
Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Meteorological conditions leading to extreme low variable renewable energy
production and extreme high energy shortfall

K. van der Wiela,∗, L.P. Stoopa,b, B.R.H. van Zuijlenc, R. Blackportd, M.A. van den Broekc,
F.M. Seltena

a Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
b Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands
c Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands
d College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

A R T I C L E I N F O

Keywords:
Variable renewable energy
Energy transition
Energy security
Extreme weather
Energy meteorology
Climate change
Climate impacts

A B S T R A C T

To mitigate climate change a renewable energy transition is needed. Existing power systems will need to be
redesigned to balance variable renewable energy production with variable energy demand. We investigate the
meteorological sensitivity of a highly-renewable European energy system using large ensemble simulations from
two global climate models. Based on 3×2000 years of simulated weather conditions, daily wind and solar energy
yields, and energy demand are calculated. From this data, 1-, 7- and 14-days events of extreme low renewable
energy production and extreme high energy shortfall are selected. Energy shortfall is defined as the residual load,
i.e. demand minus renewable production. 1-day low energy production days are characterised by large-scale
high pressure systems over central Europe, with lower than normal wind speeds. These events typically occur in
winter when solar energy is limited due to short day lengths. Situations of atmospheric blocking lead to long
lasting periods of low energy production, such 7- and 14-days low production events peak late summer. High
energy shortfall events occur due to comparable high pressure systems though now combined with below normal
temperatures, driving up energy demand. In contrast to the low energy production events, 1-, 7- and 14-days
high shortfall events all occur mid-winter, locked to the coldest months of the year. A spatial redistribution of
wind turbines and solar panels cannot prevent these high-impact events, options to import renewable energy
from remote locations during these events are limited. Projected changes due to climate change are substantially
smaller than interannual variability. Future power systems with large penetration of variable renewable energy
must be designed with these events in mind.

1. Introduction

To mitigate future climate change a decarbonisation of global so-
ciety is needed [1,2]. The transition from carbon-intensive fossil fuels to
low- or zero-carbon renewable energy sources, in combination with
energy saving measures and increased energy efficiency [3], will help
achieve net zero emissions [4] and limit dangerous climate change
impacts [5–9]. The fact that energy production from most renewable
energy sources, most notably wind and solar electricity production,
depends strongly on meteorological conditions complicates this energy
transition [10–18]. Temporal meteorological variability leads to tem-
poral variability in the production of renewable energy. This is funda-
mentally different from the production of energy in a conventional
power plant which can be managed in time. Therefore, to guarantee

both short and long term energy security, existing power systems will
need to be redesigned [3,19].

A big challenge in the design of highly-renewable power systems is
how to deal with periods of low energy production [20]. Further
complications in the design arise due to the variability of energy de-
mand. Meteorological variability, through the variation of outdoor air
temperatures and available light among others, causes part of the
variability in energy demand [17,21–26]. Matching variable energy
demand and variable renewable energy production, and therewith
achieving balance in the power system, is a challenge of high societal
importance. The aim of this study is to contribute to this challenge with
meteorological insights.

Power systems with high penetrations of wind and solar energy will
likely include back-up low or no-carbon power plants (which can
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increase production at short notice), interconnection of electrical grids
over large regions (to import renewable energy from remote regions)
[27,28], energy storage technologies (which help to move energy from
times of abundance to times of shortfall), demand response (the shifting
or shedding of electricity demand to make demand match supply), etc.
[3,20]. However, these solutions may not be sufficient under extreme
conditions. If there is no balance between energy demand and energy
production, a power system fails. This leads to power outages, which
have significant societal impacts.

In the present paper, the extreme situations that pose a risk for
European energy security are identified and the meteorological condi-
tions that cause them are described. The highly-renewable power sys-
tems are not yet built, the results can therefore be taken into account in
the design efforts. The presented results may help to prevent the failure
of the power system under the described conditions, or minimise the
occurrence or the consequences of failures. Furthermore, the results
open scientific research paths to next investigate the meteorological-
based predictability of these events, allowing for better preparation
(e.g. using storage technologies, demand response, etc.).

The analysis is based on a large ensemble of meteorological data
from two global climate models (EC-Earth, HadGEM2-ES, ×3 2000
years), for which daily renewable energy production and energy de-
mand are calculated (again ×3 2000 years, Fig. 1). The exceptional
amount of weather data allows for a sampling of extreme events that is
not possible based on observational-based data. 1-in-10 year events of
high societal impacts are selected based on two energy impact vari-
ables: extreme low European renewable energy production and extreme
high European energy shortfall. Energy shortfall is defined to be the
difference between energy demand and variable renewable energy
production, i.e. the residual load. In contrast to a meteorology-centred
approach with a focus on extreme weather events, this impact-based
method guarantees that only the events with the highest potential im-
pacts are investigated. Here the full distribution of impacts is calculated
and no assumptions about the relation between extreme meteorology
and extreme societal impacts are made. The weather that leads to 1-in-

10 year high-impact events of various length (1-, 7- and 14 days) is
described, and changes related to global climate change are briefly
discussed.

The remainder of this paper is organised as follows. In Section 2 the

Nomenclature

Abbreviations

CMIP5 Coupled Model Intercomparison Project Phase 5
DJF December-January-February
ENTSO-E European Network of Transmission System Operators for

Electricity
GEV Generalized Extreme Value
GMST Global Mean Surface Temperature
JJA June-July-August
RCP Representative Concentration Pathway
SI Supporting Information
st.dev Standard deviation

Symbols

α Roughness parameter
α1 Model parameter −TWh day 1

α2 Model parameter −TWh day 1

β1 Model parameter − ° −TWh day C1 1

β2 Model parameter − ° −TWh day C1 1

γ Model parameter
ζ Model parameter °C−1

c Model parameter °C
c1 Model parameter °C
c2 Model parameter
c3 Model parameter °C m2 W−1

c4 Model parameter °C s m−1

D Energy demand TWh day−1

Epot Potential for renewable energy production
F Model smoothing function
G Incoming solar radiation −W m 2

Gstc Incoming solar radiation under standard test conditions
−W m 2

h Hub height m
h0 Reference height m
IC Installed capacity TW
P Energy production −TWh day 1

PR Performance ratio
PVpot Potential for renewable solar energy production
r Correlation coefficient
S Energy shortfall −TWh day 1

t Time days
Ta day, Daytime air temperature °C
Ta mean, Mean daily air temperature °C
Ta max, Maximum daily air temperatusre °C
Tcell Temperature of a solar cell °C
toper Total operational time −hours day 1

Tref Reference temperature °C
V Wind speed −m s 1

Vci Cut-in wind speed −m s 1

Vr Rated wind speed −m s 1

Vco Cut-out wind speed −m s 1

Wpot Potential for renewable wind energy production

Fig. 1. Flowchart of the study design; more details are provided in the main text
(Sections 2 and 3). Meteorological data from two climate models and a re-
analysis product are used (top left), combined with societal data (bottom left),
these form the input data to an energy model (top centre, Section 3). The re-
sulting energy variables (top right) are analysed, extreme events are selected
and meteorological conditions investigated (bottom right).
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sequence of modelling steps and the methods used in this study are
described. The energy model used to calculate the two energy impact
variables of interest is described in Section 3. The results for extreme
low renewable energy production events and extreme high energy
shortfall events are presented in Sections 4 and 5, respectively. In
Section 6 the sensitivity of the results to the global climate model of
choice, to the spatial distribution of wind turbines and solar panels and
to the effects of climate change is discussed. A discussion of the lim-
itations of this study and its place in the existing literature is provided
in Section 7, conclusions are provided in Section 8. Supporting in-
formation (SI) with additional figures and observational analysis is
available online.

2. Data and methods

A variety of models and data were used to investigate the meteor-
ological conditions giving rise to high risk of European energy security
(Fig. 1). The EC-Earth model version 2.3 [29] was used to simulate a
large ensemble of weather conditions representing the present-day
climate. EC-Earth is a state-of-the-art global coupled climate model, it
includes atmospheric, oceanic, land and sea-ice components. The model
was used in its CMIP5 configuration, with an atmospheric resolution of
approximately 100 km. A description of all individual model compo-
nents, coupling and the quality of simulated climate variables is pro-
vided in Ref. [29].

From sixteen transient climate runs (1861-2100, RCP8.5) the 5-year
model period in which the absolute global mean surface temperature
(GMST) matched that observed from 2011 to 2015 was selected, ob-
served GMST from HadCRUT4 [30]. Each of the sixteen transient runs
were then used as an initial condition for an ensemble of 25 members of
five years each, resulting in × × =16 25 5 2000 years of weather si-
mulations for present-day climate conditions. More information on the
large ensemble climate model experiment setup is provided in Ref.
[31].

For each day in the climate model simulations the energy impact
variables were then calculated, resulting in 2000 years of impact data.
The climate model provided daily-averaged variables, the impact
variables therefore also represent daily averages. The energy model that
was used to make these calculations is described in full detail in Section
3. The potential influence of coarse spatial model resolution and daily-
averaged values on our results is discussed in Section 7.

High-impact events were selected from the 2000 years of energy
impact data. The events of interest here have an average return period
of 10 years, it was assumed that there are 200 such events present in the
modelled data. Given the large amount of available data, the analysis
did not need to rely on a statistical formulation of the low or high tails
of the distribution. Instead extreme events were simulated and sampled,
which meant the associated meteorological conditions could be in-
vestigated. To describe a typical high-impact event, the mean meteor-
ological conditions (both maps and time series) over the 200 selected
events were calculated, these will be referred to as ‘composite means’.
To investigate events of longer duration, i.e. of 7- and 14-days, running
means of the energy impact variables were computed and the selection
of events was repeated. To prevent double sampling of essentially the
same event (two 7-day events may have six days in common), events
were required to be at least three and seven days apart for 7- and 14-
days events respectively.

To compare the obtained model results to real-world meteorological
conditions, the ERA-interim reanalysis product [32] was used. ERA-
interim data is modelled data at approximately 80 km horizontal re-
solution, boosted in quality by the assimilation of observational data. It
describes the historical variability of meteorological conditions. ERA-
interim was used to quantify biases in modelled meteorological and
energy variables. These biases were not corrected before the analysis.
This choice was made to preserve the physical self-consistency of all
simulated meteorological variables. Instead, the biases were considered

during analysis and their potential influence on the results is discussed
in Section 7. The analysis of high-impact events as done for EC-Earth
data was repeated using ERA-interim data (figures included in the SI). It
is important to note that, because ERA-interim covers only 39 years
(1979–2017), the composite means are averages over four events only
(approximately 1-in-10 year events). These ERA-interim results are
therefore expected to be less robust than the model results, signifying
the benefits of the large ensemble model approach.

To investigate the sensitivity of the results to the climate model
used, the energy calculations were repeated for a similar 2000 year
large ensemble experiment from the HadGEM2-ES global climate model
[33] (Section 6.1). To quantify potential effects of climate change, a
second 2000 year ensemble from the EC-Earth model was used (Section
6.3). In this ensemble the absolute GMST was chosen to be the pre-
industrial temperature plus 2°C global warming, inspired by the climate
goal of the Paris agreement [34]. Pre-industrial temperature was de-
fined to be the HadCRUT4 mean over the years 1850–1899.

3. Energy model

An energy model was developed to transform meteorological data
into energy variables, which were then used for the selection of events:
extreme low European renewable energy production and extreme high
European energy shortfall. Fig. 2 shows a flowchart indicating the way
meteorological data and societal boundary conditions were combined
to calculate daily wind and solar energy production, and energy de-
mand.

In the model, the daily potential for renewable energy production
(Epot , no units) is computed first, for wind and solar sources separately
(Wpot and PVpot, respectively). The potential for wind and solar energy
production solely depends on the meteorological conditions at day t.
When the energy potential is multiplied by the spatial distribution of
wind turbines and solar panels (the installed capacity, IC in TW), and
total operational time (toper in hours day−1) this results in an estimate of
energy production (P in TWh day−1):

= × ×P t E t IC t t( ) ( ) ( ),pot oper (1)

as in Jerez et al. [16]. All calculations were done for each grid cell
separately, indices x and y were excluded from all equations in this
section for clarity. Wind and solar energy production were calculated
separately, and then summed to provide an estimate for total energy
production per grid cell per day. Total energy production was then
integrated over the European domain under consideration, which re-
sulted in the first impact variable time series from which events were
selected. Further details for the calculation of wind energy production

Fig. 2. Flowchart of the energy model design; more details are provided in the
main text (Section 3). The model uses daily meteorological input data (first
column) and societal boundary conditions (second column) to produce daily
estimates of renewable energy production and energy demand (third column).
These variables are then used to calculate two impact variables which are used
for event selection (fourth column, Section 2).
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and solar energy production are given in Sections 3.1 and 3.2.
Daily temperature-dependent energy demand was calculated using

an empirical regression model, which was calibrated based on historical
demand data from the European Network of Transmission System
Operators for Electricity (ENTSO-E), European population density
(GPWv4) [35], and temperature from the ERA-interim reanalysis pro-
duct [32]. Model details are provided in Section 3.3.

Energy shortfall (S in TWh day−1) or residual load, was defined to
be the difference between energy demand (D in TWh day−1) and total
renewable energy production from wind and solar sources:

= −S t D t P t( ) ( ) ( ). (2)

Energy shortfall was used as the second impact variable time series
from which events were selected for further study.

The analysis is based on a projected distribution of wind turbines
and solar panels over a western European region. The region under
consideration included 15 countries (Austria, Belgium, Denmark,
France, Germany, Ireland, Italy, Luxembourg, the Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland and the United Kingdom, area not
shaded grey in Fig. 3) and associated shallow offshore areas (sea floor
depth up to 66m). This projected spatial distribution of installed re-
newable energy capacity (IC in Eq. (1)) is based on the large scale re-
newable energy sources scenario from the e-Highway2050 project [19],
which takes into consideration current installed capacity, future plans
on a country-by-country level, and geographic land use data. The dis-
tribution as used here includes 378 GW onshore wind turbines, 101 GW
offshore wind turbines (Fig. 3a), 120 GW rooftop solar panels and
42 GW utility-scale solar power plants (Fig. 3b). Total installed capacity
in the domain is thus about 75% wind energy and 25% solar energy
based. To quantify the sensitivity of our results to the spatial distribu-
tion of installed capacity (Section 6.2), a uniform placement of all ca-
pacity over land and offshore regions was also considered (SI Fig. S3).

3.1. Wind energy production

10m wind speeds were scaled to wind speeds at wind turbine hub
height by means of the power law profile:

= ⎡
⎣⎢

⎤
⎦⎥

V h t V h t h
h

( , ) ( , ) ,
α

0
0 (3)

with h the hub height (m), h0 the reference height (10m) and α the
roughness parameter. For onshore regions: =h 80 m and =α 0.143; for
offhore regions: =h 120 m and =α 0.11 [16,36].

Given the wind speed at hub height (V h( ) in m s−1), a power curve
was used to determine the wind energy potential (Wpot, no units):
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with Vci the cut-in wind speed (taken to be 3.5m s−1), Vr the rated wind
speed (13m s−1), and Vco the cut-out wind speed (25m s−1). To de-
scribe the shape of the non-linear part, a cubic power curve was fol-
lowed [16,37], this assumes an ideal velocity power proportionality.
The use of a cubic power curve has been shown to be a reasonable
estimation for existing wind turbines [38]. Wind energy potential as a
function of wind speed at hub height is shown in SI Fig. S1 Wind tur-
bines can operate day and night, therefore =t 24oper hours day−1,
downtime for maintenance was not considered.

3.2. Solar energy production

Solar power potential (PVpot, no units) was calculated following:

=PV t P t
G t
G

( ) ( ) ( ) ,pot R
stc (5)

with PR the performance ratio (no units), G the incoming solar radiation
(W m−2) and Gstc the incoming radiation under standard test conditions
(1000Wm−2) [14,16,39]. The performance ratio negatively depends
on the temperature of the solar cell (Tcell in °C). In turn, cell temperature
depends on the mean daytime air temperature (Ta day, in °C), incoming
solar radiation and wind speed:

= + −P t γ T t T( ) 1 [ ( ) ],R cell ref (6)

in which

= + + +T t c c T t c G t c V t( ) ( ) ( ) ( ),cell a day1 2 , 3 4 (7)

with constants = −γ 0.005, =T 25ref °C, =c 4.31 °C, =c 0.9432 ,
=c 0.0283 °C m2 W−1 and = −c 1.5284 °C s m−1 [40]. Furthermore,

= +T T T[ ]/2a day a mean a max, , , at 2m height, G on a horizontal plane at the
surface (neglecting potential tilt of solar panels) and V at 10m height.
The performance ratio as a function of daytime air temperature, wind
speed and incoming radiation is shown in SI Fig. S2.

Solar panel operational time is determined by day length, depen-
dent on the day of year and latitude. The CBM model as described in
Ref. [41] was used to determine toper for the solar energy calculations,
again downtime for maintenance was not considered. Daily-averaged
values of incoming solar radiation (G) were corrected to only take into
account hours of day where the sun is above the horizon.

3.3. Energy demand

A logistic smooth transition regression model [42] was used to de-
scribe the relationship between energy demand (D) and mean daily air
temperature (Ta mean, ) [43]. This model allows for a smooth transition
between two linear regimes: electrical heating requirements due cold
temperatures, and electrical cooling requirements due to warm tem-
peratures:

= + − + +D t α β T t F t α β T t F t( ) [ ( )][1 ( )] [ ( )] ( ),a mean a mean1 1 , 2 2 , (8)

with α α,1 2 the zero-crossing and β β,1 2 the slope of these two linear
regimes. The smoothing function (F) between the two linear regimes is
given by:

= + − − −F t exp ζ T t c( ) [1 [ [ ( ) ]]] ,a mean,
1 (9)

with ζ the smoothing factor and c the inflection point.
The model was calibrated based on historical ENTSO-E data (2006-

Fig. 3. Spatial distribution of installed capacity of (a) on- and offshore wind
turbines, and (b) rooftop solar panels and utility-scale solar power plants (GW/
grid cell) in the projected distribution. Note irregular colourbar, grey shading
denotes land surface/ocean areas with zero installed capacity, value in the top
right corner indicates total installed capacity.
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20151) aggregated over the 15 countries considered and a regional
mean population-weighted 2m air temperature from ERA-interim [32].
Population density as in the year 2015 [35]. Observed variations in
energy demand depend on more than air temperature alone [17,25].
Therefore the days that systematically result in outliers were removed:
all Saturdays and Sundays (no office work, less industry), the month
August (summer holidays) and the Christmas and New Years’ period
(holidays, period taken to be 21 Dec - 6 Jan). Further outliers (e.g. due
to national bank holidays) were discounted by using a robust linear
regression fitting method. To remove the effects of the electrification of
societies, the observed demand data were detrended prior to fitting.
The following model parameters were determined for the European
region under consideration: =α 8.911 TWh day−1, = −β 0.101 TWh
day−1 °C−1, =α 6.782 TWh day−1, =β 0.022 TWh day−1 °C−1,

=ζ 0.52°C−1, =c 11.17°C. The model reproduces the historical varia-
bility of demand quite well (Fig. 4), the correlation coefficient of ob-
served versus modelled demand is 0.88, the root mean square error is
0.29 TWh day−1. Energy demand is lowest, 7.1 TWh day−1, at 15.5 °C.

4. Extreme low renewable energy production events

4.1. Annual cycle

Based on the EC-Earth present-day large ensemble experiment, 2000
years of daily wind energy production and solar energy production
were calculated in the European domain under consideration. Annual
mean daily wind energy production is 2.1 TWh day−1, with higher
values in winter than in summer (December-January-February, DJF,
mean: 3.0 TWh day−1, June-July-August, JJA, mean: 1.2 TWh day−1,
Fig. 5a). These values are slightly lower than what is found based on
ERA-interim data (annual daily mean 2.6 TWh day−1), the bias is ap-
proximately constant throughout the year. Solar energy production is
on average 0.7 TWh day−1 for both EC-Earth and ERA-interim, with
higher values during summer when days are longer and incoming ra-
diation is higher (DJF mean: 0.3 TWh day−1, JJA mean: 1.0 TWh
day−1, Fig. 5b). In the annual average, about 76% of the total pro-
duction is from wind energy. This value is somewhat lower than what
was expected given the wind-solar split in installed capacity, the dis-
crepancy is mainly caused by a low wind speed bias over land areas.

For the development of a stable and secure power system with high
penetration of variable renewable energy, it is the variability with re-
spect to the seasonal mean that is of largest interest. Wind energy
production exhibits greater variability than solar energy production
(Fig. 5a,b), with standard deviations (st.devs.) of 1.2 TWh day−1 and
0.3 TWh day−1 respectively. As for mean wind energy production,
variability of wind energy production peaks in the winter season (DJF
st.dev.: 1.2, JJA st.dev.: 0.7 TWh day−1). The full range of variability in
winter is 0.2–7.9 TWh day−1, the theoretical maximum for the assumed
installed capacity is 11.5 TWh day−1. Modelled variability is slightly
lower than variability in the ERA-interim dataset (annual st.dev. 1.4
and 0.3 TWh day−1 for wind and solar respectively).

Variability of total energy production (Fig. 5c) is most like that of
wind energy due to the relatively larger mean and higher variability
from the wind compared to the solar source. Mean total energy pro-
duction in winter exceeds that of the summer (means: 3.3 versus
2.2 TWh day−1) and variability is largest in winter (st.devs.: 1.2 versus
0.7 TWh day−1). Days with lowest total energy production occur in
winter (Fig. 5c), in contrast to days with lowest wind energy production
which occur in summer (Fig. 5a). Summertime solar energy production
is responsible for this difference in seasonality (Fig. 5b). Tables in-
cluding all reported mean and st.devs. in this section are included in the
SI, to facilitate further comparison between modelled and ERA-interim

data.
To select high-impact events a threshold for the 1-in-10 year 1-day

low energy production event is determined (0.6 TWh day−1, dashed
line in Fig. 5c). All days below this threshold are selected (by design
200 out of 2000×365 days in total). The selected 1-day events fall in
extended winters season (October to February), with 67% occurring in
November or December.

4.2. Meteorological conditions

The mean meteorological conditions (‘composites’) are calculated
for the 200 selected 1-in-10 year 1-day low energy production events,
to determine which weather patterns cause the lowest energy produc-
tion. During the selected low energy production events, a large-scale
high pressure system is situated over central and eastern Europe
(Fig. 6d). The exact location, shape and magnitude of this system varies
between individual events. Due to the lack of pressure gradients, 10m
wind speeds are below normal over most of the region considered
(negative anomalies in Fig. 6d), most notably over the North Sea area
and west of the British Isles where a large portion of the offshore wind
turbines is situated (Fig. 3a). Over land, where surface friction leads to
lower wind speeds, the absolute wind speed is close to or below the cut-
in wind speed of the turbines. The timing of 1-day low energy pro-
duction events in the extended winter season, means solar energy
production is low by default due to short day lengths (Fig. 5b). Lower
than normal incoming solar radiation in the Mediterranean region de-
creases solar energy production further during the events (negative
anomalies in Fig. 6h).

Given the relation between 10m wind speed, incoming solar ra-
diation and energy production (Eqs. (3)–(7)), it is obvious that these
meteorological conditions indeed lead to low total energy production.
Wind energy potential is lower than normal in the entire domain con-
sidered, over the North Sea it is 63% below normal. The solar energy
potential in the Mediterranean region is lower than normal by 3%. This
all leads to only 0.6 TWh day−1 of renewable energy production in the
entire European domain considered (Fig. 7a and 2.5 TWh day−1 lower
than normal).

To verify the above results from the EC-Earth model, similar com-
posite mean maps for four 1-in-10 year 1-day low energy production
events in the ERA-interim dataset were computed. The meteorological
state of the ERA-interim events (SI Fig. S4) is comparable to that found
for the EC-Earth events (Fig. 6d,h): a high pressure system is situated
over eastern Europe, lower than normal 10m wind speeds in the North
Sea area and southwest of the British Isles, and lower than normal solar
radiation in southern Spain and France. Composite anomaly values are

Fig. 4. Energy demand (TWh day−1) as a function of regional-mean population
weighted daily air temperature (°C). Light blue dots show the historical ENTSO-
E data (systematic outliers removed as discussed in the text), dark blue line
shows the fitted model.

1 European energy demand data provided by ENTSO-E, downloaded from
www.entsoe.eu/data/data-portal/, accessed 05-02-2018.
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Fig. 5. 2D histogram of (a) daily wind energy production, (b) daily solar energy production, (c) daily total energy production (TWh day−1). Colours show the counts
in each bin (bin width is 3 days, bin height is 0.05 TWh day−1), blue dots shows outliers (1 event per bin), the continuous black line shows the mean annual cycle, the
white line shows the mean annual cycle from ERA-interim data (1979–2017). The threshold for 1-in-10 year high-impact events based on extreme low total energy
production is indicated with a horizontal dashed line in (c).

Fig. 6. Composite mean maps of meteorological variables for low energy production events (‘P events’) with an average return period of 1-in-10 years. Colours show
(a–d) anomalies of 10m wind speed (m s−1), and (e–h) anomalies of incoming solar radiation (W m−2), red contours are isobars of sea level pressure (contour
interval 2.5 hPa). Time lags shown are (a,e) event − 5days, (b,f) event −2 days, (c,g) event − 1days, and (d,h) selected low energy production event.

K. van der Wiel, et al. Renewable and Sustainable Energy Reviews 111 (2019) 261–275

266



larger in ERA-interim than in EC-Earth, this may be related to the fact
that the composite is an average over four rather than 200 events.
Averaging over four events, as done for the ERA-interim data, provides
limited information on the full distribution of high-impact events. In the
SI it is shown that these four ERA-interim events fall within the dis-
tribution of modelled events from EC-Earth in terms of both surface
pressure pattern and North Sea 10m wind speed anomalies (SI Fig. S6).

4.3. Temporal development

Although the high-impact events are selected on the basis of ex-
treme low 1-day renewable energy production, the high pressure
system driving the low production is longer lived (Fig. 6a–d). From
about 6 days preceding the events the high pressure starts to build,
peaking around the event and disappearing 3 days after. 10 m winds
slacken in the North Sea area about 3 days before the event, and further
weaken over a larger area in the following days (Fig. 6b–d). 10 m wind
speeds return to normal strength about 3 days after the event. These
meteorological developments cause a sharp decline in energy produc-
tion in the days surrounding the event day (Fig. 7a). Two days before
the selected event days, composite mean total energy production is
2.0 TWh day−1 (1.1 TWh day−1 lower than normal), though there is
large variability between individual events (0.5–5.0 TWh day−1). Two
days after the event total energy production is 2.2 TWh day−1 (0.9 TWh
day−1 lower than normal).

Some of the selected high-impact low production events are indeed
1-day extreme events, e.g. the 3-day production time series: 2.8-0.6-
2.6 TWh day−1 (orange line in Fig. 7a). However, there are cases in
which low energy production immediately precedes and proceeds the
selected events. For the 200 selected low production events, there are
two cases in which three individual 1-in-10 year 1-day events are
clustered, e.g. the 3-day production time series: 0.5-0.5-0.6 TWh day−1

(red line in Fig. 7a). There are seventeen cases of two consecutive 1-day
events (including the 3-day events mentioned above).

The potential societal impact of low energy production and the
design of future power systems greatly depends on the duration of these
events. To investigate events of longer duration, the same impact-based
selection procedure as before is applied to select events of 7-days low
energy production (7-days mean production threshold: 1.2 TWh day−1,
Fig. 7b) and 14-days low energy production (14-days mean production
threshold: 1.4 TWh day−1, Fig. 7c). The 7-days and 14-days events are
dynamically comparable to the 1-day events: a large high pressure
system over central Europe, associated with lower than normal 10m
wind speeds in the North Sea area and reduced incoming radiation in
southern Europe (not shown). These periods of prolonged high pressure
are referred to as ‘atmospheric blocking’. Such blocks cause long per-
iods of similar meteorological conditions, e.g. many days of low wind
speed, this leads to a general increase in the risk of the occurrence of
extreme events [44], which is also the case here. Longer events tend to
occur earlier in the season. The occurrence of 1-day events peaks in
November, that of 7-days events in October and that of 14-days events
in September (Fig. 7d).

5. Extreme high energy shortfall events

5.1. Annual cycle

The second energy impact variable that is considered is energy
shortfall. Before discussing energy shortfall, first the annual cycle of
energy demand and the share of renewable energy in total demand in
the 2000 year present-day large ensemble experiment is discussed. EC-
Earth modelled daily energy demand peaks early in February due to
cold temperatures (DJF mean: 8.5 TWh day−1, st.dev.: 0.2 TWh day−1,
Fig. 8b), and is lowest mid-summer (JJA mean: 7.2 TWh day−1, st.dev.:
0.1 TWh day−1). The hard minimum boundary of energy demand in the
summer months at 7.1 TWh day−1 is caused by the minimum in the

energy demand model at 15.5 °C (Fig. 4). Any temperature change from
that point, both higher and lower values, leads to an increase of energy
demand.

The mid-summer minimum is not found in ERA-interim, which has
two minima in the beginning of June and in late September. In ERA-
interim, there is a slight rise in energy demand mid-summer due to
electric cooling requirements. EC-Earth has a regional summer cold bias
of 1.1 °C (JJA mean, population weighted regional mean) and therefore
misses this summertime increase of demand. The demand maximum in
winter is similar in EC-Earth and ERA-interim.

In the current model setup, energy demand (Fig. 8b) is higher than

Fig. 7. (a–c) Time series of total energy production for (a) 1-day, (b) 7-days and
(c) 14-days low energy production events with an average return period of 1-in-
10 years. Light blue lines show time series around individual events, the dark
blue line is the composite mean over all events, grey shading shows the dura-
tion of the event considered. Orange and red lines in (a) show specific in-
dividual events, see main text for details (Section 4.3). (d) Histogram indicating
the timing of 1-, 7- and 14-days low energy production events, horizontal bars
at the bottom show a kernal density estimate of these distributions.
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energy production (Fig. 8a). The assumed projected distribution of in-
stalled capacity (Fig. 3) leads to an annual average share of renewable
energy of 35% (day-to-day range from 4 to 100%) in EC-Earth. This is
slightly lower than what results from ERA-interim data (average share
of 42%), due to the lower modelled wind energy production (Section
4.1). We investigate the part of energy demand not met by renewable
energy production, energy shortfall (Fig. 8c), further.

Ensemble mean 1-day energy shortfall is fairly constant throughout
the year (5.1 TWh day−1), though there is large variability around this
mean (st.dev. 1.1 TWh day−1, Fig. 8c). Due to higher variability in
winter (DJF st.dev.: 1.3 TWh day−1, JJA st.dev.: 0.7 TWh day−1), all
selected 1-day energy shortfall events occur from November to March,
with 81% in December-January (event selection threshold: 8.0 TWh
day−1). The effect of including temperature-dependent demand in the
event selection, is thus a shift of events to the coldest period of the year.
Low energy production events occur mostly in November-December
(Section 4.1).

5.2. Meteorological conditions

Similar to low energy production events (Section 4.2), the 1-day
high energy shortfall events are characterised by a large-scale high
pressure system (Fig. 9d), associated 10m wind speed anomalies are
comparable in magnitude and location (Figs. 9d and 6d). Incoming
solar radiation is lower than normal in southern Europe, though above
normal further north (Fig. 9h). These positive radiation anomalies were
not found for the low energy production events (Fig. 6h). Mean energy
production for the high shortfall events is 0.8 TWh day−1, which is
0.2 TWh day−1 (36%) higher than energy production for the low en-
ergy production events. From an energy production perspective, the 1-
in-10 year high energy shortfall events are 1-in-2.2 year events (899
occurrences in the 2000 year data set).

The 2m temperature anomaly (Fig. 9l) is what sets the high energy
shortfall events apart. The entire region considered is colder than
normal, in places anomalies exceed−6 °C. Electric heating requirements
for such cold episodes boost energy demand (Eqs. (8) and (9)). Mean
energy demand for the high energy shortfall events is 8.9 TWh day−1.
This is not an exceptionally high value for energy demand, it has an
average return period of 0.3 years (7763 occurrences), but combined
with the simultaneous low energy production the higher demand leads
to extreme energy shortfall. There is no significant temperature
anomaly for the selected low energy production events (not shown).
Mean energy demand for the low energy production events is therefore
0.5 TWh day−1 lower than for the high energy shortfall events.

Again the model results are verified with ERA-interim data. ERA-
interim high shortfall events are characterised by a high pressure
system (SI Fig. S5), though in contrast to EC-Earth the core lies over
Ireland. The pattern of negative 10m wind anomalies and incoming
radiation anomalies are similar. The cold anomalies are substantially
larger in the ERA-interim composite (exceeding 10 °C in central
Europe), however the four ERA-interim events all fall within the full
distribution of modelled events (SI Fig.S7).

5.3. Temporal development

The high pressure system leading to 1-day high energy shortfall
events (Fig. 9a–d) develops slightly slower than that leading to 1-day
low energy production events (Fig. 6a–d, Section 4.3). The associated
10m wind anomalies (Fig. 9a–d) and incoming radiation anomalies
(Fig. 9e–h) therefore appear a few days earlier. The reason is that it
takes time to cool central Europe. With high pressures settling over
Europe, the winds immediately die down. Temperatures drop slowly in
response to a weak north-easterly flow bringing colder air and strong
radiative cooling during clear skies at night dominating the above
normal daytime solar heating.

This slow thermal response has consequences for the temporal de-
velopment of energy shortfall. For 1-day shortfall events, energy pro-
duction drops below normal values slightly earlier than production
during low energy production events. Energy demand steadily increases
over time in response to the falling temperatures (Fig. 9i-l), as expected
this is not found for the low energy production events. The simulta-
neous reduction in energy production and growth of energy demand
leads to an increase of energy shortfall around the event date (Fig. 10a).
Low energy production events also display an increase in energy
shortfall, though forced by decreasing energy production alone.

The 7- and 14-days shortfall events (Fig. 10b,c) are dynamically
comparable to the 1-day events. They are forced by a large-scale high
pressure system over central Europe, negative 10m wind anomalies in
the North Sea area, negative incoming radiation anomalies in southern
Europe and colder than normal surface temperatures (not shown). In
contrast to the low energy production events which undergo a shift in
seasonality, the shortfall events occur at the same time of year in-
dependent of their length (Fig. 10d).

5.4. Co-occurring low production and high shortfall events

Given the relationship between energy shortfall and energy pro-
duction (Eq. (2)), and the comparable meteorological situation for low

Fig. 8. As Fig. 5 but here for (a) daily energy production, (b) daily energy demand, (c) daily energy shortfall (TWh day−1). The threshold in (c) here indicates the
threshold for extreme high energy shortfall events.
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energy production events and high energy shortfall events (Figs. 6 and
9, Sections 4.2 and 5.2), one may expect some co-occurrence of these
high-impact events. However, there is no statistical relationship be-
tween energy production and energy demand (Fig. 11a), and there are
no co-occurring extreme low energy production and extreme high en-
ergy demand events at 1-, 7- or 14-days time scales. The co-occurrence
of extreme low energy production and extreme high energy shortfall is
therefore investigated separately.

From Fig. 11b and c it is obvious that there is a relationship between
energy production and energy shortfall. Correlations are stronger if the
data is separated by season (1-day event correlation coefficients annual:

= −r 0.87, DJF: = −r 0.99, JJA: = −r 0.99), however because of the
differences in timing of low energy production events and high energy
shortfall events (Fig. 10d), the full year of data must be considered. The
statistical relationship between low production and high shortfall is
stronger for events of shorter duration than for events of longer

Fig. 9. As Fig. 6, but here for composite mean maps of meteorological variables for high energy shortfall events (‘S events’). Colours here show (a–d) anomalies of
10m wind speed (m s−1), (e–h) anomalies of incoming solar radiation (W m−2), and (i–l) anomalies of 2m air temperature (°C).
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duration ( = −r 0.87, = −r 0.74 and = −r 0.63 for 1-, 7- and 14-days time
scales respectively). Also, co-occurrence of extreme low energy pro-
duction and extreme high energy shortfall events decreases for events of
longer duration: 42 of 200 1-day events co-occur (21%, Fig. 11b), 39 7-
days events (20%) and six 14-days events (3%, Fig. 11c). The cause for
the decreasing strength of the linear relationship and decreasing co-
occurrence is the shift of the season with highest chance of low energy
production events for longer events that is not found for longer-lasting
high shortfall events (Fig. 10d).

6. Sensitivity of results

6.1. Choice of global climate model

Global climate models are imperfect, this results in biases in simu-
lated variables and simulated weather patterns. The results in Sections
4 and 5 are based on simulations with the EC-Earth global climate
model [29]. These model results have been compared with similar
analyses based on ERA-interim data, which provides some confidence
in the robustness and relevance of the results (see SI). Further evidence
for the robustness of results is provided by a repetition of the analysis
with a different global climate model. All analyses presented in Sections
4 and 5 were repeated using the HadGEM2-ES [33] large ensemble
under present-day conditions (see Section 2 and Fig. 1).

HadGEM2-ES has a larger bias of wind energy production than EC-
Earth (annual mean HadGEM2-ES: 1.3 TWh day−1, EC-Earth: 2.1 TWh
day−1, ERA-interim: 2.6 TWh day−1) and performs similar in terms of
simulating solar energy production (annual mean for all three: 0.7 TWh
day−1). The annual cycle of total energy production in HadGEM2-ES is
largely comparable, though it peaks in February rather than January
(EC-Earth and ERA-interim). Variability around the seasonal mean is
closer to ERA-interim in the EC-Earth data (annual st.dev. HadGEM2-
ES: 0.8 TWh day−1, EC-Earth: 1.1 TWh day−1, ERA-interim: 1.3 TWh
day−1). Despite these differences, the composite mean meteorological
conditions and timing of selected low energy production events are
remarkably similar to those from EC-Earth (Fig. 12a,b and 6d,h). There
is a large high pressure system of approximately the same strength and
in approximately the same location. In HadGEM2-ES the negative 10m
wind speed anomalies are slightly weaker over the North Sea area,
incoming solar radiation anomalies are stronger than in EC-Earth. Low
production events occur from October to February, with 76% in No-
vember-December (event selection threshold 0.5 TWh day−1, compared
to 0.6 TWh day−1 in EC-Earth). The temporal development of the high
pressure system, associated surface anomalies and total energy pro-
duction are comparable as well (Fig. 12c), though the decrease of en-
ergy production is larger in EC-Earth due to its larger mean production
and higher variability.

HadGEM2-ES reproduces the ERA-interim annual cycle of energy
demand (HadGEM2-ES DJF mean: 8.5 TWh day−1, JJA mean: 7.3 TWh
day−1; ERA-interim DJF mean: 8.5 TWh day−1, JJA mean: 7.2 TWh
day−1). The low energy production bias therefore leads to a high bias in
energy shortfall. As was found for EC-Earth, ensemble mean energy
shortfall is relatively constant throughout the year (5.8 TWh day−1),
the 1-in-10 year high shortfall event selection threshold is 8.4 TWh
day−1 (8.0 TWh day−1 in EC-Earth). The composite mean high pressure
system leading to high energy shortfall is similar to that found for EC-
Earth (Figs. 12d,e and 9d,l), the associated cold temperature anomalies
are larger in HadGEM2-ES than in EC-Earth. The distributions of pres-
sure patterns, 10m wind speed and temperature anomalies for all se-
lected events in HadGEM2-ES and EC-Earth are included in the SI (SI
Figs. S6,S7).

In HadGEM2-ES the co-occurrence of low energy production events
and high energy shortfall events is less dependent on the length of the
events (7, 6 and 5% of events for 1-, 7- and 14-days events respectively)
as was found in EC-Earth data (Section 5.4). In HadGEM2-ES the shift to
late summer/autumn for longer lasting low energy production events is
smaller than that in EC-Earth. Consequently, there is more overlap in
the timing of low energy production and high energy shortfall events of
all lengths.

6.2. Spatial distribution of wind turbines and solar panels

The results in Sections 4 and 5 depend on the selection of events
based on calculated values for energy production and energy shortfall.
Energy production depends on the spatial distribution of wind turbines
and solar panels (IC in Eq. (1)). The main results are not impacted if a

Fig. 10. (a–c) As Fig. 7a–c but here for time series of energy shortfall for high
energy shortfall events. The dark red line shows the composite mean over the
low energy production events. (d) As Fig. 7d but here for high energy shortfall
events, colours have changed. Horizontal bars at the bottom show a Kernal
density estimate of these distributions, in blue the distributions of low energy
production events (as in Fig. 7d).
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different spatial distribution of installed capacity had been used for the
study, showing the robustness of the presented results. Here the events
selected based on the projected distribution (Fig. 3) are compared to
events selected based on the uniform distribution of wind turbines and
solar panels (SI Fig. S3, described in Section 3).

Mean renewable energy production based on the projected dis-
tribution is 2.7 TWh day−1 (full range: 0.4 to 8.3 TWh day−1, Fig. 5c)
and 2.8 TWh day−1 based on the uniform distribution (full range: 0.4 to
7.3 TWh day−1, Fig. 13a). The projected distribution has a longer tail
with high production, but its mean production is lower. On average, the
uniform distribution thus more evenly harvests the available wind and
solar resource and better compensates below average yields in some
places with higher yields in other places.

The selected low energy production events of interest here are not
sensitive to the spatial distribution of installed capacity. If event se-
lection is repeated based on extreme low energy production from the
uniform distribution, 69 of 200 1-day events have the same date
(Fig. 13b), a further 14 events are within a week from each other. The
meteorological conditions described in Section 4 are comparable when
high-impact events based on the uniform distribution are investigated.

Energy shortfall is defined as the difference between energy demand
and energy production (Eq. (2)). Since modelled demand is only tem-
perature dependent, it is not sensitive to the distribution of installed
capacity. Therefore, the sensitivity of energy shortfall to the distribu-
tion of installed capacity is comparable to the sensitivity of energy
production. Mean shortfall is 5.1 TWh day−1 for both distributions
(Fig. 13c). If event selection is repeated for shortfall, 81 of 200 1-day
events have the same date between the two distributions, an additional
17 events occur within a week of each other. The reported meteor-
ological conditions in Section 5 are not impacted.

6.3. Influence of climate change

Next the influence of further global climate change on European
renewable energy production and energy demand is investigated. To do
so, two large ensemble experiments, each 2000 years, both generated
with the EC-Earth global climate model are compared. The two en-
sembles differ in their GMST, one representing the present-day climate
(analysed in Sections 4 and 5) and one a projected pre-industrial + 2 °C
warming future climate, see Section 2 for details.

Both wind energy production and solar energy production do not

show much change (mean wind energy production of 2.1 becomes
2.0 TWh day−1, mean solar energy production remains 0.7 TWh
day−1), and also variability does not change (st.devs. unchanged). The
small shift of the mean is outweighed by much larger variability, in-
dicating that renewable energy production in a future warmer climate
is comparable to that in the present-day climate. Previous studies on
wind energy production give projections of varying sign, though all
note changes are small taking into account model biases and strong
interannual variability [18,45–49]. Solar energy projections note mean
increases in southern Europe [50,51], though the direction of change is
dependent on atmospheric circulation [18].

Energy demand, calculated using the model as in Section 3.3, is
projected to decrease in the winter season (DJF mean demand of 8.5
becomes 8.4 TWh day−1). Rising temperatures lead to a decrease in
electrical heating requirements. As a result, wintertime energy shortfall
as defined in this paper will decrease. The temperature-related trend in
energy demand from this simple model is in agreement with reported
trends from more complex energy demand models [24,52,53]. Sum-
mertime energy demand does not change in these simulations (7.2 TWh
day−1 in both ensembles), the demand model used here is not very
sensitive at high temperatures (i.e. weak slope for temperatures above
15.5 °C in Fig. 4).

Finally, the occurrence of extreme events as discussed in Sections 4
and 5 under climate change is investigated. To do so, Generalized Ex-
treme Value (GEV) distributions are fitted to 2000 annual extreme
events (block minima/maxima) [54]. As expected, given the above
result that wind and solar energy production do not show large changes
in response to further global climate change, there is no change in the
occurrence of extreme low energy production events (Fig. 14a).
Changes are found in the risk of occurrence of extreme energy shortfall
events, in line with decreased wintertime energy demand (Fig. 14b).
Given the energy model used here, the risk of extreme energy shortfall
decreases. The 1-in-10 year energy shortfall event at 8.0 TWh day−1 in
the present-day climate becomes a 1-in-17 year event in a 2 °C warmer
climate. These results are consistent with projections that show no
change or slight decreases in winter atmospheric blocking under cli-
mate change [44] and increasing winter temperatures [55].

It is important to realise that the energy demand model used here
assumes a historical (2006–2015) relationship between temperature
variations and electrical consumption that will very likely change due
to future changes in electrical consumption and power system design. It

Fig. 11. 2D histogram comparing (a) energy production (TWh day−1) and energy demand (TWh day−1), and (b,c) energy production and energy shortfall (TWh
day−1) for (a,b) 1-day events and (c) 14-days events. Colours show the counts in each bin (bin width and height 0.05 TWh day−1), blue dots show the outliers (1
event per bin), the solid grey line shows a fitted linear regression for DJF, the dashed grey line shows a fitted linear regression for JJA (correlation coefficients are
noted), dashed black lines show the 1-in-10 year event thresholds for both distributions (taking into account minimum event separation in (c)).
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is therefore recommended that climate change induced changes in en-
ergy demand and energy shortfall are revisited in future studies (see
also Section 7). In the current setup, there is room for increased elec-
trical consumption during summer months, because summertime
maximum energy shortfall is 2 TWh day−1 lower than its winter peak
(Fig. 8c).

7. Discussion

The analysis in this paper may be improved upon by using a climate
model of higher horizontal, vertical and temporal resolution. This
would allow more detailed analysis of spatial variability [56], more
accurate analysis of wind speeds at turbine height [36,57], and allow
the analysis of sub-daily variability. A comparison with higher resolu-
tion climate model data can provide insights into the importance of
these different resolutions. In general, large-scale atmospheric circula-
tion patterns are captured relatively well in coarse global climate
models, there is thus confidence in the risk that these high pressure
systems pose for European energy security. Comparable event analysis
for high shortfall events in Great Britain based on reanalysis data
identified similar weather systems leading to high risk there [25]. There
is evidence that high resolution models better capture large scale pro-
cesses related to atmospheric blockings [44,58]. The use of daily-
averaged data from the climate model leads to an underestimation of
the variability of wind energy production. A sensitivity analysis shows
that the selection of extreme low energy production events is not im-
pacted. Below the cut-in wind speed of wind turbines, small changes in
the wind speed do not lead to changes in wind energy production.

Biases in modelled meteorological variables negatively impact the
quality of modelled energy variables. Modelled 10m wind speeds in EC-
Earth are lower than those in ERA-interim. These biases amplify in the
calculation of energy potential, because winds speeds frequently fall in
the non-linear energy production regime of wind turbines (Eq. (4)). A
low bias in wind energy production, combined with a slight over-
estimation of solar energy production due to cooler summer tempera-
tures, leads to a skewed ratio of wind-to-solar production (wind is 76%
of total here, expected to be around 85–90% given the assumed power
mix). A sensitivity analysis shows that the threshold level for extreme
low energy production is somewhat influenced by this bias, and that the
seasonal cycle of the lower boundary of the histogram of energy pro-
duction (Fig. 5c and 0.5 TWh day−1 in DJF, 1.1 TWh day−1 in JJA) is
exaggerated due to this bias. However, the season of extreme event
occurrence remains the extended winter, therefore event selection and
the presented results are not impacted.

In the energy model a projected distribution of wind turbines and
solar panels was assumed, in this distribution the ratio of installed ca-
pacity is 75% wind- and 25% solar-based. Changes to the mix of wind
versus solar energy influence the annual cycle of total energy produc-
tion and the season in which extreme low production events occur
(Fig. 5a–c can be interpreted as showing a 100% wind-based system, a
100% solar-based system, and a mixed system at 75 %–25% installed
capacity). Assuming the spatial distribution as in the present energy
model, the influence of the strong annual cycle of solar radiation de-
termines the timing of events for all power mixes with more than 10%
solar capacity. For power systems with other weather-dependent
sources of energy, e.g. wave power generation, the analysis method
developed here can be applied to identify the situations that lead to
high societal risk then.

It was assumed that the height of wind turbines is 80m over land
and 120m in offshore regions, but likely wind turbines will be higher in
the future. Higher turbines can harvest higher wind speeds (Eq. (3))
leading to higher absolute energy production (Eq. (4)) and lower values
of energy shortfall (Eq. (2)). However, relative difference between re-
gions are not affected, therefore the selection of events and the me-
teorological conditions described are not impacted by assumed turbine
height.

The energy demand model (Section 3.3) was calibrated using his-
torical demand data for the years 2006–2015. A further electrification
of society has not been taken into account. Besides a steady increase of
weather-independent energy demand, increases in the weather-depen-
dent-part of energy demand are also foreseen [24,59]. In the design of
the future power system, it is important to take into account projected
(weather-dependent) energy demand. Further work may investigate

Fig. 12. Reproduction of selected panels of Figs. 6, 7 and 9, but here based on
data from the HadGEM2-ES present-day large ensemble experiment. (a,b,d,e)
Composite mean maps of meteorological variables for (a,b) low energy pro-
duction events (as in Fig. 6d,h), and (d,e) high energy shortfall events (as in
Fig. 9d,l). (a,d) show anomalies of 10m wind speed (m s−1), (b) shows
anomalies of incoming radiation (W m−2), (e) shows anomalies of 2m air
temperature (°C). (c) Time series of energy production for low energy produc-
tion events (TWh day−1), light blue lines show individual events for HadGEM2-
ES, dark blue line the HadGEM2-ES composite mean, red line shows the com-
posite mean for EC-Earth (as in Fig. 7a).
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how the high shortfall events described here will change if future sce-
narios for weather-dependent energy demand are taken into account. If
the dependence of energy demand on temperature increases, i.e. β1
becomes more negative (Section 3.3, Eq. (8)), temperature anomalies
would have relatively larger effects on shortfall than quantified in
Section 5. Furthermore, the energy model in its current form does not
take into account limitations in the transport of energy between regions
(copper-plate assumption), future work may investigate co-variability
of regions and vital connections between energy producing regions.

An analysis of the meteorological conditions leading to high risk for
future European energy security has been presented. The extreme im-
pacts-based approach used here is fundamentally different from pre-
vious meteorology-centred approaches and from seasonal or annual
average analyses [11,12,14,15,17,18,25,28,45,47,48,60–62]. Though
mean conditions and projected changes therein are relevant to de-
termine the feasibility of renewable energy as the main source of energy
in the future, ultimately it is the variability around the mean and ex-
treme events as described here that determine the flexibility require-
ments of a highly-renewable power system and should be governing in
the design of these systems. The noted level of extreme energy shortfall

events at different time scales may contribute to future studies re-
garding back-up energy storage and back-up installed capacity re-
quirements. The importance of long time series or large ensemble data
sets for assessing the impacts of meteorological variability on renew-
able energy production and power system modelling has been shown,
as was also done in Ref. [17].

8. Conclusions and outlook

Given the societal importance of a secure and continuous energy
supply, the meteorological sensitivity of a highly-renewable European
power system was analysed. The main objective of this study was to
investigate the meteorological situations that give rise to high risks
related to European energy safety in a power system dependent on
renewable energy production from wind and solar sources. Using large
ensemble experiments from two global climate models (EC-Earth and
HadGEM2-ES), 3×2000 years of daily energy yields and energy demand
were calculated. From this data 1-in-10 year low renewable energy
production events and 1-in-10 year high energy shortfall events of
varying length (1-, 7-, and 14-days) were selected and investigated from

Fig. 13. 2D histogram comparing (a,b) 1-day energy production (TWh day−1) and (c) 1-day energy shortfall (TWh day−1) for two different distributions of installed
capacity: the projected distribution (Fig. 3) and a uniform distribution (SI Fig. S3). Colours show the counts in each bin (bin width and height is 0.05 TWh day−1),
blue dots show the outliers (1 event per bin), the continuous black line shows the diagonal, the grey line shows a fitted linear regression (correlation coefficient
noted), dashed lines show the 1-in-10 year event thresholds for both distributions.

Fig. 14. Gumbel plots for (a) low energy production events, and (b) high energy shortfall events (TWh day−1). Black colours show present-day conditions, red
colours show projected pre-industrial + 2°C warming conditions, lines show a GEV fit, colour shading shows the 95% GEV confidence interval, the dashed black line
indicates 1-in-10 year event threshold for present-day conditions.
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a meteorological perspective. Energy shortfall was defined to be the
difference between energy demand and renewable energy production.

1-day extreme low energy production events are characterised by a
large high pressure system over central Europe, associated with lower
than normal 10m wind speeds all over Europe, but most pronounced
over the North Sea and surrounding regions leading to low wind energy
production. These events typically occur in the extended winter
(October-February), therefore solar energy production is limited due to
short day lengths. 1-day extreme high energy shortfall events are very
similar (a high pressure system and negative wind anomalies), though
now combined with colder than normal temperatures over the entire
region. Electric heating requirements drive up energy demand. Low
energy production combined with high energy demand leads to high
energy shortfall. These energy shortfall events occur from November to
March. The similarity between low energy production events and high
energy shortfall events is high, 21% of the selected events are co-oc-
curring, i.e. days are extreme (1-in-10 year return time) by both mea-
sures.

Atmospheric blocking can lead to prolonged episodes of large scale
negative wind anomalies and cold temperatures. In these situations
renewable energy production is low or energy shortfall is high for 7 or
14 days in a row. To guarantee a continuous energy supply, future
European power systems with high penetrations of variable renewable
energy must be designed with such events in mind. Longer lasting low
energy production events tend to occur earlier in the year than 1-day
low production events, this shift in the timing of events is not found for
longer lasting energy shortfall events.

The described meteorological conditions leading to high impacts in
the energy sector are consistent across two climate models. Similar
extreme event analysis based on observational data is impossible due to
the limited length of records. However, four 1-in-10 year events from
ERA-interim data fall within the distribution of modelled events, pro-
viding confidence to the model results. The results are robust to changes
in the spatial distribution of wind turbines and solar panels, these high
pressure systems cover most of Europe and lower renewable energy
production in the entire region. Options to import renewable energy
from remote locations are therefore severely limited. The influence of
continued global climate change is small compared to interannual
variability.

The investigated extreme high energy shortfall events are key ex-
amples of compound events, i.e. a combination of multiple drivers and/
or hazards that contribute to societal or environmental risk [63]. The
selected 1-in-10 year high energy shortfall events are caused by 1-in-2.2
year low energy production combined with 1-in-0.3 year high energy
demand. If one had assumed low energy production is the single driver
for energy shortfall, associated risk estimates would have been severely
underestimated: the selected 1-in-10 year low energy production events
are just 1-in-1.9 year events in terms of high energy shortfall. An im-
pact-based bottom-up approach, as used in this paper, is especially
suitable to help identify driving mechanisms of risk in complex systems.
The noted differences between low energy production events and high
energy shortfall events, especially at longer timescales, shows that the
precise method of event selection is important. Meteorological-focused
studies (e.g. studies investigating a changing wind climate, changes in
solar radiation or the change of occurrence of high pressure systems)
provide understanding of single drivers, interactions between drivers
are not considered (e.g. extreme low energy production may not lead to
problems if energy demand is low as well, or increasing incoming ra-
diation may increase solar energy production, though this may be offset
by decreasing performance of solar cells due to rising temperatures).
We therefore advocate for event selection based on impact variables as
close as possible to the ‘true’ societal impact, and for more studies
identifying interactions between climatic drivers, hazards and societal
risk. Impact-based climate studies by interdisciplinary research teams
provide a new way of analysing climate data and may help to build
more resilient systems.
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