 1836. To multiply two n-digit numbers, long
multiplication requires n? elementary operations, while the naive method can require
10™ — 2 additions.

The complexity of an algorithm determines how much time it uses to solve a
particular problem instance, and also what the maximum size of a problem instance
is that can be solved within reasonable time: the repeated addition method already
becomes impractical for numbers with more than, say, two or three digits, while long
multiplication can be performed by hand for numbers tens of digits long.

This thesis deals primarily with problems on graphs: a graph is a set of points
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(vertices), connected by lines (edges). Graphs can be used to model for instance
road networks (where edges correspond to roads and vertices to intersections), social
networks (where vertices correspond to people and edges to friendships), or any other
structure with relations between objects.

If a graph has a special underlying structure, this structure can sometimes be
exploited to obtain faster algorithms. As a simple example, many problems that are
difficult to solve on graphs in general, often have much lower complexity (or are even
trivial) if the graph considered is a tree (i.e., a graph in which any two vertices are
connected by a unique path). The trecwidth of a graph measures, in some sense, how
“close” a graph is to being a tree: a graph with low treewidth can be decomposed
into small groups of vertices, the groups connected together in a tree, such that the
connections in the graph are respected by the grouping and the tree. Problems which
can be solved efficiently on trees can often also be solved efficiently on graphs of low
treewidth.

As a very high-level overview of this thesis, we study the application of treewidth
(and related techniques) to several types of problems, and give both algorithms and
lower bounds, showing that these algorithms are (likely) optimal. We also study
practical applications and implementations of treewidth-related algorithms.

In the first part, we study the application of bounded treewidth and geometric
structure (e.g., planarity) to graph embedding problems (e.g., recognizing whether
some small pattern occurs somewhere as a subgraph in a larger host graph). One might
reasonably expect that planarity could be exploited to obtain faster algorithms for
these problems. However, it turns out that this is not the case: while we do obtain
slightly faster algorithms, these algorithms are not as efficient as one might expect. We
also give evidence that the algorithms obtained are probably optimal.

In the second part, we study geometric intersection graphs. A geometric intersection
graph can be obtained, for instance, by identifying the vertices of graphs with points
in space, and connecting two points with an edge if they are within a certain distance
of each other. While these graphs do not have small treewidth, we show how a slightly
modified variant of treewidth can still be used to obtain faster algorithms for problems
on these graphs. These algorithms also turn out to be (probably) optimal.

In the third and final part, we study practical uses of treewidth. We first study
the computation of treewidth itself: we give a parallel algorithm, implemented on a
GPU, for computing treewidth using partial elimination orderings. We then study
how treewidth can be used to compute the Shapley Value of connectivity games. This
value, a tool from game theory, helps us to estimate the importance of vertices in a
graph, i.e., it is a so-called centrality measure. It can be (and has been) used to identify
key players in criminal and terrorist networks. Our method, using treewidth, gives a
practical approach to compute this value for graphs on which it could otherwise not be
computed.

1.1. Hard Problems

As observed in the previous section, the long multiplication algorithm is much more effi-
cient than the naive one. The time required for long multiplication scales quadratically
with the number of digits, whereas the naive algorithm scales exponentially with the
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number of digits (n). Doubling the number of digits in long multiplication increases
the running time fourfold, whereas adding just one more digit in naive multiplication
increases it tenfold. Long multiplication is an example of a polynomial-time algorithm
(running in time O(n°®) for some ¢ > 0; in this case, ¢ = 2), whereas the naive algorithm
is an example of an ezponential-time algorithm (running in time O(c") for some ¢ > 1).

While on the one hand we strive to find efficient algorithms for problems, on the
other hand, we also try to find lower bounds, showing when this can (not) be done.
Doing so gives us a greater understanding of the structure of a problem, and also
enables us to tell when we should stop looking for a faster algorithm (since none is
likely to exist).

Perhaps the most widely celebrated technique for showing lower bounds is the
theory of NP-completeness, introduced by Cook [33] and Karp [73] and independently
discovered by Levin [8I]. NP-completeness is a tool for showing that the existence of
a polynomial algorithm for a given problem is unlikely. By using reductions, that is,
showing that one problem A can be rewritten as another problem B, we can show that
if problem B has a polynomial-time algorithm, then A does too. NP-complete problems
are known to be mutually reducible to one another, and, if any one NP-complete
problem has a polynomial-time algorithm, then all NP-complete problems do. It is
widely thought unlikely that NP-complete problems have polynomial-time algorithms,
so showing NP-completeness for a problem is good evidence that it does not admit a
polynomial-time algorithm.

A central problem in the theory of NP-completeness is SATISFIABILITY. In satisfi-
ability, we are given boolean variables x1,...,x,, each of which may be set to either
true or false and a set of clauses. A clause is the disjunction of one or more literals,
where a literal is either a variable x; or its negation —x;. For example, the clause
(21 V mx2 V 1x4) can be satisfied by making either z; true, xo false, or x4 false.

The SATISFIABILITY problem is to determine whether all given clauses can be
satisfied simultaneously by an assignment. For example, the clauses (1 V x2) A (m21 V
—25) can be satisfied by making x, true and x5 false (so these two clauses together would
form a yes-instance), but the combination (x1Vza)A(—z1V-xa)A(z1V-x2)A(—21 V)
does not have any satisfying assignments: the first two clauses imply at least one
variable should be true and at least one variable should be false, but the assignment
x1 = false, zo = true does not satisfy the third clause, and x; = true, x5 = false does
not satisfy the fourth (and so this is a no-instance).

The fact that SATISFIABILITY is NP-complete can be used to show other problems
NT—completeﬂ As a simple example, consider the INDEPENDENT SET problem: given
a graph G, we want to find (at least) k vertices such that no two vertices are adjacent
(i.e., are connected by an edge). Given a satisfiability formula with n variables and m
clauses, we can create a graph as follows: for every clause with [ literals, we create a
group of [ vertices, one corresponding to each literal in the clause. We connect these
vertices by edges, so that from each group, we can select at most one vertex. We
then connect vertices corresponding to conflicting literals by edges, i.e., if v is a vertex
corresponding to literal v; in one clause, and w is a vertex corresponding to —w; in
another clause, we add the edge (u,v), ensuring that these vertices cannot be selected
simultaneously.

1For the purpose of this introduction, we omit the proof that INDEPENDENT SET is in NP.
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If we can find an independent set of size m in this graph, we know that it contains
exactly one vertex from each group corresponding to a clause (since there are m such
groups, and the edges in each group ensure we can select at most one vertex from each
group), and the literals corresponding to these vertices from a satisfying assignment.
Conversely, a satisfying assignment corresponds to an independent set of size m in this
graph (by picking, from each clause, a literal that satisfies it and selecting the vertex
corresponding to that literal to be in the independent set).

This shows that the existence of a polynomial-time algorithm for INDEPENDENT
SET implies a polynomial-time algorithm for SATISFIABILITY, because we can solve
a SATISFIABILITY instance by applying the above transformation and then solving
INDEPENDENT SET. Conversely, if SATISFIABILITY cannot be solved in polynomial
time, then neither can INDEPENDENT SET.

1.2. The Exponential Time Hypothesis

If one is willing to assume that P # NP (i.e., SATISFIABILITY does not have a polynomial-
time algorithm), then NP-completeness can be viewed as a tool to show that certain
problems do not have polynomial-time algorithms. However, merely showing that a
problem does not have a polynomial-time algorithm does not preclude the possibility
there might be a super-polynomial, but still reasonably fast algorithm: for example,
an algorithm with running time O(n!°1°8™) is not polynomial, but would still be fast
enough for many practical applications. By making a stronger assumption, we can
exclude such running times:

Hypothesis 1.1 (Exponential Time Hypothesis [67]). There exists a constant ¢ > 1
such that SATISFIABILITY for n-variable 3-CNF formulas has no O(c")-time algorithm.

It is possible to use the Sparsification Lemma [68] to show that the hypothesis
implies that there is no O(c™)-time algorithm for n-clause 3-CNF formulas either (for
a different constant ¢’ > 0).

Now, the previous reduction showed that SATISFIABILITY for a (3-CNF) formula
with n clauses can be reduced to INDEPENDENT SET on graphs with 3n vertices. Thus,
an algorithm for INDEPENDENT SET on m-vertex graphs running in time O((¢//3)™)
would contradict the Exponential Time Hypothesis (ETH). Using the ETH, it is possible
to derive similar lower bounds for many problems [68].

1.3. Graph Separators and Treewidth

Consider the example graph G in Figure [I.] If we wanted to compute the maximum
size of an independent set in G, we could consider all 2° = 512 possible subsets of
vertices in G, determine which subsets make valid independent set (i.e., contain no
two vertices sharing an edge), and find the largest among these sets. In general, this
gives an O(2"m)-time algorithm (for n-vertex, m-edge graphs). While the base of the
exponent can be improved by using more advanced branching techniques (see e.g. [116]
for a O*(1.1996™)-time algorithm), the Exponential Time Hypothesis implies that we
should not expect an algorithm without exponential dependence on n.
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Figure 1.1. Example of a graph with 9 vertices and 12 edges.

However, if the given graph has some underlying structure, it might be possible to
exploit this structure to obtain a faster algorithm. For example, consider the vertices
D, E, F: they form a separator, separating the vertices A, B,C from G, H, I — there is
no path from the left part of the graph to the right part that does not pass through
D, E, F. To find a maximum independent set, we can consider the two halves of the
graph separately, and combine maximum independent sets in both halves to find one
for the entire graph.

To this end, we group independent sets by their characteristic, which is their
intersection with the separator D, F, F. For example, if we consider the left half of
the graph only (i.e., the vertices A, B,C, D, E, F), the largest independent set with
characteristic D, F' is B, D, F. If we tabulate all possible characteristics and the sizes
of the largest independent sets in both halves of the graph having that characteristic,
we can easily find which characteristic gives the largest possible independent set overall.

Table 1.1.

’ Characteristic H Left \ Right \ Combined ‘
0 A B G, H A B, G, H
D B,D D,G,H B,D,G,H
E B,E E I B,E,I
F A F F.G, H A F.G H
D, E B,D,E D, E B,D,FE
D, F B,D,F|D,F,GH|B,D,FG H
E,F - - -
D,E. F - - -

Characteristics of independent sets with respect to the separator

D, E, F. Foreach characteristic, the table lists the largest independent set in the left
half of the graph (A, B,C, D, E, F), the right half of the graph (D, E, F,G, H,I)
and in the entire graph.

Table lists all possible characteristics and the largest independent sets having
those characteristics. Note that characteristics that contain both £ and F' do not result
in any valid independent sets since those vertices are adjacent. For each characteristic,
we obtain a partial solution for both the left and right halves of the graph. By combining
these partial solutions, we can see that the maximum independent set for the entire
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graph is B, D, F,G, H. The number of possibilities we had to consider was greatly
reduced, since we could consider each half of the graph in isolation.

This process of considering a separator and dividing the graph can be repeated.
For example, when we are considering the left half of the graph (4, B,C, D, E, F),
we can again split it on the separator B, E and combine solutions for the subgraphs
A,B,D,E and B,C, E, F to obtain the needed partial solutions for the left half, and
we can process the right half similarly.

A formalization of this process of repeatedly dividing the graph using separators
can be found in tree decompositions. A tree decomposition of a graph G is a tree, where
each vertex of the tree is associated with a subset of the vertices of (G; each such subset
is also called a bag. An example of a tree decomposition (for the graph in Figure
is shown in Figure [T.2}

Each bag in a tree decomposition is a separator, which separates the vertices
appearing in bags of the subtrees connected to that bag from each other. For instance,
the root vertex in the tree decomposition shown in Figure contains the vertices
D, E, F, which separates the vertices appearing in the left subtree (A, B, D, E, F) from
those appearing in the right subtree (D, E, F,G, H,I). Moving down one level in the
tree, the bag B, D, E| F' separates the parts A, B, D, F, B,C,E,F and D,E, F.G,H,I
from each other.

In the preliminaries, we will give the formal definition of what constitutes a tree
decomposition. For now, it suffices to think of the tree decomposition as a way to
recursively split up a graph using separators.

The running time of an algorithm operating on a tree decomposition depends
strongly on the number of vertices appearing in a bag. In Table[I.1] we had to consider
23 = 8 different characteristics, since our separator consisted of 3 vertices. For a given
graph, there may be many different tree decompositions. This motivates defining the
width of a tree decomposition to be equal to the largest number of vertices appearing
in any bag minus oneﬂ and the treewidth of a graph to be the smallest width of any
tree decomposition of the graph. Thus, as the largest bag consists of 4 vertices, the
decomposition in Figure [[.2] has width 3. However, there exists a decomposition with
width 2 and this is (for this graph) the smallest width possible, so the treewidth of the
graph in Figure is 2.

As the name suggests, treewidth is a measure of how “tree-like” a graph is. If a
graph, on a macroscopic scale, resembles a tree, then treewidth in some sense measures

2For historical and technical reasons.

Figure 1.2. Example of a tree decomposition of the graph in Figure



1.4. The Square Root Phenomenon in Planar Graphs 7

how much it deviates from being a tree locally (and in fact trees are precisely the
graphs of treewidth 1).

Exploiting the fact that a graph has bounded treewidth is a celebrated and widely
used technique for dealing with NP-complete problems: thanks to the simple structure
of trees, many NP-complete problems can be solved in polynomial time on trees. Very
often, such problems can also be solved in polynomial time on graphs of bounded
treewidth: while the best known algorithms for such problems in general require
exponential time, we can often construct an algorithm that is only exponential in
the treewidth (by doing some exponential computation within each vertex of the tree,
which contains a bounded number of vertices of the original graph), and then using
the properties of the problem that allow it to be solved in polynomial time on trees to
combine the results computed within each node of the decomposition to a solution for
the original problem. For example, on an n-vertex graph of treewidth k, INDEPENDENT
SET can be solved in time O(2¥k°Mn).

1.4. The Square Root Phenomenon in Planar Graphs

A graph is planar if it can be drawn in the plane without edges crossing each other.
The well-known Lipton-Tarjan Separator Theorem [84] B5] states that any n-vertex
planar graph has a separator, consisting of O(y/n) vertices, that divides the graph into
connected components, each having at most 2/3n vertices. As a consequence of this, it
follows that planar graphs have treewidth O(y/n) [14].

This fact can be combined with algorithms operating on tree decompositions, to
obtain subexponential-time algorithms for NP-complete problems on planar graphs.
For instance, while (under the ETH) INDEPENDENT SET cannot be solved in time 2°(")
on general (n-vertex) graphs, if the graph is planar, we can exploit the fact that its
treewidth is at most O(y/n) and solve the problem in 20(vV™) time |85].

It turns out that this running time is optimal, unless the ETH fails. The standard
reduction from SATISFIABILITY to INDEPENDENT SET shows that INDEPENDENT SET
cannot be solved in 2°(™ time on general graphs. It is possible to take the graph
created in this reduction, draw it in the plane in some arbitrary way, and then replace
every crossing with a crossover gadget to make the graph planar. Since (in an n-vertex
graph) there can be O(n?) crossings, this blows up the size of the graph from n vertices
to O(n?) vertices. This, in turn, implies that a 2°(v™-time algorithm on planar graphs
would give a 2°(™) time algorithm on general graphs (by applying this transformation),
and thus, no 2°(vV")_time algorithm for INDEPENDENT SET on planar graphs should
exist, unless the ETH fails.

Similar arguments show that for many problems, 22V is the best achievable
running time on planar graphs. Examples include DOMINATING SET, k-COLORING
(for fixed k), HAMILTONIAN PATH and FEEDBACK VERTEX SET [86]. Square roots
also appear in many other settings when dealing with planar graphs, for instance in
parameterized complexity: using Bidimensionality Theory [41], it is possible to find (if
it exists) an independent set of size k in an n-vertex planar graph in 20(VK) RO time.

The behaviour that square roots often appear in the (optimal) running time for
algorithms on planar graphs is so pervasive, that it has been dubbed the Square Root
Phenomenon [88].
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1.5. Graph Embedding Problems

The first part of this thesis deals with graph embedding problems. A graph embedding
problem is any problem where we are asked to embed a graph into another graph
or some other structure. As prime example of such a problem, consider SUBGRAPH
ISOMORPHISM: given two graphs G (guest) and H (host), determine whether G is a
subgraph of H. That is, can we delete vertices and edges from H to obtain (a graph
that is isomorphic to) G?

If we let n denote the number of vertices of H and let k denote the number of
vertices of G, then there is a trivial O(n*)-time algorithm, that for each vertex of G,
tries all vertices of H to map it to. Surprisingly, this simple algorithm is optimal:
assuming the Exponential Time Hypothesis, there is no algorithm solving SUBGRAPH
IsoMoRrPHISM in n°*) timd?] [49).

Of course, a natural question then is whether bounded treewidth could help in
solving SUBGRAPH ISOMORPHISM. In particular, an open question of Marx [87] is
whether a square root phenomenon occurs for SUBGRAPH ISOMORPHISM on planar
graphs.

A straightforward reduction from 3-PARTITION shows that even if G and H are
both disjoint unions of paths, SUBGRAPH ISOMORPHISM is NP-complete. As such
graphs have treewidth 1, we cannot expect the problem to be fixed-parameter tractable
parameterized by treewidth or even polynomial-time solvable for graphs of treewidth
bounded by a constant. However, if we additionally impose the restriction that the graph
has so-called log-bounded fragmentation, SUBGRAPH ISOMORPHISM is polynomial-time
solvable for graphs of bounded (constant) treewidth [60].

Still, there is some hope: it is known that if H is planar, SUBGRAPH ISOMORPHISM
can be solved in 2°®)p time [43] — faster than the lower bound for general graphs.

In the first chapter of part one, we give an algorithm for SUBGRAPH ISOMORPHISM
on planar graphs running in time 2°(*/1°87)  This slightly improves the worst-case
running time of [43] but, in contrast, is not fixed-parameter tractable with respect to k.
While the algorithm does take advantage of the fact that planar graphs have bounded
treewidth, the running time is dominated by the necessity of keeping track of subsets of
connected components (which is exactly what [60] circumvents by assuming bounded
fragmentation). We show that through canonization, that is, recognizing isomorphic
partial solutions in the dynamic programming, we can achieve subexponential running
time of 20(n/logn),

In the second chapter, we show that, surprisingly, this result is optimal under the
ETH. There is no algorithm for SUBGRAPH ISOMORPHISM on planar graphs running
in time 2°("/1°87)  Thus, a “square root phenomenon” does not hold for SUBGRAPH
ISOMORPHISM on planar graphs — answering an open question of Marx [87]. This
result is obtained by a reduction from SATISFIABILITY, creating graphs with many
non-isomorphic connected components.

Our results are in fact slightly stronger than stated here (the algorithm works for
a more general class of graphs, and the lower bounds hold even for more restrictive
classes of graphs).

31n [49], the authors actually show a stronger result: assuming the ETH, there is no 20(nlogn)_time
algorithm for SuBaraPH IsomorpHIsM. This also rules out the existence of a n°*)-time algorithm.



1.6. Problems in Geometric Intersection Graphs 9

This result is closely related with that of Fomin et al. [50] who show that, if the
graph (in addition to being planar) is connected and has bounded maximum degree, a
type of square root phenomenon does occur. The techniques of [50] also allow us to
turn our algorithm into a parameterized one (running in time 20(k/log k)no(l)) if the
graph is connected.

It turns out that 29(7/1987) is in fact, the optimal running time for a wide range
of problems involving graph embedding on planar (or H-minor free graphs): not only
for simple simple variations (such as INDUCED SUBGRAPH, where we are allowed to
delete vertices but not edges) and other problems such as GRAPH MINOR, but also for
problems which involve embedding a graph into some other structure (such as a tree
decomposition with few bags or an interval graph with few colours).

Thus, for graph embedding problems on planar graphs, it could be said that there
is no square root phenomenon, but that instead there is a “n/logn-phenomenon”.

In the third and final chapter of part one, we give an interesting and fun application
of these techniques: we study the relation of the “n/log n-phenomenon” to solving
polyomino packing puzzles.

1.6. Problems in Geometric Intersection Graphs

Part two of this thesis is dedicated to problems in geometric intersection graphs. A
planar graph is an example of a geometric graph, arising from connecting points in the
plane with non-crossing lines. A geometric intersection graph arises from a collection of
objects in R?, where each object corresponds to a vertex, and two vertices are connected
by an edge if and only if their corresponding objects intersect.

Without further assumptions on the objects, any graph can be represented in this
way. Different graph classes can be obtained by imposing restrictions on the objects. A
common example of a class of geometric intersection graphs are the unit disk graphs,
which are the intersection graphs of collections of unit disks in the plane. Alternatively,
one can think of such a graph as taking a collection of points in 2D, and connecting
those points that are within distance at most 2 of each other. An example of an (unit)
disk graph can be seen in Figure [I.3]

Figure 1.3. Example of a unit disk graph.
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Problems in geometric intersection graphs arise naturally. Consider the INDEPEND-
ENT SET problem in geometric intersection graphs. It corresponds to finding, among
a set of objects (with fixed locations in space), the largest set of objects that can be
packed together without intersecting.

As we have observed with the square root phenomenon, taking advantage of the
(geometric) structure of a graph can often result in significant speedups. An interesting
question is whether it is possible to take advantage of similar phenomena in graphs
with a different (geometric) structure, other than planarity.

Intersection graphs can be very dense and can have large cliques (consider a set of
unit disks all mutually intersecting) and therefore, we would not expect treewidth to
help in this case (as the maximum size of a clique is a lower bound on the treewidth).
It turns out that several problems can nevertheless be solved in subexponential time on
geometric intersection graphs. For instance, Fu [53] showed that INDEPENDENT SET
can be solved in 20V time in unit disk graphs (with n disks). More generally, if one
considers the d-dimensional analogue (of finding a maximum independent set in an
intersection graph of d-dimensional unit balls), it is possible to solve the problem in

20" ) time.

A running time of the form 20" ™" or O™ ™" appears for many different
geometric problems in various classes of d-dimensional intersection graphs [91} [102], and
this running time is often (close) to optimal under the ETH [91]. Thus, d-dimensional

geometric intersection graphs exhibit a type of “n'~1/94-phenomenon”.

We present an algorithmic framework for solving problems on d-dimensional geo-
metric intersection graphs. The framework unifies various ad-hoc techniques, closes
gaps in the running time bounds for several problems, and provides an easy-to-apply
method for solving problems on geometric intersection graphs.

The main observation behind the framework is that while the graphs (being dense)

do not admit small separators, we can instead use a kind of weighted separator based
on a partition of the graph into cliques. We then use these separators to build tree
decompositions, whose “width” is measured as a function of the number and size of
cliques appearing in a bag. Many problems are easy to solve on cliques (for instance,
INDEPENDENT SET is trivial on a clique as we can select at most one vertex) and
these problems are often also easy to solve for graphs of bounded clique-partitioned
treewidth.
Using the framework, we obtain 20(n' ") time algorithms for many problems on
intersection graphs of so-called similarly sized fat objects, including INDEPENDENT SET,
FEEDBACK VERTEX SET, DOMINATING SET and STEINER TREE. This improves the
best known running time bounds for these problems, and the running time obtained is
in fact optimal (under the ETH).

To complement the algorithmic framework, there also exists a lower-bound frame-
work — showing matching lower bounds (under the ETH) of the form 22(n' ") for
many problems on (very restricted) classes of geometric intersection graphs. This

framework is presented in [36] but is not part of this thesis.
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1.7. Treewidth in Practice

While in both the first and second part of this thesis we obtain subexponential-time
algorithms whose running time is optimal under the Exponential Time Hypothesis,
there exists a very nice contrast between the two: for graph embedding problems —
where one would expect to be able to take significant advantage of planarity — we show
that the benefit of bounded treewidth and/or planarity is severely limited. On the
other hand, for problems in geometric graphs, where one would not expect to be able
to benefit (much) from bounded treewidth, we obtain an alternate variation of tree
decompositions that allows us to nevertheless obtain faster algorithms.

From a theoretical perspective, having algorithms whose running time matches
lower bounds obtained under the Exponential Time Hypothesis is very satisfying and
provides a lot of insight into the structure of a problem. However, the algorithms
obtained in the first part are not very conducive to practical use: the use of asymptotic
notation in the exponent hides very large constant factors, making the algorithms
unsuitable for many practical purposes (however, some of the ideas contained within,
such as identifying isomorphic partial solutions in dynamic programming, may have
practical applications). This is why the third part investigates using treewidth in
practice.

Of course, to be able to take advantage of theory for solving practical problems, one
first needs a practical method of obtaining a tree decomposition of small width. In recent
years large advances have been made in this area, inspired by the PACE challenges
[39, B7]. In particular, the work of Tamaki [I04] has been groundbreaking. The first
chapter of of Part 3 investigates exploiting the massive computational power of graphics
cards (GPUs) to compute tree decompositions. Compared to traditional processors
(CPUs), GPUs offer vast amounts of computation power at a relatively low cost, but
present unique challenges in designing and implementing algorithms. Investigating
the applications of GPU computation to parameterized and exact algorithms is a very
promising direction for future research, and we present one of the first steps in this
direction.

The second chapter of Part 3 deals with using bounded treewidth to solve a practical
problem: in (social) network analysis, centrality measures play an important role in
determining who the most important participants are. Recently, a very powerful class
of centrality measures, game-theoretic centrality measures has received considerable
attention in the literature. However, such measures are often hard to compute and are
feasible to evaluate for only very small graphs. By exploiting treewidth, we are able
to compute several such centrality measures (based on the Shapley Value) for graphs
of bounded treewidth. We evaluate this algorithm using several graphs representing
terrorist networks, and show that it indeed yields a promising method to compute
game-theoretic centralities.
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Preliminaries

2.1. Basic Notations and Definitions

The following notations and definitions are used throughout this thesis.

Graphs Given a graph G, we let V(G) denote its vertex set and F(G) its edge set;
alternatively, we may simply write V for the vertex set and F for the edge set. Given
X CV(Q), let G[X] denote the subgraph of G induced by X (i.e., a graph on vertex
set X, with an edge present whenever there is an edge between the corresponding
vertices in ) and use shorthand notation F(X) = E(G[X]). Let Nb(v) denote the
open neighbourhood of v, that is, the vertices adjacent to v, excluding v itself. For a set
of vertices S, let Nb(S) = [J,cg Nb(v)\ S. Let CC(G) denote the set of the connected
components of G. Given X C V(G), we write as shorthand CC(X) = CC(G[X]).

Separators A (vertex) separator is a vertex set S C V whose removal disconnects
the graph into two or more connected components (thus, for a disconnected graph, the
empty subset is a separator). We say that a subset S C V is a c-balanced separator if
no connected component of G[V \ S] has more than cn vertices. A separator S is a
minimal separator if no proper subset of S separates G. Note that in Chapter [6] we
use a slightly different notion of (balanced) separator, where a set S that “separates”
the graph into only one connected component is also considered a separator (i.e., any
set S containing at least (1 — ¢)n vertices is considered a c-balanced separator).

Functions Given a function f : A — B, we let f~'(b) = {a € A | f(a) = b}.
Depending on the context, we may also let f~1(b) denote (if it exists) the unique a € A
so that f(a) =b. Wesay g: A — B is a restriction of f : A’ - B"if A C A" and
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B C B andforalla € A, g(a) = f(a). We say g is an extension of f if f is a restriction
of g.

Isomorphism We say a graph P is isomorphic to a graph G if there is a bijection
f:V(P) = V(G) so that (u,v) € E(P) < (f(u), f(v)) € E(G). We say a graph P
is a subgraph of G if we can obtain a graph isomorphic to P by deleting edges and or
vertices from G, and we say P is an induced subgraph if we can obtain it by deleting
only vertices (and not edges).

Contractions, minors We say a graph G’ is obtained from G by contracting edge
(u,v), if G’ is obtained from G by replacing vertices u, v with a new vertex w which is
made adjacent to all vertices in Nb(u) U Nb(v). A graph G’ is a minor of G if a graph
isomorphic to G’ can be obtained from G by contractions and deleting vertices and/or
edges. G’ is an induced minor if we can obtain it by contractions and deleting vertices
(but not edges). G’ is a topological minor if we can subdivide the edges of G’ to obtain
a subgraph G” of G (that is, we may repeatedly take an edge (u,v) and replace it by a
new vertex w and edges (u,w) and (w,v)). Finally, G’ is an immersion minor of G if
we can obtain a graph G” from G by a sequence of lifting operations (that is, taking a
pair of edges (u,v), (v, w) and replacing them by the single edge (u,w)) that contains
G’ as a subgraph [46].

For each of (induced) subgraph, induced (minor), topological minor, and immersion
minor we define the corresponding decision problem, that is, to decide whether a pattern
graph P is an (induced) subgraph/(induced minor)/topological minor/immersion minor
of a host graph G. For precise definitions of these problems, we refer to the list of
problems in Appendix [A]

2.2. Tree Decompositions

A tree decomposition of a graph G is a rooted tree T with
e for every vertex i € V(T') a bag X; C V(G), such that ;v (1) Xi = V(G),
e for all (u,v) € E(G) an i € V(T) so that {u,v} C X;, and
o forallv e V(G), T[{i € V(T) | v € X,}] is connected.

The width of a tree decomposition is max;cy (1) |X;| — 1 and the treewidth of a
graph G is the minimum width over all tree decompositions of G. For a node ¢t € T,
we let G[t] denote the subgraph of G induced by the vertices contained in the bags of
the subtree of T rooted at t.

A path decomposition is a tree decomposition where T is a path, and the pathwidth
of a graph G is the minimum width of a path decomposition of G.

To simplify our algorithms, we often assume that a tree decomposition is given in
nice form, where each node is of one of four types:

o Leaf: A leaf node is aleaf i € T, and |X;| = 1.
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e Introduce: An introduce node is a node 7 € T that has exactly one child j € T,
and X; differs from X; only by the inclusion of one additional vertex.

e Forget: A forget node is a node ¢ € T that has exactly one child j € T, and X;
differs from X; only by the removal of one vertex.

e Join: A join node is a node i € T with exactly two children j,k € T, so that
X, =X; =X

A tree decomposition can be converted to a nice tree decomposition of the same
width and of linear size in linear time [13].

Computing a minimum width tree decomposition is itself an NP-hard problem.
The state of the art includes an exact exponential-time algorithm running in time
O*(2.9512” [20] and a fixed-parameter tractable algorithm running in time 200"y,
[20]. Tt is thus not known whether a fixed-parameter tractable algorithm with single-
exponential running time exists, but where single-exponential running times are desired
a 5-approximation algorithm running in time O(1)*n due to Bodlaender et al. [18] can
often be used instead (we say that a value of a minimization problem is c-approximated
if the obtained value is at most ¢ times the optimum).

2.3. Dynamic Programming on Tree Decompositions

As mentioned in the introduction, many problems can be solved efficiently of graphs
of bounded treewidth, using dynamic programming. In this section, we describe the
framework for dynamic programming that will later be used in Chapters [3] [6] and

We assume that we are given a graph G (on which we have to solve some problem
of interest) along with a nice tree decomposition (T,{X; | ¢ € T'}) of width tw. For
each node t, we consider the subgraph G[t], which is the subgraph of G induced by
vertices appearing in the bags below ¢ (including X; itself, and note that since a nice
tree decomposition is rooted, “below” is well-defined: these are the nodes that can be
reached from ¢ without going closer to the root).

To proceed, we need to define a notion of partial solution: we consider how a
solution to the problem would look when restricted to a subgraph GJt]. For instance,
in the INDEPENDENT SET problem, a solution is a subset S C V' that is independent.
Thus, it might be reasonable to define a partial solution (for INDEPENDENT SET) as
a subset S C V(G]t]) (however, the way a partial solution is defined depends on the
intricacies of the problem under consideration, and as is often the case in defining
subproblems for dynamic programming, it may be necessary to consider more general
versions of the problem to solve the original target problem).

Once a notion of partial solution has been chosen, it is necessary to define the
characteristic of a partial solution: as in traditional dynamic programming, one
subproblem often has many possible solutions, but it is only necessary to store one of
these (optimal) solutions due to the optimality principle: any optimal solution can be
modified to include any chosen (optimal) solution to a subproblem, while remaining
optimal. In dynamic programming on tree decompositions, characteristics tell us which

1The O*-notation suppresses polynomial factors.
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partial solutions can be grouped together as they can replace one another in any optimal
solution.

For INDEPENDENT SET, a suitable choice of characteristic is the intersection of
the partial solution with the current bag, i.e.: given a partial solution S C V(G[t]),
its characteristic is S N X;. We can then create a dynamic programming table: for
each possible characteristic, we store an (optimal) solution having that characteristic
(or, more often, we store only the value of the solution, since, as is also the case in
traditional dynamic programming, this often provides enough information to do the
computation, and the solution itself can later be reconstructed).

Thus, in our INDEPENDENT SET example, for every node ¢, we would create a table
listing for every subset S C X; the largest size of an independent set S’ of G[t] such
that S’ N X, = 5. We let V;(S) denote this quantity (i.e., V;(S) = max{|S’| | §' C
V(G[t]),S' N X, =S, S is independent }).

We process the nodes of T' in post-order, i.e., the leaves first and such that whenever
we process a node t, its children have already been processed (and thus their tables
already computed). By assuming niceness of a tree decomposition, we can specify the
entire algorithm by giving four procedures:

e Leaf: given a leaf node, compute its table from scratch. This procedure is usually
quite simple, as for leaf node ¢, G[t] is an isolated vertex.

e Introduce: given an introduce node ¢ and the tables for its child j, compute the
new table that results from introducing a given vertex.

e Forget: given a forget node ¢ and the tables for its child j, compute the new
table that results from forgetting a given vertex.

e Join: given a join node t and its two children j, k, combine partial solutions for
G[j] and GJk] to obtain the table for G[t].

Again considering our INDEPENDENT SET example, the leaf case is quite simple:
given a leaf node ¢ and its bag X; = {v}, there are two possible partial solutions for
G[t] (the empty set, and the singleton set {v}), thus V;(0) = 0 and V;({v}) = 1.

In the introduce case, the graph G[t] differs from G[j] (for which we already know
the tables) by the inclusion of one additional vertex v and its incident edges (note that
these edges can only be incident to vertices in X); clearly, we can obtain any partial
solution for G[t] from a partial solution for G[j] by either adding vertex v or not. Thus,
the table for an introduce node ¢t can be computed as:

Vi(S) ifo g S,
Vi(S) = V;(S\{v})+1 ifveSandS is independent,
00 otherwise.

In the forget case, the graph G[t] is the same as G[j] but the characteristics might
change, as there is now one less vertex included in X; — essentially, this is a “projection”
operation: several characteristics might become grouped together as one. In our
INDEPENDENT SET example, V;(S) = max{V;(S5),V;(SU{v})}.
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Finally, in the join case, the graph G[t] is obtained by taking two graphs G[j] and
G[k], which are disjoint except for the vertices in X;, and “gluing” them together on
the vertices in X;. In our INDEPENDENT SET example, V;(S) = V;(S) + Vi(S) — |5].

Once all the tables have been computed, the solution for the original problem can
be recovered from the tables in the root node r: for INDEPENDENT SET, the size of a
maximum independent set of G is equal to maxgcx,. V,-(S).

The process of dynamic programming on a nice tree decomposition is formalized in

Procedure 2.11

Algorithm 2.1. General framework for dynamic programming on a nice tree decomposition,
(T{X, [t eT}).

r be the root of T

: for each node t € T in post-order do

if ¢ is a leaf node then
Compute the table for ¢ by calling the Leaf procedure

if ¢ is an introduce node then
Compute the table for ¢ by calling the Introduce procedure, passing the
previously computed table for the child node j

if ¢ is a forget node then
Compute the table for ¢ by calling the Forget procedure, passing the previously
computed table for the child node j

9: if ¢ is an join node then

10: Compute the table for ¢ by calling the Join procedure, passing the previously

computed tables for the child nodes j and k
11: recover the solution S from the table for the root node r
12: return S

S gk W
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3.1. Introduction

In this chapter, we will present algorithms for graph embedding problems. We consider
(INDUCED) SUBGRAPH, (INDUCED) MINOR and TOPOLOGICAL MINOR. We show that
cach of these problems can be solved in time 2°(*/1°6™) on H-minor free graphs (where
n denotes the number of vertices). In the next chapter, we will give a lower bound
under the Exponential Time Hypothesis, showing that this running time is (likely)
optimal.

Our algorithms are based on dynamic programming, enhanced with a canonization
technique: we reduce the number of partial solutions by identifying that some of them
are isomorphic.

These problems are amongst the first for which both upper and lower bounds of the
form 29("/1087) are known. We conjecture that there are many more such problems,
and that our techniques may be useful to establish similar bounds for them.

In each of these problems, we are asked to embed a pattern graph P into a host
graph GG. We consider the case in which P excludes a specific minor H, € > 0 is
a constant, n = |V(G)| and give algorithms parameterized by the treewidth tw of
G and the number of vertices k of P. Our algorithms are subexponential in k or
the number of vertices of G if tw is sufficiently small. Specifically, we show that for
any € > 0 and graph H, if P is H-minor free and G has treewidth tw, (INDUCED)
SUBGRAPH can be solved 20k twtk/logk)nO(1) time and (INDUCED) MINOR can be
solved in QO(ketw—Hw log tw+k/ log k)nO(l) time.

As an important special case of our result, we show that SUBGRAPH ISOMORPHISM
can be solved in time 20* Vntk/logk) on H_minor free graphs (which include planar,
bounded-treewidth and bounded-genus graphs). Our result can be combined with a
recent result of Fomin et al. [50] to show that SUBGRAPH ISOMORPHISM can be solved
in 20(k/10gk)nO(1) time if P is connected and G is apex-minor free. In the next chapter,
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we will present a lower bound showing that this is optimal (under the ETH).

SUBGRAPH ISOMORPHISM has received considerable attention in the literature.
Results include polynomially solvable cases, such as recognizing a fixed (i.e., not part
of the input) pattern in planar graphs [43, 47], biconnected outerplanar graphs [83],
graphs of log-bounded fragmentation [60], graphs of bounded genus [29] and certain
subclasses of graphs of bounded treewidth [92], exact algorithms [106], lower bounds
[35, 58, 103] and results on parameterized complexity [89].

For a pattern graph P of treewidth ¢, SUBGRAPH ISOMORPHISM can be solved in
20(k) O time using the colour-coding technique [4]. If the host graph is planar, SUB-
GRAPH ISOMORPHISM can be solved in 2°*)n time [43]. In general graphs, SUBGRAPH
ISOMORPHISM can be solved in 20("1°87) time and, assuming the ETH, this is tight
[49].

Graph minor problems are also of interest, especially in the light of Robertson
and Seymour’s seminal work on graph minor theory (see e.g. [105]) and the recent
development of bidimensionality theory [41]. Many graph properties can be tested by
checking for the inclusion of some minor. Testing whether a graph G contains a fixed
minor P can be done in O(n3) time [100]; this was recently improved to O(n?) time
[74]. However, the dependence on |V (P)| is superexponential. Testing whether a graph
P is a minor of a planar graph G can be done in 20 p9M) time [2], which is only
single-exponential. Our lower bound shows that this cannot be improved to 20(k/logk)
(assuming the ETH). Our algorithms are subexponential in &, but (in contrast to [2, 74])
superpolynomial in n. This is to our knowledge the first subexponential minor testing
algorithm for a non-trivial class of graphs.

Our algorithms are based on dynamic programming on tree decompositions. In
particular, we use dynamic programming on the host graph and store correspondences
to vertices in the pattern graph. The key algorithmic insight is that this correspondence
may or may not use certain connected components of the pattern graph (that remain
after removing some separator vertices). Instead of storing for each component whether
it is used or not, we identify isomorphic connected components and store only the
number of times each is used.

In [60], the authors give an algorithm for SUBGRAPH ISOMORPHISM, which runs
in polynomial time for a host graph of bounded treewidth and a pattern graph of log-
bounded fragmentation (i.e. removing a separator decomposes the graph into at most
logarithmically many connected components). This is achieved using a similar dynamic
programming technique, which (in general) uses time exponential in the number of
connected components that remain after removing a separator. By assuming the
number of connected components (fragmentation) is logarithmic, the authors obtain a
polynomial time algorithm. In contrast, we consider a graph class where fragmentation
is unbounded, but the number of non-isomorphic connected components is small. This
leads to subexponential algorithms.

This chapter builds on techniques due to Bodlaender, Nederlof and van Rooij
[25, 28]. They give a 20("/1987)_time algorithm for finding tree decompositions with
few bags and a matching lower bound (based on the Exponential Time Hypothesis),
and a 29("/19gm)_time algorithm for determining whether a given k-coloured graph is a
subgraph of a properly coloured interval graph. These earlier papers, coupled with our
results, suggest that this technique may have many more applications, and that there
exists a larger class of problems sharing this upper and lower bound.
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We first give the algorithm for SUBGRAPH ISOMORPHISM (which can be trivially
adapted to handle INDUCED SUBGRAPH), then the algorithm for (INDUCED) MINOR
(which extends the algorithm for SUBGRAPH ISOMORPHISM by keeping track of which
vertices are contracted to form a new vertex, and ensuring that these vertices eventually
induce a connected subgraph), and finally the algorithm for TOPOLOGICAL MINOR
(which builds upon the one for SUBGRAPH ISOMORPHISM by considering ways to map
vertices of the host graph to edges of the pattern graph).

3.2. An Algorithm for Subgraph Isomorphism

We begin by describing an algorithm for SUBGRAPH [SOMORPHISM, which is based on
dynamic programming on a tree decomposition T' of the host graph G. This algorithm
is similar to that of Hajiaghayi et al. [60] for SUBGRAPH ISOMORPHISM on log-bounded
fragmentation graphs, and we use similar notions of (extensible) partial solutions and
characteristic of a partial solution (Section . The algorithm does not achieve the
claimed running time bounds. Our main contribution is the canonization technique
(Section and its analysis (Section [3.4), which can be used to reduce the number of
partial solutions and gives the subexponential running time.

Definition 3.1 ((Extensible) Partial Solution). For a given node ¢t € T of the tree
decomposition of G, a partial solution (relative to t) is a triple (G', P’, ¢) where G’
is a subgraph of G[t], P’ is an induced subgraph of P and ¢ : V(G’') — V(P’) is an
isomorphism from G’ to P'.

A partial solution (G’, P’, ¢) relative to ¢ is extensible if there exists an extension of
¢, ¥ : V(G") — V(P) which is an isomorphism from a subgraph G” of G to P where
V(G")NV(G[t) = V(G).

To facilitate dynamic programming, at node ¢ of the tree decomposition we only
consider partial solutions (G’, P’, ¢) which might be extensible (i.e. we attempt to rule
out non-extensible solutions). Note that in a partial solution we have already decided
on how the vertices in G[t] are used, and the extension only makes decisions about
vertices not in G[t]. Instead of dealing with partial solutions directly, our algorithm
works with characteristics of partial solutions:

Definition 3.2 (Characteristic of a Partial Solution). The characteristic (f,S) of a
partial solution (G, P, ¢) relative to a node ¢t € T is a function f: X, — V(P)U {0},
together with a subset S C V(P)\ f(X}), so that:

o forallv e V(G')N Xy, f(v) = ¢(v) and f(v) = O otherwise,
e f is injective, except that it may map multiple elements to [J,
° S=V(P)\ o(Xy).

The following easy observation justifies restricting our attention to characteristics
of partial solutions:

Lemma 3.3 (Equivalent to Lemma 10, [60]). If two partial solutions have the same
characteristic, either both are extensible or neither is extensible.
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Lemma 3.4. If (f,S) is the characteristic of an extensible partial solution (G, P', ¢)
relative to a node t € T, then S is a union of connected components of P[V (P)\ f(X})].

Due to Hajiaghayi et al. [60]. Suppose there exist adjacent vertices vi,ve € V(P)\
#(X:) and vy € V(P'), vg € V(P'). Then it is never possible to find a preimage u for
v9 in an extension of (G', P, ¢): we require that u ¢ V(G[t]), but all vertices adjacent
to ¢~1(v1) are contained in V(G[t]). O

This latter fact will be key to achieving the subexponential running time. The
requirement that S is a union of connected components also appears in the definition
of ‘good pair’ in Bodlaender et al. [25]. We show how to compute the characteristics of
partial solutions in a bottom-up fashion, so that we can tell whether G has a subgraph
isomorphic to P by examining the characteristics of the root bag. We proceed by giving
pseudocode for the leaf, introduce, forget and join cases and argue for their correctness.

Algorithm 3.1. Leaf case: computes the partial solution characteristics for a leaf bag
teT, with X; = {v}.

:let R = (Z)

: for each v € V(P)U {0} do

let f: Xy — V(P)U{O} be the function so that f(v) =u
let R=RU{(f,0)}

: filter R

return R

@ gk W

Algorithm 3.2. Introduce case: introduces a vertex v into a bag X;.

: let R be the set of partial solution characteristics for ¢

clet R =10

: for each (f,S) € R and each u € V(P) \ (f(X)US)u {0} do

if w =0 or for all w € Nb(u) N f(Xy), (v, f~H(w)) € E(G) then
let f': X; U {v} — V(P)U{O} be the extension of f so that f(v) =u
let R = RPU{(f",S)}

. filter R’/

return R’

Algorithm 3.3. Forget case: forgets a vertex v from a bag X;.

: let R be the set of partial solution characteristics for ¢

: let R = @

: for each (f,S5) € R do

let f’ be the restriction of f to X; \ {v}

if f(v) =0 or f(v) is not adjacent to any vertex of V(P) \ (f(X;) US) then
let ' = R U{(f", 8 U {f(0)}\ {O})}

. filter R/

return R’
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Algorithm 3.4. Join case: combines the partial solution characteristics for two bags
X = Xy
let R be the set of partial solution characteristics for s
let T be the set of partial solution characteristics for ¢
let R =10
for each (f,S) € R and each (¢g,Q) € T do

if f=gand SNQ =0 then

let R = RU{(f,SUQ)}

filter R’
return R’

The correctness of Algorithm [3.1] is self-evident, as we simply enumerate all the
possibilities for f (which means guessing a vertex in P to map v to). We will give details
of the filter algorithm in the next section, for now it suffices to treat the pseudocode as
if this call were not present.

Algorithm [3:2] extends existing partial solutions by choosing a vertex to map v to.
To ensure we obtain valid characteristics of partial solutions, we check that for any
edge incident to v in P[S U f(X¢)] there is a corresponding edge in G. Because S is a
union of connected components of G[V(P) \ f(X:)], f(v) cannot be adjacent to any
vertex in S, and thus it suffices to check adjacency only against vertices in f(X;). Then
S remains a union of connected components since the removal of a vertex can only
further disconnect S. Note that u is chosen so that f remains injective.

Algorithm [3.3] discards any solutions that would result in S not remaining the union
of connected components that we require after forgetting a vertex (note that this means
we keep only partial solutions were we have already chosen preimages for all of the
neighbours of the image of the vertex being forgotten).

Finally, consider Algorithm [3.4] Because (as a basic property of nice tree decompos-
itions) V(H[i)) NV (H[j]) = X;, we obtain an injective function if and only if SN R = §.
We can therefore merge two partial solutions if they map the vertices of X; = X in the
same way and S N R = (. Note that we do indeed create all possible partial solutions
in this way: given a partial solution, we can split it into partial solutions for the left
and right subtrees since (as there are no edges between the internal vertices of the left
and right subtrees) a connected component of S must be covered entirely by either the
left or right subtree.

These algorithms, on the tree decomposition as described in Section 2.3} give an
algorithm that decides SUBGRAPH ISOMORPHISM. Note that in contrast to the example
for INDEPENDENT SET given in the framework, we do not compute a value for each
characteristic, rather, we compute the set of valid characteristics. The solution is
reconstructed as follows: P is a subgraph of G if and only if there exists a partial
solution (f,S) for the root node such that S =V (P) \ f(Xy).

However, this algorithm does not achieve the claimed running time bound: it is
essentially that of Hajiaghayi et al. [60] and the number of partial solutions that need
to be considered can be 2°%(¥) as the subset S appearing in a characteristic can consist
of the union of an arbitrary subset of components. In the next section, we will address
this.
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3.3. Reducing the Number of Partial Solutions Using
Isomorphism Tests

In this section, we show how adapt the algorithm from the previous section to achieve
the claimed running time bound. This involves a careful analysis of the number
of characteristics, and using isomorphism tests to reduce this number. Currently,
if the connected components of S are small (e.g., O(1) vertices each) then their
number is large (e.g., Q(n) components) and thus in the worst case we have 2(")
partial solutions. However, if there are many small connected components many will
necessarily be isomorphic to each other (since there are only few isomorphism classes
of small connected components) and we can thus reduce the number of characteristics
by identifying isomorphic connected components:

Definition 3.5 (Partial Solution Characteristic Isomorphism). Given a bag t € T', two
characteristics of partial solutions (f,S), (g, R) for t are isomorphic if:

e f=uy,
e there is a bijection h : CC(S) — CC(R),

o for all connected components ¢ € CC(S), ¢ and h(c) are isomorphic when all
vertices v € ¢ vertices are labelled with Nb(v) N f(X;) (i.e., the set of vertices of
f(X%) to which v is adjacent).

Clearly, the algorithm given in the previous section remains correct even if after
each step we remove duplicate isomorphic characteristics. To this end, we modify the
join case (Algorithm : the disjointness check S N @ = () should be replaced with a
check that if P[V(P)\ f(X})] contains Np(y) connected components of isomorphism
class y, and P[S] (resp. P[Q)]) contains Ng(y) (resp. Ng(y)) connected components of
isomorphism class y, then Ng(y) + Ng(y) < Np(y). Similarly, the statement S U Q
needs to be changed to, if the union is not disjoint, replace connected components that
occur more than once with other connected components of the same isomorphism class
(so as to make the union disjoint while preserving the total number of components of
the same type).

Call a connected component small if it has at most clogk vertices, and large
otherwise. We let ¢ > 0 be a constant that depends only on |V (H)| and e. We do not
state our choice of ¢ explicitly, but in our analysis we will assume it is “small enough”.

For a small connected component s, we label each of its vertices by the subset of
vertices of f(X;) to which it is adjacent. We then compute a canonical representation of
this labeled component, for example by considering all permutations of its vertices, and
choosing the permutation that results in the lexicographically smallest representation.
Note that since we only canonize the small connected components using such a trivial
canonization algorithm does not affect the running time of our algorithm, as (clog k)!
is only slightly superpolynomial.

Algorithm [3.5] computes a canonical representation of a partial solution. It requires
that we have some predefined ordering of the vertices of G. The canonization algorithm
(Algorithm allows us to define the filter algorithm (Algorithm [3.6)).
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Traditionally, a canonization is a function that maps non-isomorphic graphs to
distinct strings, and isomorphic graphs to identical strings. We use this term slightly
more loosely, as our canonization algorithm may map isomorphic graphs to distinct
strings since it only canonizes the small connected components. Thus, Algorithm
may not remove all duplicate isomorphic partial solutions. However, we will show that
it removes sufficiently many of them.

Algorithm 3.5. Connected Component Canonization: Computes a canonical representation
for a union of connected components S C V(P) \ f(X;)

: let S’ be the union of the large connected components of S

clet Q=10

: for each small connected component s of S do

compute the canonical representation r of s when each v € V (s) is labelled with
Nb(v) N f(Xe)

let @ =QU{r}

: Sort S’ and @ lexicographically

return (5',Q)

=W N

IR

Algorithm 3.6. Filtering Algorithm: Filters a set of partial solution characteristics R
to remove duplicates

compute a canonical representation Cg for every (f,S) € R using Algorithm
sort R first by f, then by Cgs in lexicographical order

loop over R, removing all but one of each group of isomorphic partial solutions
return R

3.4. Bounding the Number of Non-Isomorphic Partial
Solutions

In this section, we analyse the number of non-isomorphic partial solutions, and show
that the algorithm given in the previous section indeed achieves the stated time bound.
In the following, let € > 0 and let G be a graph of treewidth at most tw. Furthermore,
suppose that P is H-minor free for some fixed graph H.

Recall that a partial solution for a node ¢ € T' of the tree decomposition consists of
f: Xy = V(P)U{d} and a subset S C V(P) \ f(X;), which is a union of connected
components of the subgraph induced by S C V(P) \ f(X;). The number of choices for
f is at most (k + 1)IX¢l = 20(twlogk) We now proceed to bound the number of cases
for S.

We distinguish between connected components of V(P) \ f(X;) of which there are
“few”, and connected components of V(P) \ f(X;) of which there can be “many”, but
few non-isomorphic ones. For some constant ¢, we say a component is small if it has at
most clog k vertices, and large otherwise. The large connected components are amongst
the few, since there are at most k/(clogk) components with at least clogk vertices.
For each of these components, we store explicitly whether or not it is contained in S.
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They contribute a factor of 20(%/1°8%) to the number of cases. For the small connected
components, we will show a partition into the “few” (which we treat similarly to the
large connected components), and into the “many, but few non-isomorphic” (for which
we store, for each isomorphism class, the number of components from that isomorphism
class contained in S).

Lemma 3.6. For a given node t and function f : Xy — V(P), there are at most
O(k¢/?tw) isomorphism classes of small connected components.

Proof. For a small connected component @ € CC(V(P)\ f(X;)), its isomorphism class
is determined by the isomorphism class of the graph induced by @, and the adjacency
of vertices v € @ to vertices in f(X;). Since |Q| < clogk and P is H-minor free, there
exists a constant C'ly > 1 so that there are at most 267 ¢1°8 ¥ cases for the isomorphism
class of the graph induced by Q (see [7]).

What remains is to bound the number of cases for adjacency of @ to X;. In this
specific case, Nb(Q) denotes the set of vertices of X; to which @ is incident, that is,
v € Nb(Q) if and only if v € X; and there exists a vertex u € @ so that (u,v) € E(P).
Using the following lemma, we further divide the small connected components into two
cases: the components with a large neighbourhood, and the components with a small
neighbourhood.

Lemma 3.7. Let H be a fixed graph. Then there exists a constant d (depending on
H), so that if G = (A, B, F) is H-minor free and bipartite, there are at most

e O(]A]) vertices in B with degree greater than d,
e O(]A]) subsets A" C A such that A’ = Nb(u) for some u € B.

Lemma [3.7] follows as a special case of Lemma 3 due to Gajarsky et al. [54]. We
give a simpler, self-contained proof of this special case:

Proof. Let d = |V (H)| — 1. We prove the first part by repeatedly contracting a high-
degree vertex u (degree > d) in B with one of its neighbours in A. Since G is H-minor
free, it certainly does not contain the complete graph K|y as a minor. Therefore, the
neighbourhood of u cannot be complete and the contraction can be performed in such
a way that it creates at least one new edge in the subgraph induced by A. At the end
of this process, the number of edges in the subgraph induced by A forms an upper
bound on the number of high-degree vertices originally in B. We now use the fact that
H-minor free graphs are sparse: such a subgraph contains at most O(]A|) edges.

For the second part of the lemma, consider only those vertices u € B with degree at
most d — since there are at most O(]A|) vertices with degree > d they trivially contribute
at most O(]A|) distinct neighbourhoods. Now, repeatedly contract a low-degree vertex
u for which Nb(u) does not induce a complete subgraph of A — again creating at
least one new edge in the subgraph induced by A. At the end of this process, for all
remaining low-degree vertices in u € B, Nb(u) induces a clique in A. The result now
follows from the fact that H-minor free graphs can have at most linearly many cliques
(see e.g. [52]). O

Taking A = X;, deleting the edges between vertices in X; and contracting every
connected component @ € CC(V(P)\ f(X¢)) to a single vertex in B, the lemma states
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that there are at most O(tw) components with |[Nb(Q)| > d and that the components
with |Nb(Q)| < d have at most O(tw) distinct neighbourhoods in X;.

For the connected components @ € CC(V(P) \ f(X:)) with |[Nb(Q)| < d, we
have 2€# €18 cases for the isomorphism class of @, O(tw) cases for Nb(z) and for
every vertex of ), at most 2¢ cases for incidence to Nb(Q). We thus have at most
2Ck-clogk . O (tw) - (24)¢1°8* jsomorphism classes for Q € CC(S) with Nb(Q) < d. For
sufficiently small ¢ > 0, this is O(k*/?tw).

This finishes the proof of Lemma [3.6] O

Since of each component there can be most k occurrences in S, the total number
of cases for storing the multiplicity of each class of components is (k + 1)0(’(/2“‘]) =
90(k/*twlogk) _ 9O(k“tw)

We now have all the results we need to finish the analysis. Storing the multiplicities
of the small connected components gives 20(*“4*) cases, while storing the subset of large
connected components explicitly contributes 2°(/198%) cages. A partial solution is
further characterized by f, for which there are only 20(tw1°g%) cases. For a given node
t of the tree decomposition, there are thus at most 20k tw+k/logk) partial solutions.

Thus, augmenting the dynamic programming algorithm described in the previous
section with the filtering algorithm, we obtain the following result:

Theorem 3.8. For any graph H and € > 0, SUBGRAPH [SOMORPHISM can be solved in
time 20k twtk/logk) nOM) if the host graph has treewidth tw and the pattern graph is
H-minor free.

Note that a tree decomposition does not need to be given as part of the input, as
we can compute a 5-approximate tree-decomposition of G in time exponential in tw
[18] and this does not increase the asymptotic running time.

3.5. Graph Minors and Induced Problem Variants

In this section, we discuss how our algorithm for SUBGRAPH ISOMORPHISM can be
adapted to INDUCED SUBGRAPH and (INDUCED) MINOR. We begin by describing
the algorithm for GRAPH MINOR, then give a brief description on how to adapt both
algorithms for the induced cases.

Note that P is a minor of G if and only if we have a function f : V(G) — V(P)u{O},
such that

e for all v € V(P), f~!(v) is non-empty, and induces a connected subgraph of G,
o for all (v,w) € E(P), there are z € f~1(v) and y € f~(w) with (z,y) € E(G).

Vertices that are deleted are mapped to O, otherwise f(v) gives the vertex that v is
contracted to. Call such a function a solution for the GRAPH MINOR problem.

If we restrict such solutions to a subgraph GJt|, we obtain the notion of partial
solution:

Definition 3.9 (Partial Solution (Graph Minor)). Given a node t € T of the tree
decomposition of G, a partial solution for the GRAPH MINOR problem relative to ¢ is a
function f : V(GJt]) — V(P) U {0}, such that
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1. For each v € V(P), at least one of the following three cases holds:
(a) each connected component of G[t][f~*(v)] contains at least one vertex from
Xta
(b) G[t][f*(v)] has one connected component,
(c) f~Y(v) is empty.
2. For all (v,w) € E(P), at least one of the following cases holds:

Some vertex of f~1(v) is adjacent to some vertex of f~!(w) in G[t],
M) N Xy # 0 and fHw) N X, # 0,

F )N Xy # 0 and f~1(w) =0,

f7Hw) N Xy # 0 and f71(v) =0,

fHw)=0and f~1(v) =0.

(a)
(b) f
()
(d)
()

Intuitively, in 1) we require that the preimage of v can still be made connected (a),
is already connected (b) or has not been assigned yet (c), and in 2) we require that the
edge (v, w) is already covered (a), can still be covered (b,c,d,e).

As before, our dynamic programming algorithm uses characteristics of partial
solutions:

Definition 3.10 (Characteristic of a partial solution (Graph Minor)). Given a node
t € T of the tree decomposition of G and a partial solution for the GRAPH MINOR
problem relative to a node t f : V(G[t]) — V(P) U {O}, the characteristic of f is a
tuple (f’, S, ~, F) such that:

1. f’ is the restriction of f to Xy,

2. 5 CV(P) with § = f(V(G[t]) \ (f(X:) U{0]}),

3. ~ is an equivalence relation on Xy, with v ~ w, if and only if f(v) = f(w) and
there exists a path from v to w in G[t] such that for all vertices = on this path

f(@) = f(v).

4. F C E(P[f(X¢)]) such that for every (v,w) € E(P[f(X%)]), it holds that (v,w) €
F if and only if each of the following holds:

(a) o) NX: #0,
(b) f~H(w) N X: #0,
(c) There are z € f~(v) and y € f~1(w) with (x,y) € E(G[t]).

As before, it is easy to see the equivalence between the existence of a minor, solution,
and partial solution with certain characteristic.

Compared to our approach for SUBGRAPH ISOMORPHISM, we no longer require f to
be injective — f~1(v) corresponds to the vertices that are contracted to form v. We
require that f~!(v) eventually becomes connected. This can either be achieved inside
the bag, be achieved below the bag (in the tree decomposition), or above the bag. The
relation ~ tracks which components are already connected by vertices below the bag.
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Similarly, edges inside P[f(X})] might not have corresponding edges inside G[X¢], but
might instead correspond to edges below or above this bag. The set F' stores which
edges correspond to edges below the current bag.

The following lemma is the counterpart of Lemma and shows that we can apply
dynamic programming;:

Lemma 3.11. If partial solutions for the GRAPH MINOR problem f and g have the
same characteristic and are both relative to t, then f can be extended to a solution if
and only if g can be extended to a solution.

Proof. We will prove that if f can be extended to a solution, then so can g. By
symmetry, this is sufficient to prove the lemma. Let both f and g have characteristic
(f',S,~, F) and let f, be an extension of f to a solution. Let g, : V(G) — V(P)u{O}
be an extension of g, such that g,(v) = g(v) for all v € V(G[t]) and let g.(v) = f(v)
otherwise. We claim that g, is a solution:

e First, we check that for all v € V/(P), g !(v) is non-empty and induces a connected
subgraph of G:

— If v ¢ g(G[t]) then the property trivially holds since g; 1 (v) = f(v)

— If v € g(G[t]) then g, ! (v) certainly is non-empty. To see that it is connected,
consider A = f-!(v) \ G[t]. For each of the equivalence classes B of ~
contained in f;1(v) N G[t], some vertex of A must be adjacent to a vertex
of B, since otherwise f;!(v) would not be connected. Therefore g, *(v) is
connected.

e Secondly, we check that for all (u,v) € E(P), there exist * € g;'(u) and
y € g;1(v) with (x,y) € E(G). Since f, is a solution, there exist ' € f;1(v) and
y' € fol(w) with (2/,y") € E(G). We distinguish several cases; since the roles
of z,3" and y,y’ are symmetrical, without loss of generality we omit cases with
reverse roles of = and y.

1. There exists 2’ € f7!(u) and ¥’ € f71(v) such that 2’ ¢ G[t] and y' ¢ G[t].
Then the property holds, since ¢'(z’) = f(2') and ¢'(2’) = f(a').

2. There exists 2’ € f71(u) and ' € f,}(v) such that 2’ € X; and v € G[t].
Then the property holds, since ¢'(z’) = f(2') and ¢'(a’) = f(2').

3. There exists 2’ € f7'(u) and ' € f1(v) such that 2’ € X; and ¢/ € X;.
Then the property holds, since ¢'(z’) = f(z') and ¢'(2’) = f(z').

4. Tt holds that f(u) C V(G[t]) — X; or f71(v) C V(G[t]) — X;. Then, since
f« extends f which has the same characteristic g, g~ (u) C V(G[t]) — X; or
g t(v) C V(G[t]) — X;. Then the property holds by Item 2. of Definition
since g is a partial solution, which is a restriction of g..

5. It holds that 7 (u) N X; # 0 and f7 (v)N Xy #0. If g7 (u)N Xy =0 or
g 1(v) N X; = 0 then we are in the first or second case (since both charac-
teristics share S). Therefore (u,v) € F' by the Item 4. of Definition

O
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The following lemma shows that we can apply our technique of reducing the number
of partial solution characteristics by using isomorphisms:

Lemma 3.12. A partial solution for GRAPH MINOR f with characteristic (f', S, ~
,F) can be extended to a solution only if S is a union of connected components of

GIV(P)\ F(X)].

Proof. Suppose there exist adjacent vertices vi,ve € V(P) \ f(X;) and vy € S, vg &
S'U f(X;). Then in any solution g which is an extension of f, g 1( ) CV(G) - X,
and g~ '(v2) N G[t] = 0, so there can never be z € f~!(v1),y L(vg) so that
(x,y) € E(G). O

The analysis of the number of cases of f’ and S remains unchanged. There are at
most (tw)t? = 20(w1ogtw) cages for ~, and since P is sparse, at most 20(%) cases for
F.

We proceed by giving pseudocode for the leaf, introduce, forget and join cases for
minor testing. Note that Algorithm still needs to be modified to handle canonized
characteristics, as per Section

Algorithm 3.7. Leaf case (Minor): computes the partial solution characteristics for a leaf
bag t € T, with X; = {v}.

let R=10

for each v € V(P)uU {O} do
let f: X; — V(P)U{O} be the function so that f(v) =
let ~ be the trivial equivalence relation on {v}
let R=RU{(f,0,~,F)}

filter R

return R

Algorithm 3.8. Introduce case (Minor): introduces a vertex v into a bag X;.

let R be the set of partial solution characteristics for ¢

clet R =10

: for each (f,S,~,F) € R and each u € V(P)\ SUO do
let f': X, U {v} — V(P) U {O} be the extension of f so that f(v) =
let ~' be the equivalence relation obtained from ~ by making v equivalent with
all vertices w € X; to which v is adjacent and f(w) = u and then taking the
transitive closure

6 et F' = FU{(f(w), [(v)) | w € Nb(v)} N E(F(X,) U {u})

7. let R =R U{(f,S,~, F')}

8: filter R’

9: return R’

A e

For the induced cases, only a small modification is needed: it suffices to check in the
introduce case that all neighbours (in X;) of the vertex being introduced are mapped
to vertices that are adjacent to the image of the introduced vertex and discard the
partial solution otherwise. We thus obtain the following theorem:
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Algorithm 3.9. Forget case (Minor): forgets a vertex v from a bag X.

1: let R be the set of partial solution characteristics for ¢
2: let R\ =10

3: for each (f,S,~,F) € Rdo

4:  let f' be the restriction of f to X; \ {v}

5 let S =S F =F

6:  if the size of the equivalence class of v is 1 then

7: if |[f71(f(v) N X¢| > 1 or there exists u € V(P) so that (u, f(v)) € E(P) and
(u, f(v)) € F then

8: skip this instance

9: else

10: let S"=S"U{f(v)}

11: let ' = F'\ {(u, f(v)) | u € Nb(f(v))}

12:  let ~' be obtained from ~ by restriction to X; \ {v}
13: let R =R U{(f,5,~, F)}

14: filter R’

15: return R’

Algorithm 3.10. Join case (Minor): combines the partial solution characteristics for two
bags X = X;.

1: let R be the set of partial solution characteristics for s

2: let T be the set of partial solution characteristics for ¢

3 let R =10

4: for each (f,S,~,F) € R and each (g9,Q,~',F') € T do

5. if f=gand SNQ =0 then

6: let ~" be obtained by combining ~ and ~’, taking their transitive closure
7: let R = RU{(f,SUQ,~" FUF')}

8: filter R/

9: return R’

Theorem 3.13. For any graph H and € > 0, if the host graph has treewidth tw and
the pattern graph is H-minor free, SUBGRAPH ISOMORPHISM and INDUCED SUBGRAPH
can be solved in time 20k tw+k/logk) pO1) and GRAPH MINOR and INDUCED MINOR
can be solved in time 20k twttwlogtw+k/logk)pO(1)

As a direct corollary, we have that for any fixed graph H (not part of the input),
SUBGRAPH ISOMORPHISM, GRAPH MINOR, INDUCED SUBGRAPH and INDUCED MINOR
can be solved in 20(m°°"*+k/108k) time if the host graph is H-minor free, as H-minor
free graphs have treewidth O(y/n) [3]. Important special cases include planar graphs,
graphs of bounded genus, and graphs of bounded treewidth.

3.6. Topological Minor

In spite of what the name may suggest, our algorithm for TOPOLOGICAL MINOR is
perhaps closer to our algorithm for SUBGRAPH ISOMORPHISM than it is to the one for
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GRAPH MINOR. The TOPOLOGICAL MINOR problem is a relaxation of SUBGRAPH
IsoMORPHISM, where instead of requiring that every edge of P corresponds to an edge
of G, we only require that an edge of P corresponds to a (vertex-disjoint) path in
G. We extend the notion of partial solution (characteristic) to consider mappings of
vertices of G to edges of P. In the following, we treat edges as ordered pairs (so that
each edge has a unique left and right endpoint).

Given a function f, by f(u,v) we denote f~1({u,v, (u,v)}) (which in our context
denotes the set of vertices of G that are used to form the edge between u and v in P,
and the vertices that are mapped to u or v themselves).

Definition 3.14 (Partial Solution (Topological Minor)). For a given node ¢t € T of
the tree decomposition of G, a partial solution for the TOPOLOGICAL MINOR problem
relative to ¢ is a function ¢ : V(GJt]) — V(P) U {0} U E(P), together with, for each
(u,v) € E(P), an assignment of orientation to each edge in the subgraph induced by
¢(u,v), such that:

1. For allv € V(P), |~ (v)| < 1.

2. For all (u,v) € E(P), for each vertex w in the subgraph of G induced by ¢(u, v),
at least one of the following holds:

(a) w € Xy, the outdegree of w is at most 1 (or at most 0 if f(w) = v) and the
indegree of w is at most 1 (or at most 0 if f(w) = u),

(b) f(w)=w and w has outdegree 1, indegree 0,
(¢) f(w)=wv and w has indegree 1, outdegree 0,
(d) w has indegree and outdegree 1, f(w) # u and f(w) # v.

Note that, by virtue of the degree constraints, for any (u,v) € E(P), (u, v) induces
a set of disjoint paths and cycles.

It is easy to see that P is a topological minor of G if and only if there exists a
partial solution relative to the root bag of G such that V(P) C ¢(V(G)) and for each
(u,v) € E(P), gzNS(u,v) induces a subgraph for which for every vertex w, one of the
conditions b-d holds. If a partial solution meets these conditions, we say it is a solution.

The degree conditions are such that in a solution, we end up with one path from
¢~ 1(u) and ¢~1(v), and possibly a set of cycles. These cycles are not relevant to the
solution and can be ignored. However, allowing the possible creation of cycles allows
us to attain a better running time (since we do not need to track connectivity).

Say that a partial solution ¢ relative to ¢ is extensible if there exists a solution
1 such that v is an extension of ¢ and the orientations assigned in ¢ match those
assigned in .

Definition 3.15 (Characteristic of a Partial Solution (Topological Minor)). The char-
acteristic (f,S) of a partial solution ¢ : V(G[t]) — V(P) U {O} U E(P) relative
to a node t € T for the TOPOLOGICAL MINOR problem is a function f : X; —
V(P)u{O}U(E(P) x {A, B,C, D}), together with a subset S, such that:

1. If v € X; and ¢(v) = (u,w) and v is such that in ¢(u,v)
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(a) v has outdegree 1 and f(v) = u, then f(v) = ((u,w), A),
(b) v has indegree 1 and f(v) = w, then f(v) = ((u,w), A),
(¢) v has indegree 1 and outdegree 1, then f(v) = ((u,w), A),
(d) Otherwise, if f(v) = u, then f(v) = ((u,w), B
(e) Otherwise, if f(v) = v, then f(v) = ((u,w),C
(f) Otherwise, if v has indegree 1, then f(v) = ((u,w), B),

(g) Otherwise, if v has outdegree 1, then f(v) =

(h) Else (if v has outdegree and indegree 0), f(v) = ((u,w), D).

2. Otherwise, if v € Xy, f(v) = ¢(v).

3. S is the set of vertices in ¢(G[t]) but not (the endpoint of an edge) in ¢(Xy).

Intuitively, state A denotes the degree constraints are satisfied, B denotes a vertex
still needs to get an out-edge, C' denotes the vertex still needs an in-edge, and D
denotes a vertex still needs both an in-edge and an out-edge.

The following lemma is once again the counterpart of Lemma [3.3 and shows that
we can apply dynamic programming:

Lemma 3.16. If partial solutions for the TOPOLOGICAL MINOR problem f and g have
the same characteristic and are both relative to t, then f can be extended to a solution
if and only if g can be extended to a solution.

Proof. We will prove that if f can be extended to a solution, then so can g. By
symmetry, this is sufficient to prove the lemma. Let both f and g have characteristic
(f',S) and let f, be an extension of f to a solution. Let g, : V(G) — V(P)U{O}UE(P)
be an extension of g, such that g,(v) = g(v) for all v € V(G[t]) and let g.(v) = f(v)
otherwise. For each (u,v) € E(P), we let the orientation of edges in the subgraph
induced by g. (u v) equal that of the corresponding edge in g(u v), or, if this edge does
not exist, the corresponding edge in the subgraph induced by f*(u, v). We claim that
g« is a solution:

e For all v € V(P), it clearly holds that |g;!(v)| = 1: because g(G[t]) = f(G[t]), if
v € g(G[t]) then v € f(V(G) \ G[t]), if v € g(Gt]) then v € f(V(G)\ G[t]).

e For each (u,v) € E(P), and each vertex w in the subgraph induced by gi(u,v),
the degree conditions are met: if w € G[t] \ X; then they are already met in g,
and since the image of the neighbourhood of w is already fixed, this remains
unchanged in g,. Otherwise, either u € X; or u € X;. In both cases u has the
same indegree and outdegree in f and g, and since extending g to g, in the same
way we extend f to f. changes the degrees in the same way, the degree conditions
must be satisfied in g, (since they are in f.).

O

The following lemma shows that we can apply our technique of reducing the number
of partial solution characteristics by using isomorphism:
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Lemma 3.17. A partial solution for TOPOLOGICAL MINOR f with characteristic (f,.S)
can be extended to a solution only if S is a union of connected components of G|V (P)\ Z],
where Z = {v € V(P) | v € f(Xy) or Ju € Nb(v),t € {A,B,C,D} : ((u,v),t) €
f(Xt> or ((uu),t) € f(Xt)}

Proof. Suppose there exist adjacent vertices vy,vy € V(P)\ Z and v; € S,v9 € SU Z.
Since v, v, are adjacent, there must be a path from f~!(v1) to the vertex that (in an
extension of f) is mapped to vy. Since vy € f(G][t]), this path must contain a vertex of
X:. However, this contradicts the fact that vi,ve € V(P) \ Z. O

The analysis of the number of cases of f and S remains unchanged: P has O(n)
edges, so the fact that both edges and vertices can now appear in the range of f does
not affect the asymptotic bound, and since there are only four possible vertex states,
the size of the range of f is still O(n). Thus, we obtain the following result:

Theorem 3.18. For any graph H and € > 0, TOPOLOGICAL MINOR can be solved in
time 20k twtk/log k), O() if the host graph has treewidth tw and the pattern graph is
H-minor free.

3.7. Conclusions

We have presented algorithms for (INDUCED) SUBGRAPH, (INDUCED) MINOR and
TOPOLOGICAL MINOR that, by taking advantage of isomorphic structures in the
pattern graph, run in subexponential time on H-minor free graphs. These algorithms
are essentially optimal since, in the next chapter, we will show that the existence of
20(n/logn)_time algorithms would contradict the Exponential Time Hypothesis. This
thus settles the (traditional) complexity of these problems on (general) H-minor free
graphs.

Our result applies to a wide range of graphs: we require P to be H-minor free and
G to have truly sublinear treewidth. Some restriction on G is indeed necessary, since if
G is an arbitrary graph then HAMILTONIAN PATH is a special case (in which P is a
path) and a 2°(") algorithm would contradict the ETH [86].

By combining our result with one by Fomin et al. [50], it is possible to obtain a
fixed-parameter tractable algorithm with running time 20*/108%)p0() for the case
where P is connected and G is apex-minor free. However, this algorithm is randomized.
Very recently [96] it has been shown that if G is planar, a deterministic 20(k/log k) p,O(1)_
time algorithm is possible (where P need not necessarily be connected). An interesting
open question is whether this latter result can be generalized to the case of H-minor
free graphs.

We note that our lower bound proof also works for IMMERSION. However, our
algorithmic technique does not seem to work for IMMERSION. Does the IMMERSION
problem also have a 29("/1987) glgorithm, or is a stronger lower bound possible?

Lemma[3.7]holds for a more general class of graphs, and we believe it may be possible
to extend our result to patterns from a graph class with expansion O(1) or perhaps
expansion O(+/r). We note that for different graph classes, a tradeoff between the size
of the small connected components and the factor k/logk in the exponent is possible:
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it might be possible to obtain a 20(*/10glog7)_time algorithm for less restrictive graph
classes.

Together with the Minimum Size Tree/Path Decomposition problems ([25] — we
will also study these problems in the next chapter), these problems are amongst the
first for which a 20(*/1°87) ypper and lower bound is known. Our work shows that
the techniques from [25] can be adapted to other problems, and we suspect there may
be many more problems for which identifying isomorphic components can speed up
dynamic programming algorithms.
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Lower Bounds

4.1. Introduction

In this chapter, we give tight subexponential lower bounds for a number of graph
embedding problems, showing that the algorithms presented in the previous chapter
are optimal. We introduce two related combinatorial problems, which we call STRING
CRAFTING and ORTHOGONAL VECTOR CRAFTING, and show that these cannot be
solved in time 2°(s!/10glsD) "unless the Exponential Time Hypothesis fails.

Previously, Bodlaender et al. [26] showed that several of these graph embedding
problems could not be solved in 2°("/1°87) time, even on very restricted classes of
graphs. We use our results on these string problems to obtain simplified hardness
results for several graph embedding problems, on more restricted graph classes than
previously known: assuming the Exponential Time Hypothesis, there do not exist
algorithms that run in 2°(*/1°87) time for

e SUBGRAPH ISOMORPHISM on graphs of pathwidth 1,

e INDUCED SUBGRAPH ISOMORPHISM on graphs of pathwidth 1,
e GRAPH MINOR on graphs of pathwidth 1,

e INDUCED GRAPH MINOR on graphs of pathwidth 1,

e INTERVALIZING 5-COLOURED GRAPHS on trees,

e and finding a tree or path decomposition with width at most ¢ with a minimum
number of bags, for any fixed ¢ > 16.

20(n/logn) aphears to be the “correct” running time for many packing and em-
bedding problems on restricted graph classes, and we think STRING CRAFTING and
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ORTHOGONAL VECTOR CRAFTING form a useful framework for establishing lower
bounds of this form.

As noted in the introduction, many NP-complete graph problems admit faster
algorithms when restricted to planar graphs. In almost all cases, these algorithms
have running times that are exponential in a square root function (e.g. 20(vn), nOWk)
or QO(ﬁ)nO(l)) and most of these results are tight, assuming the Exponential Time
Hypothesis. This seemingly universal behaviour has been dubbed the “Square Root

Phenomenon” [88].

These results answer an open question [87] of whether the Square Root Phe-
nomenon holds for SUBGRAPH ISOMORPHISM in planar graphs negativelyﬂ assuming
the Exponential Time Hypothesis, there is no g0(n/logn)_time algorithm for SUBGRAPH
ISOMORPHISM, even when restricted to (planar) graphs of pathwidth 2 [26]. The same
lower bound holds for INDUCED SUBGRAPH and (INDUCED) MINOR and is in fact tight:
as shown in the previous chapter, the problems admit 29("/1°87)_time algorithms on
H-minor free graphs.

The original proofs of this type of lower bound [26] followed by reductions from
a problem called STRING 3-GROUPS. We introduce a new problem, STRING CRAFT-
ING, and show a 29(sl/1ogls)_time lower bound under the ETH for this problem by
giving a direct reduction from 3-SATISFIABILITY. Using this result, we show that the
28451/ 1o Is])_time lower bounds for (Induced) Subgraph and (Induced) Minor hold even
on graphs of pathwidth 1.

Alongside STRING CRAFTING, we introduce the related ORTHOGONAL VECTOR
CRAFTING problem. Using this problem, we show 2("/1°g17))_time lower bounds for
deciding whether a 5-coloured tree is the subgraph of an interval graph (for which the
same colouring is proper) and for deciding whether a graph admits a tree (or path)
decomposition of width 16 with at most a given number of bags.

For any fixed k, INTERVALIZING k-COLOURED GRAPHS can be solved in time
20(n/logn) [28]. Bodlaender and Nederlof [25] conjecture a lower bound (under the
Exponential Time Hypothesis) of 22(*/1987) time for k > 6; we settle this conjecture
and show that it in fact holds for k£ > 5, even when restricted to trees. To complement
this result for a fixed number of colours, we also show that there is no algorithm solving
INTERVALIZING COLOURED GRAPHS (with an arbitrary number of colours) in time
2°(7) " even when restricted to trees.

MINIMUM SI1ZE TREE DECOMPOSITION and MINIMUM SIZE PATH DECOMPOSITION
can also be solved in 29("/1°87) time on graphs of bounded treewidth. This is known
to be tight under the Exponential Time Hypothesis for k > 39 [25]. We improve this
to k > 16; our proof is also simpler than that in [25].

Our results show that STRING CRAFTING and ORTHOGONAL VECTOR CRAFTING
are a useful framework for establishing lower bounds of the form 2%("/1°87) uynder
the Exponential Time Hypothesis. It appears that for many packing and embedding
problems on restricted graph classes, this bound is tight.

I This was first shown in [26], however, the proofs in this chapter give a somewhat stronger result.
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4.2. Additional Notation

Strings. We work with the alphabet {0, 1}; i.e., strings are elements of {0,1}*. The
length of a string s is denoted by |s|. The i*! character of a string s is denoted by s(i).
Given a string s € {0,1}*, 5 denotes binary complement of s, that is, each occurrence
of a 0 is replaced by a 1 and vice versa; i.e., |s| = |5, and for 1 < i < |s], 5(¢) = 1 — s(i).
E.g., if s = 100, then 5 = 011. With s, we denote the string s in reverse order; e.g.,
if s = 100, then s = 001. The concatenation of strings s and ¢ is denoted by s - t.
A string s is a palindrome, when s = sf. By 0" (resp. 1") we denote the string that
consists of n 0’s (resp. 1’s).

We say a graph is a caterpillar tree if it is connected and has pathwidth 1. Such
graphs consist of a central path, to each of its vertices one or more leaves can be
attached. Figure shows an example of a caterpillar tree.

4.3. String Crafting and Orthogonal Vector Crafting

We now formally introduce the STRING CRAFTING problem:

STRING CRAFTING

Given: String s, and n strings t1,...,t,, with [s| = 3" | [t].

Question: Is there a permutation IT: {1,...,n} — {1,...,n}, such that
the string t' = tricry - trge) - - -t fulfils that for each 4, 1 <4 < |[s],
s(i) > t11(i)?

Le., we ask whether it is possible to permute the collection of strings {t1, 2, ...t,},
such that if we then concatenate these, we obtain a resulting string t!! (that necessarily
has the same length as s) such that on every position where #!! has a 1, s also has a 1.

Given I, 1 < i < |s|, we let ider(i) = max{l < j < n : %/_,|ty| > i} and let
posn(i) = i = SO .
We also introduce the following variation of STRING CRAFTING, where, instead of

requiring that whenever ¢! has a 1, s has a 1 as well, we require that whenever tI has
a1, s has a 0 (i.e. the strings t'I and s, viewed as vectors, are orthogonal).

Figure 4.1. Example of a caterpillar tree.
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ORTHOGONAL VECTOR CRAFTING

Given: String s, and n strings t1,...,t,, with |s|] = >0 |t;].

Question: Is there a permutation IT: {1,...,n} — {1,...,n}, such that
the string t"' = tr(1) - tnee) - - - tn fulfils that for each i, 1 < i < |s|,
s(i) - t'1(i) = 0, i.e., when viewed as vectors, s is orthogonal to t1?

Theorem 4.1. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm that solves the STRING CRAFTING problem in 2°Us/181sD) time, even when
all strings t; are palindromes and start and end with a 1.

Proof. Suppose we have an instance of 3-SATISFIABILITY with n variables and m
clauses. We number the variables z; to x,, and for convenience, we number the clauses
O7L+1 to Cn+m+1-

We assume by the Sparsification Lemma that m = O(n) [68].

Let ¢ = [log(n+m)], and let r = 4¢+2. We first assign a unique 7-bit number to each
variable and clause; more precisely, we give an injective mapping id : {1,...,n+m} —
{0,1}". Let nb(i) be the g-bit binary representation of 4, such that 0 < nb(:) < 2" — 1.
We set, for 1 < i <n-+m:

id(i) = 1-nb(i) - nb(@) - nb(0) - nb(§)™ - 1

Note that each id(7) is an r-bit string that is a palindrome, ending and starting with a
1.

We first build the string s. We let s be the concatenation of 2n strings, each
representing one of the literals.

Suppose the literal x; appears ¢; times in a clause, and the literal —x; appears d;
times in a clause. Set f; = ¢; + d;. Assign the following strings to the pair of literals z;
and —x;:

e % is the concatenation of the id’s of all clauses in which x; appears, followed by
d; copies of the string 1-0"72 - 1.

e ¢ " is the concatenation of the id’s of all clauses in which —x; appears, followed
by ¢; copies of the string 1-0772- 1.

o bl =id(i) - a® -id(i) - ™" - id(i).

Now, we set s = bl - b2... o771 . b7,

We now build the collection of strings ¢;. We have three different types of strings:

o Variable selection: For each variable x; we have one string of length (f; + 2)r of
the form id(i) - 0"%¢ - id(i).

o Clause verification: For each clause C;, we have a string of the form id(7).

e Filler strings: A filler string is of the form 1-0""2.1. We have n + 2m filler
strings.
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Thus, the collection of strings ¢; consists of n variable selection strings, m clause
verification strings, and n + 2m filler strings. Notice that each of these strings is a
palindrome and ends and starts with a 1.

The idea behind the reduction is that s consists of a list of variable identifiers
followed by which clauses a true/false assignment to that variable would satisfy. The
variable selection gadget can be placed in s in two ways: either covering all the clauses
satisfied by assigning true to the variable, or covering all the clauses satisfied by
assigning false. The clause verification strings then fit into s only if we have not covered
all of the places where the clause can fit with variable selection strings (corresponding
to that we have made some assignment that satisfies the clause).

Furthermore, note that since ¥i_, f; = 3m, the length of s is (3n + 6m)r, the
combined length of the variable selection strings is (2n + 3m)r, the combined length
of the clause verification strings is mr, and the filler strings have combined length
(n+ Qm)rﬂ

In the following, we say a string t; is mapped to a substring s’ of s if s’ is the
substring of s corresponding to the position (and length) of ¢; in #!L.

Lemma 4.2. The instance of 3-SATISFIABILITY is satisfiable, if and only if the con-
structed instance of STRING CRAFTING has a solution.

Proof. First, we show the forward implication. Suppose we have a satisfying assignment
to the 3-SATISFIABILITY instance. Consider the substring of s formed by b?, which is of
the form id(7)-a® -id(i)-a™%i -id(i). If in the satisfying assignment z; is true, we choose
the permutation II so that variable selection string id(i) - 0"/i - id(i) corresponding
to x; is mapped to the substring id(i) - a™* - id(4); if x; is false, we map the variable
selection string onto the substring id(i) - a® - id(i). A filler string is mapped to the
other instance of id(7) in the substring.

Now, we show how the clause verification strings can be mapped. Suppose clause
C; is satisfied by the literal x; (resp. —x;). Since z; is true (resp. false), the substring
a™ (resp. a~®%) of s is not yet used by a variable selection gadget and contains id(j)
as a substring, to which we can map the clause verification string corresponding to Cj.

Note that in s now remain a number of strings of the form 1-0"~2-1 and a number
of strings corresponding to id’s of clauses, together 2m such strings, which is exactly
the number of filler strings we have left. These can thus be mapped to these strings,
and we obtain a solution to the STRING CRAFTING instance. It is easy to see that
with this construction, s has a 1 whenever the string constructed from the permutation
does.

Next, for the reverse implication, consider a solution II to the STRING CRAFTING
instance. We require the following lemma:

Lemma 4.3. Suppose that t; = id(j). Then the substring w of s corresponding to the
position of t; in t' is id(j).

2Note that a single given variable may appear as literal in many clauses, but since the total number
of clauses is linear (by the Sparsification Lemma), we still obtain the claimed lower bound bound. In
the next chapter, we will see a variation on this proof that reduces from SATISFIABILITY with few
occurrences per variable, further simplifying the proof (in this proof, the variable selection gadgets all
have the same length).
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Proof. Because the length of each string is a multiple of r, w is either id(k) for some k,
or the string 1-0""2 - 1. Clearly, w cannot be 1-0"~2 .1 because the construction of
id(i) ensures that it has more than 2 non-zero characters, so at some position w would
have a 1 where w’ does not. Recall that id(i) = 1-nb(i) - nb(i) - W(i)R nb(i)® 1. If
J # k, then either at some position nb(k) has a 0 where nb(j) has a 1 (contradicting
that II is a solution) or at some position nb(k) has a 0 where nb(j) has a 1 (again
contradicting that II is a solution). Therefore j = k. O

Clearly, for any i, there are only two possible places in t'! where the variable
selection string id() - 0"fi -id(i) can be mapped to: either in the place of id(i)-a® -id(i)
in s or in the place of id() - a7 - id(i), since these are the only (integer multiple of )
positions where id(i) occurs in s. If the former place is used we set x; to false, otherwise
we set x; to true.

Now, consider a clause C;, and the place where the corresponding clause verification
gadget ¢d(j)is mapped to. Suppose it is mapped to some substring of id(7) - a®: - id(i) -
a™® - id(i). If id(j) is mapped to a substring of a® then (by construction of a®¢) x;
appears as a positive literal in C; and our chosen assignment satisfies C; (since we
have set x; to true). Otherwise, if id(j) is mapped to a substring of a™*¢ x; appears
negated in C; and our chosen assignment satisfies C; (since we have set z; to false).

We thus obtain a satisfying assignment for the 3-SATISFIABILITY instance. O

Since in the constructed instance, |s| = (3n 4+ 6m)r and r = O(logn),m = O(n),
we have that |s| = O(nlogn). A 2°Usl/1ogls)_time algorithm for STRING CRAFTING
would give a 20(nlogn/log(nlogn)) — 90(n)_time algorithm for deciding 3-SATISFIABILITY,
violating the ETH. O

Note that we can also restrict all strings ¢; to start and end with a 0 by a slight
modification of the proof.

Theorem 4.4. Assuming the Exponential Time Hypothesis, ORTHOGONAL VECTOR
CRAFTING cannot be solved in 2°UsI/19815D) time, even when all strings t; are palindromes
and start and end with a 1.

Proof. This follows from the result for STRING CRAFTING, by taking the complement
of the string s. O

Again, we can also restrict all strings ¢; to start and end with a 0.

As illustrated by the following theorem, these lower bounds are tight. The algorithm
is a simpler example of the techniques used in [25, 28] and those in Chapter (3] There,
the authors use isomorphism tests on graphs; here, we use equality of strings.

Theorem 4.5. There exists algorithms, solving STRING CRAFTING and ORTHOGONAL
VECTOR CRAFTING in 20Usl/1081s) time,

Proof. The brute-force algorithm of trying all n! permutations of the strings t1,...,t,
would take O(|s|!s) time in the worst case. This can be improved to O(2!*/s2) by simple
Held-Karp [66] dynamic programming: for each (multi-)subset K C {¢;,...,t,} and
1 = Yiek|t] we memoize whether the substring s(1) - - - s(I) of s together with K forms
a positive instance of STRING CRAFTING (resp. ORTHOGONAL VECTOR CRAFTING).
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The number of such (multi-)subsets K is 2/*! in the worst case. However, in this
case, each string t € K is of length 1 and we can instead store the multiplicity of each
string, making for only O(|s|?) cases (since each string is either 0 or 1).

More generally, call a string t; long if |t;| > logs(|s])/2 and short otherwise. There
are at most 2|s|/log|s| long strings, and as such we can store explicitly what subset of
the long strings is in K (giving 20Usl/1081s]) cases). Since there are at most 2!°8151/2 =
\/m distinct short strings, storing the multiplicity of each one contributes at most

\s\\/m — oVlsllogls| cages. O

4.4. Lower Bounds for Graph Embedding Problems

Theorem 4.6. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm solving SUBGRAPH ISOMORPHISM in 2°("/1987) time_ even if G is a caterpillar
tree of maximum degree 3 or G is connected, planar, has pathwidth 2 and has only one
vertex of degree greater than 3 and P is a tree.

Proof. By reduction from STRING CRAFTING. We first give the proof for the case that
G is a caterpillar tree of maximum degree 3, We construct GG from s as follows: we take
a path of vertices v1,...,v)5 (path vertices). If s(i) = 1, we add a hair vertez h; and
edge (v;, h;) to G (obtaining a caterpillar tree). We construct P from the strings ¢;
by, for each string t; repeating this construction, and taking the disjoint union of the
caterpillars created in this way (resulting in a graph that is a forest of caterpillar trees,
i.e., a graph of pathwidth 1). An example of this construction is depicted in Figure

AT AS S
b odddodod

Figure 4.2. Simplified example of the graphs created in the hardness reduction
for Theorem The bottom caterpillar represents the host graph (corresponding
to string s), the top caterpillars represent the strings ¢; and form the guest graph.
Depicted is an instance where s = 101110101 and t; = 1010, ¢, = 101 and ¢3 = 00.
(Note that these strings do not satisfy the requirements of the theorem, and are
purely for illustration of the construction).

Lemma 4.7. The constructed instance of G contains P as a subgraph only if the
instance of STRING CRAFTING has a solution.

Proof. Suppose P contains G as a subgraph. Since X;|t;| = |s| and each string ¢; starts
and ends with a 1, the path vertices of P and G must be in one-to-one correspondence
(we cannot map a hair vertex of P to a path vertex of G since otherwise we would not
be able to fit all connected components of P into G). The order in which the connected
components of P appear as we traverse the path of G gives a permutation II of the
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strings t;. We claim that this permutation is a solution to the STRING CRAFTING
instance, since G must have a hair vertex whenever P has one (or else we would not
have found P as a subgraph) we have that s has a 1 whenever t!! has a 1. Note that it
does not matter that we can flip a component of P (embed the vertices of the path in
the reverse order) since the strings ¢; are palindromes. O

Lemma 4.8. The constructed instance of G contains P as a subgraph if the instance
of STRING CRAFTING has a solution.

Proof. Let II be a solution for the STRING CRAFTING instance. We can map the path
vertices of the connected components of P to the path vertices of G in the order the
corresponding strings appear in the permutation IT (e.g. the first path vertex of the
connected component corresponding to II(1) gets mapped to the first path vertex vy,
the first path vertex of the component corresponding to II(2) gets mapped to the
tray |+ 1*h path vertex,...). Whenever a path vertex in P is connected to a hair vertex,
T has a 1 in the corresponding position, and therefore s has a 1 in the corresponding
position as well and thus G also has a hair vertex in the corresponding position. We
can thus appropriately map the hair vertices of P to the hair vertices of G, and see
that P is indeed a subgraph of G. O

Since the constructed instance has O(|s|) vertices, this establishes the first part of
the lemma. For the case that G is connected, we add to the graph G constructed in
the first part of the proof a vertex u and, for each path vertex v;, an edge (v;,u). To P
we add a vertex v’ that has an edge to some path vertex of each component. By virtue
of their high degrees, u must be mapped to v’ and the remainder of the reduction
proceeds in the same way as in the first part of the proof. O

We now show how to adapt this hardness proof to the case of INDUCED SUBGRAPH:

Theorem 4.9. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm solving INDUCED SUBGRAPH in 2°("/1987) time, even if G is a caterpillar
tree of maximum degree 3 or G is connected, planar, has pathwidth 2 and has only one
vertex of degree greater than 3 and P is a tree.

Proof. Matousek and Thomas [92] observe that by subdividing each edge once, a
subgraph problem becomes an induced subgraph problem. Due to the nature of our
construction, we do not need to subdivide the hair edges. We can adapt the proof
of Theorem by subdividing every path edge (but not the hair edges) and for the
connected case, also subdividing the edges that connect to the central vertices u and
u'. O

We now show how to adapt this proof to (INDUCED) MINOR, SHALLOW MINOR
and TOPOLOGICAL MINOR:

Theorem 4.10. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm solving (INDUCED) MINOR, SHALLOW MINOR or TOPOLOGICAL MINOR in
20(n/logn) time even if G is a caterpillar tree of maximum degree 3 or G is connected,
planar, has pathwidth 2 and has only one vertex of degree greater than 3 and P is a
tree.
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Proof. We can use the same reduction as for (induced) subgraph. Clearly, if P is
an (induced) subgraph of G then it is also an (induced/shallow/topological) minor.
Conversely, if P is not a subgraph of G then allowing contractions in G or subdivisions
in P do not help: contracting a hair edge simply removes that edge and vertex from
the graph, while contracting a path edge immediately makes the path too short to fit
all the components. 0

4.5. Tree and Path Decompositions with Few Bags
In this section, we study the minimum size tree and path decomposition problems:

MINIMUM S1ZE TREE DECOMPOSITION OF WIDTH k (k-MSTD)

Given: A graph G, integers k,n.

Question: Does G have a tree decomposition of width at most &, that has
at most n bags?

The Minimum Size Path Decomposition (k-MSPD) problem is defined analogously.
The following theorem is an improvement over Theorem 3 of [25], where the same was
shown for k£ > 39; our proof is also simpler.

Theorem 4.11. Let k > 16. Suppose the Exponential Time Hypothesis holds, then
there is no algorithm for k-MSPD or k-MSTD using 2°("/1°8™) time.

Proof. By reduction from ORTHOGONAL VECTOR CRAFTING. We begin by showing
the case for MSPD, but note the same reduction is used for MSTD.

For the string s, we create a connected component in the graph G as follows: for
1< <|s|+ 1 we create a clique C; of size 6, and (for 1 < ¢ < |s|) make all vertices of
C; adjacent to all vertices of C;y1. For 1 <4 < |s], if s(i) = 1, we create a vertex s;
and make it adjacent to the vertices of C; and Cj 1.

For each string ¢;, we create a component in the same way as for s, but rather than
using cliques of size 6, we use cliques of size 2: foreach 1 <i<mnand 1<j < |t;|+1
create a clique T; ; of size 2 and (for 1 < j < |¢;|) make all vertices of T; ; adjacent
to all vertices of T; jy1. For 1 < j < |t;|, if ¢;(j) = 1, create a vertex ¢; ; and make it
adjacent to the vertices of T; ; and T} jy1.

An example of the construction (for s = 10110 and ¢; = 01001) is shown in Figure
We now ask whether a path decomposition of width 16 exists with at most |s]|
bags.

Lemma 4.12. If there exists a solution 11 to the ORTHOGONAL VECTOR CRAFTING
instance, then G has a path decomposition of width 16 with at most |s| bags.

Proof. Given a solution II, we show how to construct such a decomposition with
bags X;,1 < i < |s|. In bag X; we take the vertices C;, C;11 and (if it exists) the
vertex s;. We also take the cliques Tjqu (i), pos (i)s Tidwrn (i+1),posn(i+1) and the vertex
Lidar (4),posm (i) (if it exists).

Each bag contains two cliques of size 6 and two cliques of size 2, adding up to
16 vertices in each bag. Each bag may additionally contain a vertex s; or a vertex
tiden (i),posu (i)» Put, by nature of a solution to ORTHOGONAL VECTOR CRAFTING, not
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Figure 4.3. Simplified example of the graph created in the hardness reduction
for Theorem [4.11] The circles and ellipses represent cliques of various sizes. The
component depicted in the top of the picture corresponds to t; = 01001, while the
component at the bottom corresponds to s = 10110.

both, showing that each bag contains at most 17 vertices and as such the decomposition
indeed has width 16. O

Lemma 4.13. If G has a tree decomposition of width 16 with at most |s| bags, then
the instance of ORTHOGONAL VECTOR CRAFTING has a solution.

Proof. Suppose we have a tree decomposition of width 16 with at most |s| bags. Since
for any 1 < i <|s|, C; UC;41 induces a clique, there exists a bag that contains both
C; and C;y1. Moreover, since each clique C; contains six vertices, each bag of the
decomposition can contain at most two such cliques. Moreover, since the decomposition
has at most (and thus we can assume exactly) |s| bags, there exists exactly one bag
containing both C; and Cjy;.

Since (for 1 < i < |s|) the bag containing C; and C;4; must be adjacent to the
bag containing C;_; and C; and to the bag containing C;;; and C;;2 we see that all
but two bags have degree at least two and the remaining two bags have degree at
least 1. Since a tree/path decomposition cannot have cycles, we see that the tree/path
decomposition must take the form of a path, where the bag containing C; and Cj41 is
adjacent to the bag containing C;_; and C; and to the bag containing C;;1 and Cjo.

Assume the bags of the decomposition are X,... X, and C;,C;11 C X;.

Since in each of the bags we now have capacity for five more vertices, we see that
each bag contains exactly two cliques T; j,1 < i <n,1 < j < |t;| + 1 and that there
exists a bag that contains both T; ; and T; j41 forall 1 <i <n,1 <j < |t;|. Moreover,
for each i, the bags containing {7; ; UT; ;41 : 1 < j < |t;|} must be consecutive and
appear in that order (or in the reverse order, but by the palindromicity of ¢; this case
is symmetric).

Note that at this point, each bag contains exactly 16 vertices and has room for
exactly 1 more vertex (which can be either an s; or a t;;).

Thus, if we were to list the intersection of each bag X; with {Tm-7 1<i<n 1<
J < |t;|}, we would obtain the following sequence:
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{Try, 0 Tay 2t - ATt > T, gy 141

{Tne)1 Tn)2ts - AT0@) ey > 1) ey 141}

{Trny, 1 Tagny 2t - -+ {000 gy | TT1(0) by oy |41}

Which gives us the permutation IT and string t!! we are after. Note that s(i) and
t'1(4) cannot both be 1, because otherwise the vertex s; (being adjacent to the vertices
of C; and Cyy1) must go in bag X, but so must the vertex ;4 (i), posy (;) Which would
exceed the capacity of the bag. O

The size of the graph created in the reduction is O(]s|), so we obtain a 22(*/logn)
lower bound for 16-MSPD under the Exponential Time Hypothesis. We can extend
the reduction to k > 16 by adding universal vertices to the graph.

For the tree decomposition case, note that a path decomposition is also a tree
decomposition. For the reverse implication, we claim that a tree decomposition of G
of width 16 with at most |s| bags must necessarily be a path decomposition. This is
because for each 1 < i < |s|, there exists a unique bag containing C; and C;y; which
is adjacent to the bag containing C; — 1 and C; (if i > 1) and to the bag containing
Cit1 and Cjqa (if i < |s]). All but two bags are thus adjacent to at least two other
ones, and a simple counting argument shows that there therefore is no bag with degree
greater than two (or we would not have enough edges). O

4.6. Intervalizing Coloured Graphs

In this section, we consider the problem of intervalizing coloured graphs:

INTERVALIZING COLOURED GRAPHS

Given: A graph G = (V, E) together with a proper colouring ¢ : V —
{1,2,...,k}.

Question: Is there an interval graph G’ on the vertex set V, for which ¢
is a proper colouring, and which is a supergraph of G?

INTERVALIZING COLOURED GRAPHS is known to be NP-complete, even for 4-
coloured caterpillars (with hairs of unbounded length) [5]. In contrast with this result
we require five colours instead of four, and the result only holds for trees instead of
caterpillars. However, we obtain a 2%("/1087) Jower bound under the Exponential Time
Hypothesis, whereas the reduction in [5] is from MULTIPROCESSOR SCHEDULING and
to our knowledge, the best lower bound obtained from it is 2%(¥™) (the reduction is
weakly polynomial in the length of the jobs, which following from the reduction from
3-PARTITION in [70] is ©(n?*)). In contrast to these hardness results, for the case with
3 colours there is an O(n?) time algorithm [16, 17].

Theorem 4.14. INTERVALIZING COLOURED GRAPHS does not admit a 2°("/1°87)_time
algorithm, even for 5-coloured trees, unless the Exponential Time Hypothesis fails.
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Proof. Let s,t1,...,t, be an instance of ORTHOGONAL VECTOR CRAFTING. We
construct G = (V, E) in the following way:

S-String Path. We create a path of length 2|s| — 1 with vertices po, ... pg|s|—2, and set
c(p;) =1if i is even and ¢(p;) = 2 if ¢ is odd. Furthermore, for even 0 < i < 2|s| — 2,
we create a neighbour n; with ¢(n;) = 3.

Barriers. To each endpoint of the path, we attach the barrier gadget, depicted in
Figure [£.4 The gray vertices are not part of the barrier gadget itself, and represent pg
and ng (resp. pojs|—2 and ngjs—2). Note that the barrier gadget operates on similar
principles as the barrier gadget due to Alvarez et al. [5]. We shall refer to the barrier
attached to po as the left barrier, and to the barrier attached to py—2 as the right
barrier.

The barrier consists of a central vertex with colour 1, to which we connect eight
neighbours (clique vertices), two of each of the four remaining colours. Each of the
clique vertices is given a neighbour with colour 1. To one of the clique vertices with
colour 2 we connect a vertex with colour 3, to which a vertex with colour 2 is connected
(blocking vertices). This clique vertex shall be the barrier’s endpoint. Note that the
neighbour with colour 1 of this vertex is not considered part of the barrier gadget, as it
is instead a path vertex. We let C; (e;) denote the center (endpoint) of the left barrier,
and C, (e,) the center (endpoint) of the right barrier.

(a) Barrier Gadget (b) Interval Representation

Figure 4.4. (a) Barrier Gadget. The gray vertices are not part of the barrier
gadget itself, and show how it connects to the rest of the graph. (b) How the
barrier gadget may (must) be intervalized.

T-String Paths. Now, for each string ¢;, we create a path of length 2|¢;| + 1 with
vertices gi 0, . - ., @2, and set c(g; ;) = 3 if j is odd and set ¢(g; ;) = 2 if j is even. We
make ¢; 1 adjacent to U. Furthermore, for odd 1 < j < 2|¢;| — 1, we create a neighbour
m; with ¢(m;) = 1. We also create two endpoint vertices of colour 3, one of which is
adjacent to ¢; 0 and the other to g; a4,/

Connector Vertex. Next, we create a connector vertex of colour 5, which is made
adjacent to p; and to ¢;; for all 1 <7 < n. This vertex serves to make the entire graph
connected.
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Marking Vertices. Finally, for each 1 < i < |s| (resp. for each 1 < i < m and
1<j<|ti]), if s(i) =1 (resp. t;(j) = 1), we give pa;—1 (resp. ¢; 2;—1) two neighbours
(called the marking vertices) with colour 4. For each of the marking vertices, we create
a neighbour with colour 3.

This construction is depicted in Figure [£.5] In this example s = 10100, ¢; = 01 and
to = 001. Note that this instance of ORTHOGONAL VECTOR CRAFTING is illustrative,
and does not satisfy the restrictions required in the proof.

Informally, the construction works as follows: the barriers at the end of the path
of p-vertices cannot be passed by the remaining vertices, meaning we have to "weave"
the shorter g-paths into the long p-path. The colours enforce that the paths are in
"lockstep", that is, we have to traverse them at the same speed. We have to map every
g-vertex with colour 3 to a p-vertex with colour 2, but the marking vertices prevent us
from doing so if both bitstrings have a 1 at that particular position.

Lemma 4.15. G can be intervalized if the ORTHOGONAL VECTOR CRAFTING instance
has a solution.

Proof. As an example, Figure [1.6] shows how the graph from Figure [4.5] may be
intervalized. Let II be a solution to the instance of ORTHOGONAL VECTOR CRAFTING.
We can intervalize the barriers as depicted in Figure [{:4b, noting that the right barrier
should be intervalized in a mirrored fashion. The connector vertex (which is the
only remaining vertex of colour 5) can be assigned an interval that covers the entire
interval between the two barrier gadgets. If no marker vertices are present, then we
can weave the g-paths into the p-path as depicted in Figure whereby each interval
corresponding to a g-vertex of colour 3 completely contains the interval of a p-vertex of
colour 2 (note that the endpoint vertices of the g-paths are treated differently from
the g-path vertices with colour 3). If we intervalize the g-paths in the same order the
corresponding strings appear in II, then we can also intervalize the marking vertices:
Figure [4.6| shows that the marker vertices can also be intervalized, so long as a p-vertex
and its corresponding g-vertex are not both adjacent to marker vertices, but this is
guaranteed by the orthogonality of s and ¢l O

Lemma 4.16. G can be intervalized only if the ORTHOGONAL VECTOR CRAFTING
instance has a solution.

Proof. Suppose we are given a properly coloured interval supergraph of G that assigns
to each vertex v € V its left endpoint I(v) and right endpoint r(v). For vertices u,v € V,
we write v C u if I(u) < l(v) < r(v) < r(u), and we write v < w if r(v) < I(u). We
write v < w if I(v) < l(u) < r(v) < r(u) - that is, the interval of v starts to the left of
the interval of u and the two intervals overlap.

We may without loss of generality assume that C; < C,. and that no two endpoints
of intervals coincide.

Claim. For any non-barrier vertex v, we have that r(C;) < l(v) < r(v) < I(C,).

Proof. Examining the situation for the left barrier, we see that a clique vertex cannot
be contained completely inside the interval of the center vertex Cj since it is adjacent
to another vertex with colour 1 (whose interval may not intersect that of the center).
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Since there are two clique vertices of each colour, for each colour, the interval of one
clique vertex of that colour must extend to the left of the central vertex’ interval and
the other must extend to the right. Therefore, these intervals that contain r(¢;) induce
a clique of size 5. Since we are looking for a 5-coloured supergraph, no other intervals
can contain r(c;).

Note that the clique vertices are interchangeable, except the ones coloured 2: the
clique vertex that is adjacent to pg must go to the right of the center vertex, since
otherwise the path from it to C, could not pass the clique at r(¢;).

Suppose that for some non-barrier vertex v, it holds that {(v) < r(e,). This is not
possible, since the path from v to ¢, cannot pass the clique induced at r(¢;). Therefore,
r(c) < (v).

The case for the right barrier is symmetric. O

Claim. For all 0 < i < 2|s| — 1, we have that p; < p;+1. Furthermore, C; < ¢; < py and
P2|s|—1 <er < Cr~

Proof. The fact that C; < e; < po (resp. pajs|—1 < e, < C;) follows from the analysis
of the barrier gadget in the previous claim. We now proceed by induction, for the
purposes of which we shall write e; = p_; and e, = py|,: suppose the claim holds for
1 —1,ie. pi—1 <p;. It cannot hold that p; 11 C p;, since it is adjacent to p;2, nor can
it hold that p;11 < p; (since then it would intersect the interval of p;_;. O

For any 1 <14 < n, a similar fact holds for the path g;o,..., g2, :
Claim. We may without loss of generality assume that g; o < ... < ¢q; |-

Proof. By a similar induction argument as above, it must hold that either ¢; o < ... <
i2|t;] OT Gi0 > .. > qi2)t,- However, since t; is palindromic, these two cases are
equivalent. O

Claim. Let 1 < i < n,1 < j < |t;]. Then there exists 1 < k < [s| such that
P2k—1 C ¢525—-1-

Proof. The interval of ¢; 2,1 cannot be completely contained in the interval of a vertex
with colour 1, since g; 251 is adjacent to m; 251 which has colour 1 as well. Therefore
(since 7(Cy) < U(gi2j—1) < 7(gi,2j—1) < I(Cy)), the interval of ¢; ;1 must intersect
the interval of either a barrier endpoint or a path vertex pop_1 for some 1 < k < |s].
It is not possible that g; 2,1 intersects the interval of a barrier endpoint, since (due
to the blocking and clique vertices with colour 3, see Figure it would have to be
completely contained inside this interval, which is impossible since g; 21 is adjacent
to vertices with colour 2. Therefore there exists a 1 < k < |s| such that the interval of
¢i,2j—1 intersects that of pay_;.

Since gi,2j-2 < ¢i2j—1 < ¢i,2j and ¢(gi,2j—2) = ¢(¢i,2;) = c(p2r—1) = 2 we must have
that qi25—2 < q2k—1 < @i,25- It now follows that P2k—1 C ¢i25-1- O]

This allows us to define the position 1 < P(i,7) < |s| foreach 1 < i <n,1 <j <|t],
which is equal to the k from the previous claim. Note that P is a bijection, since each
interval po_1 is the subset of (the interval of) exactly one g-vertex (each p-vertex
interval cannot be the subset of more than one g-vertex interval, and the number
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of p-vertices is such that no g-vertex can completely contain more than one g-vertex
interval).

Claim. Let 1 <i<n,1<j<|t;| — 1. Then P(i,j + 1) = P(i,j) + 1.

Proof. This follows from the fact that a g-vertex with colour 3 cannot completely
contain a p-vertex with colour 1 (since it has an n-vertex as neighbour that has colour
1 as well) and the fact that a g-vertex with colour 2 cannot overlap a p-vertex with
colour 2.

Formally, let P(i,j) = k, then pop—1 C gi25—1. Since g 2j—1 < qi,2; < ¢i,2j+1, if the
claim does not hold, we must have pag+1+42m C ¢i,2j+1 for some m > 0. We must have
¢i,2j C Pak+or for some r > 0. If r = 0, then g; 2; < gi 2541 which is a contradiction.
On the other hand, if r > 0 then ¢; 251 < ¢;,2; which is also a contradiction. O

Claim. Let IT be the permutation of {1,...,n} such that P(idx (), posn(i)) = i. Then
IT exists and is a solution to the ORTHOGONAL VECTOR CRAFTING instance.

Proof. The existence of II follows from the previous claim. Suppose that II is not a
solution. Then there exists an 4, such that S(i) = Tjgz, () (posn(i)) = 1. However, this
means that p2i—1 C Giden (i),2posn(i)—1- Since both pa;—1 and ¢igep (i),2posn(i)—1 have
marking vertices, this is impossible as the marking vertices with colour 4 would have
overlapping intervals. O

This completes the proof of Lemma [1.16] O

The number of vertices of G is linear in |s| and we thus obtain a 2("/1°27) Jower
bound under the Exponential Time Hypothesis. [

Note that the graph created in this reduction only has one vertex of super-constant
degree. This is tight, since the problem is polynomial-time solvable for bounded degree
graphs (for any fixed number of colours) [72].

To complement this result for a bounded number of colours, we also show a 2(")-
time lower bound for graphs with an unbounded number of colours, assuming the ETH.
Note that this result implies that the algorithm from [28] is optimal. A complication in
the proof is that to obtain the stated bound, one can only use (on average) a constant
number of vertices of each colour (when using O(n) colours). A variation on the
previous proof whereby instead of using bitstrings, colours are used to identify clauses
and variables is thus unlikely to work since one would need to repeat each colour many
times (in each place where a particular bitstring does not fit).

Theorem 4.17. Assuming the Exponential Time Hypothesis, there is no algorithm
solving INTERVALIZING COLOURED GRAPHS in time 2°(") even when restricted to
trees.

Proof. By reduction from ExacT COVER BY 3-SETs (X3C). X3C is the following
problem: given a set X with |X| =n and a collection M of subsets X1,...,X,, of size
3, decide whether there exists a subset M’ of size n/3 such that |J M’ = X. Assuming
the Exponential Time Hypothesis, there does not exist an algorithm solving X3C in
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time 2°(™) (See e.g. [25, 9, 55]. Note that 3-DIMENSIONAL MATCHING is a special case
of X3C.).

The intuition behind the reduction is that, to leverage the large number of colours,
one needs to force the creation of a very large clique in the intervalized graph. For
each element of X; € M, we create a component of which the vertices have colours
that correspond to the elements of X;. The graph created in the reduction will be so
that all but n/3 of the components corresponding to elements of M can be placed in
distinct intervals, but the remaining n/3 components will have to overlap. This, in
turn, is only possible if no two components in this latter collection contain duplicated
colours, that is, each element is represented at most (and thus exactly) once in the
selected n/3 components.

We assume the elements of X are labelled 1,...,n. We may assume that n is a
multiple of 3 (or we may return a trivial no-instance) and that m > n/3 (or we can
check immediately whether M covers X).

The graph created in the reduction has n + 4 colours: two colours e; and f; for each
1 < i < n and four additional colours a, b, ¢, d.

We construct the graph G as follows: we start with a path of 2(m —n/3)+ 1 vertices
P0s - - - s P2(m—n/3), Where p; has colour a if 7 is even and p; has colour b if i is odd. To
P2(m—n,3) We make adjacent a vertex with colour d, which we shall refer to as the right
barrier vertex.

Next, for each 1 < i < n, we create a vertex v; with colour e;, that is made adjacent
to pg. For each i, we create an additional vertex with colour d that is made adjacent
to v;. These vertices (with colour d) are called the left barrier vertices.

Next, for each 3-set X; € M, we create a set component, consisting of a central
vertex with colour a, to which are made adjacent: two vertices with colour ¢, each of
which is adjacent to a vertex with colour b and, for each of the three elements of X,
two vertices with the corresponding (to that element) colour f;, each of which is made
adjacent to a vertex with colour e;.

Finally, we connect all the components together with a connector vertex of colour
d, which is made adjacent to each set gadget and to a vertex of the path (for instance
to po). Figure provides an example of the construction.

As with the case for five colours, a solution somehow has to “pack” the set components
into the part of the graph between the barriers: m — n/3 of the set components can
be packed into the path (each interval corresponding to a b-vertex can hold at most
one component); the remaining n/3 components have to be packed between the left
barrier vertices and pg and this is possible only if the corresponding sets are disjoint
(otherwise intervals of the corresponding colours would have to overlap).

Lemma 4.18. If G can be intervalized, then the X3C instance has a solution.

Proof. In any interval supergraph of G, the interval of the connector vertex should
lie between the intervals of the left barrier vertices and the right barrier vertex. Let
X; € M. The interval of the central vertex of the set component corresponding to
X; must either be contained in the interval corresponding to some vertex p; for some
odd 1 < i < 2(m —n/3) or it should be contained in the intersection of the intervals
corresponding to the vertices {v; | 1 < j < n} (since its interval cannot intersect any
interval of a vertex with colour a, nor can its interval be contained in the interval of a
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Figure 4.7. The construction used in the proof of Theorem In this example,
X ={{1,5,2},{7,1,2},...}. The topmost vertex with colour d is the connector
vertex, and its degree would increase as more elements are added to X.

left or right barrier vertex).

Claim. At most one interval corresponding to a central vertex can be contained in the
interval of any vertex p; (for odd 7).

Proof. Each central vertex is adjacent to two vertices with colour ¢. Since these vertices
in turn have neighbours with colour b, it follows that (if some central vertex is contained
in the interval of p;) the interval of one of the vertices with colour ¢ must contain
the left endpoint of the interval of p;, and the other must contain the right endpoint.
Therefore the interval of p; cannot contain another central vertex. O

Claim. Let X; # X; € M. If X; N X; # 0, then the intervals of the central vertices
of the set components corresponding to X; and X; cannot both be contained in the
intersection of the intervals corresponding to the vertices {vi | 1 < k < n}.

Proof. Since X; NX; # (), both central vertices have two neighbours with colour f,, for
some 1 < m < n. Each of these vertices has a neighbour with colour e,,, and thus the
interval of a vertex with colour f,, must contain either the left or the right endpoint
of the interval that is the intersection of the intervals corresponding to the vertices
{vr | 1 <k < n}. This is not possible, since either the left or the right endpoint of this
intersection will be contained in more than one interval corresponding to a vertex with
colour fp,. O

We thus see that the elements of M that correspond to set components whose
intervals are contained in the intersection of the intervals corresponding to the vertices
{vp | 1 <k <n} form a solution: no element of X is contained in more than one of
them. As at most |X| — n/3 intervals of set components are contained in intervals
corresponding to some vertex v;, we have that at least n/3 set components have intervals
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that are contained in the aforementioned intersection. These must thus form a solution
to the X3C instance. O

Lemma 4.19. If the X3C instance has a solution, then G can be intervalized.

Proof. The v-vertices are assigned to identical intervals. Their d-coloured neighbours
can be assigned arbitrarily small intervals that are placed in the left half of the v-vertex
interval. The p-vertices can then be placed from left to right, so that py overlaps a small
portion of the right end of the v-vertex intervals, and each p vertex interval overlaps the
interval of the preceding p-vertex slightly. Finally the right barrier vertex (with colour
d) should be placed in the right half of the interval corresponding to p22(m — n/3).

Next, the connector vertex (with colour d) can be assigned a long interval between
the left and right barrier vertices, that overlaps the v-vertex intervals and all of the
p-vertex intervals. This placement of the connector vertex allows us to place the
intervals of set components anywhere between the left and right barriers.

Let M’ C M be a solution to the X3C instance. Since |M’| = n/3, and there are
m — n/3 p-vertices with colour b, we can assign each element of M that is not in the
solution a unique p-vertex with colour a. We assign the central vertex (which has
colour a) of the set component of each such element an interval inside the interval of
its p-vertex, such that it does not intersect neighbouring p-vertices (which have colour
a). The vertices with f- or e-colours of the set component can be assigned similar
intervals (not intersecting neighbouring p-vertices). One of the vertices with colour ¢ is
assigned an interval that extends past the left endpoint of the p-vertex interval (and
thus intersects the preceding p-vertex interval), which allows us to assign its neighbour
with colour b an interval that is contained in the preceding p-vertex interval (and does
not intersect any other p-vertex interval). The other vertices with colours b and ¢ can
be placed similarly on the right.

Finally, for the set components corresponding to elements of M’, we can assign the
vertices with colours a, b, ¢ arbitrarily small intervals in the right half of the v-vertex
intervals; the f-coloured vertices can be placed so that their intervals stick out beyond
the right and left endpoints of the v-vertex intervals, so that the e-coloured vertices
can be placed not overlapping the v-vertex intervals. The fact that M’ is a solution
guarantees this can be done without any e, f-colours overlapping each other, since each
such colour occurs exactly twice (one such pair of vertices can be placed on the left,
the other on the right). O

This completes the reduction. Since the number of vertices of G is linear in |M]|
and | X|, we see that INTERVALIZING COLOURED GRAPHS does not admit a 2°(")-time
algorithm, unless the Exponential Time Hypothesis fails. O

4.7. Conclusions

In this chapter, we have shown for several problems that, under the Exponential Time
Hypothesis, 2°("/1087) ig the best achievable running time — even when the instances
are very restricted (for example in terms of pathwidth or planarity). For each of these
problems, algorithms that match this lower bound are known and thus 29("/10g7) g
(likely) the asymptotically optimal running time.
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For problems where planarity or bounded treewidth of the instances (or, through
bidimensionality, of the solutions) can be exploited, the optimal running time is often
20(vn) (or features the square root in some other way). On the other hand, each
of problems studied in this chapter exhibits some kind of “packing” or “embedding’
behaviour. For such problems, 20(?/1087) is often the optimal running time. We have
introduced two artificial problems, STRING CRAFTING and ORTHOGONAL VECTOR
CRAFTING, that form a useful framework for proving such lower bounds.

It would be interesting to study which other problems exhibit such behaviour, or to
find yet other types of running times that are “natural” under the Exponential Time
Hypothesis. The loss of the logn-factor in the exponent is due to the fact that logn
bits or vertices are needed to “encode” n distinct elements; it would be interesting
to see if there are any problems or graph classes where a more compact encoding is
possible (for instance only log! ¢ n vertices required, leading to a tighter lower bound)
or where an encoding is less compact (for instance log? n vertices required, leading to a
weaker lower bound) and whether this can be exploited algorithmically.

)
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Intermezzo: Polyomino Packing

5.1. Introduction

In this chapter, we show that the problem of deciding whether a collection of poly-
ominoes, each fitting in a 2 x O(logn) rectangle, can be packed into a 3 x n box
does not admit a 2°(*/1°27)_time algorithm, unless the Exponential Time Hypothesis
fails. We also give an algorithm that attains this lower bound, solving any instance of
polyomino packing with total area n in 20("/1087) " This establishes a tight bound on
the complexity of Polyomino Packing, even in a very restricted case. In contrast, for a
2 x n box, we show that the problem can be solved in strongly subexponential time.

The complexity of games and puzzles is a widely studied topic, and the complexity of
most games and puzzles in terms of completeness for a particular complexity class (NP,
PSPACE, EXPTIME, ...) is generally well-understood (see e.g. [64] for an overview).
Results in this area are not only mathematically interesting and fun, but are also a
great educational tool for teaching hardness reductions. However, knowing that a game
or puzzle is NP-complete does not provide a very detailed picture: it only tells us that
there is unlikely to be a polynomial-time algorithm, but leaves open the possibility that
there might be a very fast superpolynomial but subexponential-time algorithm. This
issue was precisely the motivation for introducing the Exponential Time Hypothesis
[67].

We study the POLYOMINO PACKING problem from the viewpoint of exact complexity.
We give a reduction from 3-SAT, showing that POLYOMINO PACKING cannot be solved
in 20(n/10gn) time, even if the target shape is a 3 x n rectangle and each piece fits in
a 2 x O(logn) rectangle. As the reduction is self-contained, direct from 3-SAT and
rather elegant, it could be an excellent example to use for teaching. We also show that
this is tight: POLYOMINO PACKING can be solved in 2€(*/1°27) time for any set of
polyominoes of total area n that have to be packed into any shape.

PoLYOMINO PACKING appears to behave similarly to SUBGRAPH ISOMORPHISM
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on planar graphs, which, as shown in the previous chapters, has exact complexity
20(n/logn) (i.e., there exists an algorithm solving the problem in 20(n/logn) time on
n-vertex graphs, and unless the ETH fails there is no 2°("/1087)_time algorithm).

Demaine and Demaine [40] showed that packing n polyominoes of size ©(logn) x
O(logn) into a square box is NP-complete. This result left open a gap, namely of
whether the problem remained NP-complete for polyominoes of area O(logn). This
gap was recently closed by Brand [30], who showed that POLYOMINO PACKING is
NP-complete even for polyominoes of size 3 x O(logn) that have to be packed into a
square. However, Brand’s construction effectively builds up larger (more-or-less square)
polyominoes by forcing smaller (rectangular) polyominoes to be packed together in a
particular way, by using jagged edges that correspond to binary encodings of integers
to enforce that certain pieces are placed together.

Our reduction also uses binary encoding of integers to force that various pieces are
placed together. However, in contrast, it gives hardness for a much more restricted
case (packing polyomino pieces of size 2 x O(logn) into a rectangle of height 3)
and also reduces directly from 3-SAT, avoiding the polynomial blowup incurred by
Brand’s reduction from 3-PARTITION, thus giving a tight (under the Exponential
Time Hypothesis) lower bound. As 3-PARTITION is a frequently used tool for showing
hardness of various types of packing puzzles and games, we believe that these techniques
could be used to give (tight, or at least strong) lower bounds on the complexity of
other games and puzzles.

This result is tight in another sense: we show that POLYOMINO PACKING where
the target shape is a 2 X n rectangle admits a 20(n*/*logn)_time algorithm, so 3 x n is
the smallest rectangle in which a 22(*/198™)_time lower bound can be attained.

Note that our results are agnostic to the type (free, fixed or one-sided) of polyomino
used. That is, it does not matter whether we are able to rotate (one-sided), rotate
and flip (free) or not (fixed) our polyominoes. Our reduction creates instances whose
solvability is preserved when changing the type of polyomino, while the algorithms can
easily be adapted to work with any type of polyomino. In the following, we consider
the POLYOMINO PACKING problem, which asks whether a given set of polyominoes can
be packed to fit inside a given target shape. If we include the additional restriction
that the area of the target shape is equal to the total area of the pieces, we obtain the
ExAcT POLYOMINO PACKING problem.

5.2. Lower Bounds

Theorem 5.1. Unless the Exponential Time Hypothesis fails, there exists no 20"/ 108m)_
time algorithm for POLYOMINO PACKING, even if the target shape is a 3 X n box, and
the bounding box of each polyomino is of size 2 x ©(logn).

Proof. A weaker version of the statement follows by a simple reduction from the
ORTHOGONAL VECTOR CRAFTING problem from the previous chapter. However,
because obtaining the bound on the piece size requires a deeper understanding of the
proof, and to illustrate the technique, we give a different proof that is nevertheless
somewhat similar to the reduction from the previous chapter.

We proceed by reduction from n-variable 3-SAT, which, unless the Exponential
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Time Hypothesis fails, does not admit a 2°")-time algorithm. By the Sparsification
Lemma [68], we can assume that the number of clauses m = O(n).

Using the following well-known construction, we can furthermore assume that each
variable occurs as a literal at most 3 times: replace each variable z; that occurs k > 3
times by k new variables x;1,...,x;, and add the clauses (—z;1 V z;2) A (022 V
i) Ao A (-1 V xig) A (-xik V 2;1). This only increases the total number of
variables and clauses linearly (assuming we start with a linear number of clauses).

We remark that our construction works for general SAT formulas. The Sparsification
Lemma is only needed to achieve the stated 29(*/1°8™) Jower bound, and the bound
on the number of occurrences of a variable is only needed to obtain the bound on the
piece size.

Our construction will feature three types of polyomino: n formula-encoding polyomi-
noes, n variable-setting polyominoes and m clause-checking polyominoes. We number
the variables of the input formula 1,...,n and the clauses n + 1,...,n 4+ m. With
every clause or variable we associate a bitstring of length 22 + 4[log (n + m)], which is
obtained by taking the binary representation of that clause/variable’s number, padding
it with 0’s to obtain a bitstring of length [log (n + m)], replacing every 0 by 01 and
every 1 by 10 (thus ensuring the number of 1’s in the bitstring is equal to the number
of 0’s, and that the bitstring contains at most 2 consecutive zeroes or ones) and then
appending a reversed copy of the bitstring to itself (making it palindromic). Finally,
we prepend 11110001111 and append 11110001111 (note that thus the start and end of
the bitstring is the only place to feature 3 or more consecutive 0’s).

For any bitstring, we can create a corresponding polyomino: given a bitstring of
length k, its corresponding polyomino fits in a 2 X k rectangle, whose top row consists
of k squares, and whose bottom row has a square whenever the bitstring has a 1 in
that position. For each such polyomino, we can also create a complementary polyomino
that mates with it to form a 3 x k rectangle (which can also be seen as a flipped version
of the polyomino corresponding to the complement of the bitstring, i.e., the bitstring
with all zeroes replaced by ones and vice-versa). Figure shows several example
corresponding polyominoes and their complements. Note that since the bitstrings are
palindromic, the thus created polyominoes are achiral, i.e., invariant over being flipped.

We can concatenate two polyominoes corresponding to bitstrings b1, b by taking
the polyomino corresponding to the concatenation of the two bitstrings b;bs.

Note that the polyomino corresponding to a variable or clause can only mate with
its complementary polyomino, it cannot fit together with any polyomino corresponding

7 = 010110 011010 zg9 = 011001 100110 c3 = 011010 010110

UL LUl LRI
A0 M 9 A0 M

[ =1 = 101001 100101 | =2 = 100110 011001 | | @3 = 100101 101001

Figure 5.1. Top: polyominoes corresponding to variables x1,z2 and clause cs.
Bottom: the complementary polyominoes, that mate with the polyominoes above
them to form a 3 x k square. Note that the polyominoes are depicted compressed
horizontally.
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to any other variable or clause or the complement thereof. Our construction uses
as building blocks two more polyominoes: the wildcard polyomino, which is obtained
as the polyomino corresponding to the bitstring 00001110000000 . ..00000001110000
(4]log (n 4+ m)] zeroes surrounded by 00001110000) and the blocking polyomino, which
is the complementary polyomino for the wildcard. Note that the wildcard polyomino
fits together with any clause or variable polyomino, while the blocking polyomino only
fits together with the wildcard polyomino.

Since each variable occurs as a literal at most three times, we can assume that it
appears at most twice in positive form, and at most twice negated (if the variable
occurs exclusively positively or negated we can simply remove the clauses that contain
it to obtain an equivalent instance).

We are now ready to define the formula-encoding polyominoes. The construction
will have n variable-encoding polyominoes, one for each variable x;, and each consists
of the concatenation of 7 polyominoes: we start with a polyomino corresponding to the
bitstring of x;. Next, for each time (at most two) x; occurs positively in a clause, we
take a polyomino corresponding to (the bitstring of) that clause. If x; occurs only once
in positive form, then we take (for padding) a copy of the blocking polyomino. Then, we
take another copy of the polyomino for x;. Next, we take the polyominoes corresponding
to clauses in which x; occurs negated. Again, we add the blocking polyomino if x; only
occurs negated once. Finally, we take another copy of the polyomino corresponding to
Z;.

The variable-setting polyomino for x; is the polyomino formed by concatenating, in
the following order: (a) the complement polyomino for the variable, (b) 2 copies of the
wildcard polyomino, (¢) another copy of the complement polyomino.

The clause-checking polyominoes are simply the following: for each clause, we take
a polyomino corresponding to the complement of its bitstring.

This completes the construction. An example of the construction is shown in
Figure 5.2l Note that if fixed or one-sided polyominoes are used, the formula-encoding
ones are provided with the solid row of squares on top, and the remaining polyominoes
are provided with the solid row on the bottom. We claim this set of polyominoes can be
packed into a 3 x 7Tn(22 + 4[log (n +m)]) box if and only if the formula is satisfiable.

(=). Suppose the polyominoes can be packed in a 3 x Tn(22 + 4[log (n + m)]) box.
We first examine the placement of the formula-encoding polyominoes. Because each
formula-encoding polyomino starts with a row of four ones, and the largest “gap” of
zeroes occurring in one is of length three, they cannot overlap vertically; each formula-
encoding polyomino must be fully to the right of the previous. Moreover, since the
width of the target rectangle matches exactly the total width of the formula-encoding
polyominoes, they must be placed back-to-back in some arbitrary permutation.

Consider the placement of a single complementary polyomino for a clause or variable.
Because wherever two formula-encoding polyominoes touch back-to-back there are 8
consecutive rows in which 2 squares are already occupied, and the longest “gap” in
a complementary polyomino is of length at most 5 (and at the left and right edges,
there is a gap of length exactly 4, we see that the rows in which this polyomino are
placed can contain only a single formula-encoding polyomino. This rules out any
undesirable shifts: no complementary polyomino can overlap (vertically) more than
one formula-encoding polyomino. Moreover, note that this same phenomenon forces
the vertical alignment of polyominoes corresponding to variables or clauses in the
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formula-encoding polyominoes with the complementary polyominoes in variable-setting
and clause-checking polyominoes.

Now, consider the placement of a variable-setting polyomino (for variable ;). Since
it starts with a complementary polyomino for z;, and also ends with one z;, it too
much be placed such that it only overlaps at most (and exactly) one formula-encoding
polyomino, namely the one for x;. It thus suffices to consider each formula-encoding
polyomino in isolation. Note that then, there are only two possible placements for
the variable-setting polyomino for variable x;: either overlapping the first half of the
formula-encoding polyomino, with the wildcard polyominoes used as building blocks
in the variable-setting polyomino overlapping (and thus blocking) the polyominoes
corresponding to clauses that are satisfied by setting x; to true, or, overlapping the
second half of the formula-encoding polyomino, overlapping (and thus blocking) the
polyominoes corresponding to clauses that are satisfied by setting x; to false.

Thus, the placement of the variable-setting polyominoes (unsurprisingly) corresponds
to an assignment for the variables of the formula. It is easy to see that the clause-
checking polyominoes can then be packed into the space left only if the assignment is
satisfying: if the assignment does not satisfy some clause, then all the places where
the respective clause-checking polyomino could fit are blocked by variable-setting
polyominoes.

(«<). We can consider each formula-encoding polyomino in isolation. An assignment
for the formula immediately tells us how to pack the variable-setting polyomino for
x; into the formula-encoding polyomino for z; (namely: if z; is true we place the
variable-setting polyomino in the second half, otherwise, we place it in the first half of
the formula-encoding polyomino). It is easy to see that if the assignment is satisfying,
then for each clause-checking polyomino there is at least one possible placement inside
a formula-encoding polyomino. For an example of how the pieces fit together for a
satisfying assignment, see Figure [5.2] O

Remark that our reduction leaves gaps inside the packing. If we consider the variant
of the problem where total area of the pieces is equal to the area of the target shape, and
thus the entire rectangle must be filled (EXACT POLYOMINO PACKING), the instance
can be padded with several 1 x 1 polyominoes to make the total area of the pieces
equal to the area of the target rectangle.

Corollary 5.2. Unless the Exponential Time Hypothesis fails, there exists no 2°("/10gm)_
time algorithm for EXACT POLYOMINO PACKING, even if the target shape is a 3 x n
box, and the bounding box of each polyomino is of size 2 x O(logn).

This raises an interesting open problem: does EXACT POLYOMINO PACKING still
admit a 2°2(?/1°27)_time lower bound when the pieces are similarly sized, that is, each
piece must have area O(logn) (or even just Q(n)). This seems to greatly limit the
number of possible interactions between two polyomino pieces, since they cannot be
combined in a way that creates small gaps.

Note that in the previous reduction we can fix the position of the formula-encoding
polyominoes in advance. The problem then reduces to packing variable-setting and
clause-checking polyominoes into the shape left when subtracting the formula-encoding
polyominoes from the 3 x n rectangle, which fits inside a 2 x n rectangle. Doing so we
obtain the following corollary:
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Corollary 5.3. Unless the Exponential Time Hypothesis fails, there exists no 2°("/1087)._
time algorithm for POLYOMINO PACKING (resp., EXACT POLYOMINO PACKING), even
if the target shape fits inside a 2 X n box, and the bounding box of each polyomino is
of size 2 x O(logn) (resp., 2 x O(logn)).

5.3. Algorithms

Our lower bound applies in a rather constrained case: even for packing polyominoes
with a bounding box of size 2 x O(logn) into a rectangle of size 3 x n, there is no
20(n/logn)_time algorithm. As we will show later, a similar lower bound cannot be
established when the pieces are 1 x k or 2x k rectangles (since the number of distinct such
polyominoes is linear in their area rather than exponential). An interesting question,
which we answer negatively, is whether a 22("/1°87)_time lower bound can be obtained
for packing polyominoes with a bounding box of size 2 x O(logn) into a rectangle of
size 2 X n. Thus, the case for which we have derived our lower bound is essentially the
most restrictive possible. Note that, while solvable in strongly subexponential time,
this problem is NP-complete, as can be seen by a simple reduction from 3-PARTITION.

We say that a polyomino is Y-monotone if every row consists of a number of
contiguous squares, that is, there are no gaps.

Theorem 5.4. POLYOMINO PACKING for fixed, free or one-sided polyominoes can be
solved in 200" *1081) time if the target shape is a 2 X n rectangle.

Proof. First, consider a simple O(2"n°M)-time dynamic programming algorithm that
decides whether m polyominoes p1, ..., p., can be packed into a target polyomino of area
n: for any subset S of (the squares of) the target polyomino (there are 2™ such subsets)
and 1 < k <m, let B(S, k) be the proposition “the polyominoes pg, pxt1, ..., Pm can
be packed into S”. B(S,m) is simply the proposition that S is the same polyomino
as pm; if B(S,7 — 1) is known for all S then B(S’,i) can be computed by trying all
(polynomially many) placements of p; within S’.

If we are dealing with free or one-sided polyominoes we first guess how many (if
any) of the 1 x 2 polyominoes should be used in the vertical orientation, and how
many in the horizontal orientation. This thus converts them to fixed 1 x 2 or 2 x 1
polyominoes, and only increases the running time of the algorithm by a factor n.

We augment the previously presented algorithm with the following observation:
when the target polyomino is a 2 X n rectangle, and if we process the polyominoes
in a fixed order, with the polyominoes that are 1 x k rectangles being processed last
(thus after the 2 x 1 polyominoes and any other polyominoes), then the target shapes
considered by the dynamic programming algorithm are always the disjoint union of

Figure 5.3. Packing an arbitrary 2 x k£ polyomino into a Y-monotone polyomino
results in several pieces that are again Y-monotone.
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several Y-monotone polyominoes (c.f. Figure . Such polyominoes can be described
by 3 integers: one giving the number of squares in the bottom row, one giving the
number of squares in the top row, and one giving the shift of the top row relative to
the bottom row. Note that this observation crucially depends on processing the 1 x k
polyominoes last, since removing them from a 2 X k& polyomino does not necessarily
result in a shape that is Y-monotone, however, if only 1 x k& polyominoes remain, we
can ensure this requirement remains satisfied because we can consider the top and
bottom row of each polyomino in the target shape separately.

If each of these integers is (in absolute value) at most n'/4 — 1 we call the resulting
polyomino small, otherwise, the polyomino is large. We can use the following more
efficient description of the target shape: for each polyomino in the shape that is small,
we give the number of such polyominoes in the target shape and we simply list each
large polyomino. Since there are at most 2n3/4 distinct small polyominoes!] giving the
quantity for each leads to at most (2n)2"3/4 < 920" (logn+1) cages. There are at most
2n3 distinct large polyominoes, but the target shape contains at most 2n3/* of them
(since each has area at least n!/4), thus contributing (2n%)27""" < 26n™*(logn+1) cageg.
Thus, if we identify equivalent target shapes, the dynamic programming algorithm needs
to consider at most 287" *(ogn+1)y, — 90(n*/*logn) suhproblems, and each subproblem
can be handled in polynomial time. O

Note that this algorithm only works when the target shape is a 2 x n rectangle. Co-
rollary shows that we should not expect a similar algorithm for packing polyominoes
into an arbitrary target shape, even if that target shape fits in a 2 x n box.

Finally, we show that our 22("/1987)_time lower bound is tight:

Theorem 5.5. POLYOMINO PACKING for free, fixed or one-sided polyominoes can be
solved in 20("/1987) time if the target shape has area n.

Proof. The problem can be modelled as Subgraph Isomorphism for an O(n)-vertex
planar graph, for which a preceding chapter gave a 29("/1°87)_time algorithm. The
construction is as follows: for every square in a polyomino, we take a cycle on four
vertices, to which we add a fifth, universal vertex (which can be embedded in a planar
embedding in the middle of this cycle). This fifth vertex is marked by adding a number
of degree 1 vertices to it, to bring its degree up to (at least) 9. Each edge of this
cycle is associated with an edge of the square in the polyomino. We make adjacent
the endpoints of edges corresponding to adjacent edges in the polyomino. Both the
host graph and the guest graph are constructed in this way, the host graph from the
target shape (when viewed as a polyomino) and the guest graph from the set of input
polyominoes (which will thus have one connected component corresponding to each
separate polyomino that must be packed). An example for packing 3 polyominoes into
a 3 x 4 rectangle is shown in Figure The special (degree 9) vertices must be mapped
to other vertices that are also degree 9, and this means that the cycles corresponding
to squares can only be mapped to cycles corresponding to other squares (and not to
cycles created by making cycles adjacent since those vertices have degree less than 9).

LThe top and bottom rows can consist of 0,1, . ..,n1/4—1 squares, while the shift can be f(n1/4 —2)
to nt/4 — 2.
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| B X EOE
— | X X X
B K X X

Figure 5.4. Polyomino Packing problem (left) modelled as Subgraph Isomorphism
from pattern (middle) into host graph (right).

This construction works for free polyominoes. To restrict to fixed or one-sided
polyominoes, we can modify the construction slightly to make the structure used to
represent a square asymmetric. For one-sided polyominoes, we create a structure that
is rotationally symmetric but achiral. To this end, we subdivide each edge of the cycle
twice and identify one of the two vertices created by this subdivision, add another
vertex, adjacent to this vertex, to its neighbours, and to the central vertex. For fixed
polyominoes, we can add one additional edge (from the center to one of the vertices of
the cycle to also remove the rotational symmetry. These constructions are depicted in

Figure [5.5 O

To make this chapter more instructional, we give a direct proof of the following
weaker version of Theorem [5.5] — which illustrates in a simpler way the principles from
the previous chapters.

Theorem 5.6. POLYOMINO PACKING for free, fixed or one-sided polyominoes can be
solved in 20("/1°87) time if the target shape is a rectangle of area n.

Proof. If the rectangle is higher than it is wide, rotate it (and, if the polyominoes
are fixed, the polyominoes as well) 90 degrees. Consider a scanline passing over the
rectangle from left to right. At any given time, the scanline intersects at most O(y/n)
squares of the rectangle. We can specify how the intersection of the solution with the
scanline looks by, for each square, specifying the polyomino (if any) that is placed there,
along with its rotation and translation with respect to the square. This gives at most
O(n?) cases for each square, and, since the scanline intersects at most \/n squares,
20(Vnlogn) cages total.

We furthermore need to specify which polyominoes have already been used in the
solution (to the left of the scanline) and which ones still need to be packed. Similar
to [26], a polyomino is large if it has area greater than clogn, and small otherwise.

Figure 5.5. Alternative constructions to use with fixed (left) or one-sided (right)
polyominoes.
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Since the number of polyominoes with area k is bounded by 4.65% [77], the number of
distinct small polyominoes it at most 4.65°1°8™. For ¢ < 0.22, this is at most \/n. We
can specify the quantity of each small polyomino left with a single number from 0 to n,
giving (n + 1)‘/5 = 20(Vnlogn) cages. Meanwhile, the number of large polyominoes is
at most n/(clogn), and thus there are 20("/198™) possible subsets of them.

The problem can now be solved by dynamic programming. For each position of
the scanline, we have 20("/1°g7) subproblems: can a given subset of pieces (20(”/ logn)
cases) be packed entirely to the left of the scanline (with only the pieces intersecting
the scanline possibly sticking out to the right of it), such that the intersection with the
scanline looks as specified (2°0(V™1987) cases) (and, in the case of EXACT POLYOMINO
PACKING, leaving no gaps)? For each such subproblem, we can find its answer by
deleting the pieces whose leftmost square(s) intersect the scanline, and checking whether
the instance thus obtained is compatible with some subproblem with the scanline moved
one position to the left. O

There is an interesting contrast between these algorithms. Whereas the strongly
subexponential algorithm for the case of the 2 X n rectangle works by considering the
input polyominoes in a fixed order (so that we always know which subset we have
used) and uses a bound on the number of subsets of the target shape that have to
be considered, the algorithm for the general case works the opposite way around: it
considers subsets of the target shape in a (more-or-less) fixed order (by the scanline
approach) and bounds the number of possible subsets of the input polyominoes.

Note that our 22("/1°87)_time lower bound exploits the fact that we can construct
exponentially many polyominoes that fit inside a 2 x O(logn) rectangle. If we consider
polyominoes with simpler shapes, that is, polyominoes that are a x b rectangles, then
the problem can be solved in strongly subexponential time:

Corollary 5.7. POLYOMINO PACKING can be solved in 20(V"1°87) time if the polyomi-
noes are rectangular and the target shape is a rectangle with area n.

Proof. Consider the algorithm presented in the proof of Theorem The running
time is dominated by the number of cases for tracking a subset of the polyominoes. If
the polyominoes are rectangles, then note that the number of distinct rectangles of
area at most n is also at most n. Call a polyomino large if it has area > v/n and small
otherwise: there are at most y/n large polyominoes in the input, and thus at most 2V
subsets of them. The number of distinct small polyominoes is at most /n, and thus
specifying the quantity for each leads to at most nV" = 2V7"1987 cages. O

5.4. Conclusions

We have given a precise characterization of the complexity of (EXACT) POLYOMINO
PACKING. For a set of polyominoes of total area n, the problem can be solved in
20(n/10gm) time. Even when restricted to the case where the pieces are of size 2 x O(log n)
and they have to be packed into a 3 x n rectangle or into a given shape which fits inside
a 2 x n rectangle, there is no faster (up to the base of the exponentiation) algorithm
unless the Exponential Time Hypothesis fails. In contrast, in the case where the target
shape is a 2 X n rectangle, a strongly subexponential algorithm exists.
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We conclude by listing several interesting open problems:

e Exact polyomino packing with excess pieces: we are given some target shape, and
a set of polyominoes with total area possibly exceeding the target shape. Is it
possible to use a subset of the polyominoes to build the target shape? Clearly this
problem is at least as hard as (exact) polyomino packing; however, considering
the set of pieces may be much larger than the target shape, it would be interesting
to study this problem from a parameterized perspective (where the parameter
k is the area of the target shape). The problem can be solved in 2knOM) _time
(using the simple dynamic programming algorithm of Section ; is there a
20k)pO(M)_time (or even 20(F)20(n/1087)_time) algorithm?

e What is the complexity of EXACT POLYOMINO PACKING when every piece has
area (logn) or ©(logn)?

e We do not believe that our algorithm for packing polyominoes into a 2 X n
rectangle is tight. What is the exact complexity of this problem? This is closely
related to the exact complexity of 3-PARTITION with the input given in unary,
which (to our knowledge) is also an open problem.
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6.1. Introduction

As noted in the introduction, many hard graph problems that seem to require 22(") time
on general graphs (where n is the number of vertices) can be solved in subexponential
time on planar graphs. In particular, many of these problems can be solved in 20(vV?)
time on planar graphs — with a notable exception being the graph embedding problems
we saw in the previous part.

In this chapter, we explore a different direction: rather than investigate whether
other problems exhibit a “square root phenomenon” in planar graphs, we study whether
classical problems (ones that are known to have square root behaviour in planar graphs,
such as INDEPENDENT SET, VERTEX COVER and HAMILTONIAN CYCLE) also exhibit
square root behaviour in other graph classes.

One promising class of graphs where square root (or at least: strongly subexponential
time) behaviour has also been observed, are geometric intersection graphs, with running
times of the form nO™" " 201/
been obtained [91, 102].

The planar separator theorem [84, 85] and treewidth-based algorithms [34] could
be considered a “framework” for obtaining subexponential algorithms on planar graphs
or, more generally, on H-minor free graphs. In this chapter we aim to give a similar

framework to obtain algorithms for problems in a wide class of geometric intersection
1-1 /d)

/d . . . . .
) (or in one case )) in the d-dimensional case having

graphs, while guaranteeing the running time 2°("

The intersection graph G[F] of a set F of objects in R? is the graph whose vertex
set is F' and in which two vertices are adjacent when the corresponding objects intersect.
(Unit-)disk graphs, where F consists of (unit) disks in the plane are a widely studied
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class of intersection graphs. Disk graphs form a natural generalization of planar graphs,
since any planar graph can be realized as the intersection graph of a set of disks in the
plane. In this chapter we consider intersection graphs of a set F' of fat objects, where
an object 0 C R? is a-fat, for some 0 < a < 1 if there are balls By, and Boy in R? such
that Bin, C 0 C Boyt and radius(Biy,)/ radius(Beyt) > a. For example, disks are 1-fat
and squares are (1/4/2)-fat. From now on we assume that « is an absolute constant,
and often simply speak of fat objects. Note that we do not require the objects in F'
to be convex, or even connected. Thus our definition is very general. In most of our
results we furthermore assume that the objects in F' are similarly sized, meaning that
the ratio of their diameters is bounded by a fixed constant.

As mentioned, many subexponential results for planar graphs rely on planar separ-
ators. Our first contribution is a generalization of this result to intersection graphs
of (arbitrarily-sized) fat objects in R%. Since these graphs can have large cliques we
cannot bound the number of vertices in the separator. Instead, we build a separator
consisting of cliques. We then define a weight function v on these cliques — in our
applications it suffices to define the weight of a clique C as v(|C|) := log(|C| + 1). We
define the weight of a separator as the sum of the weights of its constituent cliques Cj,
which is useful since for many problems a separator can intersect the solution vertex
set in 202 7€) many ways. Formally, the theorem can be stated this way:

Theorem 6.1. Let F be a set of n a-fat objects in R? and Iet v be a weight function
such that v(t) = O(t'=1/4=2) for constants d > 2, « > 0, and ¢ > 0. Then the
intersection graph G[F) has a (6%/(6% + 1))-balanced separator and a clique partition
C(Fyep) Of Fyep, with weight O(n'=1/4). Such a separator and a clique partition C(Fsep)
can be computed in O(n®*2) time if the objects have constant complexity.

A direct application of our separator theorem is a 20(n! =1/ algorithm for INDE-
PENDENT SET. For general fat objects, only the 2-dimensional case was known to have
such an algorithm [90].

Our separator theorem can be seen as a generalization of the work of Fu [53] who
considers a weighting scheme similar to ours. However, Fu’s result is significantly less
general as it only applies to unit balls and his proof is arguably more complicated.
Our result can also be seen as a generalization of the separator theorem of Har-Peled
and Quanrud [62] which gives a small separator for constant ply—indeed, our proof
borrows some ideas from theirs.

Finally, the technique employed by Fomin et al. [51] in two dimensions has also
similar qualities; in particular, the idea of using cliques as a basis for a separator can
also be found there, and leads to subexponential parameterized algorithms, even for
some problems that we do not tackle here.

After proving the weighted separator theorem for arbitrarily-sized fat objects, we
switch to similarly-sized objects. Here the idea is as follows: We find a suitable
clique-decomposition P of the intersection graph G[F], contract each clique to a single
vertex, and then work with the contracted graph G5 where the node corresponding to
a clique C gets weight v(|C|). We then prove that the graph G» has constant degree
and, using our separator theorem, we prove that Gip has weighted treewidth O(n!'~1/%).
Moreover, we can compute a tree decomposition of this weight in 20(n" %) time,

These weighted tree decompositions can often be used (with a small adaptation)
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in “traditional” dynamic programming algorithms on tree decompositions. Thus we
obtain a framework that gives 200" ™) _time algorithms for intersection graphs of
similarly-sized fat objects for many problems for which treewidth-based algorithms are
known. Our framework recovers and often slightly improves the best known results for
several problemsEl, including INDEPENDENT SET, HAMILTONIAN CYCLE and FEEDBACK
VERTEX SET. Our framework also gives the first subexponential algorithms in geometric
intersection graphs for, among other problems, r~-DOMINATING SET for constant 7,
STEINER TREE and CONNECTED DOMINATING SET.

Furthermore, we show that our approach can be combined with the rank-based
approach [15], a technique to speed up algorithms for connectivity problems.

A desirable property of algorithms for geometric graphs is that they are robust,
meaning that they can work directly on the graph without knowledge of the underlying
geometry. Most of the known algorithms are in fact non-robust, which could be a
problem in applications, since finding a geometric representation of a given geometric
intersection graph is NP-hard [31] (and many recognition problems for geometric graphs
are ER-complete [71]). One of the advantages of our framework is that it yields robust
algorithms for many problems. To this end we need to generalize our scheme slightly:
We no longer work with a clique partition to define the contracted graph Gy, but
with a partition whose classes are the union of constantly many cliques. We show
that such a partition can be found efficiently without knowing the set F' defining the
given intersection graph. Thus we obtain robust algorithms for many of the problems
mentioned above, in contrast to known results which almost all need the underlying
set F' as input.

6.2. Separators for Arbitrarily-Sized Fat Objects

Let F be a set of n a-fat objects in R for some constant a > 0, and let G[F] = (F, E)
be the intersection graph induced by F. For a given decomposition C(Fiep) of Fiep
into cliques and a given weight function v we define the weight of Fy.,, denoted by
weight(Fiep), as weight(Feep) = > _cee(r.,) V(IC1)- Next we prove that G[F] admits a
balanced separator of weight O(n'~1/4) for any cost function ~(t) = O(t'~1/4=¢) with
e > 0. Our approach borrows ideas from Har-Peled and Quanrud [62], who show the
existence of small separators for low-density sets of objects, although our arguments
are significantly more involved.

Step 1: Finding candidate separators. Let Hy be a minimum-size hypercube con-
taining at least n/(6? + 1) objects from F', and assume without loss of generality that
Hy is the unit hypercube centered at the origin. Let Hy,..., H,, be a collection of
m := n!/% hypercubes, all centered at the origin, where H; has edge length 1 + %
Note that the largest hypercube, H,,, has edge length 3, and that the distance between
consecutive hypercubes H; and H;y; is l/nl/d.

Each hypercube H; induces a partition of F' into three subsets: a subset Fi,(H;)
containing all objects that lie completely in the interior of H;, a subset Fj(H;) containing

INote that most of the earlier results are in the parameterized setting, but we do not consider
parameterized algorithms here.
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all objects that intersect the boundary 0H; of H;, and a subset F,u(H;) containing
all objects that lie completely in the exterior of H;. Obviously an object from F,(H;)
cannot intersect an object from Fy,,(H;), and so Fp(H;) defines a separator in a natural
way. It will be convenient to add some more objects to these separators, as follows.
We call an object large when its diameter is at least 1/4, and small otherwise. We
will add all large objects that intersect H,, to our separators. Thus our candidate
separators are the sets Fyep(H;) 1= Fp(H;) U Flarge, Where Flage is the set of all large
objects intersecting H,,. We show that our candidate separators are balanced:

Lemma 6.2. For any 0 < ¢ < m we have

6d

max (|-Fm(Hz) \-Flarge|; |Fout(Hi) \-Flarge|) < 6(]7_1_177

Proof. Consider a hypercube H;. Because H contains at least n/(6% + 1) objects from
F', we immediately obtain

1 67
- n= n
67+ 1 64+ 1

|Fm(Fout(Hi)\Earge)| S |FmF0ut(H0)| S |F\EH(H0)‘ < <1

To bound |Fm \Flargc| consider a subdivision of H; into 6¢ sub-hypercubes of
edge length (1 + 7271) < 1/2. We claim that any sub-hypercube Hyg,, intersects fewer
than n/(6% + 1) small objects from F. To see this, recall that small objects have
diameter less than 1/4. Hence, all small objects intersecting Hyyp, are fully contained
in a hypercube of edge length less than 1. Since Hj is a smallest hypercube containing
at least n/(6% + 1) objects from F, Hg,, must thus contain fewer than n/(6¢ + 1)
objects from F, as claimed. Each object in F},(H;) intersects at least one of the 67
sub-hypercubes, so we can conclude that |Fm(H,) \Flarge| < (6d/(6d + 1))n O

Step 2: Defining the cliques and finding a low-weight separator. Define F* :=
F\ (Fin(Ho) U Fout(Hpm) U Flarge). Note that Fy(H;) C F* for all i. We partition F*
into size classes F¥, based on the diameter of the objects. More precisely, for integers
s with 1 < 5 < $pax, where Spax := [(1 — 1/d)logn]| — 2, we define

s—1 s
Fr = {OEF* : il/d < diam(o) < 7121/d}

We furthermore define F to be the subset of objects 0 € F* with diam(o) < 1/n'/?.
Note that 2%max /n'/4 > 1/4, which means that every object in F* is in exactly one size
class.

Each size class can be decomposed into cliques, as follows. Fix a size class F, with
1 < s < Smax. Since the objects in F' are a-fat for a fixed constant o > 0, each o € F
contains a ball of radius « - (diam(0)/2) = Q( 1/d) Moreover, each object o € F lies
fully or partially inside the outer hypercube Hm7 which has edge length 3. This implies

we can stab all objects in F using a set P, of O((";/d )4) points. Thus there exists
a decomposition C(Fy) of Fy consisting of O(5%7) cliques. In a similar way we can
argue that there exists a decomposition C(Flarge) of Flarge into O(1) cliques. For Fg
the argument does not work since objects in Fjj can be arbitrarily small. Hence, we
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create a singleton clique for each object in F{i. Together with the decompositions of the
size classes F; and of Fiarge We thus obtain a decomposition €(F*) of F* into cliques.

A decomposition of Fye,(H;) into cliques is induced by C(F™*), which we denote
by C(Fsep(H;)). Thus, for a given weight function v, the weight of Fyep(H;) is equal
to ZCGC(FSOD(Hi)) ~¥(]C]). Our goal is now to show that at least one of the separators
Fiop(H;) has weight O(n'~1/9), when ~(t) = O(t'~/4=¢) for some € > 0. To this end
we will bound the total weight of all separators Fiep(H;) by O(n). Using that the
number of separators is n'/¢ we then obtain the desired result.

Lemma 6.3. If y(t) = O(t'~'/4=¢) for some ¢ > 0 then > ;" | weight(Fiep(H;)) = O(n).

Proof. First consider the cliques in C(Ff), which are singletons. Since objects in F
have diameter less than 1/n'/?, which is the distance between consecutive hypercube H;
and H,11, each such object is in at most one set Fy(H;). Hence, its contribution to
the total weight >, weight(Fiep(H;)) is (1) = O(1). Together, the cliques in C(F)
thus contribute O(n) to the total weight.

Next, consider C(Fiarge). It consists of O(1) cliques. In the worst case each clique
appears in all sets Fy(H;). Hence, their total contribution to >, weight(Fyep(H;)) is
bounded by O(1) - y(n) - n'/? = O(n).

Now consider a set C(F¥) with 1 < s < $pax. A clique C' € C(FY) consists of
objects of diameter at most 28/n1/d that are stabbed by a common point. Since the
distance between consecutive hypercubes H; and H,1; is 1/ n'/?, this implies that C
contributes to the weight of O(2°) separators Fyep(H;). The contrlbutlon to the weight
of a single separator is at most v(|C]). (It can be less than v(|C|) because not all
objects in C need to intersect 0H;.) Hence, the total weight contributed by all cliques,
which equals the total weight of all separators, is

Z Z (weight contributed by C Z Z 2°~(|C)) = Z Z ~(C)) | -
s=1 CeC(F¥) s=1 CeC(F¥) s=1 CeC(Fy)
Next we wish to bound } cce(payV(|C]). Define ng := [FJ[ and observe that

Yoimaxpg < n. Recall that C(F)) consists of O(n/2°?) cliques, that is, of at most
en/2%¢ cliques for some constant c. To make the formulas below more readable we
assume ¢ = 1 (so we can omit ¢), but it is easily checked that this does not influence
the final result asymptotically. Similarly, we will be using (t) = t'~1/?=¢ instead of
y(t) = O(t*=1/4=¢), Because 7 is positive and concave, the sum ZCGG(FS*) ~(IC)) is
maximized when the number of cliques is maximal, namely min(ng,n/2°?), and when
the objects are distributed as evenly as possible over the cliques. Hence,

if ng < n/2%,

Z Y(IC]) < { (n/25%) -~ (#) otherwise.

CEeC(FYy)

We now split the set {1,..., Smax} into two index sets S; and Ss, where S; contains all
indices s such that ng <n/ 2% and S, contains all remaining indices. Thus

22 > aden =312 > aden ]+ (2 > ~deh

s=1 CeC(Fy) s€S1 CeC(Fy) SES> CeC(Fy)

Smax
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The first term in the previous equation can be bounded by

Sl Do e | > 2na <> 22 =n Y 1/2°D = O(n),

s€S1 CeC(F¥) s€S51 s€S1 s€S1

where the last step uses that d > 2. For the second term we get

7 3 o) = 3 (o ()

s€S2 CeC(Fr) s€8S2

B n nSQSd 1-1/d—e
= Z 9s(d—1) n
SESs

Mg 1-1/d—e 1
S n Z (;) 25d£

SES>

1 S
3 ()
SES>

= O(n). O

IA

We are now ready to prove Theorem

Proof of Theorem[6.1. Each candidate separator Fie,(H;) is (67/(6¢ + 1))-balanced
by Lemma Their total weight is O(n) by Lemma and since we have n'/¢
candidates one of them must have weight O(n'~1/¢). This separator can be found in
O(n?*2) time by brute force. Indeed, to find the hypercube Hy = [z, 2] X - - - X [24, 7))
in O(n9*+?) time we first guess the object defining x;, for all 1 < i < d, then guess
the object defining 2| (and, hence, the size of the hypercube), and finally determine
the number of objects inside the hypercube. Once we have Hy, we can generate the
hypercubes Hy,--- , H,1/4, generate the cliques as described above, and then compute

n

the weights of the separators Fiep(H;) by brute force within the same time bound. [

Corollary 6.4. Let F be a set of n fat objects in R%, where d > 2 is a constant. Then
INDEPENDENT SET on the intersection graph G[F| can be solved in 200" time.

Proof. Let (t) := log(t+1), and compute a separator Fy.p, for G[F] using Theorem
For each subset Sgep C Fsep of independent (that is, pairwise non-adjacent) vertices we
find the largest independent set S of G such that S O Ssp, by removing the closed
neighbourhood of S, from G and recursing on the remaining connected components.
Finally, we report the largest of all these independent sets. Because a clique C € C(Fyep)
can contribute at most one vertex to Sgcp, we have that the number of candidate sets
Ssep 1s at most

[I (C1+ 1) = 2%ccetn sICHD — g0,
CeC(Fsep)

Since all components on which we recurse have at most (6?/(6¢ + 1))n vertices, the
running time 7'(n) satisfies

T(n) = 200" ""I7((6%/(6% + 1))n) + poly(n),
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1—1/d)

which solves to T'(n) = 20" O

6.3. An Algorithmic Framework for Similarly-Sized Fat
Objects

We restrict our attention to similarly-sized fat objects. More precisely, we consider
intersection graphs of sets F' of objects such that, for each o € F', there are balls B;,
and By in R? such that By, C F C By, and radius(Bj,) = « and radius(Boy) = 1
for some fatness constant o > 0. The restriction to similarly-sized objects makes it
possible to construct a clique cover of F' with the following property: if we consider the
intersection graph G[F'] where the cliques are contracted to single vertices, then the
contracted graph has constant degree. Moreover, the contracted graph admits a tree
decomposition whose weighted treewidth is O(n'~'/¢). This tool allows us to solve
many problems on intersection graphs of similarly-sized fat objects.

Our tree-decomposition construction uses the separator theorem from the previous
subsection. That theorem also states that we can compute the separator for G[F] in
polynomial time, provided we are given F'. However, finding the separator if we are
only given the graph and not the underlying set F' is not easy. Note that deciding
whether a graph is a unit-disk graph is already ER-complete [71]. Nevertheless, we
show that for similarly-sized fat objects we can find certain tree decompositions with
the desired properties, purely based on the graph G[F].

k-partitions, P-contractions, and separators. Let G = (V, E) be the intersection
graph of an (unknown) set F' of similarly-sized fat objects, as defined above. The
separators in the previous section use cliques as basic components. We need to generalize
this slightly, by allowing connected unions of a constant number of cliques as basic
components. Thus we define a k-partition of G as a partition P = (V1,..., V) of V
such that every partition class V; induces a connected subgraph that is the union of at
most x cliques. Note that a 1-partition corresponds to a clique cover of G.

Given a k-partition P of G we define the P-contraction of G, denoted by G, to be
the graph obtained by contracting all partition classes V; to single vertices and removing
loops and parallel edges. In many applications it is essential that the P-contraction
we work with has maximum degree bounded by a constant. From now on, when we
speak of the degree of a k-partition P we refer to the degree of the corresponding
P-contraction.

The following theorem and its proof are very similar to Theorem [6.1} but it applies
only for similarly-sized objects because of the degree bound on Gp. The other main
difference is that the separator is defined on the P-contraction of a given x-partition,
instead of on the intersection graph G itself.

Theorem 6.5. Let G = (V, E) be the intersection graph of a set of n similarly-sized
fat objects in R?, and let v be a weight function such that v(t) = O(t'~'/4=¢), for
constants d > 2 and € > 0. Suppose we are given a k-partition P of G such that Gp
has maximum degree at most A, where k and A are constants. Then there exists a
(64/(6% + 1))-balanced separator for G of weight O(n'~1/%),
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The following lemma shows that a partition P as needed in Theorem [6.5] can be
computed even in the absence of geometric information.

Lemma 6.6. Let G = (V, E) be the intersection graph of an (unknown) set of n
similarly-sized fat objects in R? for some constant d > 2. There there exist constants k
and A such that a k-partition P for which Gy has maximum degree A can be computed
in polynomial time.

Proof. Let S C V be a maximal independent set in G (e.g., it is inclusion-wise
maximal). We assign each vertex v € V' \ S to an arbitrary vertex s € S that is a
neighbour of v; such a vertex s always exists since S is maximal. For each vertex
s € S define Vy := {s}U{v € V'\ S : v is assigned to s}. We prove that the partition
P = {V; : s € S}, which can be computed in polynomial time, has the desired
properties.

Let o, denote the (unknown) object corresponding to a vertex v € V', and for
a partition class Vi define U(Vy) := UUEVS 0y. We call U(Vy) a union-object. Let
Ug := {U(Vs) : s € S}. Because the objects defining G are similarly-sized and
fat, there are balls Bj,(0,) of radius @ = Q(1) and Bgyut(0,) of radius 1 such that
Bin(ov) Co, C Bout(ov)-

Now observe that each union-object U(V;) is contained in a ball of radius 3. Hence,
we can stab all balls Bi,(0,), v € V5 using O(1) points, which implies that P is a
k-partition for some k = O(1).

To prove that the maximum degree of G is O(1), we note that any two balls Bj,(s),
Bi,(s') with s,s" € S are disjoint (because S is an independent set in G). Since all
union-objects U(s") that intersect U(s) are contained in a ball of radius 9, an easy
packing argument now shows that U(s) intersects O(1) union-objects U(s). Hence, the
node in G'p corresponding to V; has degree O(1). O

Weighted tree decompositions for P-contractions. We now introduce the notion of
weighted treewidth [108]. Recall that the width of a tree decomposition is the size of
its largest bag minus 1, and the treewidth of a graph G equals the minimum width of
a tree decomposition of G. In weighted treewidth, each vertex has a weight, and the
weighted width of a tree decomposition is the maximum over the bags of the sum of the
weights of the vertices in the bag (note: without the —1). The weighted treewidth of a
graph is the minimum weighted width over its tree decompositions.

Now let P = (V1,..., Vi) be a k-partition of a given graph G which is the intersection
graph of similarly-sized fat objects, and let v be a given weight function on partition
classes. We apply the concept of weighted treewidth to G, where we assign each
vertex V; of Go a weight v(]V;|). Because we have a separator for G of low weight by
Theorem [6.5] we can prove a bound on the weighted treewidth of G using standard
techniques.

Lemma 6.7. Let P be a k-partition of a family of similarly-sized fat objects such that
G has maximum degree at most A, where k and A are constants. Then the weighted
treewidth of Gy is O(n'~'/?) for any weight function v with (t) = O(t'~1/4=¢),

Proof. The lemma follows from Theorem[6.5|by a minor variation on standard techniques
— see for example [14, Theorem 20]. Take a separator S of G as indicated by
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Theorem [6.5] Recursively, make tree decompositions of the connected components of
Gy \ S. Take the disjoint union of these tree decompositions, add an edge between the
two trees and then add S to all bags. We now have a tree decomposition of Gp. As
base case, when we have a subgraph of G with O(n!~1/?) vertices, then we take one
bag with all vertices in this subgraph.

The weight of bags for subgraphs of G with r vertices fulfils w(r) = O(r'=/4) +
w(6%/(6% + 1)r), which gives that the weighted width of this tree decomposition is
w(n) = O(n'=1/%). O

By combining Lemmas [6.6] and [6.7] we can obtain a s-partition such that Gp has
constant degree, and such that the weighted treewidth of Gy is as desired. In what
follows, we work towards finding a suitable weighted tree decomposition.

A blowup of a vertex v by an integer t results in a graph where we replace the vertex
v with a clique of size ¢ (called the clique of v), in which we connect every vertex to
the neighbourhood of v. The vertices in these cliques all have weight 1.

Lemma 6.8 ([24]). Let W C V form a clique in G = (V, E). Every tree decomposition
(Tg,{XE |t € Tg}) of G has a bag XF € {XF |t € Tg} with W C XE.

Lemma 6.9. The weighted treewidth of a graph G with weight function w: V(G) — N
is equal to 1 plus the treewidth of H that is gained from G by blowing up each vertex
v by y(v). Let (Ty,{X} |t € Ty}) be a tree decomposition of H. Then we can
create a tree decomposition (Tg,{XE |t € Tg}) of G where Tg is isomorphic to Ty
the following way: a vertex v € G is added to a bag if and only if the corresponding
bag in Ty contains all vertices from the clique of v. Furthermore, the treewidth of
(Te, {XF |t € Ty}) is at most the weighted width of (Tg,{XF |t inTg}) minus 1.

Proof. The proof we give below is a simple modification of folklore insights on treewidth;
For related results see [27, 19]. First, we notice that (Tg, {XZ |t € Tg}) is a tree
decomposition of G. From Lemma we have that for each vertex v and edge {v, w}
there is a bag in (Tg,{XF |t € Tg}) that contains v, respectively {v,w}. For the
third condition of tree decompositions, suppose js is in T on the path from j; to
js3. If v belongs to the bags of j; and j3, then all vertices in the clique resulting of
blowing up v belong in (Tg,{X[ |t € Ty}) to the bags of j; and j3, hence by the
properties of tree decompositions to the bag of j», and hence v € X&j,). Tt follows
that the preimage of each vertex in Vi is a subtree of T. The total weight of vertices
in a bag in (Tg, {X |t € Tg}) is never larger than the size of the corresponding bag
in (Ty, {XH |t €Ty}). Thus, by taking for (T, {X |t € Tg}) a tree decomposition
with minimum weighted treewidth, we see that the weighted treewidth of G is at most
the treewidth of H plus 1; the additive term of 1 comes from the —1 in the definition
of treewidth.

In the other direction, if we take a tree decomposition (T, {XE |t € Tg}) of G, we
can obtain one of H by replacing in each bag each vertex v by the clique that results
from blowing up G. The size of a bag in the tree decomposition of H now equals the
total weight of the vertices in G; hence the width of (T, {XF | t € Tg}) equals the
weighted width of the obtained tree decomposition of H; it follows that the weighted
treewidth of G is at least the treewidth of H minus 1. O
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We are now ready to prove our main theorem for algorithms.

Theorem 6.10. Let G = (V, E) be the intersection graph of an (unknown) set of n
similarly-sized a-fat objects in R?, and let v be a weight function such that 1 < y(t) =
O(tl_l/d_s), for constants d > 2, a > 0, and € > 0. Then there exist constants k
and A such that there is a k-partition P with the following properties: (i) Gp has
maximum degree at most A, and (ii) G has weighted treewidth O(n'~'/?). Moreover,
such a partition P and a corresponding tree decomposition of weight O(nlfl/ 4) can be

computed in 20" ") time.

Proof. Lemma [6.6] provides a partition P built around a maximal independent set. By
Lemma the weighted treewidth of Gp is O(n'~1/%).

To get a tree decomposition, consider the above partition again, with a weight
function y(t) = O(t'~1/?=¢). We work on the contracted graph Gy; we intend to
simulate the weight function by modifying Gp. Let H be the graph we get from Gy
by blowing up each vertex vc by an integer that is approximately the weight of the
corresponding class, more precisely, we blow up ve by [7(]C])]. By Lemma its
treewidth (plus one) is a 2-approximation of the weighted treewidth of G (since y(t) > 1).
Therefore, we can run a treewidth approximation algorithm that is single exponential in
the treewidth of H. We can use the algorithm from either [100] or [18] for this, both have
running time 20w )|y (H)|OM) = 20(”171/(1)(71 7(n))PM = 20("171/%7 and provide
a tree decomposition whose width is a c-approximation of the treewidth of H, from
which we gain a tree decomposition whose weighted treewidth is a 2c-approximation of
the weighted treewidth of Gp. O

6.4. Basic Algorithmic Applications

In this section, we give examples of how k-partitions and weighted tree decompositions
can be used to obtain subexponential-time algorithms for classical problems on geometric
intersection graphs.

Given a k-partition P and a weighted tree decomposition of Gp of width 7, we note
that there exists a nice tree decomposition of G (i.e., a “traditional”, non-partitioned
tree decomposition) with the property that each bag is a subset of the union of a
number of partition classes, such that the total weight of those classes is at most 7.
This can be seen by creating a nice version of the weighted tree decomposition of G,
and then replacing every introduce/forget bag (that introduces/forgets a class of the
partition) by a series of introduce/forget bags (that introduce/forget the individual
vertices). We call such a decomposition a traditional tree decomposition. Using such a
decomposition, it becomes easy to give algorithms for problems for which we already
have dynamic-programming algorithms operating on nice tree decompositions. We can
re-use the algorithms for the leaf, introduce, join and forget cases, and either show that
the number of partial solutions remains bounded (by exploiting the properties of the
underlying k-partition) or show that we can discard some irrelevant partial solutions.

We present several applications for our framework, resulting in 20 ™) _time

algorithms for various problems. In addition to the (non-robust) INDEPENDENT SET
algorithm for fat objects based on our separator, we also give a robust algorithm
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for similarly sized fat objects. This adds robustness compared to the state of the
art [91]. In the rest of the applications, our algorithms work on intersection graphs
of d-dimensional similarly sized fat objects; this is usually a larger graph class than
what has been studied. We have non-robust algorithms for HAMILTONIAN PATH and
HAMILTONIAN CYCLE; this is a simple generalization of the previously known [51, 76]
algorithm for unit disks. For FEEDBACK VERTEX SET, we give a robust algorithm
with the same running time improvement, over a non-robust algorithm that works
in 2-dimensional unit disk graphs [51]. For r-DOMINATING SET, we give a robust
algorithm for d > 2, which is the first subexponential algorithm in dimension d > 3,
and the first robust subexponential algorithm for d = 2 [90]. (The algorithm in [90]
is for DOMINATING SET in unit disk graphs.) Finally, we give robust algorithms for
STEINER TREE, r-DOMINATING SET, CONNECTED VERTEX COVER, CONNECTED
FEEDBACK VERTEX SET and CONNECTED DOMINATING SET, which are — to our
knowledge — also the first subexponential algorithms in geometric intersection graphs
for these problems.
In the following, we fix our weight function to be (k) = log(k + 1).

Theorem 6.11. If a k-partition and a weighted tree decomposition of width at most T
is given, INDEPENDENT SET and VERTEX COVER can be solved in time 27n°).

Proof. A well-known algorithm (see, e.g., [34]) for solving INDEPENDENT SET on graphs
of bounded treewidth, computes, for each bag ¢ and subset S C X;, the maximum size
c[t, S] of an independent subset S C G[t] such that SN X, = S.

An independent set never contains more than one vertex of a clique. Therefore,
if we have a traditional tree decomposition (7,{X; | t € T}), obtained from a -
partitioned weighted tree decomposition, X; is a subset of the union of partition
classes {V; | i € X;} (where X; denotes the corresponding bag of the weighted tree
decomposition). Since from each partition class we can select at most x vertices (one
vertex from each clique), the number of subsets S that need to be considered is at most
[Lex, (Vil + 17 = exp (Siex, #log (il +1)) = 2.

Applying the standard algorithm for INDEPENDENT SET on a traditional tree
decomposition, using the fact that only solutions that select at most one vertex from
each clique get a non-zero value, we obtain the claimed algorithm. MINIMUM VERTEX
COVER can be solved by finding a solution I to MAXIMUM INDEPENDENT SET and
returning the complement V' \ I, which is a minimum vertex cover. O

Corollary 6.12. For any constant d > 2, INDEPENDENT SET and VERTEX COVER can
be solved in 20" ™" time on intersection graphs of similarly-sized d-dimensional fat
objects, even if the geometric representation is not given.

In the remainder of this section, because we need additional assumptions that are
derived from the properties of intersection graphs, we state our results in terms of
algorithms operating directly on intersection graphs. However, note that underlying
each of these results is an algorithm operating on a weighted tree decomposition of the
contracted graph.

To obtain the algorithm for INDEPENDENT SET, we exploited the fact that we can
select at most one vertex from each clique, and that thus, we can select at most x
vertices from each partition class. For DOMINATING SET, our bound for the treewidth
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is however not enough. Instead, we need the following, stronger result, which states
that the weight of a bag in the decomposition can still be bounded by O(n'~/4), even
if we take the weight to be the total weight of the classes in the bag and that of their
distance-r neighbours:

Theorem 6.13. Let G be an intersection graph of n similarly-sized d-dimensional
fat objects, and let r > 1 be a constant. For any weight function -y, there exists
a constant k = O(1) such that G has a k-partition P and a corresponding G of
maximum degree at most A, where Gp has a weighted tree decomposition with
the additional property that for any bag b, the total weight of the partition classes
{V; € P| (some vertex in) V; is within distance r of some V; € o(b)} is O(n'~1/9).

Proof. As per Theorem there exist constants k, A = O(1) such that G has a
k-partition in which each class of the partition is adjacent to at most A other classes.

We now create a new geometric intersection graph G’, which is made by copying
each vertex (and its corresponding object) at most " times. We create the following
k"-partition P": for each class V; of the original partition, create a class that contains a
copy of the vertices from V; and copies of the vertices from the classes within distance
at most r from V;. This graph G" has at most kK"n = O(n) vertices, and it is an
intersection graph of similarly-sized objects; furthermore, the set " has low union ply.
Therefore, we can find a weighted tree decomposition of G%,. of width O(n'~1/?) by
Lemma,

This decomposition can also be used as a decomposition for the original k-partition,
by replacing each partition class with the corresponding original partition class. [

Theorem 6.14. Let r € Z,,d > 2 be constants. Then r-DOMINATING SET can be
solved in 200" ") time on intersection graphs of similarly-sized d-dimensional fat
objects.

Proof. We first present the argument for DOMINATING SET. It is easy to see that from
each partition class, we need to select at most x?(A + 1) vertices: each partition class
can be partitioned into at most k cliques, and each of these cliques is adjacent to at
most k(A + 1) other cliques. If we select at least k(A + 1) + 1 vertices from a clique,
we can instead select only one vertex from the clique, and select at least one vertex
from each neighbouring clique.

We once again proceed by dynamic programming on a traditional tree decomposition
(see e.g. [34] for an algorithm solving DOMINATING SET using tree decompositions).
However, rather than needing just two states per vertex (in the solution or not), we
need three: a vertex can be either in the solution, not in the solution and not dominated,
or not in the solution and dominated. After processing each bag, we discard partial
solutions that select more than x%(A + 1) vertices from any class of the partition. Note
that all vertices of each partition class are introduced before any are forgotten, so
we can guarantee we do indeed never select more than x?(A + 1) vertices from each
partition class.

The way vertices outside the solution are dominated or not is completely determined
by the vertices that are in the solution and are neighbours of the vertices in the
bag. While the partial solution does not track this explicitly for vertices that are
forgotten, by using the fact that we need to select at most kA vertices from each
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class of the partition, and the fact that Theorem bounds the total weight of
the neighbourhood of the partition classes in a bag, we see that there are at most
IL(|V;] 4 1) (A = exp(k2(A + 1) Yo log (|Vil+1)) = 20" where the product
(resp., sum) is taken over all partition classes V; that appear in the current bag or are
a neighbours of such a class.

For the generalization where r > 1, the argument that we need to select at most
k(A + 1) vertices from each clique still holds: moving a vertex from a clique with more
than x(A + 1) vertices selected to an adjacent clique only decreases the distance to
any vertices it helps cover. The dynamic programming algorithm needs, in a partial
solution, to track at what distance from a vertex in the solution each vertex is. This,
once again, is completely determined by the solution in partition classes at distance at
most 7; the number of such cases we can bound using Theorem [6.13 O

6.5. Application of the Rank-Based Approach

To illustrate how our algorithmic framework can be combined with the rank-based
approach, we now give an algorithm for STEINER TREE.

We only consider the unweighted variant of STEINER TREE, as, assuming the
ETH, the WEIGHTED STEINER TREE problem does not admit a subexponential-time
algorithm, even on a clique (as WEIGHTED STEINER TREE on a clique can encode
STEINER TREE on an arbitrary graph by setting the weights of non-edges to a sufficiently
large number). Therefore, we should not expect Theorem to hold for the weighted

case.

Thecl)r(;.r? 6.15. Let d > 2 be a constant. Then STEINER TREE can be solved in
200" """) time on intersection graphs of d-dimensional similarly-sized fat objects.

Proof. The algorithm works by dynamic programming on a traditional tree decom-
position. The leaf, introduce, join and forget cases can be handled as they are in
the conventional algorithm for STEINER TREE on tree decompositions, see e.g. [15].
However, after processing each bag, we can reduce the number of partial solutions that
need to be considered by exploiting the properties of the underlying k-partition.

To this end, we first need a bound on the number of vertices that can be selected
from each class of the k-partition P.

Lemma 6.16. Let C be a clique in a k-sized clique cover of a partition class V; € P.
Then any optimal solution X contains at most k(A + 1) vertices from C' that are not
also in K. Furthermore, any optimal solution thus contains at most k?(A + 1) vertices
(that are not also in K) from each partition class.

Proof. To every vertex v € (CNX)\ K we greedily assign a private neighbour u € X\ C
such that v is adjacent to v and u is not adjacent to any other previously assigned
private neighbour. If this process terminates before all vertices in (C' N X) \ K have
been assigned a private neighbour, then the remaining vertices are redundant and can
be removed from the solution.

We now note that since the neighbourhood of C' can be covered by at most x(A+1)
cliques, this gives us an upper bound on the number of private neighbours that can
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be assigned and thus bounds the number of vertices that can be selected from any
partition class. O

The algorithm for Steiner Tree presented in [15] is for the weighted case, but we
can ignore the weights by setting them to 1. A partial solution is then represented by
a subset S C X, (representing the intersection of the partial solution with the vertices
in the bag), together with an equivalence relation on S (which indicates which vertices
are in the same connected component of the partial solution).

Since we select at most x2(A + 1) vertices from each partition class, we can discard
partial solutions that select more than this number of vertices from any partition class.
Then the number of subsets S considered is at most

IT (vl + 1) A —exp [ K2(A+1) - > log(|Vi| +1) | <exp (K*(A+1)7).
i€X4) i€X,
For any such subset S, the number of possible equivalence relations is 20(IS|10g|S])
However, the rank-based approach [15] provides an algorithm called “reduce” that, given
a set of equivalence relation on S , outputs a representative set of equivalence relations
of size at most 2/5/. Thus, by running the reduce algorithm after processing each bag,
we can keep the number of equivalence relations considered single exponential.

Since |3 is also O(k2(A +1)7) (we select at most £2(A + 1) vertices from each
partition class and each bag contains at most 7 partition classes), for any subset S ,
the rank-based approach guarantees that we need to consider at most 20(~*(A+1)7)
representative equivalence classes of S (for each set S). O

Theorem 6.17. For any constant d > 2, MAXIMUM INDUCED FOREST (and FEEDBACK

VERTEX SET) can be solved in 90(n' =1/
similarly-sized fat objects.

time on intersection graphs of d-dimensional

Proof. We once again proceed by dynamic programming on a traditional tree decom-
position corresponding to the weighted tree decomposition of Gy of width 7, where P is
a k-partition, and the maximum degree of G is at most A. We describe the algorithm
from the viewpoint of MAXIMUM INDUCED FOREST, but FEEDBACK VERTEX SET is
simply its complement.

Using the rank-based approach with MAXIMUM INDUCED FOREST requires some
modifications to the problem, since the rank-based approach is designed to get max-
imum connectivity, whereas in MAXIMUM INDUCED FOREST, we aim to “minimize”
connectivity (i.e., avoid creating cycles). To overcome this issue, the authors of [15] add
a special universal vertex vg to the graph (increasing the width of the decomposition
by 1) and ask (to decide if a Maximum Induced Forest of size k exists in the graph)
whether we can delete some of the edges incident to vy such that there exists an induced,
connected subgraph, including vg, of size k 4+ 1 in the modified graph that has exactly
k edges. Essentially, the universal vertex allows us to arbitrarily glue together the trees
of an induced forest into a single (connected) tree. This thus reformulates the problem
such that we now aim to find a connected solution.

2What we refer to as “equivalence relation”, [15] refers to as “partition”.
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The main observation that allows us to use our framework, is that from each clique
we can select at most 2 vertices (otherwise, the solution would become cyclic), and
that thus, we only need to consider partial solutions that select at most 2x vertices
from each partition class. The number of such subsets is at most 2°(*7) . Since we
only need to track connectivity among these 2« vertices (plus the universal vertex), the
rank-based approach allows us to keep the number of equivalence relations considered
single-exponential in 7. Thus, we obtain a 2" W) _time algorithm. O

Additional Problems Our approach gives 200" ™) time algorithms on geometric

intersection graphs of d-dimensional similarly-sized fat objects for almost any problem
with the property that the solution (or the complement thereof) can only contain a
constant (possibly depending on the “degree” of the cliques) number of vertices of any
clique. We can also use our approach for variations of the following problems, that
require the solution to be connected:

e CONNECTED VERTEX COVER and CONNECTED DOMINATING SET: these prob-
lems may be solved similarly to their normal variants (which do not require the
solution to be connected), using the rank-based approach to keep the number of
equivalence classes considered single exponential. In case of CONNECTED VERTEX
COVER, the complement is an independent set, therefore the complement may
contain at most one vertex from each clique. In case of CONNECTED DOMINATING
SET, it can be shown that each clique can contain at most O(k?A) vertices from
a minimum connected dominating set.

e CONNECTED FEEDBACK VERTEX SET: the algorithm for Maximum Induced
Forest can be modified to track that the complement of the solution is connected,
and this can be done using the same connectivity-tracking equivalence relation
that keeps the solution cycle-free.

Theorem 6.18. For any constant dimension d > 2, CONNECTED VERTEX COVER,
CONNECTED DOMINA/TING SET and CONNECTED FEEDBACK VERTEX SET can be
. . 1-1/d . . . . . .
solved in time 20" ) on intersection graphs of similarly-sized d-dimensional fat

objects.

Hamiltonian Cycle. Our separator theorems imply that HAMILTONIAN CYCLE/PATH
can be solved in 2°(*' ") time on intersection graphs of similarly-sized d-dimensional
fat objects. However, in contrast to our other results, this requires that a geometric
representation of the graph is given. Given a 1-partition P where G has constant degree,
it is possible to show that a cycle/path only needs to use at most two edges between
each pair of cliques; see e.g. [69, 76] and that we can obtain an equivalent instance
with all but a constant number of vertices removed from each clique. Our separator
theorem implies this graph has treewidth O(n'~/¢), and Hamiltonian Cycle/Path can
then be solved using dynamic programming on a tree decomposition.

Theorem 6.19. For any constant dimension d > 2, HAMILTONIAN CYCLE and HAMILTO-
NIAN PATH can be solved in time 20 ~'*) on the intersection graph of similarly-sized
d-dimensional fat objects which are given as input.
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6.6. Conclusions

In this chapter, we have seen how a modified form of tree decomposition, with each
bag partitioned into cliques, can be used to obtain (strongly) subexponential time
algorithms for problems in geometric intersection graphs. Even though these graphs
can be dense, the fact that the problems considered can be solved easily on cliques can
be exploited.

For each of the previously presented algorithms, it is possible to obtain tight, ETH-
based lower bounds. While the proofs of these lower bounds are not part of this thesis
(and can be found in [36]), for completeness, Table [6.1] summarizes the algorithmic and
lower bound results, showing the most inclusive class where the algorithm applies, and
the most restrictive class where the lower bound has been shown.

We have thus also seen that 22 /) is the “right” running time (tight under the
ETH) for many problems in d-dimensional geometric intersection graphs, providing an
extension of the square root phenomenon to other classes of graphs. In the next and
final part of this thesis, we will move away from purely theoretical results, and instead
look at practical applications of treewidth.

We finish this chapter with some open problems:

e Is it possible to obtain clique decompositions without geometric information?
Alternatively, how hard is it colour the complement of a small diameter geometric
intersection graph of fat objects?

e Many of our applications require the low degree property (i.e., the fact that
G9 has bounded degree). Is the low degree property really essential for these
applications? Would having low average degree be sufficient?

e Isit possible to modify the framework to work without the similar size assumption?

Finally, it would be interesting to explore the potential consequences of this frame-
work for parameterized and approximation algorithms.

Problem Algorithm class Robust Lower bound class
INDEPENDENT SET Fat no Unit Ball, d > 2
INDEPENDENT SET Sim. sized fat yes Unit Ball, d > 2
r-DOMINATING SET, r = const Sim. sized fat yes Induced Grid, d > 2

STEINER TREE Sim. sized fat yes Induced Grid, d > 2
FEEDBACK VERTEX SET Sim. sized fat yes Induced Grid, d > 2

CONN. VERTEX COVER Sim. sized fat yes  Unit Ball, d > 2 or Induced Grid, d > 3
CONN. DOMINATING SET Sim. sized fat yes Induced Grid, d > 2

CONN. FEEDBACK VERTEX SET Sim. sized fat yes Unit Ball, d > 2 or Induced Grid, d > 3
HaMILTONIAN CYCLE/PATH Sim. sized fat no Induced Grid, d > 2

Table 6.1. Summary of our results. In each case we list the most inclusive class
where our framework leads to algorithms with 90(n' =14 running time, and the
most restrictive class for which we have a matching lower bound. We also list
whether the algorithm is robust.
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Computing Tree Decompositions on
the GPU

7.1. Introduction

As seen in the previous parts, treewidth and (structures similar to) tree decompositions
can be very useful theoretical tools. The fact that many otherwise hard graph problems
are linear time solvable on graphs of bounded treewidth [22] can also be exploited in
practical applications — we will see an example of this in the next chapter. For such
applications, it is important to have efficient algorithms, that given a graph, determine
the treewidth and find tree decompositions with optimal (or near-optimal) width.

The interest in practical algorithms to compute treewidth and tree decompositions
is also illustrated by the fact that both the PACE 2016 and PACE 2017 challenges
[37] included treewidth as one of the two challenge topics. Remarkably, while most
tracks in the PACE 2016 challenge attracted several submissions [38], there were no
submissions for the call for GPU-based programs for computing treewidth. Current
sequential exact algorithms for treewidth are only practical when the treewidth is small
(up to 4, see [65]), or when the graph is small (see [57, 20, 118, 44, 117]). As computing
treewidth is NP-hard, an exponential growth of the running time is to be expected;
unfortunately, the exact FPT algorithms that are known for treewidth are assumed
to be impractical; e.g., the algorithm of [12] has a running time of 20(tw®)y for an
n-vertex graph of treewidth tw. This creates the need for good parallel algorithms, as
parallelism can help to significantly speed up the algorithms, and thus deal with larger
graph sizes.

We present a parallel algorithm for computing the treewidth of a graph on a GPU.
We implement this algorithm in OpenCL, and experimentally evaluate its performance.
Our algorithm is based on an O*(2")-time algorithm that explores the elimination
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orderings of the graph using a Held-Karp like dynamic programming approach. We
use Bloom filters to detect duplicate solutions.

GPU programming presents unique challenges and constraints, such as constraints
on the use of memory and the need to limit branch divergence. We experiment with
various optimizations to see if it is possible to work around these issues. We achieve a
very large speed up (up to 77x) compared to running the same algorithm on the CPU.

The starting point of our algorithm is a sequential algorithm by Bodlaender et
al. [20]. This algorithm exploits a characterization of treewidth in terms of the width of
an elimination ordering, and gives a dynamic programming algorithm with a structure
that is similar to the textbook Held-Karp algorithm for TSP [66].

Prior work on parallel algorithms for treewidth is limited to one paper, by Yuan
[117], who implements a branch and bound algorithm for treewidth on a CPU with a
(relatively) small number of cores. With the advent of relatively inexpensive consumer
GPUs that offer more than an order of magnitude more computational power than their
CPU counterparts do, it is very interesting to explore how exact and fixed-parameter
algorithms can take advantage of the unique capabilities of GPUs. We take a first step
in this direction, by exploring how treewidth can be computed on the GPU.

Our algorithm is based on the elimination ordering characterization of treewidth.
Given a graph G = (V, E), we may eliminate a vertex v € V from G by removing v
and turning its neighbourhood into a clique, thus obtaining a new graph. One way to
compute treewidth is to find an order in which to eliminate all the vertices of G, such
that the maximum degree of each vertex (at the time it is eliminated) is minimized.
This formulation is used by e.g. [57] to obtain a (worst-case) O*(n!)-time algorithm.
However, it is easy to obtain an O*(2")-time algorithm by applying Held-Karp style
dynamic programming as first observed by Bodlaender et al. [20]: given a set S C V,
eliminating the vertices in S from G will always result in the same intermediate graph,
regardless of the order in which the vertices are eliminated (and thus, the order in
which we eliminate S only affects the degrees encountered during its elimination). This
optimization is used in the algorithms of for instance [45] and [117].

We explore the elimination ordering space in a breadth-first manner. This enables
efficient parallelization of the algorithm: during each iteration, a wavefront of states
(consisting of the sets of vertices S of size k for which there is a feasible elimination
order) is expanded to the wavefront of the next level, with each thread of the GPU
taking a set S and considering which candidate vertices of the graph can be added to
S. Since multiple threads may end up generating the same state, we then use a bloom
filter to detect and remove these duplicates.

To reduce the number of states explored, we experiment with using the minor-
min-width heuristic [57], for which we also provide a GPU implementation. Whereas
normally this heuristic would be computed by operating on a copy of the graph, we
instead compute it using only the original graph and a smaller auxiliary data structure,
which may be more suitable for the GPU. We also experiment with several techniques
unique to GPU programming, such as using shared /local memory (which can best be
likened to the cache of a CPU) and rewriting nested loops into a single loop to attempt
to improve parallelism.

We provide an experimental evaluation of our techniques, on a platform equipped
with an Intel Core i7-6700 CPU (3.40GHz) with 32GB of RAM (4x8GB DDR4), and an
NVIDIA GeForce GTX 1060 with 6GB GDDR5 memory (manufactured by Gigabyte,
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Part Number GV-N1060WF20C-6GD). Our algorithm is implemented in OpenCL (and
thus highly portable). We achieve a very large speedup compared to running the same
algorithm on the CPU.

7.2. Additional Definitions

Treewidth. Throughout this thesis, we have been using the characterization of tree-
width of a graph G in terms of the smallest width of a tree decomposition of G. In this
chapter, we use an alternative characterization, in terms of elimination orderings. Our
algorithm is based on the O(2"nm)-time algorithm of Bodlaender et al. [20], which
also uses this characterization.

Let G = (V, E) be a graph with vertices v1,...v,. An elimination ordering is a
permutation 7 : V. — {1,...,n} of the vertices of G. The treewidth of G is equal
to min, max, |Q({u € V | w(u) < w(v)},v)|, where Q(S,v) is the set of vertices
{u € V'\ S| there is a path v, p1,...,pm,u such that p1,...,p, € S}, i.e., Q(S,v) is
the subset of vertices of V' \ S reachable from v by paths whose internal vertices are in
S [20].

An alternative view of this definition is that given a graph G, we can eliminate a
vertex v by removing it from the graph, and turning its neighbourhood into a clique.
The treewidth of a graph is at most k, if there exists an elimination order such that all
vertices have degree at most k at the time they are eliminated.

GPU Terminology. Parallelism on a GPU is achieved by executing many threads in
parallel. These threads are grouped into warps of 32 threads. The 32 threads that
make up a warp do not execute independently: they share the same program counter,
and thus must always execute the same “line” of code (thus, if different threads need to
execute different branches in the code, this execution is serialized - this phenomenon,
called branch divergence, should be avoided). The unit that executes a single thread is
called a CUDA core.

We used a GTX1060 GPU, which is based on the Pascal architecture [97]. The
GTX1060 has 1280 CUDA cores, which are distributed over 10 Streaming Multipro-
cessors (SMs). Each SM thus has 128 CUDA cores, which can execute up to 4 warps
of 32 threads simultaneously. However, a larger number of warps may be assigned to
an SM, enabling the SM to switch between executing different warps, for instance to
hide memory latency.

Each SM has 256K1BE| of register memory (which is the fastest, but which registers
are addressed must be known at compile time, and thus for example dynamically
indexing an array stored in register memory is not possible), 96KiB of shared memory
(which can be accessed by all threads executing within the thread block) and 48KiB of
L1 cache.

Furthermore, we have approximately 6GB of global memory available which can
be written to and read from by all threads, but is very slow (though this is partially
alleviated by caching and latency hiding). Shared memory can, in the right circum-
stances, be read and written much faster, but is still significantly slower than register
memory. Finally, there is also texture memory (which we do not use) and constant

LA kibibyte is 210 bytes.
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memory (which is a cached section of the global memory) that can be used to store
constants that do not change over the kernel’s execution (we use constant memory to
store the adjacency lists of the graph).

Shared memory resides physically closer to the SM than global memory, and it
would thus make sense to call it “local” memory (in contrast to the more remote
global memory). Indeed, OpenCL uses this terminology. However, NVIDIA /CUDA
confusingly use “local memory” to indicate a portion of the global memory dedicated
to a single thread.

7.3. The Algorithm

7.3.1. Computing Treewidth

Our algorithm works with an iterative deepening approach: for increasing values of k,
it repeatedly runs an algorithm that tests whether the graph has treewidth at most k.
This means that our algorithm is in practice much more efficient than the worst-case
O*(2™) behaviour shown by [20], since only a small portion of the 2" possible subsets
may be feasible for the target treewidth k. A similar approach (of solving the decision
version of the problem for increasing values of k) was also used by Tamaki [104], who
refers to it as positive-instance driven dynamic programming.

This algorithm lends itself very well to parallelization, since the subsets can be
evaluated (mostly) independently in parallel. This comes at the cost of slightly reduced
efficiency (in terms of the number of states expanded) compared to a branch and bound
approach (e.g. [44, 117, 118]) since the states with treewidth < k — 1 are expanded
more than once. However, even a branch and bound algorithm needs to expand all
of the states with treewidth k& — 1 before it can conclude that treewidth k is optimal,
so the main advantage of branch and bound is that it can settle on a solution with
treewidth k& without expanding all such solutions (of width k).

To test whether the graph has treewidth at most k, we consider subsets S C V of
increasing size, such that the vertices of S can be eliminated in some order without
eliminating a vertex of degree > k. For each k, the algorithm starts with an input list
(that initially contains just the empty set) and then forms an output list by for each set
S in the input list, attempting to add every vertex v ¢ S to S, which is feasible only if
the degree of v in the graph that remains after eliminating the vertices in .S is not too
large. This is tested using a depth first search. Then, the input and output lists are
swapped and the process is repeated. If after n iterations the output list is not empty,
we can conclude that the graph has treewidth at most k. Otherwise, we proceed to
test for treewidth k + 1. Pseudocode for this algorithm is given in Algorithm

We include three optimizations: first, if C' C V induces a clique, there is an
elimination order that ends with the vertices in C [20]. We can thus precompute a
maximum clique C, and on line 7 of Listing skip any vertices in C. Next, if G
has treewidth at most k and there are at least k + 1 vertex-disjoint paths between
vertices u and v, we may add the edge uv to G without increasing its treewidth [32].
Thus, we precompute for each pair of vertices u, v the number of vertex-disjoint paths
between them, and when testing whether the graph has treewidth at most k£ we add
edges between all vertices which have at least k + 1 disjoint paths (note that this has
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Algorithm 7.1. Algorithm for computing treewidth. Note that lines 7-19 compute the
degree of v in the graph that remains after eliminating the vertices in S

1: for k = 0 to n-1 do do

2:  let inp = 0

3. fori=0ton-k-2do

4: outp = {}

5: for each set S in inp do

6: for each vertex v € S do

7: let stack = ()

8: let degree =0

9: push v to stack

10: while stack # () do

11: pop vertex u from stack
12: for each unvisited neighbour w of u do
13: mark w as visited

14: if w € S then

15: push w to stack

16: else

17: let degree = degree+1
18: if degree < k then

19: let outp = outp U {SU{v}}
20: let inp = outp

21:  if inp # 0 then

22: report the treewidth of G is k

diminishing returns, since in each iteration we can add fewer and fewer edges). Finally,
if the graph has treewidth at least k, then the last k + 1 vertices can be eliminated in
any order so we can terminate execution of the algorithm earlier.

We note that our algorithm does not actually compute a tree decomposition or
elimination order, but could easily be modified to do so. Currently, the algorithm
stores with each (partial) solution one additional integer, which indicates which four
vertices were the last to be eliminated. To reconstruct the solution, one could either
store a copy of (one in every four of) the output lists on the disk, or repeatedly add the
last four vertices to C' and rerun the algorithm to obtain the next four vertices (with
each iteration taking less time than the previous, since the size of C' has increased).

7.3.2. Duplicate Elimination using Bloom Filters

Each set S may be generated in multiple ways by adding different vertices to subsets
S’ C 8; if we do not detect whether a set S is already in the output list when adding
it, we risk the algorithm generating (n!) sets. To detect whether a set S is already
in the output, we use a Bloom filter [11]: Bloom filters are a classical data structure
in which an array A of m bits can be used to encode the presence of n elements by
means of r hash functions. To insert an element S, we compute r independent hash
functions {H;|1 <14 < r} each of which indicates one position in the array, A[H;(S)],
which should be set to 1. If any of these bits was previously zero, then the element
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was not yet present in the filter, and otherwise, the probability of a false positive is
approximately (1 — e~Fn/m),

In our implementation, we compute two 32-bit hashes hj(.S), ho(S) using Murmur3
[8], which we then combine linearly to obtain hashes H;(S) = hq(S) + ¢ - ho(S) (which
is nearly as good as using r independent hash functions [75]).

In our experiments, we have used ™ > 24 and r = 17 to obtain a low (theoretical)
false positive probability of around 1 in 100.000. We note that the possibility of false
positives results in a Monte Carlo algorithm (the algorithm may inadvertently decide
that the treewidth is higher than it really is). Indeed, given that many millions of
states are generated during the search we are guaranteed that the Bloom filter will
return some false positives, however, this does not immediately lead to incorrect results:
it is still quite unlikely that all of the states leading to an optimal solution are pruned,
since there are often multiple feasible elimination orders.

The Bloom filter is very suitable for implementation on a GPU, since our target
architecture (and indeed, most GPUs) offers a very fast atomic OR operation [98]. We
note that addressing a Bloom filter concurrently may also introduce false negatives if
multiple threads attempt to insert the same element simultaneously. To avoid this, we
use the initial hash value to pick one of 65.536 mutexes to synchronize access (this
allows most operations to happen wait-free and only a collision on the initial hash value
causes one thread to wait for another).

7.3.3. Minor-Min-Width

Search algorithms for treewidth are often enhanced with various heuristics and pruning
rules to speed up the computation. One very popular choice (used by e.g. [57, 117, 118])
is minor-min-width (MMW) [57] (also known as MMD+(min-d)) [23]). MMW is based
on the observation that the minimum degree of a vertex is a lower bound on the
treewidth, and that contracting edges (i.e. taking minors) does not increase the
treewidth. MMW repeatedly selects a minimum degree vertex, and then contracts
it with a neighbour of minimum degree, in an attempt to obtain a minor with large
minimum degree (if we encounter a minimum degree that exceeds our target treewidth,
we know that we can discard the current state). As a slight improvement to this
heuristic, the second smallest vertex degree is also a lower bound on the treewidth [23].

Given a subset S C G, we would like to compute the treewidth of the graphs that
remains after eliminating S from G. The most straightforward method is to explicitly
create a copy of GG, eliminate the vertices of S, and then repeatedly perform the
contraction as described above. However, storing e.g. an adjacency list representation
of these intermediate graphs would exceed the available shared memory and size of
the caches. As we would like to avoid transferring large amounts of data to and from
global memory, we implemented a method to compute MMW without explicitly storing
the intermediate graphs.

Our algorithm tracks the current degrees of the vertices (which, conveniently, we
already have computed to determine which vertices can be eliminated). It is thus easy
to select a minimum degree vertex v. Since we do not know what vertices it is adjacent
to (in the intermediate graph), we must select a minimum degree neighbour by using a
depth-first search, similarly to how we compute the vertex degrees in Algorithm
Once we have found a minimum degree neighbour u, we run a second dept-first search
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to compute the number of neighbours u has in common with v, allowing us to update
the degree of v. To keep track of which vertices have been contracted, we use a disjoint
set data structure.

The disjoint set structure and list of vertex degrees together use only two bytes
per vertex (for a graph of up to 256 vertices), thus, they fit our memory constraints
whereas an adjacency matrix or adjacency list (for dense graphs, noting that the graphs
in question can quickly become dense as vertices are eliminated) would readily exceed
it.

7.4. Experiments

7.4.1. Instances

We selected a number of instances from the PACE 2016 dataset [37] and libtw [113].
All instances were preprocessed using the preprocessing rules of our PACE submission
[111], which split the graph using safe separators: we first split the graph into its
connected components, then split on articulation points, then on articulation pairs
(making the remaining components 3-connected) and finally — if we can establish that
this is safe — on articulation triplets (resulting in the 4-connected components of the
graph). We then furthermore try to detect and split on (almost) clique separators in
the graph. For a more detailed treatment of these preprocessing rules, we refer to [21].

7.4.2. General Benchmark

We first present an experimental evaluation of our algorithm (without using MMW)
on a set of benchmark graphs. Table shows the number of vertices, computed
treewidth, time taken (in seconds) on the GPU and the number of sets S explored.
Note that the time does not include the time taken for preprocessing, and that the
vertex count is that of the preprocessed graph (and thus, the original graph may have
been larger).

The size of the input and output lists were limited by the memory available on
our GPU. With the current configuration (limited to graphs of at most 64 vertices -
though the code is written to be flexible and can easily be changed to support up to 256
vertices), these lists could hold at most 180 million states (i.e., subsets S C V that have
a feasible partial elimination order) each. If at any iteration this number was exceeded,
the excess states were discarded. The algorithm was allowed to continue execution for
the current treewidth k, but was terminated when trying the next higher treewidth
(since we might have discarded a state that would have led to a solution with treewidth
k, the answer would no longer be exact). The states where the capacity of the lists
was exceed are marked with *, if the algorithm was terminated then the treewidth
is stricken through (and represents the candidate value for treewidth at which the
algorithm was terminated, and not the treewidth of the graph, which is likely higher).

For instance, for graph 1ubq the capacity of the lists was first exceeded at treewidth
10, and the algorithm was terminated at treewidth 11 (and thus the actual treewidth
is at least 10, but likely higher). For graph myciel5, the capacity of the lists was
first exceeded at treewidth 19, but still (despite discarding some states) a solution of
treewidth 19 was nevertheless found (which we thus know is the exact treewidth).
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Name |[V||tw| Time (sec.) Exp
GPU CPU
1e0b_graph 55 [ 24| 779 - 1730 x10°
1fj1_graphx* 57 [ 26| 1730 - 3680 x10°
1igd_graph 59 [ 25| 107 5120 261 x10°
1ku3_graph 60 [22| 235 - 542 x10°
1ubgx 47 |12 1130 - 2300 x10°
8x6_torusGrid* 48 | 7 | 1110 - 2100 x10°
BN_97 48 [ 18| 1020 - 2310 x10°
BN_98 47 [21] 689 - 1590 x10°
contiki_dhcpc_handle_dhcp* 39 [ 6 | 1490 - 2930 x10°
DoubleStarSnark 30 [ 6 | 34,5 873 87,6 x10°
DyckGraph 32 7] 280 - 639 x10°
HarborthGraph* 40 | 5 698 - 1540 x10°
KneserGraph_8_3+* 56 [ 24| 1710 - 4130 x10°
McGeeGraph 24 [ 7] 1,30 25,3 3,85 x10°
myciel4d 23 [10]0,234| 0,460 | 0,0978 x10°
mycielb* 47 [19] 2000 | 70.600 4000 x10°
NonisotropicUnitaryPolarGraph_3_3 | 63 | 53| 1,16 60,4 1,56 x10°
queen5_5 25 [ 18 10,212 | 0,0230 | 0,00313 x10°
queen6_6 36 [ 250,254 | 0,389 | 0,0360 x10°
queen7_7 49 [ 350,966 43,5 1,90 x10°
queen8_8 64 [ 45| 26,3 2040 57,9 x10°
RandomBarabasiAlbert_100_2x* 41 | 12| 1610 - 3280 x10°
RandomBoundedToleranceGraph_60 59 | 30 | 0,274 0,635 | 0,0560 x10°
SylvesterGraph 36 | 15 248 - 632 x10°
te* 62 | # | 1170 - 2160 x10°
water 21 [ 9 0,197 | 0,00600 | 0,00124 x10°

Table 7.1. Performance of the algorithm on several benchmark graphs, using
global memory and a work size of 128.

For several graphs (those where the GPU version of the algorithm took at most
5 minutes), we also benchmarked a sequential version of the same algorithm on the
CPU. In some cases, the algorithm achieves a very large speedup compared to the CPU
version (up to 77x, in the case of queen8_8). Additionally, for myciel5, we also ran
the CPU-based algorithm, which took more than 19 hours to finish. The GPU version
only took 34 minutes.

The GPU algorithm can process a large number of states in a very short time. For
example, for the graph 1fj1, 3680 million states were explored in just 1730 seconds, i.e.,
over 2 million states were processed each second (and for each state, a O(|V||E|)-time
algorithm is executed). The highest throughput (2.5 million states/sec.) is achieved on
SylvesterGraph, but this graph has relatively few vertices.

We caution the reader that the graph names are somewhat ambiguous. For instance,
the queen7_7 instance is from libtw and has treewidth 35. The 2016 PACE instances
include a graph called dimacs_queen7_7 which only has treewidth 28. The instances
used in our evaluation are available from our GitHub repository [112].



7.4. Experiments 101

7.4.3. Work Size and Global v.s. Shared Memory

In this section, we study the effect of work size and whether shared or global memory
is used on the running time of our implementation.

Recall that shared memory is a small amount (in our case, 96KiB) of memory that
is physically close to each Streaming Multiprocessor, and is therefore in principle faster
than the (much larger, off-chip) global memory. We would therefore expect that our
implementation is faster when used with shared memory.

Each SM contains 128 CUDA cores, and thus 4 warps of 32 threads each can be
executed simultaneously on each SM. The work size (which should be a multiple of
32 items), represents the number of threads we assign to each SM. If we set the work
size larger than 128 items, more threads than can physically be executed at once are
assigned to one SM. The SM can then switch between executing different warps, for
instance to hide latency of memory accesses. If the work size is smaller than 128 items,
a number of CUDA cores will be unutilized.

In Table we present some experiments that show running times on several
graphs, depending on whether shared memory or global memory is used, for several
sizes of work group (which is the number of threads allocated to a single SM).

There is not much difference between running the program using shared or global
memory. In most instances, the shared memory version is slightly faster. Surprisingly,
it also appears that the work size used does not affect the running time significantly.
This suggests that our program is limited by the throughput of memory, rather than
being computationally bound.

Name V|| tw Time (sec.)
W=32|W==64| W =128 | W =256
ligd_graph (G) 59 | 25 109 107 107 107
ligd_graph (S) 59 | 25 94,8 95,6 98,2 103
1ku3_graph (G) 60 | 22 238 235 235 235
1ku3_graph (S) 60 | 22 214 217 222 230
DoubleStarSnark (G) 30 | 6 34,3 34,5 34,5 34,5
DoubleStarSnark (S) 30 | 6 32,8 32,8 32,8 32,9
DyckGraph (G) 32| 7 278 281 280 281
DyckGraph (S) 32| 7 266 266 266 267
NonisotropicUnitaryPolarGraph_3_3 (G) | 63 | 53 1,26 1,15 1,16 1,17
NonisotropicUnitaryPolarGraph_3_3 (S) | 63 |53 1,05 1,02 1,03 1,07
queen7_7 (G) 49 | 35 1,04 0,969 0,967 0,977
queen7_7 (S) 49 | 35 0,860 0,861 0,876 0,890
queens_8 (G) 64 | 45 20,5 26,6 26,3 26,0
queens_8 (S) 64 | 45 25,1 24,1 24,5 25,0

Table 7.2. Running time (sec.) for various work group sizes (W), using shared
(S) or global (G) memory. Each cell lists the average result of 4 test runs, where
the complete set of runs was executed in a randomized order.
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Name |[V||tw| Time (sec.) Exp
GPU CPU
1e0b_graph 55 [ 24| 721 - 1730 x10°
1fj1_graphx* 57 [ 26 | 1600 - 3660 x10°
ligd_graph 59 [ 25| 98,2 5120 261 x10°
1ku3_graph 60 |22 222 - 542 x10°
1ubgx 47 |12 1040 - 2290 x10°
8x6_torusGrid# 48 | 7 | 1040 - 2080 x10°
BN_97 48 [ 18| 944 - 2310 x10°
BN_98 47 [21] 643 - 1590 x10°
contiki_dhcpc_handle_dhcp* 39 [ 6 | 1350 - 2840 x10°
DoubleStarSnark 30 [ 6 | 32,8 873 87,6 x10°
DyckGraph 32 7] 266 - 639 x10°
HarborthGraph* 40 | 5 647 - 1530 x10°
KneserGraph_8_3x* 56 | 24| 1580 - 4100 x10°
McGeeGraph 24 [ 7 [ 1,24 25,3 3,85 x10°
myciel4d 23 [10]0,238| 0,460 | 0,0978 x10°
mycielb* 47 |19 1850 | 70.600 3990 x10°
NonisotropicUnitaryPolarGraph_3_3 | 63 | 53| 1,03 60,4 1,56 x10°
queen5_5 25 [ 180,179 | 0,0230 | 0,00313 x10°
queen6_6 36 [ 250,241 | 0,389 ] 0,0360 x10°
queen7_7 49 [ 350,875 43,5 1,90 x10°
queen8_8 64 [ 45| 24,5 2040 57,9 x10°
RandomBarabasiAlbert_100_2x* 41 | 12| 1470 - 3260 x10°
RandomBoundedToleranceGraph_60 59 | 30 | 0,263 0,635 | 0,0560 x10°
SylvesterGraph 36 | 15 229 - 632 x10°
tex 62 | # [ 1100 - 2140 x10°
water 21 [ 9 0,207 | 0,00600 | 0,00124 x10°

Table 7.3. The same experiment as in Table , but using shared instead of
global memory. Work size 128 items.

7.4.4. Minor-Min-Width

In Table we list results obtained when using Minor-Min-Width to prune states.

The computational expense of using MMW is comparable to that of the initial
computation (for determining the degree of vertices): the algorithm does a linear search
for a minimum degree vertex (using the precomputed degree values), and then does a
graph traversal (using BFS) to find a minimum degree neighbour (recall that we do
not store the intermediate graph, and use only a single copy of the original graph).
Once such a neighbour is found, the contraction is performed (by updating the disjoint
set data structure) and another graph traversal is required (to compute the number of
common neighbours, and thus update the degree of the vertex).

The lower bound given by MMW does not appear to be very strong, at least for the
graphs considered in our experiment: the reduction in number of states expanded is
not very large (for instance, from 1730 million states to 1660 million for 1e0b, or from
1590 million to 1480 million for BN_98). The largest reductions are visible for graphs
on which we run out of memory (for instance, from 4130 million to 1330 million for
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Name VT tw With MMW Without MMW
Time Exp | Time Exp
1e0b_graph 55 | 24 2750 1660 x10° | 779 1730 x10°
1fj1_graph* 57 | 26 | timeout 3260 x10° | 1730 3680 x10°
1igd_graph 59 |25 471 235 x10° [ 107 261 x10°
1ku3_graph 60 | 22 1090 511 x10°| 235 542 x10°
1ubg* 47 |11 2010 1500 x10° | 1130 2300 x10°
8x6_torusGridx* 48 | 7 1350 1300 x10% | 1110 2100 x10°
BN_97 48 | 18 2260 2020 x10° | 1020 2310 x10°
BN_98 47 [ 21 1480 1440 x10° | 689 1590 x10°
contiki_dhcpc_handle_dhcp* 39| 6 2670 2900 x10° | 1490 2930 x10°
DoubleStarSnark 30 | 6 38,3 76,0 x10°| 34,5 87,6 x10°
DyckGraph 327 343 592 x10° | 280 639 x10°
HarborthGraph#* 40 | 5 1460 1570 x10° | 1710 1540 x10°
KneserGraph_8_3+* 56 | 24 1330 1220 x10° | 1730 4130 x10°
McGeeGraph 24 | 7 1,88 3,42 x10°| 1,30 3,85 x10°
myciel4d 23 [ 10 0,614 0,0751 x10° 0,234 | 0,0978 x10°
myciel5* 47 |19 2550 3200 x10° | 2000 4000 x10°
NonisotropicUnitaryPolarGraph_3_3 | 63 | 53 3,36 1,30 x10°| 1,16 1,56 x10°
queen5_5 25 | 18 0,810 | 0,00291 x10° | 0,212 | 0,00313 x10°
queen6_6 36 | 25 1,16 | 0,0308 x10°] 0,254 | 0,0360 x10°
queen7_7 49 | 35 2,91 1,75 x10° {0,966 1,90 x10°
queen8_8 64 |45 83,5 51,1 x10°| 26,3 57,9 x10°
RandomBarabasiAlbert_100_2x* 41 | 12 2390 2840 x10° [ 1610 3280 x10°
RandomBoundedToleranceGraph_60 59 | 30 0,630 0,0478 x10° 0,274 | 0,0560 x10°
SylvesterGraph 36 | 15 274 503 x10° | 248 632 x10°
tex 62 |10 2260 1690 x10° | 1170 2160 x10°
water 21 [ 9 0,410 | 0,000938 x10° | 0,197 [ 0,00124 x10°

Table 7.4. The effect of using the Minor-Min-Width Heuristic. Time is in seconds.
Global memory, work size 128 items.

KneserGraph_8_3), but this is likely because the search is terminated before we reach
the actual treewidth (so we avoid the part of our search where using a heuristic is least
effective) and there are no graphs on which we previously ran out of memory for which
MMW allows us to determine the treewidth (the biggest improvement is that we are
able to determine that te has treewidth at least 10, up from treewidth at least 7).

Consistent with the relatively low reduction in the number of states expanded, we
see the computation using MMW typically takes around 2-3 times longer. On the
graphs considered here, the reduction in search space offered by MMW does not offset
the additional cost of computing it.

Again, the GPU version is significantly faster than executing the same algorithm on
the CPU: we observed a 55x speedup for queen8_8. Still, given what we observed in
Section[7.4.3] it is not clear whether our approach of not storing the intermediate graphs
explicitly is indeed the best approach. Our main motivation for taking this approach
was to be able to store the required data structures entirely in shared memory, but our
experiments indicate that for MMW, using global memory gives better performance
than using shared memory. However, the relatively good performance of global memory
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Name VT tw With MMW Without MMW
Time Exp | Time Exp
1e0b_graph 55 | 24 3650 1660 x10° | 721 1730 x10°
1fj1_graph* 57 | 26 | timeout 2440 x10° | 1600 3660 x10°
ligd_graph 59 | 25 645 235 x10° | 98,2 261 x10°
1ku3_graph 60 |22 1460 511 x10° | 222 542 x10°
lubg* a7 |1 2510 1480 x10° | 1040 2290 x10°
8x6_torusGrid* 48 | 7 1890 1310 x10° | 1040 2080 x10°
BN_97 48 | 18 3130 2020 x10° | 944 2310 x10°
BN_98 47 [ 21 1970 1440 x10°| 643 1590 x10°
contiki_dhcpc_handle_dhcp* 39| 6 3270 2860 x10° | 1350 2840 x10°
DoubleStarSnark 30 | 6 50,9 76,0 x10°| 32,8 87,6 x10°
DyckGraph 327 440 592 x10° | 266 639 x10°
HarborthGraphx 40 | 5 1900 1560 x10° | 647 1530 x10°
KneserGraph_8_3+* 56 | 24 1880 1210 x10° | 1580 4100 x10°
McGeeGraph 24 | 7 2,02 3,42 x10°| 1,24 3,85 x10°
mycield 23 [ 10 0,955 0,0751 x10° | 0,238 | 0,0978 x10°
mycielbx 47 [ 19 3370 3180 x10° | 1850 3990 x10°
NonisotropicUnitaryPolarGraph_3_3 | 63 | 53 4,17 1,30 x10°| 1,03 1,56 x10°
queen5_5 25 | 18 0,704 | 0,00291 x10° | 0,179 | 0,00313 x10°
queen6_6 36 | 25 0,998 | 10,0308 x10° | 0,241 | 0,0360 x10°
queen7_7 49 | 35 3,64 1,75 x10%1] 0,837 1,90 x10°
queen8_8 64 |45 116 51,1 x10°| 24,5 57,9 x10°
RandomBarabasiAlbert_100_2% 41 |12 3080 2830 x10° | 1470 3260 x10°
RandomBoundedToleranceGraph_60 59 | 30 0,666 | 0,0478 x10° 0,263 | 0,0560 x10°
SylvesterGraph 36 | 15 368 503 x10° | 229 632 x10°
te* 62 |10 3100 1630 x10° | 1100 2140 x10°
water 21 [ 9 0,543 | 0,000938 x10° | 0,207 [ 0,00124 x10°

Table 7.5. The same experiment as in Table [7.4] but using shared instead of
global memory. Work size 128 items.

might be (partially) due to caching and the small amount of data transferred, so it
is an interesting open question to determine whether the additional memory costs of
using more involved data structures is compensated by the potential speedup.

7.4.5. Loop Unnesting

Finally, we experimented with another technique, which aims to increase parallelism
(and thus speedup) by limiting branch divergence. However, as the results were
discouraging, we limit ourselves to a brief discussion.

The algorithm of Algorithm consists of a loop (lines 5-22) over the (not yet
eliminated) vertices, inside of which is a depth-first search (which computes the degree
of the vertex, to determine whether it can be eliminated). The depth-first search in
turn consists of a loop which runs until the stack becomes empty (lines 10-19) inside
of which is a final loop over the neighbours of the current vertex (lines 12-18). This
leads to two sources of branch divergence:
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e First, if the graph is irregular, all threads in a warp have to wait for the thread
that is processing the highest degree vertex, even if they only have low-degree
vertices.

e Second, all threads in a warp have to wait for the longest of the BF'S searches to
finish before they can start processing the next vertex.

To alleviate this, we propose a technique which we call loop unnesting: rather than
have 3 nested loops, we have only one loop, which simulates a state machine with 3
states: (1) processing the adjacency list of a vertex, (2) having finished processing of
an adjacency list and being ready to pop a new vertex off the queue, or (3) having
finished a BFS, and being ready to begin computing the degree of a new vertex.

We considered a slightly more general version of this idea: in an (x, y)-unnesting of
our program, after every z iterations of the inner loop (exploring neighbours of the
current vertex) one iteration of the middle loop is executed (if exploring the adjacency
list is finished, get a new vertex from the queue), and for every y iterations of the
middle loop, one iteration of the outer loop is executed (begin processing an entirely
new vertex). Thus, a (1,1)-unrolling corresponds to the state machine simulation
described above, and an (0o, co)-unrolling corresponds to the original program.

Picking the right values for x,y means finding the right trade-off between checking
frequently enough whether a thread is ready to start working on another vertex, and
the cost of performing those checks. What we observed was surprising: while (1,1),
(3,2) and (1, co)-unrollings gave reasonable results, the best results were obtained with
(00, 00)-unrollings (i.e. the original, unmodified algorithm) and the performance of
(00, 1)-unrollings was abysmal.

Name V]| tw Time (sec.)

(1,1) | (00,00) | (1,00) | (00,1) | (3,2)
1igd_graph (@) 59 [25| 121 107 113| 313 112
ligd_graph (S) 59 | 25 128 98,2 105 241 114
1ku3_graph (G) 60 | 22| 268 235 247 626 | 248
1ku3_graph (S) 60 | 22 291 222 238 490 262
DoubleStarSnark (G) 30 | 6 | 35,3 34,5 34,6 38,8 | 34,7
DoubleStarSnark (S) 30 | 6 32,9 32,8 32,9 37,7 32,8
DyckGraph (G) 32 |7 289 280 281 316 283
DyckGraph (S) 32| 7 266 266 267 306 266
NonisotropicUnitaryPolarGraph_3_3 (G) | 63 | 53| 2,17 1,16 1,51 7,11 1,73
NonisotropicUnitaryPolarGraph_3_3 (S) | 63 | 53| 2,17 1,03 1,40 5,16 | 1,68
queen?_7 (G) 49 [ 35| 1,37 0067| 1,13| 451 1,20
queen7_7 (S) 49 | 35| 1,31 0,876 1,02 3,30 | 1,12
queen8_8 (G) 64 | 45| 52,2 26,3 34,3 148 | 427
queens_8 (S) 64 [ 45| 554| 245 33,8| 111 432

Table 7.6. Results on loop unnesting. Work size used was 128 items. Each cell
lists the average result of 4 test runs, where the complete set of runs was executed
in a randomized order.

We believe that a possible explanation may be that loop unnesting does work to
some extent, but not unnesting the loops has the advantage that all BFS searches
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running simultaneously start from the same initial vertex, and (up to differences caused
by different sets S being used) will access largely the same values from the adjacency
lists at the same time, which may increase the efficiency of read operations. On the
other hand, (0o, 1)-unnesting can not take advantage of either phenomenon: different
initial vertices may be processed at any given time (so there is little consistency in
memory accesses) and the inner loop is not unnested at all so there is no potential to
gain speedup there either. Perhaps for larger graphs, where the difference in length of
adjacency lists may be more pronounced, or the amount of time a BFS takes varies
more strongly with the initial vertex and S, loop unnesting does provide speed up, but
for the graphs considered here it does not appear to be a beneficial choice.

7.5. Conclusions

We have presented an algorithm that computes treewidth on the GPU, achieving a
very large speedup over running the same algorithm on the CPU. Our algorithm is
based on the classical O*(2™)-time dynamic programming algorithm [20] and our results
represent (promising) first steps in speeding up dynamic programming for treewidth on
the GPU. The current best known practical algorithm for computing treewidth is the
algorithm due to Tamaki [104]. This algorithm is much more complicated, and porting
it to the GPU would be a formidable challenge but could possibly offer an extremely
efficient implementation for computing treewidth.

Given the large speedup achieved, we are no longer mainly limited by computation
time. Instead, our ability to solve larger instances is hampered by the memory required
to store the very large lists of partial solutions. Using minor-min-width did not prove
effective in reducing the number of states considerably, so it would be interesting to
see how other heuristics and pruning rules (such as simplicial vertex detection) could
be implemented on the GPU.

GPUs are traditionally used to solve easy (e.g. linear time) problems on very large
inputs (such as the millions of pixels rendered on a screen, or exploring a graph with
millions of nodes), but clearly, the speedup offered by inexpensive GPUs would also be
very welcome in solving hard (NP-complete) problems on small instances. Exploring
how techniques from FPT and exact algorithms can be used on the GPU raises many
interesting problems - not only practical ones, but also theoretical: how should we
model complex devices such as GPUs, with their many types of memory and branch
divergence issues?

Source Code and Instances. We have made our source code, as well as the
graphs used for the experiments, available on GitHub [112].
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Computing the Shapley Value of
Connectivity Games

8.1. Introduction

Motivated by the need to identify important vertices in networks, many measures
for ranking vertices have been suggested. Among these are the classical centrality
measures, such as betweenness, closeness [61] and — perhaps the simplest — degree.
However, what makes a “good” centrality measure is subjective and strongly dependent
on the application. In light of this, game-theoretic centrality measures have received
considerable interest. By viewing subgraphs of the input network as coalitions in a
coalitional game, we can apply game-theoretic measures (such as the Shapley value
[101] or Banzhaf power index [10]) to determine the importance of vertices (and,/or
edges) in a network.

The game-theoretic approach is very flexible, since we can adapt the underlying
game to obtain different measures. It can also take information other than the network
structure into account [82]. However, as both the Shapley value and Banzhaf index are
defined as an expression in terms of all possible coalitions, save for a few special cases
(see e.g. [93]), they cannot be computed efficiently.

In this chapter, we consider two game-theoretic centrality measures: one based on
the Shapley value associated with a {0,1}-valued game due to Amer and Gimenez [6],
the second a vertex-weighted variant of the same due to Lindelauf et al. [82]. Lindelauf
et al. studied these centrality measures in the context of identifying the most important
vertices in terrorist networks [82, 107]. They considered two networks: one (due to
Koschade [78]) consisting of 17 terrorists involved in a 2002 bombing in Bali, the second
(due to Krebs [79]) consisting of 69 terrorists involved in planning and executing the
9/11 attacks. Whereas for the first network they were able to compute the exact
Shapley value, for the second network this was infeasible and they considered only the
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part of the network made up by the 19 hijackers that actually carried out the attack.

Michalak et al. [94] showed that computing the Shapley value for the unweighted
game is unfortunately #P-hard. As such, it is unlikely that there exists an efficient
algorithm for computing these values. On the other hand, Michalak et al. proposed an
algorithm that is slightly more efficient than the brute-force approach used by Lindelauf
et al., called FasterSVCG. Using this algorithm, the authors computed the Shapley
value for a larger version of the 9/11 network, with 36 vertices (corresponding to the
hijackers and some accomplices). Their approach, rather than considering all 21Vl
coalitions, considers only the connected coalitions, of which there may be considerably
fewer than 2!V!. However, in the worst case, the number of connected coalitions may
still be exponential. As such, for the full 69-vertex network, running this algorithm is
still infeasible.

Michalak et al. [94] also considered an approximation method based on random
sampling and studied its performance on the 36-vertex 9/11 network. Lindelauf et
al. [107] proposed a different sampling method, structured random sampling, that aims
to be more efficient than random sampling. Using this method, they computed an
approximation of the Shapley value for the 69-vertex 9/11 network. Unfortunately,
neither method comes with any formal guarantees on the quality of the approximation.

While, in general, one should not expect to find an efficient algorithm for computing
the exact Shapley value of these games (due to the #P-hardness), we can attempt
to exploit the structure that the networks may have in order to obtain more efficient
algorithms.

We show that the Shapley value (for both the weighted and the unweighted game)
can be computed efficiently on graphs of bounded treewidth. Our result is not merely
theoretical: we also provide an implementation and show that it can be used to compute
Shapley values for graphs of practical interest.

Using our approach, we are able to compute the exact Shapley value for the
full 69-vertex network of the 9/11 attacks. Given the exact values, we evaluate the
approximation computed by Lindelauf et al. [107]. We are also able to compute the
exact Shapley value for some much larger networks, having up to a thousand vertices.

Of course, our method crucially depends on the network having bounded treewidth.
Fortuitously, the network of the 9/11 attacks has a rather low treewidth of only 8. In
general one cannot expect social networks to have small treewidth: social networks
often have large cliques, and the size of the largest clique forms a lower bound on the
treewidth of a graph (see e.g. [1] for a study of tree decompositions of social networks).
However, terrorist and criminal organizations are often well-served by keeping their
networks sparsely connected, as this helps to avoid detection and as such one would
not expect large cliques. As another example of networks that may have low treewidth,
the interaction networks in a hierarchical organization would naturally be tree-like.

Our goal is to develop an algorithm that, given a graph G with n = |V| and tree
decomposition of G' of width tw, computes the Shapley value in time f(tw)n®®1), where
f is some exponential function and n©™) a (low-degree) polynomial. As such, we hope
to “hide” the exponential behaviour of computing ¢ in a function that depends only on
the treewidth of the graph, and obtain an algorithm whose running time is (for graphs
of bounded treewidth) polynomial in n.

Specifically, we show that for a graph G of treewidth tw and a vertex v € V,
$y(v°"2) can be computed in time 20(wIogtw)ndlogn. Note that our algorithm
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Figure 8.1. Graph showing the connections between the 19 hijackers that carried
out the 9/11 attacks. Vertices are coloured according to the flights they were on.
Note that the full network consists of 69 vertices.

for computing the Shapley value requires multiplying large (O(n)-bit) integers; this
running time is achieved if using the O(nlogn)-time algorithm of Harvey and van der
Hoeven [63]. Moreover, we usually want to know ¢, (v¥°""?) for all v € V rather than
for a specific vertex. Rather than running the previous algorithm n times, we also
show that computing ¢(v) for all v € V' can be done in the same time, by reusing the
intermediate results of previous computations.

For instance, the graph considered by Lindelauf et al. that represents the commu-
nications between the perpetrators of the 9/11 attacks, consists of 69 vertices but only
has treewidth 8. While evaluating all 269 subsets of vertices is clearly infeasible, our
algorithm can compute ¢(v) in a couple of seconds thanks to the low treewidth of the
graph.

Given a graph G = (V, E), the algorithm of Michalak et al. [94] runs in time
o(([V] + \E|)|C’|)ﬂ where |C| denotes the number of connected induced subgraphs
of G. This algorithm, while offering a moderate improvement over the brute-force
approach still requires exponential time on almost all interesting classes of graphs.
We remark that there exist graphs of low treewidth that have a very large number
of connected induced subgraphs (for example, the star on n vertices has treewidth 1
and more than 2”1 induced connected subgraphs), while graphs with a small number
of induced connected subgraphs also have low treewidth: a graph with at most |C]|
induced connected subgraphs has treewidth at most 2log|C| (in fact, pathwidth at
most 2log |C|: if we fix some arbitrary vertex v, then there are at most log |C| vertices
at distance exactly r from v). While this bound is tight up to a constant factor (for
instance on an n-vertex clique), in many instances the treewidth is much smaller than
log |C.

Recently, Greco et al. [56] proposed using treewidth to compute Shapley values

IThe authors of [94] ignore in the analysis of their running time the fact that the numbers involved
in the computation of the Shapley value can get exponentially large, and thus we can no longer
presume that arithmetic operations can be done in O(1) time. Our running times do account for this,
and are thus a factor nlogn higher.
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for matching games in graphs. In the matching game, the value of a coalition is the
size of the maximum matching in the graph induced by that coalition. However, their
algorithm is based on a formulation in Monadic Second Order Logic and the application
of theoretical frameworks that allow counting of satisfying assignments of MSO formulas.
For graphs of bounded treewidth, this yield a polynomial-time algorithm, where the
degree of the polynomial may depend on the treewidth. In contrast, the degree of
the polynomial in our algorithm is fixed, and only the constant factor in the running
time is affected by the treewidth (i.e., we obtain a fized-parameter tractable algorithm).
Moreover, due to the application of these algorithmic metatheorems, their algorithm
is not very efficient in practice: Greco et al. [56] report that, even for a graph of
treewidth only 3 with 30 vertices, their implementation (using the MSO solver Sequoia
[80]) took nearly 9 minutes to determine the Shapley value. We are able to process
much more complex (i.e., higher treewidth) graphs with significantly more vertices in a
much shorter time.

8.2. Preliminaries

8.2.1. Shapley Value / Power Indices

A coalitional game consists of a set of players N (the grand coalition) together with
a characteristic function v : 2V — R such that v()) = 0. In this chapter, we
consider coalitional games where the players correspond to vertices in a graph. Given
a characteristic function, the Shapley value ®;(v) of a player ¢ is defined as [101]:

o) = 3 BEEE R s u iy - uis) (5.1)
SCN\{i} '

While this chapter focuses primarily on the Shapley value, we remark that our
techniques can also be used to compute the Banzhaf Value, which is defined as [10]:

BP) = sy D (S UL~ o(S) (82)

SCN\{i}

Essentially the same techniques may be used to compute the Banzhaf value as we
use for computing the Shapley value, merely a change in weighting factors is required.

8.2.2. Game-Theoretic Centrality

The connectivity game v°°™"

weight function:

, introduced by Amer and Giminez [6], is given by the

1 if G[9] is connected and |S| > 1,
0 otherwise.

,UCOTH’L(S) — {

Note that a coalition consisting of a single player, while connected, has value 0.
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Lindelauf et al. [82] consider several weighted variants of this connectivity game.
They assume each vertex i has a weight w; and each edge (between vertices i,j) a
weight f;;. They consider three games: one that uses vertex weights, one that uses edge
weights, and one that combines both. The games are given by the following weight
functions:

weonnl max; jes,i; fi; if G[S] is connected,
° (5) = 0 otherwise

Y ieg Wi if G[S] is connected,
0 otherwise.

,Uwconn2(S) — {

peonn3 () — {(Zz‘es w;) - Max; jes,i#; fi; if G[S] is connected,
0 otherwise.

We give an algorithm for computing v"¢°""2, that, as a byproduct, also computes
v Similar techniques can be used to compute v®¢°""! and v*¢°""3, though this
would increase the running time by a factor of n.

Henceforth, we shall use the letter v to refer to vertices of G, rather than to a game

(but we still use the notation v°°"" and v**°""2 to denote games). In the following, we
let n = |V(G)|.

8.3. An Algorithm for Computing Shapley Values

conn

In this section, we present our algorithm for computing the Shapley value of v and

Uwcoan

Theorem 8.1. Given a graph G = (V, E) and a tree decomposition T of width tw,

the Shapley value ¢,(v°""),v € V and ¢,(v*°""?),v € V can be computed in time
QO(tw log tw)n4 IOg n.

We give the algorithm for computing ¢, (v¥°°""?); the results obtained from this
algorithm can also be used to compute ¢, (v°°™"). We first show that for a given v € V,
the (single) value ¢, (v*°°""?) can be computed in time 20w 1ogtw)pd oo n. Next, note
that computing a table of the values ¢, (v*°""?) for all v € V would require running
this algorithm n times, and thus have a time complexity of 20(twlogtw) 565y To
avoid this, we then show that by reusing intermediate results of the computation, we
can preserve the 20(twlogtw) pd 166 » running time.

We begin by rewriting Equation 8] to obtain the following more suitable expression
for computing ¢, (v*°""?), by splitting the summation into different terms, depending
on the cardinality k of S:
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M

V-1
<|S' V| 18] - 1)!

‘V" (Uwcoan(S ] {U}) _ Uwconnz(s))>

k=0 SCV\{v},|SI=k

[V|-1
('S (|V|‘V‘|'S‘ - 1)' < Z UwammZ(s U {’U}) _ Z Uwaonn2(5)>>

k=0 SCV\{v}.|5|=k SCV\{v}.|S|=k

Since vW¢"2(S) = 0 whenever S induces a subgraph with more than one connected
component, the problem of computing ¢, (v*°""2) reduces to computing, for each
k, the total value over all connected subsets S C V(G) with |S| = k and v € S,
respectively v & S.

In the following, we assume that we are given a graph G = (V, E) and a nice tree
decomposition of G with width tw. Furthermore, we assume that the bag X, associated
with the root node r of T' contains only a single vertex v (which is the vertex of which
we will compute the Shapley value).

As is standard for algorithms using dynamic programming on tree decompositions,
for each node t of the tree decomposition we consider the subgraph G[t]. For each such
subgraph, we consider the subsets (coalitions) S C GJt] (i.e., all subsets of vertices
appearing in the bag X; or a bag below it in the decomposition; see Chapter [2).

Call a subset S C G[t] good if G[S] is connected or every connected component of
G|[S] has a non-empty intersection with X;.

Our algorithm considers, for each ¢ € T, all good subsets S C V(G[t]). The following
lemma shows that subsets that are not good do not count towards the Shapley value of
the game.

Lemma 8.2. Let S C V(G) induce a connected subgraph of G and let t € T. Then
either each connected component of the subgraph induced by S N V(G[t]) has a non-
empty intersection with X; or S NV (G]t]) is connected.

Proof. By contradiction. Suppose SNV (G[t]) is not connected. Then some component
of SN V(GJt]) has an empty intersection with X;. Then S cannot be connected, since
X, separates G[t] from the rest of the graph. O

Of course, there can still be exponentially many good subsets. The key to our
algorithm is that for each such subset S, we do not need to know exactly how the subset
is made up: if we know how the subset S behaves within Xy, we know how it interacts
with the rest of the graph (outside of G[t]), since X; is a separator. Subsets which
behave similarly within X; can be grouped together, thus speeding up the computation.
Specifically, each subset S C GJt] has a characteristic (w.r.t. G[t]) that consists of

e the intersection R = SN X,

e an equivalence relation ~ on S N X; such that a ~ b if and only if a and b are in
the same connected component of the subgraph induced by S,

e the cardinality of S, k = |5].

The number of distinct characteristics is 20w 1ogtw)y  For every node ¢t € T and
each characteristic (R, ~, k), we will compute
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e n:(R,~,k): the number of good subsets S C G[t] with characteristic (R, ~, k),

o w;(R,~,k): the total weight of all good subsets S C G[t] with characteristic
(R, ~, k).

We define the weight of a subset S C GJ[t] as the sum of the vertex weights, i.e.
5es ()

Suppose that r is the root of T, and X, = {v}. Then w.({v}, {(v,v)}, k) is exactly
the total weight of connected subsets S C V(G) with |S| = k and v € S, whereas
wy- (0,0, k) is the total weight of connected subsets of size k not including v. This gives
us exactly the information we need to compute ¢(v).

For every node t € T we compute n: (R, ~, k) and w;(R, ~, k) for each characteristic
(R, ~, k) in a bottom-up fashion. We may start at the leaf vertices, and then work our
way up to the root of the tree. We handle each of the cases as follows:

Leaf. Ift e T is a leaf node, then X; = {v} for some v € V. Therefore ¢ has exactly
two characteristics ¢; = (0,0,0) and co = ({v},{(v,v)},1). It is easy to see that
ne(c1) = Liwe(er) = 0 and ny(co) = 1, we(er) = w(v).

Introduce. If ¢ € T is an introduce node, then it has a child v € T such that X; =
X,U{v} for some v € V(G). Every characteristic (R, ~, k) (w.r.t. G[u]) corresponds
to ny (R, ~, k) distinct subsets of G[u], and we may extend these subsets to subsets of
G[t] by elther adding the introduced vertex v or not. Thus, the n, (R, ~, k) subsets of
Glu] give rise to

o n,(R,~, k) good subsets of G[t] with characteristic (R, ~ U{(v,v)}, k) and total
weight wy(R,~, k), and, if k =0 or R # ) to

o n, (R, ~, k) good subsets of G[t] with characteristic (RU {v},~', k+ 1) and total
weight wy, (R, ~, k) + ny (R, ~, k) - w(v),

where ~/ is the relation obtained as the transitive closure of ~ U{(v,v)} U{(v,z) |
z € R, (v,z) € E(G)}.

Note that two distinct characteristics (R, ~, k) and (R, ~', k') with R=R/, k =k’
and ~#~' may give rise (upon addition of the vertex v) to nu( ~ k) + nu(R’ ~ k)
subsets with the same characteristic (R U {v},~" k + 1) with total weight w,, (R, ~
k) twy (R~ K )+ (ny (R, ~, k) +ny, (R, ~', k') -w(v). Indeed, subsets corresponding
to many distinct characteristics may end up having the same characteristic when v is
added to them, and so the subsets of G[t] with characteristic (RU {v},~',k + 1) may
correspond to subsets of G[u] with characteristics (R, ~, k) for many different ~ (and
thus, to compute n; and wy, we should take the sum over all such ~).

The following lemma (cf. Lemma ensures the correctness of the introduce step:

Lemma 8.3. Let t € T and suppose that t is an introduce node with child u € T.
Suppose S C G[t] is a good subset. Then S N G[u] is a good subset of G[u].

Proof. Suppose that S N G[u] is not connected, and some connected component C' of
SN G[u] has an empty intersection with X,,. Suppose the introduced vertex is v. Then
v must be adjacent to some vertex of C, but this is impossible since C N X, = @) and v
is not incident to Glu] \ X,. O
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This ensures that we count each good subset S C G[t] at least once. That we count
each good subset S C G[t] at most once follows from the fact that S NGJu] corresponds
to a unique characteristic w.r.t G[t].

Forget. Ift € T is a forget node, it has a child u € T such that X,U{v} = X; for
some v € V(G). If for characteristic (R, ~, k) (w.r.t. Gu]), v € R, then (R, ~,k) is
also a characteristic w.r.t. G[t]. If v € R, then there are three cases:

1. R = {v}. Then we obtain n,(R,~, k) good subsets of G[t] with characteristic
{0,0,k} and total weight w(R, ~, k),

2. R # {v} and {(r,r)} €~. Then none of the n, (R, ~, k) good subsets of G[u] are
good for G[t], since the connected component containing v does not intersect Xy,
and there is some other connected component that does intersect X;.

3. Otherwise, we obtain n, (R, ~, k) good subsets of G[t] with characteristic (R N
Xtv N/a k)v

where ~' is the relation obtained by projecting the relation ~ on R to RN X; (i.e.,
~ =~ N{(u,v) | u,v € Xy}).

Similarly to the introduce case, multiple distinct characteristics for u may correspond
to the same characteristic for ¢; we should again take the sum over these characteristics.
The correctness follows from the following Lemma:

Lemma 8.4. Let t € T and suppose that t is a forget vertex with child u € T'. Suppose
S C GJt] is a good subset. Then S is a good subset of Glu].

Proof. If S is not connected, then S has a non-empty intersection with X;. Since
X; C X, S also has a non-empty intersection with X,,. O

Join. If ¢ € T is a join node, then it has two children [, r such that X; = X, = Xj.
Suppose that (R, ~, k;) is a characteristic of I and (R, ~, k) is a characteristic of
r and suppose that R, = R,. Then there are n;(R;,~i, k) - np(Ry, ~r, k) subsets
with characteristic (R, ~',k; + k, — |R;]) and total weight ni(Ry, ~, ki) - wr (R, ~y
) kr) +nr(Rra ~ry kr) 'wl(Rh ~l, kl) _nl(Rl, ~l, kl) 'nr(Rra ~r, kT) : (Evele(U))a where
~ is the transitive closure of ~; U ~,..

Similarly to the introduce and forget cases, multiple distinct characteristics for [, r
may, when combined, correspond to the same characteristic for ¢; we should again take
the sum over these characteristics. The correctness follows from the following Lemma:

Lemma 8.5. Let t € T' and suppose that t is a join vertex children I, € T. Suppose
S C GJt] is a good subset. Then SNV (G[l]) (resp. SNV (G[r])) is a good subset of
G[l] (resp. G[r]).

Proof. By contradiction. We show the case for the left child, the case for the right
child is symmetric.

If S C V(G[l]) then the lemma follows automatically. Therefore, assume there
exists v € S such that v ¢ V(G[l]). In particular, this means that v € G[r] \ X,.
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Suppose SNV (G]l]) is not connected and has a connected component C' with empty
intersection with X;. Since none of the vertices of S N V(GJr]) are incident to C, C
is still a maximal connected component of S, but S has at least one other connected
component (since S N V(GJ[l]) is not connected) and so is not connected, and C has
empty intersection with X; = X;. O]

By processing the vertices of the tree decomposition in a bottom-up fashion, we
can compute the values n,. (R, ~, k) and w,(R, ~, k) for all characteristics (R, ~, k) of
the root node r. As we have seen before, knowing these values is sufficient to compute
the Shapley value of vertex v. We thus obtain the following result:

Theorem 8.6. Given a graph G of treewidth at most tw, the Shapley value of a vertex
v € V(G) can be computed in time 2018 tw)nt logn and space 201w 108 tw)n? Jogn,

Proof. We assume that we are given a nice tree decomposition of G (which we may
assume has O(n) nodes). For each node, there are 2°0(wlogtw)y characteristics. To
compute the values for one characteristic requires considering (in the worst case, which
is the join node) 20(twlostw)p2 pairg of characteristics for the child nodes. For each
such pair, we perform a constant number of multiplications of O(n)-bit integers, taking
O(nlogn) time. The dynamic programming table for one node of the tree decomposition
takes up 20(twlogtw) 2 space, but at any given time we only need to keep O(logn) of
them in memory. O

Of course, this only allows us to evaluate the Shapley value for a single vertex v,
under the assumption that for the root bag r, X, = {v} (i.e., v is the only vertex in
the root bag). To compute the Shapley value for all vertices, we perform the following
operations, starting from a nice tree decomposition:

e For every join node t, we create a new node t’ with Xy = X;. t' is made the
parent of ¢, and the original parent of ¢ becomes the parent of t’. In case t was
the root, ¢’ becomes the root. Note that ¢’ is neither a join, introduce, forget, or
leaf node, however, the dynamic programming tables for ¢’ are simply equal to
those for ¢ (we shall from now on, refer to nodes such as ¢’ as nochange nodes).

e For every vertex v € V(G), we pick a node of the tree decomposition ¢ such that
v € V;. We create a copy t’ of ¢, which is made the parent of ¢, and the original
parent of ¢t becomes the parent of ¢'. In case ¢t was the root, ¢’ becomes the root.
Next, we create another copy t” of t'. t' is made the parent of ¢’ (making ¢
into a join node). We then create a series of introduce nodes, starting from ¢,
such that eventually we end up with a leaf node u, whose bag contains only v.
If we now reroot our tree decomposition so that the root becomes u, thanks to
the previous transformation, every join node remains a join node — the roles of
introduce, forget and nochange nodes can become interchanged.

Figure[8:2]shows an example of this process. Starting from a nice tree decomposition
(Figure ) a nochange node is added before the join bag A, B (Figure ) To
create a leaf bag for vertex B, we pick a bag ¢ containing it (in this example the
right child of the join bag), insert a node ¢’ which becomes the parent of ¢, create
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(@) Nice tree de- (b) With (c) Additional nodes for vertex B
composition nochange node
added

Figure 8.2. (a) A (nice) tree decomposition. (b) A nochange node is added before
the join bag A, B. (c) Extra nodes ¢ and t” are added to enable the creation of a
leaf bag containing vertex B, which can be used to re-root the decomposition.

an additional child (of ¢') ¢ (thus making ¢’ into a join node), then add a leaf bag u
(containing only B) as child of ¢ (making " into a forget node).

This process can be repeated until for each vertex v € V(G) there exists a leaf bag
containing it. Note that in the example the tree decomposition is rooted at A, but it
can also be viewed as being rooted at u (or any other leaf node); this turns ¢” from
a forget node into a nochange node, ¢’ remains a join node, while the nochange node
A, B (currently a child of the root node A) becomes an introduce node (introducing B
to the leaf node containing A).

Thus, we now have a tree decomposition that can be rerooted such that any vertex v
becomes the sole vertex in the root bag. However, this only gives a 20(twlogtw)p5 1og p-
time algorithm for computing the Shapley value for all the vertices in a given graph,
since this would require running the algorithm separately for each root vertex. However,
there is a lot of overlap in these computations, as the dynamic programming tables for
each subtree may be computed multiple times: in the example of Figure [8.2] regardless
of whether we select the original root bag (containing A) or the node u as root for
the computation, the dynamic programming table computed at node ¢ is the same.
For each node of the decompositions there are at most three distinct tables that need
to be computed: for a join bag there are three possibilities (depending which of its
three neighbours is the parent); for an introduce, forget or nochange node there are
two (again depending on the direction in which it is evaluated). By memoizing a table
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when it is computed (similar to belief propagation in Bayesian Networks, see e.g. [99]),
we thus obtain a 20(twlogtw)pd]og n_time algorithm using 20w 1ogtw)p3 space:

Theorem 8.7. Given a graph G of treewidth at most tw, the Shapley value of all vertices
v € V(G) can be computed in time 20w 1°8tw)pd1ogn and space 20w logtw)p3,

8.4. Computational Experiments

Lindelauf et al. [107] propose a randomized approximation heuristic (however, they do
not derive any guarantee on the quality of the approximation) to compute Shapley
values. They used this method, called Structured Random Sampling, to compute
Shapley values for the 69-node network of interactions between terrorists involved in
the 9/11 attacks due to Krebs [79].

These values are based on a random sampling of 10.000 permutations of the players
in the network. Lindelauf et al. report that this computation of approximate Shapley
values took 5 minutes. On the other hand, using our method for computing the exact
Shapley values of this network takes less than 5 seconds.

Ranking Name Approximation due to [107] | Exact Value
1 Mohamed Atta 0,1137 0,114099473
2 Essid Sami Ben Khemais 0,1111 0,111249806
3 Hani Hanjour 0,1107 0,110702087
4 (5) Khalid Almihdhar 0,1069 0,107273424
5 (4) Djamal Beghal 0,1070 0,107153568
6 Mahmoun Darkazanli 0,1067 0,106635302
7 Zacarias Moussaoui 0,1009 0,101188122
8 Nawaf Alhazmi 0,0995 0,099594346
9 Ramzi Bin al-Shibh 0,0985 0,098434678
10 Raed Hijazi 0,0949 0,094777059
11 (19) Ahmed Alghamdi 0,0016 0,008901234
12 Fayez Ahmed 0,0088 0,008790340
13 Marwan al-Shehhi 0,0046 0,004533725
14 (15) Saeed Alghamdi 0,0037 0,003693424
15 (11) Hamza Alghamdi 0,0090 0,003666945

Table 8.1. Results on the 9/11 networks due to Krebs. Where it differs from ours,
shown in parentheses is the rank assigned by Lindelauf et al. [107].

Table shows the results of our computation (exact values, albeit reported as
decimal representation with finite precision — our method actually computes the exact
fraction). Based on our results, we see that the approximation of Lindelauf et al. [107]
is quite accurate, correctly identifying the 10 most important players in the network
(albeit with the 4" and 5'® ranked players swapped) and computing the Shapley value
to within three significant digits. However, it overestimates the importance of Hamza
Alghamdi (who receives Shapley value 0,009 rather than the correct value of 0,0037)
and underestimates the importance of Ahmed Alghamdi: his Shapley value of 0,0089
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means he is the 11*" ranked player in the network, but he does not appear in the top-15
of Lindelauf et al. [107]. The 14*} ranked player according to Lindelauf et al. [107]
actually has rank 20, and an exact Shapley value of 0,00145 (rather than 0.0038).

This can perhaps be explained by the fact that while the top-10 vertices have
Shapley values > 0,09, the remaining vertices all have values < 0,01. Thus, there is a
rather large gap between the most important players and the rest. Correctly ordering
the vertices with low values is relatively hard, since a small change in Shapley value
can make a big difference to the rank.

Of course, the method of Lindelauf et al. [107] can be applied to any graph
rather than just to graphs of small treewidth. However, it is not yet known how the
performance of their approximation depends on the structure of the graph (and it
might be the case that it does not work well on graphs of large treewidth). Still, when
the treewidth of the graph is small, our method provides an excellent way to compute
exact Shapley values.

To evaluate the performance, we also tested our algorithm using several covert
networks found in the literature:

e A network of 71 Islamic State members in Europe (ise-extended), where edges
represent some kind of tie (such as cooperating in an attack, being related or
being present at the same location) [59].

e A network of 293 drug users (drugnet), where edges represent acquaintanceships
[115].

e A network of 36 Montreal gangs (montreal), where edges represent ties between
gangs [42].

e A network of 67 members of Italian gangs (italian), where an edge represents
joint membership of a gang [95].

For each network, we considered the largest connected component. Each of these
networks has relatively low treewidth. The Islamic State network has the highest
treewidth (13), while the Italian Gang network is very sparse (treewidth 3). We also
considered using the Noordins top terrorist network [48]. However, as this 79-vertex
network has treewidth at least 19, applying our techniques is not feasible.

Table [B.2] reports results on several benchmark graphs with varying treewidth and
number of vertices. Our implementation uses the .NET Biglnteger library, which
performs multiplications in ©(n?) time using a method similar to grid multiplication.
While there are several asymptotically faster methods for multiplication, and we
experimented with several such implementations, none of these resulted in a significant
speed up for the graphs considered. The time reported is that for computing the Shapley
values of all vertices in the graph, using the method that stores all intermediate tables
to achieve a 20(twlogtw)pd oo computation time. The time reported does not include
the time for computing a tree decomposition.

We performed our experiments on a platform equipped with an Intel Core i7-6700
CPU (3.40GHz) and 32GB of RAM (4x8GB DDRA4). In each case, the time reported is
the average of five runs.

As is clear from Table our algorithm is feasible even for graphs of moderately
high treewidth (13) and large numbers of vertices (990). Due to the use of arbitrary
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Graph Treewidth | Vertices | Edges | Time (seconds)
italian 3 65 113 0,40
montreal 6 29 75 0,23

9/11 8 69 163 4,6
drugnet 8 193 273 1.026,5

ise-extended 13 77 274 38,7

pace_005 5 201 253 29,9
pace_012 5 572 662 1.777
pace_022 6 732 1084 20.833
pace_023 6 990 1258 26.429
pace_028 7 139 202 2.003
pace_070 10 106 399 43,6

Table 8.2. Performance of the algorithm on several real-world social networks and
several benchmark graphs from the PACE 2018 challenge. For disconnected graphs,
we considered only the largest connected component in the graph (for which the
number of vertices and edges is given).

precision integers, the polynomial factor in the running time is quite significant and
often, the feasibility of our algorithm is determined not by treewidth, but by the number
of vertices. Note that several of the covert networks considered in the literature, do
indeed have rather small treewidth compared to their size.

8.5. Conclusions

Game-theoretic centrality measures are a powerful tool for identifying important vertices
in networks. We have shown that, using treewidth, two game-theoretic centrality
measures can be practically computed on graphs much larger than previously feasible,
allowing us to analyze larger networks than before.

Our algorithm runs in time 20(wlegtw)pOM) " The Jog-factor in the exponent is due
to the need to keep track of a connectivity partition. A very interesting open question
is whether the algorithm can be improved to have running time single-exponential in n,
that is, is it possible to attain a 2°0*)pOM_time algorithm? For several (counting)
problems involving connectivity, this is indeed possible: For instance, it is possible
to count Hamiltonian Cycles or Steiner Trees in single-exponential time [15] by using
approaches involving matrix determinants. Either a positive answer to this question or
a conditional lower bound ruling out such an algorithm would be interesting.

A well-known technique to speed up dynamic programming on tree decompositions
is to use subset convolution in the join procedure [114]. In a join node, to compute
the values for a specific characteristic (R, ~, k), we need to consider all ©(k?) ways to
split up k£ = a + b. It is likely that this could be improved using convolution-based
techniques.

We remark that the log-factor in the exponent represents only the worst case.
However, since we are dealing with induced subgraphs, if two vertices share an edge,
they can never be in two distinct connected components. Therefore, the actual number
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of connectivity partitions considered may be lower than suggested by the worst case
bound. It would be interesting to see if it is possible to take this phenomenon into
account when generating a tree decomposition: perhaps it would be possible to optimize
a tree decomposition to limit the number of feasible partitions (for instance, by giving
preference to bags that are cliques). Such an approach has previously been considered
for Steiner Tree [109].

Another interesting question is which other connectivity measures can be computed
using treewidth. For instance, v°°™" assigns a value of 0 to any disconnected coalition,
even if there exists a large connected component. It might be more reasonable to make
the value of a coalition equal to the size of the largest connected component inside
this coalition. It is easy to adapt our techniques to obtain an algorithm running in
time n@(*) for this case; it would be interesting to see if a fixed-parameter tractable
algorithm exists.

Source Code and Instances. We have made our source code, as well as the
graphs used for the experiments, available on GitHub [110].
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Conclusions

Treewidth and tree decompositions provide us with very versatile techniques that can
be used to solve many problems efficiently in graphs of bounded treewidth. Even in
cases where we are not operating on a graph of bounded treewidth directly, treewidth
is often an important technical ingredient.

In this thesis, we have studied treewidth from both a theoretical and practical
perspective. On the theoretical side, we have seen two classes of problems: one being
the graph embedding problems where, although treewidth can be exploited, the fact
that we have to track subsets of connected components makes it (under the ETH)
impossible to improve upon our running time of 29("/1°87) In the case of problems
on geometric intersection graphs, we have given a framework that allows us to use
treewidth-based techniques to tackle problems, even though geometric intersection
graphs can be dense and do not have bounded treewidth. In this case, we have obtained
running times of the form 20(”1_1/d), which, just like our results for graph embedding
problems, can not be improved upon unless the ETH fails.

Many problems in planar graphs can be solved in time 29(vV?) (and this is tight
under the ETH). Since this is seemingly universal behaviour, this fact has been dubbed
the “square root phenomenon”. Our results could be viewed as two new “phenomena’
a n/log n-phenomenon for solving graph embedding problems in planar or H-minor
free graphs, and a n'~'/4-phenomenon for solving problems in intersection graphs of
d-dimensional objects.

While on the theoretical side we have thus obtained tight bounds and algorithms,
we have also explored how treewidth can be used in practice. Our results on using
the GPU to compute treewidth shows that it is promising to exploit the massive
processing power of GPUs to solve NP-hard graph problems. Our results on computing
Shapley values show that treewidth can be used to solve problems on real-world graphs
from other fields (in this case social network analysis and game theory) of practical
importance.
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We conclude by giving several open problems related to the chapters of this thesis.

FPT algorithms for Graph Embedding Problems. Whereas we have shown that
SUBGRAPH ISOMORPHISM (and several related problems) can be solved in 20(%/logn)
time on planar graphs, it would be very interesting to see if it is possible to obtain
an FPT algorithm with running time 20/ logk),0(1) (where k denotes the number
of vertices of the pattern graph). Our results can be combined with those of Fomin
et al. [50] to obtain a randomized algorithm achieving this running time for the case
where the pattern is connected. Very recently [96] it has been shown that for the case
of a planar host graph (and a pattern that need not be connected), this running time
can be achieved without randomization. It would be interesting to see whether this
can be generalized to H-minor free graphs.

3-Partition. What is the best possible running time (under the ETH) for solving
3-Partition, in terms of the size of the input (given in unary)? It is fairly easy to
obtain a 20(vV71087)_time algorithm. Is this tight under the ETH, or is an improvement
possible?

Practical uses of Canonization. We have used canonization extensively in our al-
gorithms for graph embedding problems. The theoretical results we obtain have large
constants hidden in the exponent, so the theoretical bounds likely do not lead to
practical improvements. However, it is still possible that using isomorphism tests to
identify isomorphic partial solutions could be used to speed up dynamic programming,
even for problems other than graph embedding. Which problems benefit from this and
how can such isomorphism tests be implemented practically?

Finding better tree decompositions. For practical use in dynamic programming, it
is important to have good tree decompositions. While Tamaki’s algorithm [104] has
been an impressive recent advance in this area, it only computes a tree decomposition
with minimum width. It would be very helpful to have good heuristics or algorithms
that compute tree decompositions that are optimized for use with a particular dynamic
programming algorithm, for instance by minimizing the number of join bags (while
keeping the width reasonable) or trying to create bags of maximum density. Here,
the question is not only to find a good measure of the “cost” of a tree decomposition,
but to find such a measure for which a decomposition minimizing it is feasible to
compute. This will require balancing the accuracy of the measure with the complexity
of computing it.

Centrality Measures. Our results on Shapley values show that two game-theoretic
centrality measures can be practically computed on graphs of bounded treewidth. For
which other centrality measures can we obtain feasible treewidth-based algorithms?
There are many interesting theoretical and practical problems related to centrality
measures, for instance computing how the graph could be modified to affect the
centrality of a given vertex (allowing a certain player to strategically break/form
bonds).
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List of Problems

This appendix provides a list of (NP-hard) problems that were studied in this thesis.

A.1l. Classical Graph Problems

VERTEX COVER

Given: A graph G = (V, E) and an integer s.

Question: Does there exist a vertex set X C V of size at most s, such
that for any edge (u,v) € E, u € X or v € X (i.e., X is a vertex cover)?

INDEPENDENT SET

Given: A graph G = (V, E) and an integer s.

Question: Does there exist a vertex set X C V of size at least s, such that
forallu #v €V, (u,v) € E (i.e.,, X is an independent set)?

DOMINATING SET

Given: A graph G = (V, E) and an integer s.

Question: Does there exist a vertex set X C V of size at most s, such
that for all v € V, if v ¢ X then there exists an edge (u,v) € E such
that u € X (i.e., X is a dominating set)?
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r-DOMINATING SET

Given: A graph G = (V, E) and an integer s.

Question: Does there exist a vertex set X C V of size at most s, such
that for all v € V, if v € X then there exists a vertex u € X such that
v is within distance at most r of u?

FEEDBACK VERTEX SET

Given: A graph G = (V, E), a set of terminals K C V and an integer s.

Question: Does there exist a vertex set X C V of size at most s, such
that V' '\ X induces a forest (i.e., X is a feedback vertex set)?

HAMILTONIAN PATH
Given: A graph G = (V, E).
Question: Does G contain a (simple) path that visits all vertices of G?

STEINER TREE

Given: A graph G = (V, E), a set of terminals K C V and an integer s.

Question: Does there exist a vertex set X C V of size at most s, such
that K C X, and X induces a connected subgraph of G7

HAMILTONIAN CYCLE
Given: A graph G = (V, E).
Question: Does G contain a (simple) cycle that visits all vertices of G?7

CONNECTED VERTEX COVER

Given: A graph G = (V, E) and an integer s.

Question: Does there exist a vertex set X C V of size at most s, such that
for any edge (u,v) € E, u € X or v € X and X induces a connected
subgraph of G?

CONNECTED DOMINATING SET

Given: A graph G = (V, E) and an integer s.

Question: Does there exist a vertex set X C V of size at most s, such
that for all v € V, if v ¢ X then there exists an edge (u,v) € E such
that v € X and X induces a connected subgraph of G?

CONNECTED FEEDBACK VERTEX SET

Given: A graph G = (V, E), a set of terminals K C V and an integer s.

Question: Does there exist a vertex set X C V of size at most s, such
that V' \ X induces a forest and X induces a connected subgraph of G?
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TRAVELLING SALESMAN (TSP)

Given: A graph G = (V, E), a weight function w : E — R>( and a number
seR.

Question: Does there exist a (simple) cycle in G, the total weight of whose
edges is at most s and that visits all vertices?

GRAPH COLOURING

Given: A graph G = (V, E) and an integer k.

Question: Does there exist a function f: V — {1,...,k} (a k-colouring)
such that for all (u,v) € E, f(u) # f(v)?

A.2. Graph Embedding Problems

SUBGRAPH ISOMORPHISM

Given: A graph G = (V, E) (host) and a graph P = (V, E) (pattern).

Question: Does P occur as a subgraph of G, that is, do there exist subsets
V' CV(G), E' C E(G), such that P is isomorphic to (V' E’)?

INDUCED SUBGRAPH

Given: A graph G = (V, E) (host) and a graph P = (V, E) (pattern).

Question: Does P occur as an induced subgraph of G, that is, does there
exist a subset V' C V(G), such that P is isomorphic to G[V']?

GRrRAPH MINOR
Given: A graph G = (V, E) (host) and a graph P = (V, E) (pattern).
Question: Is P a minor of G7

INDUCED MINOR
Given: A graph G = (V, E) (host) and a graph P = (V, E) (pattern).
Question: Is P an induced minor of G?

ToOPOLOGICAL MINOR
Given: A graph G = (V, E) (host) and a graph P = (V, E) (pattern).
Question: Is P a topological minor of G?

IMMERSION
Given: A graph G = (V, E) (host) and a graph P = (V, E) (pattern).
Question: Is P an immersion minor of G7
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A.3. Miscellaneous Problems

SATISFIABILITY
Given: A set of m clauses C' over n variables x1, ..., z,.
Question: Does C' have a satisfying assignment?

3-SAT

Given: A set of m clauses C over n variables x1, ..., x,, where each clause
is the disjunction of exactly three variables.

Question: Does C' have a satisfying assignment?

ExacT COVER BY 3-SETs (X3C)

Given: A set (universe) X with X = 3¢ and a set C' of three-element
subsets of X.

Question: Does C have a g-element subset whose union is X7

3-DIMENSIONAL MATCHING

Given: Sets X,Y, Z, a set of triples T C X X Y x Z and an integer s.

Question: Does there exist a subset M C T of size s such that for any
(xl,yl,zl) 7é (1‘2,]42,2’2) S M, it holds that T 7é T2, Y1 7é Y2, 21 7é 22?

3-PARTITION

Given: A collection C of 3n integers x1, ..., T3,.

Question: Does there exist a partition of C into n triples, such that the
sum of each triple is equal to 237, 2,7

STRING CRAFTING

Given: String s, and n strings t1,...,t,, with |s|] = >0 | |t;].

Question: Is there a permutation IT: {1,...,n} — {1,...,n}, such that
the string t"' = tr(1) - tree) - - -t fulfils that for each i, 1 < i < [s|,
s(i) > t11(i)?

ORTHOGONAL VECTOR CRAFTING

Given: String s, and n strings t1,...,t,, with |[s| =Y " | [t].

Question: Is there a permutation IT: {1,...,n} — {1,...,n}, such that
the string t'' = triqry - trge) - - -t fulfils that for each 4, 1 < i < [s],
s(i) - t'1(i) = 0, i.e., when viewed as vectors, s is orthogonal to ¢!?

MINIMUM S1ZE TREE DECOMPOSITION (k-MSTD)

Given: A graph G, integers k, s.

Question: Does G admit a tree decomposition (T, {X; |t € T'}) of width
at most k, such that |[V(T)| < s?
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MINIMUM S1ZE PATH DECOMPOSITION (k-MSPD)

Given: A graph G, integers k, s.

Question: Does G admit a path decomposition (P,{X, | p € P}) of width
at most k, such that |V (P)| < s?

INTERVALIZING COLOURED GRAPHS

Given: A graph G = (V, E) together with a proper colouring ¢ : V —
{1,2,...,k}.

Question: Is there an interval graph G’ on the vertex set V, for which ¢
is a proper colouring, and which is a supergraph of G?

PoLyoMINO PACKING

Given: A collection of polyominoes C' and a target shape T

Question: Is it possible to pack the polyominoes in C into the target shape
of T?

Exact POLYOMINO PACKING

Given: A collection of polyominoes C and a target shape T', such that the
total area of polyominoes in C' is equal to the area of T

Question: Is it possible to pack the polyominoes in C into the target shape
of T?
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Voor het oplossen van alledaagse — en minder alledaagse — problemen zijn algoritmen
van groot belang. Een algoritme is een precies omschreven, stapsgewijze manier om een
bepaalde taak uit te voeren. Zo kan men denken aan een algoritme dat gebruikt wordt
door een routeplanner om de beste route uit te rekenen, of aan het sorteeralgoritme dat
gegevens in een spreadsheet ordent. Een algoritme is vaak een computerprogramma,
maar hoeft dat niet per se te zijn: een algoritme kan ook met de hand worden uitgevoerd
— zoals een vermenigvuldigingsalgoritme dat kinderen op de basisschool leren.

Het aantal stappen dat nodig is om een algoritme uit te voeren (c.q. de tijd die het
kost) is de compleziteit. De complexiteit geeft aan hoe de looptijd van een algoritme
afhangt van de grootte van de invoer: zo zal het uitrekenen van een (kortste) route van
Utrecht naar Madrid meer tijd kosten dan het uitrekenen van een route van Utrecht
naar Eindhoven aangezien er meer informatie moet worden verwerkt (de kaart van heel
Europa in plaats van de kaart van alleen Nederland).

De complexiteit van een algoritme bepaalt hoe goed het schaalt naar grotere invoeren:
het uitrekenen van een product door herhaald optellen is redelijk te doen voor kleine
getallen zoals 5 X 6 =6+ 6 + 6 + 6 + 6 = 30, maar voor het uitrekenen van een groter
product zoals 153 x 12 is het beter om een andere methode (= algoritme) te gebruiken,
zoals rekenen met tientallen: 153 x 12 = 153 x 10 + 153 x 2 = 1530 + 306 = 1836.

In dit proefschrift kijken we naar problemen op grafen: een graaf is een verzameling
punten (de knopen) die verbonden zijn middels lijnstukken (de kanten). Een graaf
kan bijvoorbeeld een wegennetwerk modelleren (waarbij knopen steden zijn en kanten
wegen) of een sociaal netwerk (waarin knopen mensen zijn en kanten vriendschappen).

Veel ogenschijnlijk simpele problemen op grafen zijn moeilijk op te lossen. Een
voorbeeld daarvan is INDEPENDENT SET: de vraag is om in een graaf k knopen vinden,
waarvan geen enkel paar door een kant verbonden is. Dit probleem is NP-volledig, en
het best bekende algoritme heeft een looptijd die exponentieel is in het aantal knopen
n van de graaf.

Als een graaf een bepaalde onderliggende structuur heeft, is het soms mogelijk
om die te gebruiken om een probleem sneller op te lossen. Zo zijn veel problemen
(waaronder INDEPENDENT SET) in lineaire tijd op te lossen als de graaf de structuur
van een boom heeft (d.w.z.: een graaf waar iedere knoop te bereiken is vanuit iedere
andere knoop door een uniek (kortste) pad). Vaak zijn zulke problemen ook op te lossen
als een graaf op een boom lijkt, iets wat te formaliseren is in het begrip boombreedte
(treewidth). Boombreedte hangt nauw samen met het begrip boomdecompositie. Een
boomdecompositie is een recursieve opdeling van de graaf voor middel van separato-
ren: kleine verzamelingen knopen die de graaf opdelen in qua grootte gebalanceerde
verbonden componenten.

Een planaire graaf is een graaf die in het platte vlak getekend kan worden zonder dat
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kanten elkaar kruisen. Het is welbekend dat planaire grafen gebalanceerde separatoren
van grootte O(y/n) hebben (waarbij n het aantal knopen van de graaf is). Hieruit volgt
dat de boombreedte van een planaire graaf, ook O(y/n) is. Door gebruik te maken
van standaardtechnieken voor dynamisch programmeren op boomdecomposities, is het
mogelijk om veel problemen in 2°(v™ tijd op te lossen in planaire grafen — hieronder
ook INDEPENDENT SET. Als men aanneemt dat INDEPENDENT SET in algemene grafen
niet op te lossen is in 2°(") tijd (iets wat volgt uit aanname van de Ezponential Time
Hypothesis (ETH)), dan volgt daaruit verrassenderwijs dat INDEPENDENT SET in
planaire grafen ook niet is op te lossen in tijd 200V,

Dit fenomeen blijkt bij veel (moeilijke) problemen voor te komen: als het best
bekende algoritme in algemene grafen looptijd 2°() heeft, is het probleem in planaire
grafen vaak op te lossen in tijd 2°(V™ en is het (tenzij de ETH niet waar blijkt te zijn)
niet mogelijk dat er een sneller algoritme bestaat. Dit staat bekend als het square root
phenomenon.

In het eerste deel van dit proefschrift kijken we naar graafinbeddingsproblemen. Het
meest bekende voorbeeld daarvan is SUBGRAPH ISOMORPHISM: gegeven een graaf
G (de host) moeten we bepalen of een (kleinere) graaf P (het pattern) ergens in G
voorkomt als subgraaf (dus, is het mogelijk om door kanten en knopen van G weg te
gooien, de graaf P te krijgen?). We geven antwoord op de vraag of dit probleem in
planaire grafen (en meer algemeen: in H-minor-vrije grafen) sneller op te lossen is dan
in het algemeen.

Enerzijds laten we zien dat het probleem voor een planaire host G (met n knopen)
op te lossen is in tijd 29(*/1°8™) Dit is sneller dan het beste (onder de ETH) algoritme
voor algemene grafen (met looptijd 20("1°8™)) maar langzamer dan de 2°0vV™) die
men misschien zou verwachten op basis van het square root phenomenon. Anderzijds
laten we zien dat dit optimaal is: als de ETH geldt, dan is er geen algoritme voor
SUBGRAPH ISOMORPHISM in planaire grafen met looptijd 200"/ 1°87) — het square root
phenomenon gaat dus niét op voor SUBGRAPH ISOMORPHISM.

De techniek voor het algoritme is gebaseerd op traditioneel dynamisch programmeren
op boomdecomposities, gecombineerd met canonizatie. Door te herkennen dat bepaalde
partiéle oplossingen isomorf (d.w.z.: dat twee (deel-)grafen met een mogelijk een
verschillende set knopen, toch qua structuur dezelfde graaf voorstellen) aan elkaar zijn,
is het mogelijk om, ook indien de graaf uiteen valt in een zeer groot aantal kleine
componenten, het aantal opties dat bekeken moet worden terug te brengen van 2"
naar 20(/logn),

Voor het bewijzen van de ondergrens maken we gebruik van binaire encodering, om
kleine bouwsteentjes te maken die corresponderen met een specifieke clause of variabele
uit een satisfiability-formule. We introduceren twee hulp-problemen, STRING CRAFTING
en ORTHOGONAL VECTOR CRAFTING, die als handig startpunt voor reducties om
ondergrenzen van de vorm 2£("/1987) te laten zien kunnen dienen.

Gebruikmakend van deze technieken, laten we zien dat de looptijd en ondergrens
20(n/logn) geldt voor een groot aantal graafinbeddingsproblemen in planaire grafen,
zoals SUBGRAPH ISOMORPHISM, GRAPH MINOR en TOPOLOGICAL MINOR. Ter
afsluiting van het eerste deel geven we een klein intermezzo, waarin we onze technieken
voor graafinbedding toepassen op het oplossen van polyomino-puzzels.

In het tweede deel kijken we naar problemen in geometrische doorsnijdingsgrafen.
Een geometrische doorsnijdingsgraaf ontstaat door te kijken naar een verzameling
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objecten in de ruimte, deze objecten te identificeren met knopen van een graaf, en een
kant tussen twee knopen toe te voegen als de corresponderende objecten elkaar in de
ruimte doorsnijden.

In tegenstelling tot een planaire graaf, kan een geometrische doorsnijdingsgraaf
dicht zijn (d.w.z.: veel kanten hebben) en hoge treewidth hebben. Daarom is het
verrassend dat er zich in dit soort grafen toch een soort square root phenomenon
voordoet. Het is bijvoorbeeld bekend dat INDEPENDENT SET in 29(V™ tijd kan worden
opgelost in doorsnijdingsgrafen van cirkels met straal 1 in het platte vlak, en er zijn
generalisaties van dit soort resultaten bekend naar hogere dimensies, waarbij problemen
in tijd nO@ %) of 20! Yynnen worden opgelost voor doorsnijdingsgrafen van
bepaalde klassen d-dimensionale objecten.

Wij geven een framework, waarmee het mogelijk is bestaande algoritmen voor
dynamisch programmeren op boomdecomposities aan te passen voor gebruik in dit soort
grafen. Hiermee kunnen veel problemen, waaronder INDEPENDENT SET, DOMINATING
SET, STEINER TREE en HAMILTONIAN CYCLE, worden opgelost in 20" ~"/*) tijd in
doorsnijdingsgrafen van een zeer algemene klasse van d-dimensionale objecten. Het
framework is gebaseerd op een boomdecompositie van een samengetrokken graaf, waarbij
elke knoop van de boomdecompositie correspondeert met een separator bestaande uit
een aantal cliques, die onder een bepaalde wegingsfunctie een laag gewicht hebben.

Het blijkt dat deze looptijd van 20(n' 1) optimaal is: het is mogelijk (alhoewel
dit geen onderdeel is van dit proefschrift) om te laten zien dat, uitgaande van de ETH,
er geen algoritme voor deze problemen bestaat met looptijd 2"(”171/%, zelfs in een zeer
beperkte klasse van doorsnijdingsgrafen.

Er is een interessant contrast tussen de resultaten over graafimbeddingsproblemen
en de resultaten over doorsnijdingsgrafen. Men zou namelijk misschien verwachten dat
graafimbeddingsproblemen in planaire grafen in 20(v®) tijd kunnen worden opgelost,
maar dit blijkt niet zo te zijn. Daarentegen zou men voor problemen in doorsnijdings-
grafen juist géén snellere algoritmen verwachten (aangezien de boombreedte van deze
grafen onbegrensd is), en blijken deze juist wel te bestaan.

In het derde en laatste deel van dit proefschrift kijken we naar praktische toe-
passingen van boombreedte en algoritmen op boomdecomposities. Eerst kijken we
naar parallelle algoritmen voor het berekenen van een boomdecompositie, en hoe zo'n
algoritme op de GPU geimplementeerd kan worden. Het berekenen van een (optimale)
boomdecompositie kost in het algemeen exponentiéle tijd, dus daarom is het aantrek-
kelijk om parallellisme te gebruiken om grotere instanties toch binnen redelijke tijd
op te kunnen lossen. Het gebruik van een Graphical Processing Unit (GPU) is zeer
interessant, omdat GPU’s een hele grote hoeveelheid rekenkracht bieden tegen een
relatief lage prijs. GPU’s zijn eigenlijk bedoeld voor het uitvoeren van videotaken
op een computer, maar kunnen middels General Purpose computing on Graphical
Processing Units (GPGPU) toch worden ingezet voor andere taken. Dit brengt wel
bijzondere uitdagingen met zich mee.

We laten zien hoe een klassiek DP-algoritme voor het berekenen van boombreedte
kan worden aangepast voor gebruik op de GPU, en dat het mogelijk is om hiermee
een grote versnelling in de rekentijd te halen. Ook experimenteren we met enkele
optimalisaties en de implementatie van de heuristiek “minor-min width” op de GPU.

De tweede praktische toepassing die we bekijken is het uitrekenen van Shapleywaar-
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den van connectiviteitsspellen. De motivatie hiervoor is dat, als we een sociaal netwerk
bekijken (een graaf waarin de knopen personen zijn en de kanten relaties tussen perso-
nen), we dan — op basis van de structuur van het netwerk — een rangschikking kunnen
maken van hoe belangrijk iedere persoon is. Een dergelijke rangschikking kan gemaakt
worden met behulp van een centraliteitsmaat. Er bestaan veel verschillende centraliteits-
maten, en een interessante groep daarvan zijn de speltheoretische centraliteitsmaten.
We bekijken enkele voorbeelden van speltheoretische centraliteitsmaten, gebaseerd op
de Shapleywaarden van enkele connectiviteitsspellen. Door gebruik te maken van een
boomdecompositie van de graaf, kunnen we deze maten efficiént uitrekenen. We passen
dit onder andere toe op een “sociaal”’ netwerk van Al-Qaedaterroristen, die betrokken
waren bij de aanslagen van 11 september. Voor dit netwerk was het eerder nog niet
mogelijk om de Shapleywaarde (exact) uit te rekenen, maar met onze methode is dit
goed mogelijk.
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