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Abstract The temperature of river water plays a crucial role in many physical, chemical, and aquatic
ecological processes. Despite the importance of having detailed information on this environmental variable
at locally relevant scales (≤50 km), high-resolution simulations of water temperature on a large scale are
currently lacking. We have developed the dynamical 1-D water energy routing model (DynWat), that solves
both the energy and water balance, to simulate river temperatures for the period 1960–2014 at a nominal
10-km and 50-km resolution. The DynWat model accounts for surface water abstraction, reservoirs,
riverine flooding, and formation of ice, enabling a realistic representation of the water temperature.
We present a novel 10-km water temperature data set at the global scale for all major rivers, lakes,
and reservoirs. Validated results against 358 stations worldwide indicate a decrease in the simulated
root-mean-square error (0.2 ◦C) and bias (0.7 ◦C), going from 50- to 10-km simulations. We find an average
global increase in water temperature of 0.16 ◦C per decade between 1960 and 2014, with more rapid
warming toward 2014. Results show increasing trends for the annual daily maxima in the Northern
Hemisphere (0.62 ◦C per decade) and the annual daily minima in the Southern Hemisphere (0.45 ◦C
per decade) for 1960–2014. The high-resolution modeling framework not only improves the model
performance, it also positively impacts the relevance of the simulations for regional-scale studies and
impact assessments in a region without observations. The resulting global water temperature data set could
help to improve the accuracy of decision-support systems that depend on water temperature estimates.

1. Introduction
The temperature of river water plays a crucial role in many physical, chemical, and biological processes
(van Vliet, Yearsley, Franssen, et al., 2012). Changes in water temperature affect the solubility of gases,
the metabolic rate of aquatic flora and fauna, the rate of open water evaporation, and the formation of
ice. Moreover, the influence of changing water temperatures is not only felt locally but also has regional
and downstream impacts (Olden & Naiman, 2010). Increases in water temperature can reduce the cooling
potential of a volume of water for energy production (van Vliet, van Beek, et al., 2016), increasing the water
demand of thermoelectric power plants to keep up with the energy demand. The decreased solubility of dis-
solved oxygen with increasing water temperatures (Ozaki et al., 2003), leads to reduced oxygen availability
for aquatic fauna and potential fish kill (e.g., Matthews & Berg, 1997; Lessard & Hayes, 2003) or favorable
conditions for Cyanobacteria (Robarts & Zohary, 1987). Increased open water evaporation due to higher tem-
peratures in large water bodies will reduce the water availability for hydropower and irrigation (Wanders
& Wada, 2015a) while consequently also reducing the industrial cooling potential of the remaining water.
The formation of ice can impede flow in river systems and lead to flooding upstream. This creates a need for
detailed spatial temporal information on the distribution of water temperatures globally in space and time.
This is even more relevant in regions that lack observations and where modeling provides the only solution
to acquire long-term water temperature estimates.

Even though we have large amounts of observations for water quantity (discharge) collected in the Global
Runoff Data Centre (GRDC), observations of water temperature in rivers, lakes, and reservoirs (hereafter,
water temperature) are very sparse. Most of these observations are concentrated in the continental USA,
Europe, and southeast Asia (Figure 1) and are located in major river basins. Therefore, we have relatively
little knowledge of the state of water temperature for many smaller- and medium-sized rivers, in particular

RESEARCH ARTICLE
10.1029/2018WR023250

Key Points:
• Development of a simulated

high-resolution global water
temperature data set and
high-resolution physically based
model is presented

• Increased spatial resolution results in
a better performance against global
in situ observations

• An average increase of 0.16 degrees
Celsius per decade is found for global
water temperature between 1960 and
2014

Correspondence to:
N. Wanders,
n.wanders@uu.nl

Citation:
Wanders, N., van Vliet, M. T. H.,
Wada, Y., Bierkens, M. F. P., &
van Beek, L. P. H. (Rens) (2019).
High-resolution global water tem-
perature modeling. Water Resources
Research, 55, 2760–2778. https://doi.
org/10.1029/2018WR023250

Received 3 MAY 2018
Accepted 4 MAR 2019
Accepted article online 12 MAR 2019
Published online 5 APR 2019

©2019. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided
the original work is properly cited, the
use is non-commercial and no
modifications or adaptations are made.

WANDERS ET AL. 2760

http://publications.agu.org/journals/
https://orcid.org/0000-0002-7102-5454
https://orcid.org/0000-0002-2597-8422
https://orcid.org/0000-0003-4770-2539
https://orcid.org/0000-0002-7411-6562
https://orcid.org/0000-0002-4758-108X
http://dx.doi.org/10.1029/2018WR023250
https://doi.org/10.1029/2018WR023250
https://doi.org/10.1029/2018WR023250
http://creativecommons.org/licenses/by-nc-nd/4.0/


Water Resources Research 10.1029/2018WR023250

Figure 1. Validation locations.

for South America and Africa. By deploying models, many local and regional studies have tried to provide
estimates of the water temperature in these ungauged regions or for confined water bodies.

Modeling efforts can be generally divided into two groups, statistical and physically based approaches
(Caissie, 2006). Statistical approaches estimate the water temperature by using a regression, stochastic
relation, or machine learning technique to estimate water temperature as a function of air temperature,
discharge and other variable (Morrill et al., 2005; Moore, 2006; Smith, 1981). These methods often lead to
satisfactory results; however, these statistical relationships need to be determined based on available obser-
vations. In addition, statistical methods are prone to unrealistic simulations under changing conditions in
the case of extrapolation (e.g., projections of future water temperature; Morrill et al., 2005). Statistical mod-
els have been widely deployed in modeling water temperature at country and basin level (e.g., DeWeber &
Wagner, 2014); however, global applications are sparse (e.g., Punzet et al., 2012; van Vliet et al., 2011).

Physically based models, on the other hand, use physical relations between water temperature and meteoro-
logical and hydrological variables to estimate the exchange of energy between the river and the atmosphere
(e.g., Caissie et al., 2007; Edinger et al., 1968; St-Hilaire et al., 2000). Limitations of physically based models
are that they have large data requirements and larger computational requirements compared to statisti-
cal methods (e.g., Caissie, 2006). Physically based water temperature models have been used to simulate
water temperature in individual lakes (e.g., Bueche & Vetter, 2014), major river basins (e.g., Pike et al., 2013;
van Vliet, Yearsley, Franssen, et al., 2012), and for coarse-resolution global simulations of historic (e.g., van
Beek et al., 2012) and future projections of water temperature (e.g., Punzet et al., 2012; van Vliet et al., 2013;
van Vliet, van Beek, et al., 2016). Their advantage over statistical methods is most predominant in ungauged
basins or assessing the impact of climate change on the water temperature. Physical-based water temper-
ature models allow for water temperature estimates in unobserved conditions since they follow physical
relationships to derive water temperature estimates from climatic and hydrological input data. The quality
of these estimates will, however, be dependent on the model's ability to accurately represent these physical
relationships, which can be evaluated with observation in other regions. Physical models simulate the trans-
port of energy along the river network and changes therein, whereas this is impossible for existing statistical
water temperature models to achieve. That makes physically based water temperature models highly suited
to apply at the global scale in ungauged basins and in the context of a changing climate.

We have global simulations at a coarser gridded 50-km spatial resolution or even coarse; however, at these
coarse resolutions we are not capable of simulating all the relevant processes (e.g., van Beek et al., 2012).
Thus, we lack consistent high-resolution water temperature estimates at spatial scales relevant to water man-
agers of small- and medium-sized river basins (≤50 km). Here we present a novel stand-alone 1-D dynamic
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energy routing model (DynWat) that solves both the energy and mass balance of the river system simultane-
ously and provides water temperature estimates at 10-km spatial resolution. The model takes into account
the mixing in lakes and reservoir operations that alter the water availability in downstream regions. In addi-
tion, it simulates floodplain inundation and ice formation to allow for more realistic simulations of water
quantity and temperature.

The objectives of this study are (1) develop a new physically based water temperature model, (2) provide a
high-resolution global water temperature data set to be used in other studies, (3) evaluate the performance
of the water temperature data set and trends in water temperature for the period 1960–2014.

The model equations and assumption are introduced in section 2, followed by an evaluation of the model
performance (section 3.1), the results at the global scale (sections 3.2 and 3.3), and finally a discussion and
conclusion on the potential applications and impact of these new simulations (section 4).

2. Materials and Methods
2.1. DynWat Model
In this study we used a Dynamic Water temperature model (DynWat) that solves the transport of water and
energy in the river network. The model has been significantly adapted from van Beek et al. (2012), which
includes processes such as the lateral transport of energy, ice formation, and ice breakup. We included addi-
tional processes to cover the breakup of ice, thermal mixing in large water bodies, including a dynamic
coupling for surface water abstraction and reservoirs operations, and allow for finer spatial resolution sim-
ulations by improving model stability at these high resolutions. The original model already included the
lateral transport of energy, ice formation, and ice breakup, but the updated model is able to simulate daily
water temperatures with 5 min (or finer) temporal disaggregation to ensure stable model simulations in
smaller streams and lakes. Finally, the new model can be used in a stand-alone configuration to allow off-line
coupling with other hydrological models; for this the model needs hydrological inputs on the following:

1. direct runoff or surface runoff;
2. interflow;
3. baseflow or groundwater discharge; and
4. simulated or estimated temperature of these fluxes

from any land surface model. In the stand-alone configuration the model will also need additional infor-
mation on the meteorological input, such as temperature, precipitation, and radiation terms. There is a
possibility to include the internal land surface water temperature of direct runoff, interflow, and baseflow
generated by the hydrological model directly in the DynWat model.
2.1.1. Energy Balance
We assume that each channel has a rectangular shape and full vertical mixing. Within each fully mixed
water volume we solve the surface water energy balance, following van Beek et al. (2012):

𝜌wCp
𝜕(hTw)

𝜕t
= 𝜌wCp

𝜕(vhTw)
𝜕x

+ Sin(1 − 𝛼w) + Lin − Lout − H

− LE + 𝜌wCp ∫
dx

x=0
qsTs

(1)

where Tw is the water temperature (◦K). The parameter 𝜌w is the density of water (1,000 kg/m3), Cp is the heat
capacity of water (4,190 J·kg−1· K−1), h is the water height (m), v is the velocity of water derived from solving
the kinematic wave equation (m/s). Sin is the incoming shortwave radiation (J·s−1·m−2) that is reflected with
(1 − 𝛼w), where 𝛼w = 0.15 for open water. Lin is the incoming longwave radiation (J·s−1·m−2), and the
outgoing radiation (Lout) is calculated by the Boltzmann's equation given by

Lout = 𝜀𝜎T4
w (2)

where 𝜀 is the emissivity (taken as 1 for this study) and 𝜎 is the Boltzmann constant (J◦/K). The sensible
heatflux (H, J·s−1·m−2) is calculated using the difference between water and air temperature and given by

H = kH(Tw − Tair) (3)
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where kH is the turbulent heat exchange coefficient (20 J·s−1·m−2·K−1). The latent heat (LE, J·s−1·m−2) is
given by

LE = 𝜆w𝜌wET (4)

where 𝜆w is the latent heat of water vaporization (250 kJ·kg−1·K−1) and ET is the actual evaporation (m/s).
Potential evapotranspiration is calculated using the Penman evapotranspiration formulation, using temper-
ature, radiation, and wind. Taking into account the nature of the water body (deep or shallow water, ice
cover, etc), water is evaporated at the potential rate as long as the quantity is sufficient. It should be noted
that only three driving fluxes are taken from PCR-GLOBWB (or any other land surface model) to drive the
model (surface runoff, interflow, and baseflow); all meteorological forcing is directly imposed. The lateral
fluxes qs (m/s) into the river channel are given by

qs = qdr + qi + qb (5)

where, qdr, qi, and qb are the direct runoff, interflow/stormflow, and baseflow, respectively. The land surface
model specifies the runoff from the land surface that reach the river network and that are subsequently used
in DynWat. Direct runoff result from infiltration excess or saturation excess overland flow (from rainfall or
snowmelt). Interflow/stormflow arises from lateral flow in soils on the boundary of soil and bedrock. Base
flow is the outflow from the groundwater reservoir which is linearly proportional to the storage. The average
temperature of these runoff components (Ts) is provided by

Ts =
qdr

qs
max(Tice,Tair − 1.5) +

qi

qs
max(Tice,Tair) +

qb

qs
max(Tice + 5.0,Tair) (6)

where the direct runoff has a temperature 1.5 ◦C lower than the air temperature, interflow has a temperature
equal to the air temperature and the baseflow temperature is equal to the annual average air temperature
(derived from the meteorological input). Rain temperature, and hence direct runoff temperature, is reduced
by 1.5 ◦C from the air temperature to account for the cooling of rain during the free-falling phase (Byers
et al., 1949). A minimum temperature of 5 ◦C is assumed for the baseflow to ensure that the water does
not freeze upon entering the channel network. Locations with annual average temperatures lower than this
threshold are likely heavily influenced by permafrost and will have a limited baseflow component. Using
the hydrological input from the land surface model PCR-GLOBWB 2 (Sutanudjaja et al., 2018) in the study,
temperature estimates of the different terrestrial hydrological fluxes (direct runoff, interflow, and baseflow)
have to be made. If the land surface model coupled to DynWat has an internal energy balance included, Ts
can be derived from the internal energy budget of the land surface.
2.1.2. Ice Cover
When the water temperature reaches 0 ◦C, ice growth will occur in the model. We assume that under the
ice we have a fully mixed water volume with an ice layer on top. In contrast to van Beek et al. (2012), we
do simulate mechanical ice breakup, by imposing a minimum ice thickness of 5 mm in flowing water in
the melting period. The broken ice and its energy are then laterally transported along the river channel, to
ensure full closure of the energy balance and mimic realistic ice transportation processes. If the ice thickness
exceeds the 5 mm due to refreezing, the mobility of the ice is reduced. The channel roughness is no longer
affected when the ice is freely flowing. Changes in the ice thickness because of expansion or decreasing
water surface area are accounted for by the model do allow ice formation in floodplain areas. Under all
frozen conditions the new surface water and ice energy balance are given by

𝜌wCp
𝜕(hTw)

𝜕t
= 𝜌wCp

𝜕(vhTw)
𝜕x

+ Sin(1 − 𝛼ice) + Lin − Lout − H

+ 𝜌wCp ∫
dx

x=0
qsTs

(7)

the ice layer on the water surface reduces the incoming shortwave by increasing the reflection, given by
𝛼ice = 0.8 for ice cover with a snow layer. LE is eliminated since we do not account for sublimation and no
evaporation occurs from the frozen water surface. H is calculated using the difference between ice and air
temperature:

Hice→air = kH(273.15 − Tair) (8)
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where 273.15 ◦K is the ice temperature. The energy balance and the thickness of the ice sheet can be
calculated by

𝜆𝑓𝜌w
𝜕z
𝜕t

= −Hw→ice + Hice→air − Sin(1 − 𝛼ice) − Lin + Lout (9)

where 𝜆f is the heat of fusion of ice (333.4 kJ/kg) and z is the ice thickness (m). The sensible heat from the
water to the ice is given by

Hw→ice = kwi(Tw − 273.15) (10)

where kwi is the heat exchange coefficient between water and ice (8 J·s−1·m−2·K−1).
2.1.3. Floodplain
The simulation of floodplains is important as the surface area increases with the water volume, leading to
inundation. This increased surface area increases the energy exchange between the water volume and the
atmosphere, thus allowing for faster heating or cooling of the water volume. Floodplain water storage can
also act as an energy buffer that causes regulation of the incoming lateral energy fluctuations and therefore
reduces fluctuations in downstream water temperatures. In DynWat we assume that the water in the channel
and that on the floodplain are fully mixed, which will have a slight impact on the energy buffering capacity
of the floodplain. Inundation also increases the resistance experienced by the flow, especially along the more
densely vegetated floodplains, and results in a slower flood wave propagation. To simulate floodplain effects,
subgrid elevation profiles are used to distribute the channel storage in excess of the channel depth within
the grid cell. The volume is therefore related to the total flooded area and allows the model to compute
the total fraction of flood area. This approach is adopted from the current floodplain implementation in
PCR-GLOBWB 2 (Sutanudjaja et al., 2018) and allows for more accurate simulation of the discharge and
water temperature.
2.1.4. Channel Roughness
In general, the channel roughness coefficient is a function of the water volume and the channel wetted
perimeter. In DynWat there are two additional factors that impact the surface roughness, flood plains and
ice cover. In general, the roughness of the channel is used to compute the stage-discharge relation of the
channel. The flow velocity is dependent on the channel roughness, where a higher roughness will cause
lower flow velocities and consequently stronger flood wave damping. A detailed description on the kine-
matic wave routing procedure used in DynWat can be found in Winsemius et al. (2013) and Sutanudjaja
et al. (2018).

The Manning's roughness coefficient under nonflood and ice-free conditions (nc, s/m1/3) equals 0.04 follow-
ing Sutanudjaja et al. (2018), which equals clean and winding streams. When the channel storage exceeds
the potential channel storage, water flows into the floodplains which have a higher roughness due to the
presence of tall vegetation that is not permanently flooded. Following Winsemius et al. (2013) the equation
is modified to

n = 1.5

√
Pc

Pc + P𝑓

n1.5
c +

P𝑓

Pc + P𝑓

n1.5
𝑓

(11)

where nf is the Manning's coefficient of the floodplain (−), and Pc and Pf are the wetted perimeters of the
channel and floodplain, respectively. For the floodplains nf is constant and set to 0.1 to represent floodways
with heavy stand of timber and underbrush. In case of ice cover, the Pr increases due to the ice cover that
adds friction on the top of the channel. This changes the equation to

n = 1.5

√
Pc

Pc + w
n1.5

c + w
Pc + w

n1.5
i (12)

where w is the river width and ni is the Manning's coefficient of ice. We use the empirical relationships
derived by Nezhikovskiy (1964) and given by

ni = 0.0493h−0.23z0.57 (13)

where h is the water depth (m) and z is the ice thickness (m).
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2.1.5. Lakes and Reservoirs
The equations above hold true for fully vertically mixed water volumes, which is not the case for lakes and
reservoirs where the surface water energy balance is solved only for the well-mixed epilimnion and the
underlying thin metalimnion (thermocline) that are thermally active. For lakes and reservoirs, the depth of
the thermocline (Dt) is derived from Davies-Colley (1988) and calculated by

Dt = 9.52𝑓 0.425 (14)

where f is the fetch length of a water body. The fetch length is obtained from the GRanD database (Lehner
et al., 2011), where we assume a rectangular shape for natural water bodies and a triangular shape is used
for a reservoir (Liebe et al., 2005). This representation of waterbodies creates a faster thermal response in
deep waterbodies that would otherwise have a significant cooling effect on the downstream water temper-
ature. If a thermocline develops the energy and water below the thermocline remains inactive as long as
the thermocline persists. In that case, only water and energy are exchanged with the water volume above
it. When the temperature profile becomes unstable (e.g., in spring or autumn), the profile is inverted and
full mixing of the total water volume and the associated energy occurs. We presently exclude human influ-
ences such as the release of cooling water and cold water releases from reservoirs in DynWat. A lack of
detailed global observations does not allow the model to constrain these operations in a realistic fashion.
Reservoir operations in the current version of the model are optimized for hydropower, and similar to the
reservoir operations currently implemented in PCR-GLOBWB 2 (Sutanudjaja et al., 2018). In general the
reservoir storage is kept between 30% and 70% of the full capacity and the outflow is scaled proportion-
ally to the annual average discharge. When the storage exceeds 70% the outflow is increased up to bankfull
discharge to prevent reservoir flooding while avoiding downstream flooding. Similarly, reservoir outflow is
reduced to prevent complete exhaustion of reservoir storage if a drought were to occur.

2.2. Comparing Model Resolutions
To evaluate the performance of the high-resolution DynWat model, we use water temperature simulations
at two spatial resolutions of roughly 10 and 50 km at the equator (Table A1). Note that the 50-km resolution
is that of previous studies on global water temperature modeling (van Vliet, Yearsley, Ludwig, et al., 2012;
van Beek et al., 2012) The model solves the surface water energy balance at the daily timestep, with temporal
disaggregation of a 5-min subtimestep for numerical stability.

In each timestep, the model uses daily runoff estimates from the global hydrological model PCR-GLOBWB
(Sutanudjaja et al., 2018) as input to the routing model. The input is separated into direct runoff (qdr), inter-
flow (qi), and baseflow (qb) to allow for computation of the runoff temperature (Ts, equation (6)). Both
DynWat and PCR-GLOBWB 2 use ERA-40 and ERA-Interim forcing (Berrisford et al., 2011; Dee et al.,
2011; Uppala et al., 2005), with an elevation correction to account for spatial heterogeneity in the elevation
(Sutanudjaja et al., 2018), to generate water temperature and runoff estimates for the period 1960–2014.
The hydrological input from PCR-GLOBWB 2 has been extensively validated in multiple studies and shown
to produce accurate estimates of daily discharge (Sutanudjaja et al., 2018; Van Beek et al., 2011), simulate
hydrological extreme events (e.g., He et al., 2017; Marx et al., 2018; Thober et al., 2017; Wada et al., 2013;
Wanders & Van Lanen, 2015), and reproduce decadal teleconnections (e.g., Wanders & Wada, 2015b). The
river routing in DynWat is similar to that of PCR-GLOBWB and for the discharge simulation performance,
we refer to Sutanudjaja et al. (2018) for the latest evaluation.

In addition to these two physically based scenarios, we used air temperature. As a comparable “simula-
tion” we use air temperature as a proxy for the water temperature (Table A1), which is often done when
a water temperature model is not available. This is not an advanced statistical method as used for more
complete statistical water temperature models; however, it will serve as a “poor man's” approximation for
water temperature and to provide some indication of the skill of the physically based simulations. Here we
use weekly average air temperature to have an estimate of the water temperature at that particular loca-
tion as a predictor of the water temperature. While ideally one would like to deploy a temporal averaging
of the air temperature based on the water bodies or river size, or calibration of the aggregation period at
the global scale (e.g., Punzet et al., 2012), this is beyond the aims of this study. Therefore, we have adopted
a constant weekly aggregation to simulate medium sized. We will show the impact on the air temperature
model performance for the different stream sizes, to provide some insight into the impact of this decision.
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This temperature-based method does not include any buffering effects that occur in lakes but acts as a good
proxy for water temperature when no physically based or statistical model is available.

2.3. Evaluation Metrics
The different scenarios are compared to observations from the United Nations Environment Programme
Global Environment Monitoring System (GEMS) data set at a total of 358 locations (Figure 1). Most locations
are located in the Northern Hemisphere, with a bias toward Europe, the United States, and southeast Asia.
We have an average of 300 observations for each station, where some stations have daily observations, and
some have sparse instantaneous measurements on a 4-weekly level. We evaluate the scenario performance
based on the correlation coefficient (R) and root-mean-square error (RMSE) between daily observations
and simulations.

2.4. Spatial Trend Analysis
To study the effect of changes in the historic climate, we compute the trends in the water temperature simu-
lations. We use a linear trend estimate to find the degree of change in the water temperature over the period
1960–2014. We only assume linear trends when testing for a significant deviation from the no change base-
line with a p < 0.05. We exclude rivers with discharge <10 m3/s for the spatial trend analysis, because
smaller rivers are likely not to have enough heat-carrying capacity and their trends in Tw are likely only to
show trends in local Tair. The linear trend analysis is performed for the annual mean, minimum, and max-
imum Tw. In addition, we will perform a comparison between the trends in annual mean Tw and Tair to
evaluate the impact of lateral energy transport on local trends in Tw. This comparison will also show where
it is important to use one of the physically based Tw simulations compared to the benchmark Tair model run.

3. Results
3.1. Validation of Modeled Water Temperatures
In general, we observe a performance improvement with increasing spatial resolution of the model simula-
tions (Figure 2). We can distinguish a clear benefit in the correlation values when using DynWat over the
benchmark approximation that Tw = weekly average Tair. The advantage of the higher resolution is less evi-
dent as no significant difference was found for the 50-km (median daily R = 0.869) resolution compared
to the 10 km (daily R = 0.861). We do observe a significant improvement (90% confidence level) for the
median RMSE values, from 3.4 ◦C (50 km) to 3.2 ◦C (10 km) with the Tair scenario showing a RMSE of 4.0
◦C. In the median RMSE, we observe a decrease of 0.2 ◦C for individual locations for all the catchment sizes.
This indicates that the higher-resolution model shows lower deviations from the observed temperature and
is better able to simulate the observed water temperatures. The highest impact is found for rivers with a dis-
charge <10 m3/s, where the input of the land surface model PCR-GLOBWB 2 has shown to provide more
reliable runoff simulations at the finer 0.0833◦ resolution (Sutanudjaja et al., 2018). The water temperature
model benefits from these improved runoff estimates, resulting in a reduction in RMSE.

Figure 2 shows that none of the observed rivers have an RMSE close to 0 ◦C, which could be explained by the
spatial mismatches in station locations and model simulations. The model simulations provide the channel
(or lake) average water temperature, whereas the observations are taken at specific water depths. For most
systems we can assume a fully mixed system; however, some rivers will have temperature gradients within
the water profile.

In general we observe that model biases reduce with increasing spatial resolution of physical realism of the
simulations (Figure 2). The 10-km simulations have an average bias of only −0.3 ◦C, which is significantly
lower than the −1.0 ◦C and −2.1 ◦C found for the 50 km and Tair, respectively. The improvement in the
bias is equally distributed across the different catchment sizes indicating a global improvement in the water
temperature bias going from 50 km to the finer 10-km resolution.

Difference between the two physically based applications at different spatial resolutions (10 and 50 km) can
be attributed to the statistical elevation correction of the temperature, finer spatial resolution of the land
surface parameterization, and changes in the hydrodynamic network. The increased physical realism in the
simulations resulted in improvements in the R (median improvement = 0.01), RMSE (0.1 ◦C) and model
bias (0.23 ◦C, Figure A1). Maps of the performance metrics can be found in the appendix in Figure A2.
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Figure 2. Evaluation of global water temperature simulations: Top row gives the correlation (R) between simulated and observed for different river sizes.
Middle row gives the root-mean-square error (RMSE) for the three simulation scenarios. Bottom row gives the bias between observed and simulated water
temperatures for the three simulation scenarios.

Detailed time series of individual rivers show that the simulated water temperature shows similar behav-
ior to the observed time series. They also show that the coarse-resolution simulation shows a more rapid
response to changes in air temperature and radiation (Figure 3). The coarse Tw simulations show a higher
degree of variability indicating a closer resemblance to the more rapid changes in the air temperature signal.
This is likely caused by the lower channel and groundwater storage capacity in the coarse scale simulations,
which is a result of the upscaling of the groundwater parameterization in the hydrological model and upscal-
ing of the precipitation input (Table A1). The coarser groundwater parameterization results in an on-average
faster groundwater response to precipitation, as the very slow responding groundwater aquifers are spatially
aggregated with faster responding regions. In addition, we observe that the spatial heterogeneity in chan-
nel roughness results in longer travel times of the river discharge in the 10-km simulations. We have also
observed a shortened lagged cross correlation between anomalies in Tair and Tw for the 50-km simulation,
confirming this hypothesis.

Simulations are close to the observations for both the fine- and coarse-resolution simulations (Figure 3).
Both scenarios show a general underestimation of Tw under cold/winter conditions. The largest deviations
are observed when the water temperature reaches a temperature close to freezing point, at the beginning
of the winter. This is likely caused by insufficient buffering in the water bodies, due to an underestimation
of the mixing volume present in the lakes and reservoirs during the autumn lake turnover. Other potential
causes could be the enhanced ice formation isolating the river channel and the underestimation of runoff
and baseflow water temperature which are now related to the air temperature and annual average air tem-
perature, respectively. This behavior is observed for some rivers in the boreal winter, where the model has
the tendency to simulate winter water temperatures that are too low compared to the observations.
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Figure 3. Comparison between observations (black dots), high-resolution simulation (green), low-resolution simulation (red), and air temperature model
(purple) for the Rhine (top), Mekong (middle), and Tom river (bottom).

Tropical rivers with a lower intra-annual variability tend to be simulated well; the model clearly captures the
annual fluctuations that are caused by the seasonal cycle in the discharge and air temperature (Figure 3).
Small deviations from the observations are found in winter when the discharge is low. Precipitation events
in that time of year cause the river temperature to drop rapidly as a result of the high volume of cold pre-
cipitation water on top of the low-channel storage. The extent of this decrease in Tw is underestimated by
DynWat, due to the fact that the precipitation temperature is overestimated and assumed to be equal to
the air temperature (van Beek et al., 2012). Again, we observe a slower, more smoothed response of the
higher-resolution simulations.

Arctic and continental river simulations clearly show the signature freezing-thaw cycle that is also captured
by the observational records. For example, in the Tom River in Russia, we see a strong seasonal cycle that is
well captured by DynWat in both fine and coarse spatial resolutions. The fine-resolution simulations tend to
have a shorter ice cover period, which starts later and often after the observations show frozen conditions.
On the other hand, the high-resolution simulations have a better match with the observations for the ice
breakup in spring.
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Figure 4. Annual average water temperature (Tw) for the period 1960–2014; only rivers with more than 10 m3/s
annual average discharge are shown.

Figure 5. Average annual fluctuations in water temperature (Tw) for the period 1960–2014; only rivers with more than
10 m3/s annual average discharge are shown. Fluctuations are computed by calculating the standard deviation of daily
Tw values.
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Figure 6. Decadal trends in annual mean water temperature (Tw) for the period 1960–2014, only rivers with sufficient
observations (≥10 years) are shown. Trends are assumed to be linear and the slope coefficients are provided for the
observations (black) and high-resolution model simulations (blue).

3.2. Spatial Patterns
The spatial patterns of water temperatures clearly show a high correlation with the annual air temperature
distribution around the world. Elevated regions in the world's major mountain ranges, the Andes, Alps,
Himalayas, and Africa's Eastern Rift mountains, clearly reduce the water temperature compared to the sur-
rounding regions (Figure 4). Regions that experience the largest annual fluctuations in water temperature
can be found in the Continental United States and Central Asia, where the continental climate has a big
impact on the seasonal cycle of Tw (Figure 5). We see that mountainous regions (e.g., Alps and Himalayas)
show relatively stable temperatures caused by the snow and glacier melt, which are the main contributors
to the streamflow in these regions. We also find that the tropical regions show a relatively stable tempera-
ture regime, due to the relatively constant air temperature and high annual precipitation totals. This leads
to large volumes of stored water that have a buffering effect on the fluctuations in the energy influx in
the region.

Figure 7. Decadal trends in annual mean water temperature (Tw) for the period 1960–2014, only rivers with more than
10-m3/s annual average discharge are shown. Trends are assumed to be linear, only significant trends are shown here.
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Figure 8. Difference in decadal trends in annual mean water temperature (Tw) and air temperature (Tair) for the
period 1960–2014, only rivers with more than 10-m3/s annual average discharge are shown. Trends in Tw and Tair are
assumed to be linear, only significant difference between trends are shown here.

3.3. Trends
The spatial pattern for the observations is similar to that observed for the simulations (Figure 6). For the lim-
ited number of stations with sufficient observational data we find that the simulated and observed trends are
in the same order of magnitude and direction. At the global scale, we observe an increase in water tempera-
tures of 0.163 ◦C per decade, where the Northern Hemisphere clearly shows a strong warming trend (0.22 ◦C
per decade). The tropics show a mixed pattern with distinct regions of water temperature cooling and warm-
ing (Figure 7). The strongest increases in the average annual water temperature are found in the Congo
river, where we see rivers that have a warming trend close to 1 ◦C per decade for the period 1960–2014. Some
strong decadal increases in water temperature are found in locations where reservoirs were constructed in
the period 1960–2014. The reservoir construction resulted in an increased water volume that often results in
an increase in the annual average temperature (e.g., Lake Victoria). This is especially true for regions with
high air temperature, where the incoming radiation will have a significant warming effect on the reservoir
Tw. Change in the precipitation pattern can also cause changes in the water temperature. Increased precip-
itation in summer can lead to increased Tw, which will result in a higher annual average Tw. This is, for
example, the case for Lake Victoria in Africa, where increased precipitation in the warm season (Kizza et al.,
2009), in combination with changes in reservoir management, leads to a strong increase in annual Tw. For
Lake Victoria we observe an increase in annual Tw of 1.0 ◦C per decade, while the surrounding show lim-
ited to no warming. On the other hand, strong cooling in Tw is found in the Amazon region, which is largely
consistent with the observed decrease in air temperature in the ERA forcing data and increase of precipita-
tion in the colder winter. The advantage of physically based models becomes evident in these trend analysis,
as these models allow to model Tw and streamflow changes in conditions that have previously not been
observed (e.g., climate change). They are also capable of mitigating these trends along the river network, to
show downstream impacts of the local warming. The Congo shows strong increases in water temperature
near the outlet, whereas the rest of the region indicates a cooling in Tw.

Further analysis was done by comparing the trends in annual average air temperature with the trends in
annual average water temperature (Figure 7). The resulting map (Figure 8) indicates where changes in
air temperatures are not the dominant driver for naturalized water temperature changes. We observe that
changes in the incoming radiation are an additional driver of water temperature changes, especially in
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Figure 9. Decadal changes in annual minimum (top row), annual mean (middle row), and maximum (bottom row) water temperature.

regions with a reduction in cloud cover (e.g., the Congo river). Strong discrepancies between Tw and Tair
trends are also found where increased air temperatures lead to a significant increase in the snow and glacier
melt. The resulting enhanced cooling effect leads to a strong decrease in annual average water tempera-
tures downstream of the glacier and snow regions (e.g., Himalayas and Andes). Other deviations are found
when heat transport to downstream regions causes trend differences between local Tair and regional Tw (e.g.,
Danube, Nile). The differences observed in the Arctic regions of Russia and Canada are attributed to the
freezing of rivers, where the annual average Tw is fixed at 0 ◦C and trends in Tair cannot be related to the
water temperature. Finally, we note that the inclusion of human-induced local impacts (e.g., cooling water
power plants) would likely alter the simulated spatial pattern of temperature difference.

The simulated trends in annual minimum and maximum temperature show a more extreme picture
(Figures 9). We see a strong increase in the annual minimum temperature for the Tropics, especially in the
major river systems, whereas it is expected that the minimum water temperature in most parts of the high
Northern Hemisphere will remain 0 ◦C.

4. Discussion
4.1. Evaluation
In general, we observe a very good correspondence between the modeled and observed Tw. This indicates
that at the locations where we do have observations, DynWat is capable of capturing the temporal dynam-
ics without further need for calibration or discharge estimates from additional data sets. The skill that is
observed at these validation sites gives confidence that DynWat (i) can be used at the global scale; (ii) pro-
vides accurate Tw estimates and the validation sites; and (iii) can provide reliable input for other applications,
like estimating cooling potential for power plants or study the impact of water temperature on biodiversity.
It should be noted that it remains difficult to evaluate the performance of DynWat in regions with limited
observations like the tropics, but given the general high skill in other regions without calibration it is likely
that the model will have a reasonable performance in those regions.
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The spatial patterns found in this work show a strong resemblance with the spatial patterns found by earlier
studies by van Beek et al. (2012) and other global studies. The spatial pattern is strongly correlated with
the spatial distribution of air temperature; however, we observe that strong lateral energy transport occurs
in many major river systems in the world. Compared to van Beek et al. (2012) the current model has more
water bodies (i.e., reservoirs and lakes) included, which dampen the impact of air temperature changes. We
can observe that most of the major river basins show a disconnection between the air temperature trends
and the water temperature trends due to the changes in other factors determining water temperature, such
as precipitation and evaporation, in combination with the strong lateral energy transport.

4.2. Spatial Resolution
The increase in spatial resolution from 50 to 10 km has a positive impact on the model performance in terms
of reducing the RMSE and model bias while at the same time increasing the local relevance of the Dyn-
Wat model. The model shows an increased ability to reproduce stream temperature records at finer spatial
resolution, which indicates that the model can be used with confidence at the higher 10-km resolution. Com-
pared to calibrated statistical models (e.g., Laanaya et al., 2017) the physically based uncalibrated models
shows a good performance. An advantage of using an uncalibrated physical model is that it theoretically will
also allow application in ungauged basins without loss of performance (Hrachowitz et al., 2013). The newly
released 10-km resolution water temperature data set will, therefore, help to address the current challenges
of providing locally relevant information with uncalibrated globally applicable models (Bierkens et al.,
2015; Wood et al., 2011).

The new 10-km simulations will provide additional insight for ecological studies where it is important to
have accurate estimates of both flow volumes and water temperatures. For many relevant biochemical pro-
cesses in the surface water, the key driver of the chemical reactions is the water temperature. We have now
provided new insights in the exact temperatures at 10 km spatial resolution. This is especially important in
catchments that are smaller than a single 50-km grid cell (91% of the global land area in DynWat). The strong
reduction in the simulated temperature biases (Figure 2), indicates that the finer spatial resolution will also
help in advancing the global simulation of ecological and chemical processes in smaller catchments.

4.3. Model Development
We showed that both the increased spatial resolution and the improved physical realism of the simula-
tions led to improvements in the comparison to observed water temperatures. Although this is encouraging
and shows a relatively good match between simulated and observed water temperature, potential areas of
improvement can be found in the meteorological forcing data, the hydrological input data, the parameteri-
zation of lake and ice processes, more realistic hydrodynamic modeling and finally human impacts on water
temperature, such as anthropogenic heat effluents and cold water releases from reservoirs. The meteorolog-
ical forcing of the model can be improved by changing from the relatively coarse, but globally available, ERA
forcing data in combination with statistical elevation downscaling, to a higher quality local or regional data
set. Unfortunately, it is difficult to find consistent high-quality forcing data for longer time periods as well as
for the global domain. Currently, DynWat uses a precipitation temperature correction of 1.5 ◦C compared to
the actual air temperature; preferably, this correction could be removed and precipitation temperature from
either observations or dynamical models could be used as input.

The hydrological input data could be improved by using input from a hydrological model that includes an
energy balance and provides temperature estimates of the runoff and baseflow fluxes. PCR-GLOBWB 2 is
not able to provide these estimates, but is selected because it provides unique simulations that include the
human-water interactions. The parameterization of lakes and ice processes could be improved. Lake mixing
processes in DynWat could be improved by including more detailed information on the lake characteristics.
Ice process descriptions are currently hampered by the lack of accurate ice formation and breakup process
descriptions. The latter is difficult to resolve, while the lake characteristics require more advanced informa-
tion than currently provided in the GranD database (Lehner et al., 2011). Since DynWat already includes
both reservoirs and surface water abstractions, we account for two processes that a significant impact on the
water volume and consequently the water temperature in the major water bodies. In the current version of
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DynWat the water is transported using a kinematic wave approximation, which cannot resolve back-water
effects. This could be important when two river branches with different temperatures join. More realistic
routing options exist (e.g., Hoch et al., 2017) but are more computationally expensive and require further
development before they can be implemented in DynWat. In the current version of DynWat we assume a
constant absorption rate (equation (1)), given the impact of process-like sediment transport and algae growth
(which is linked to water temperature), we acknowledge that this is not very likely to occur in real-life
situation and a potential point for improving the model. As a solution, satellite imagery could provide bet-
ter global estimates of the absorption rate for the large river system, or the model could be coupled with
algae and sediment transport models. Finally, improvements can be made by including the location of heat
effluents (e.g., van Vliet, Wiberg, et al., 2016) and the cold water release from reservoirs. The latter can be
included since DynWat already includes reservoirs and their operations.

In conclusion, all of these additions mentioned above are likely to lead to improved water temperature sim-
ulations but are currently difficult to achieve due to lack of data. For both human-influenced processes, we
also need to make assumptions on the likely operating rules and local regulations. This will make it more
difficult to include these additions in DynWat, but even a simple global implementation could already show
great potential as demonstrated by van Vliet, Wiberg, et al. (2016) van Vliet, Sheffield, et al. (2016).

4.4. Global Patterns
The global patterns of water temperature show a strong correlation with global air temperature patterns,
with high temperatures around the equators, and decreasing temperatures with increasing latitudes. The
importance of water temperature modeling is evident in the regions with strong seasonal changes in water
temperature (e.g., continental climates; USA, Central Asia). The use of a physically based model is also
important in regions with a lateral transport of water into adjacent regions with a different temperature
regime (Olden & Naiman, 2010). For example, simulations of the Nile show that DynWat water from the
southern parts of Egypt and Sudan is transported to the Mediterranean Sea (Figure 8). A physically based
approach is required under these circumstances to be able to capture the complex interaction between the
atmosphere and the water temperature.

We observe strong trends in the water temperature for the Northern Hemisphere, while cooling trends are
observed in large parts of the tropics and southeast Asia. These trends are strongly correlated to the trends in
air temperature, but discrepancies are observed in the Arctic regions and the tropics. For larger river systems
we observe that the trends in the water temperature can differ substantially from the trends in air tempera-
ture, due to the lateral displacement of water. Increasing air temperatures can also lead to increases in snow
and glacier melt resulting in an increased contribution of these components to the total runoff (Lutz et al.,
2014) and consequently result in a local cooling of the water temperature. As a result statistical models are
unlikely to observe these cooling effects due to the complicity of the lateral energy transport (Morrill et al.,
2005). This study shows that by including the physically based relationships we can simulate the impact of
these changes in the hydrological system on the water temperature.

Finally, we observe clear increasing trends in annual average, minimum and maximum water temperatures.
The spatial pattern and associated impact clearly differ across the world and are associated with differ-
ent processes. Regions with cooling are mainly observed around the equator, where precipitation amounts
increase in the cold periods (e.g., Peru, Columbia; March–May). This will reduce the annual average tem-
perature of the precipitation that reaches the river system, resulting in an overall cooling of the river water.
Strong patterns in the minimum water temperature are caused by the presence of ice in large regions of the
Northern Hemisphere, resulting in a constant annual minimum temperature. This behavior is also observed
for the Irtysh (Figure 6), where the annual minima temperature remains 0 ◦C, resulting in no trend for the
annual minimum temperature. The strong increase in the major rivers is the result of increased incoming
radiation leading to temperature increases in these larger water bodies with longer travel times. On the other
hand, we observe strong trends in the annual maximum temperature for Northern Canada and Russia. The
mixed pattern in trends in the annual maximum temperature is a result of the buffering effect of large rivers
and lakes, whereas small streams are more prone to air temperature extremes.
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The constant increase in water temperatures indicates that future water temperature might show an even
stronger response. This was also shown by van Vliet, Yearsley, Ludwig, et al. (2012) van Vliet, van Beek, et al.
(2016), and future climate simulation could be extended using the new DynWat model.

5. Conclusions
In this work, we have provided the first global 10-km water temperature data set for 1960–2014 and a new
Dynamic Water temperature model (DynWat). The new water temperature models include additional pro-
cesses to cover the breakup of ice, thermal mixing in large water bodies, including a dynamic coupling for
surface water abstraction and reservoirs operations to allow for finer spatial resolution simulations. The
uncalibrated model shows a good correspondence between the modeled and observed water temperature,
providing confidence in the overall quality of the data set in ungauged locations. The newly developed
database allows impact modelers and others that require detailed water temperature data to have a readily
available data set with high-resolution global coverage. Water temperature is a key driver in chemical and
ecological processes and this model and data set could help to better simulate and understand these com-
plex interactions. Potential applications could include the following: computation of cooling water potential;
ecological impact assessments; and climate change assessments. Finally, the new publicly available DynWat
model also allows new studies to use this stand-alone model and couple it to other hydrological models to
produce spatially distributed water temperature simulations for other modeling work.

Appendix A: Additional Tables and Figures for Clarification
Modelling scenarios are provides in Table A1. The improvements achieved by increased physical modelling
realism are provided by Figure A1, where the histograms show the difference between the default and new
modelling setup. Finally, the spatial patterns in performance metrics are provided in Figure A2, where most
observations are located in Europe and the United States.

Table A1
Different Scenarios Used in This Study

Spatial Spatial downscaling
Application resolution meteorology Hydrodynamics
0.0833◦ 10 km Yes Yes
0.5◦ 50 km No Yes
Tair 10 km No No

Figure A1. Evaluation of improvement in global water temperature simulations at 10 km as a result of including the breakup of ice, thermal mixing in large
water bodies, a dynamic coupling for surface water abstraction, and reservoirs operations. Left panel gives the improvements in correlation (R), middle panel
the root-mean-square error (RMSE), and right panel provides the bias between observed and simulated water temperatures.
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Figure A2. Spatial validation of water temperature simulations against observations for correlation (top row), root-mean-square error (middle row), and bias
(lower row). Left column gives the high spatial resolution 10-km simulations, middle column is the 50 km, and right column provides the Tair comparison
model.
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