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A B S T R A C T

The Third Pole is the headwater region for Asian major rivers providing water for millions of people inside and
around. Driven by rainfall and snowfall with large spatial and temporal variation in their amount, water
availability reviewed here is buffered by snow, glaciers, groundwater and springs. Most glaciers have been losing
mass contributing to annual excess discharge. Significant depletions of groundwater and drying up of many
springs are observed in some areas of the region. Summary of runoff components across the region shows rainfall
is the major contributor, followed by snow and glacier melt, though their relative contribution varies among
basins. Modelling studies project a changing seasonality of river runoff, increased extremes and a high variability
among the river basins.

1. Introduction

The Third Pole is known as the fresh water tower of Asia [21,85].
Outside the polar regions, it has the highest concentration of snow and
glaciers, with a glacial volume of about 7000 km3 [23] and acts as a
source region for large river systems in central, southern, and eastern
Asia [64] (Fig. 1). Water from the snow and glaciers along with rainfall
feed the major rivers originated on the Third Pole and water from these
river basins fulfill the needs of drinking water, irrigation, energy, in-
dustry and sanitation for about 210 million people within the region
and about 1.3 billion people downstream of the region [6].

Owing to recent changes in climate, the uncertainty about water
availability is increasing in the region [49]. During the period of 1901 –
2014, the annual mean surface air temperature has increased by over
0.104 °C per decade, with most parts of the Third Pole experiencing a
warming trend, especially the Tibetan Plateau [62]. Similarly, the trend
of precipitation has also increased in the region, more rapidly since the
mid – 1980’s [62], though the interannual variability of precipitation is
very complex with higher variability found in the central and western
part on the Tibetan Plateau [47]. Increases in temperature and pre-
cipitation as well as changes in precipitation patterns, and accelerated
melting of snow and glaciers all contribute to the increasing uncertainty
in water availability of the region [22].

Many review studies have assessed the changes in climatic variables
and their impact on water resources within the sub-regions of the Third

Pole. Bibi et al. [9] assessed the recent climatic changes over the Ti-
betan Plateau and the responses of cryosphere, biosphere and hydro-
sphere. Similarly, Yang et al. [84] reviewed the changes in climatic
variables on the Tibetan Plateau and then assessed the response of
water and energy cycles to the changes in those variables. Cuo et al.
[16] reviewed the changes in seasonal and long-term flow patterns of
streamflow among different categories of rivers in the Tibetan Plateau
and their responses to climate change and human activities. All these
reviews have been conducted for a sub region of the Third Pole region
and have focused on the past climate change and its impacts on the
water resources. There is a clear need for a study focused on the impacts
of climate change on both past and future water resources within the
entire Third Pole region. In addition, groundwater and springs were
seldomly mentioned in previous review studies. In this review, we have
summarized some of the principal components of water resources in the
Third Pole including rainfall and snowfall as primary drivers whereas
glaciers, snow, springs and groundwater as the buffers and the impacts
of current and future climate change on these water resources. In ad-
dition, this study also evaluates the adequacy of observations and un-
certainty among future climate change projections.

2. Primary drivers of water availability

Precipitation is the primary driver of water availability in the Third
Pole region. Precipitation generally has two forms namely rainfall
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which is dominant at low elevation and snowfall at high elevation. It is
hard to distinguish snowfall from rainfall due to limited observations of
snowfall and it is also complex to estimate the threshold temperature
for snow and rain accurately, which is considered to vary significantly
among different climates within Northern Hemisphere [34]. Though
rainfall is the key driver in most of the upper river basins on the Tibetan
Plateau, snowfall is also an important component of the water cycle and
may account for a large part of total precipitation in areas with high
elevation and low temperatures [47]. Zhang et al. [88] found that the
contribution of snowmelt was particularly higher than that of rainfall in
Upper Indus, indicating that majority of precipitation there falls as
snowfall rather than rainfall. In some mountainous areas of Tarim river
basin, snowfall is also found to be the major form of precipitation [78].

Due to the difficulties mentioned above, the spatial and temporal
analysis is generally conducted based on the total precipitation without
distinguishing snow from rainfall. Processes affecting the precipitation
are very complex resulting in its large spatial and temporal variation
within the region caused by the interaction of local and large-scale
circulation systems [74]. Within the Tibetan Plateau, precipitation
shows a high spatial variability with a strong north-south gradient and
east-west seasonality, caused due to orographic and climatic effects
[25]. From the Tarim river basin in the northern Third Pole to the
southeast Himalayan foothills, the precipitation was observed to vary
from 50 to more than 6000mmyr−1 [47]. In the eastern Himalaya, the
majority of precipitation falls in between June and September because
of the influence of Indian and East Asian Monsoon climate system.
Compared to eastern parts, precipitation in western parts is much more

uniformly distributed throughout the year due to the effects of the
westerlies and southwesterly airflows [11]. On the central Tibetan
Plateau, in the northeast Qilian mountains and in the Himalaya, most of
the precipitation falls in summer months [47]. In the Karakoram region,
about two thirds of the precipitation at high altitude occurs during the
winter months [30] and half of it is attributed to the eastward propa-
gating cyclones which provide winter precipitation to northwestern
parts of the Indian subcontinent [7]. In the western and central Tibetan
Plateau and in northwestern India, the interannual variability of pre-
cipitation is high whereas in the eastern and elevated parts, it is low.
Within the whole Tibetan Plateau, precipitation shows a slightly de-
creasing trend during 1901 – 2014 whereas during 1961 – 2013, it
shows a statistically significant increase and more rapid increase since
the mid-1980s [62]. It should be noted that most meteorological sta-
tions are in the eastern and southern TP and very few stations are lo-
cated at higher than 5000m, the predictions of precipitation based on
the limited observations may be somewhat biased. Thus, more in-situ
hydrometeorological observations are needed in future.

3. Buffers in the hydrological system

3.1. Snow

Snow is an important water resource because snowmelt is an im-
portant contributor to discharge in the major upstream river basins of
the Third Pole. The snow covered area varies significantly among dif-
ferent basins with the highest annual average snow coverage in Yangtze

Fig. 1. Third pole region and the major river basins within it. 1. Tarim river basin (TA), 2. Upstream Amudarya river basin (UA), 3. Upstream Indus River basin (UI),
4. Upstream Ganges river basin (UG), 5. Upstream Brahmaputra river basin (UB), 6. Upstream Salween river basin (US), 7. Upstream Mekong river basin (UM), 8.
Upstream Yangtze river basin (UY), and 9. Upstream Yellow river basin (UYE).
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river basin and lowest in Amudarya river basin (Table 1).
Although 59% of the Tibetan Plateau is covered with snow in winter

[58], it shows a large variation in the seasonality of snow cover among
the basins. In the upstream Indus basin, large parts are snow covered for
prolonged periods during the year. Snow ablation peaks at the end of
spring and snow accumulation starts in early winter [31]. For the
Brahmaputra river basin, snow cover is at its maximum at the beginning
of spring and is minimal in summer months [72]. For the upstream
parts of the Amudarya and Ganges river basins, the maximum value of
snow cover occurs in late winter after which snow ablation starts and
minimum snow coverage is observed during summer [18,72]. For the
upper Mekong and Yellow river basins, the snow cover is highest in
winter months, with ablation starting in spring months and peaking in
summer months [38]. In the upstream Salween river basin, the max-
imum value of snow cover occurs in the late autumn and ablation starts
at the beginning of spring and peaking in summer months [42]. For
upstream Yangtze river basin, highest snow cover occurs in mid-au-
tumn whereas snow ablation starts sharply from late spring, peaking in
summer [42].

3.2. Glaciers

Glaciers within the Third Pole are an important source of fresh
water available in the region. Out of a total area of about 5 million km2,
glaciers cover a total area of about 98,000 km2 and have a total volume
of 7.0 ± 1.8× 103 km3 [23]. Both the glacier coverage and glacier
volumes in major river basins vary significantly from one to another
with the highest amounts found in Indus (Table 1). Since 1970s, due to
global warming, most of the glaciers of the Tibetan Plateau have been
losing mass with a general reduction of 9% [85]. During 2000–2016,
negative mass balances were observed for Brahmaputra, Indus, Ganges,
Amudarya, Salween, Yangtze and Mekong with values ranging from
about −0.09 to −5.1 Gt yr−1 leading to an annual excess discharge
ranging from −163 ± 66m3/s−1 to −3 ± 2m3/s−1 whereas a po-
sitive mass balance for Tarim river basin was observed with a value of
about 0.4 Gt yr−1 [12]. It should be noted that positive mass balances
are observed in some areas including the inner Tibetan Plateau [87],
central Karakoram and the western Pamir [26]. Increase in summer
snowfall in Pamir, due to increase in irrigation intensity in lowlands of
HMA, particularly in Tarim river basin could favor the increase in

glacial growth in Pamir region [17]. Positive glacier mass balance in
Karakoram may be attributed to increased winter precipitation [86]
and the summer cooling [24]. These studies indicate the complex ef-
fects of climate as well as anthropogenic activities affecting the glaciers
in the region.

3.3. Groundwater

Groundwater is a very important source of water in the lowlands of
the Third Pole. It provides an important water resource for about 75%
of the irrigated areas in South Asia [65]. In the Himalaya catchments, it
acts as transient storage of water [20]. In the Third Pole, significant
depletion of groundwater has been observed in Indian plains and ad-
jacent regions [10]. In northwestern Indian states, satellite based esti-
mates of groundwater depletion is 17.7 ± 4.5 km3/yr during
2002–2008 [63]. There have been notable depletions in Nepal as well
[19,54]. In most parts of the Third Pole, information about hydro-
geological aspect of aquifers is mostly unknown. The studies that have
been carried out are by characterizing aquifer systems or understanding
about geological formation and hydrogeological characterstics in places
such as Northeastern India [48,46], Northwestern India [50,41] and
Nepal [69,35,54]. In the Tibetan Plateau, groundwater is considered
mainly recharged by infiltration from snow or glacier melts at high
elevations and could be crucial for sustaining baseflow and springs
[27]. In central Nepal Himalaya, the contribution of groundwater is
found to be even higher than snow and glacier melt [2]. Climate change
can impact groundwater resources with the effects of precipitation or
temperature changes on the recharging capability [70]. For example,
the groundwater storages of the Tibetan Plateau are found to increase
during 2003–2009 possibly due to increased snow/glacier melts and/or
precipitation [82]. However, due to scarce observational data for
groundwater, there are only a few model based studies which fully
account for ground water processes in the region [2,50,59].

3.4. Springs

Springs serve as a primary source of water in majority of households
in the Himalaya mountains due to the inaccessibility to water from
major rivers flowing into deep valleys. For example, in the Indian
Himalaya, springs provide water for about 64% of the total irrigated

Table 1
Overview table indicating the quantity of different components of water availability in different river basins of the Third Pole Region.

River basin Components

Precipitation Snow cover area Glacier area Glacier volume

Amounts (mm) Reference Amounts (km2) Reference Amounts (km2) Reference Amounts (km3) Reference

Tarim 116.8* Chen et al., [15] 67,061
(15.9%)*

[28] 2310.26
(8.6%)*

Bajracharya et al., [5] 1631* Farinotti et al. [23]

Amudarya 110* Rakhmatullaev et al., [60] 9918
(1.6%)*

2566.18
(1.5%)*

731.39**

Indus 346** Lutz et al., [45] 167,992
(16.7%)*

15,061
(8.7%)**

2389**

Brahmaputra 573** Lutz et al., [45] 107,121
(20.4%)*

3105.75
(1.48%)**

598*

Ganges 900** Lutz et al., [45] 47,742
(4.8%)*

1627.08
(4.7%)**

494**

Yangtze 333** Zhang et al., [88] 193,304
(9.4%)*

1362
(0.4%)**

102**

Salween 595** Lutz et al. [45] 38,571
(10.7%)*

637.92
(0.8%)**

44**

Mekong 642** Lutz et al. [45] 23,534
(3%)*

179.85
(0.3%)**

8.96**

Yellow 515** Zhang et al., [88] 95,193
(9.4%)*

107.87
(0.1%)**

7.52**

* Indicates whole river basin area.
** Indicates upstream river basin area.
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land [61]. Although precipitation is found to generally increase, springs
are reported to be drying up in the region possibly due to the rather
unstable rainfall pattern (such as the shorter duration of rainfall and a
reduction in winter rainfall found in Sikkim), the increasing effects of
human activity [61,77,71], or the perturbation caused by earthquake
[56]. It is reported that many springs are drying up in the Himalaya
watersheds [66] including the Indian Himalaya with nearly half of
natural springs found to be drying up [3], the central Himalaya such as
Nepal where ∼12% of springs are observed to have dried up during the
last 10 years [56] and the eastern Himalaya such as Sikkim where
spring discharge has decreased by almost 35% in the 2000’s [77].
However, due to the scarcity of data, the condition of most of the
springs is yet unknown. Only a few studies have been carried out to
establish the relationship between precipitation, spring discharge and
recharge in small and distributed areas [52,80,77,79,67,40,55]. It is
shown that there is large variation in the Third Pole. In the eastern part
of the Third Pole, in Sikkim and Uttarakhand, rainfall and spring dis-
charge are well correlated [77,1] whereas inverse patterns with
monthly rainfall are also seen in western Himalaya such as Kashmir
[51].

4. Runoff and its components

Different studies using different modeling methods, such as degree
day [31,45,4] and energy balance methods [88], have been used to
quantify the total runoff and its different components namely the gla-
cial melt, snowmelt, rainfall and baseflow in different upstream river
basins of the Third Pole region. Lutz et al. [45] used a high resolution
cryospheric-hydrological model based on the degree day approach to
assess the contributions of all the components of runoff in the major
upstream river basins of the Tibetan Plateau. With an energy balance
method for snow modelling and a degree day approach for simulating
glacier melts (including snow melts on top of glacier), Zhang et al. [88]
used the distributed hydrologic model VIC to assess the contributions of
snowmelt, glacier melt and rainfall to runoff in different upstream river
basins of the Tibetan Plateau. Recently, Armstrong et al. [4] have
proposed a new method for differentiating snow on land, snow on
glacier ice and exposed glacier ice by improving MODICE (MODIS
Persistent Ice) method based on a “two-strike” classification of “ice-
free” pixels in combination with the MODSCAG (MODIS Snow Covered-
Area and Grain size) retrieval algorithm to create more accurate snow
and glacier maps, and they used the improved snow and glacier cover
data as input for a temperature index model to successfully obtain the
contributions of snow and glacier melt in five major river basins of the
Third Pole.

Based on studies by Armstrong et al. [4], Kamp and Pan [36], Lutz
et al. [45] and Zhang et al. [88], and so on, which are representative
across nine basins, a summary of total runoff components for each
major basin as well as the whole region are provided in Table 2. Gen-
erally, rainfall runoff is the most important component for most of the
major basins except the Indus, Amudarya and Tarim basins where snow
or glacier melt seem to be dominant. It is obvious that the components
and relative proportions of them can vary much for different basins. For
example, in Brahmaputra river basin, although the annual snow cov-
erage is around 20% of the total basin area, rainfall runoff dominates
the total runoff [45,88] where monsoon season contributes to about
70% of annual total precipitation, which is also the main melt season
for this basin, with wet downstream climate lowering the impact of
meltwater contributions [32]. For the upstream major basins including
Mekong, Salween, Yellow and Yangtze, the contribution of snowmelt is
relatively moderate, with its contribution to total annual runoff mainly
within 20∼ 30% [45,88]. However, seasonal snowmelt can contribute
greater than 50% in Amudarya [4,36] and Indus [4]. Such differences
can be partly explained by their different snow coverage. Indus basin
has very large snow coverage and its major part is covered with snow
for prolonged periods of the year [31], whereas, for Ganges, Mekong,

Salween, Yellow and Yangtze river basins, the annual snow coverage is
less than or equal to ∼10% of their respective basin area [28]. Similar
to snowmelt, the importance of glacier melt also varies dramatically
among the different basins. The Indus has the largest contribution to
streamflow from glacial melt [31,45], with much lower contribution of
the other major basins such as the Yellow, Yangtze, Mekong and
Salween with reported contributions mostly less than 20% [68,88,29].
It has been indicated that the relative importance of glacier melt in-
creases with proximity to the glaciers [45]. For example, glacial melt
only contributes about 12% of total runoff in upstream Ganges river
basin [45], but increases up to about 21% and 58% for Dudhkoshi and
Langtang, respectively, which are both upstream, highly glacierized
sub-basins of Ganges river [59]. It should be noted that due to the
differences in basin definitions, study periods, modeling approaches,
input and calibration data (observations), there are truly some differ-
ences in the discharge components reported by different literatures
indicating a possibly large uncertainty in some basins. The most sig-
nificant difference may be the snowmelt contributions of UI, UG and UB
with the large standard derivations of ∼44%, ∼27% and ∼35%, re-
spectively, as shown in Table 2. For example, the snowmelt contribu-
tions in UI, UG and UB from Armstrong et al. [4] are all much larger
than those from Lutz et al. [45]. It may be because of their different
melt modelling subroutines and different discharge observations.
Armstrong et al. [4] used improved snow and glacier cover data as
input for snow/glacier melt modelling and Lutz et al. [45] calibrated
their model using more upstream gauge stations.

5. Climate change impacts

It has been indicated that most parts of the Third Pole have un-
dergone a significant warming trend. In regions such as the Tibetan
Plateau, precipitation shows an increasing trend after the 1980s. Due to
these trends in the climatic variables, there will be more uncertainty
and variability in the hydrological cycle of the region. Such complexity
is reflected in the glacier response during the last several decades with
the most intense glacier retreat occurring in the monsoon dominated
region, less retreat in the transition region and the least retreat in the
westerlies dominated region [85]. Future climate projections under
different RCP scenarios also show negative mass balance and lower
equilibrium line altitudes by the end of the century for the Himalayan
region, with some percentage of glaciers facing eventual disappearance
[14]. Rise of global temperatures by 1.5 °C will lead to a decrease of
around 36% of total glacial mass stored in the High Mountain Asia [39].
Changes in climatic conditions in winter westerlies have been linked
with increases in snow water equivalent (SWE) in Indus and Ganges
catchments, resulting in more snowfall in parts of Indus [13,76,53]. In
High Mountain Asia, increased temperature [85] causes an earlier
melting of snow [73] and more precipitation falls in the form of rain in
the majority of the region [45,37] and this results in negative summer
SWE trends in the region. Along with projections of increasing tem-
peratures, total precipitation also shows an increasing trend by the
middle of twenty-first century [37]. Due to these ongoing and projected
changes in glacier and snow coverage and projected precipitation
trends, the timing of water availability may change and this could pose
challenges for water management. Although the total water availability
may only increase, the challenge is to deal with shifts in timing and an
increase in extremes.

Several modelling studies have been conducted to evaluate the
impacts of climate change on future water resources. Immerzeel et al.
[32] used a glacio-hydrological model for projecting runoff at the end
of the century for Baltoro and Langtang catchments. In spite of their
different climates, it was indicated that both catchments showed a
consistent increase in total streamflow, with projected glacial melt in-
crease expected to be main cause for streamflow increase in Baltoro,
and projected precipitation increase expected to be main cause for
streamflow increase in Langtang catchment. This study concluded that
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water availability in this century was very less likely to decline and
river basins depending on glacier melt and monsoon rainfall would
continue to meet the expected increase in water demands within vul-
nerable river basins such as Indus. Lutz et al. [44] had analyzed the
changes in seasonality and hydrological extremes in the upper Indus
Basin. Predictions for seasonality of flow included minor increases in
summer flow and increased flow in other seasons in near future period
of 2021–2050, and decreases in summer flow and stronger increased
flow in other seasons for far future period of 2071–2100. Mainly driven
by increases in extreme precipitation, increase in flooding events during
21st century due to increases in intensity and frequency of extreme
discharges were predicted for most of the upper Indus basin. Their
study suggested developing sound basin-wide adaption strategies that
could take into account changing demand and supply in the Indus
basin. Similarly, Wijngaard et al. [81] had assessed the future changes
in climatic extremes and hydrological extremes for the upper Indus,
upper Ganges and upper Brahmaputra river basins and found out that
climatic extremes were projected to increase in magnitude by end of
21st century, with precipitation extremes increasing mostly in upper
Indus basin. In rainfall dominated upper Brahmaputra river basin, in-
creases in precipitation extremes may contribute to discharge extremes.
Such studies have also been conducted in Lhasa River [57], Koshi [8]
and Shigar [75] watersheds which generally project an increase in
runoff. However, the rather big uncertainty from the evidently different
outputs of different climate models is still a large problem in future
projection studies as indicated by Immerzeel et al. [32].

6. Conclusion

Due to complexity of processes affecting precipitation, there is large
spatial and temporal variability in the region. Two forms of precipita-
tion on the Third Pole namely the snowfall and rainfall also add to the
variability. Seasonality of snow cover shows a large variation among
different river basins with maximum snow cover varying from early
spring (e.g. Brahmaputra), mid-autumn (e.g. upstream Yangtze), late
autumn (e.g. upstream Salween) to winter (e.g. upper Mekong, Yellow,
Amudarya and Ganges). Many glaciers have been losing mass in the

region contributing to annual excess river discharge within the river
basins where the glaciers are situated. Significant depletion of
groundwater has been observed in the Indian plains and Nepal. The lack
of sufficient observational data has led to an inadequate understanding
of groundwater hydrology in the region. Many springs are reported to
be drying up or becoming seasonal in the region. However, due to the
lack of observational data, the condition of most of the springs is still
unknown.

The summary of hydrological modeling studies indicates that for all
the river basins, cumulatively, rainfall is the main contributor to runoff
followed by snow and glacial melt. The relative contribution of these
components, however, varies greatly among the different river basins.
Due to the increase in precipitation and glacial melt, near future water
availability is generally projected to increase for various river basins
and sub-basins, with also clear seasonal shifts in some basins.
Hydrological and climatic extremes were also predicted to increase in
some river basins, with increase in precipitation extremes causing an
increase in discharge extremes. However, there is large uncertainty in
these future projections owing to climate model uncertainty.
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