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THE IDENTITY OF THE ZERO-TRUNCATED, ONE-INFLATED
LIKELIHOOD AND THE ZERO-ONE-TRUNCATED LIKELIHOOD

FOR GENERAL COUNT DENSITIES WITH AN APPLICATION TO
DRINK-DRIVING IN BRITAIN

BY DANKMAR BÖHNING AND PETER G. M. VAN DER HEIJDEN

University of Southampton and University of Utrecht

For zero-truncated count data, as they typically arise in capture-recapture
modelling, we consider modelling under one-inflation. This is motivated by
police data on drink-driving in Britain which shows high one-inflation. The
data, which are used here, are from the years 2011 to 2015 and are based
on DR10 endorsements. We show that inference for an arbitrary count den-
sity with one-inflation can be equivalently based upon the associated zero-
one truncated count density. This simplifies inference considerably including
maximum likelihood estimation and likelihood ratio testing. For the drink-
driving application, we use the geometric distribution which shows a good
fit. We estimate the total drink-driving as about 2,300,000 drink-drivers in the
observational period. As 227,578 were observed, this means that only about
10% of the drink-driving population is observed with a bootstrap confidence
interval of 9%–12%.

1. Introduction. This work is motivated by the following application. Drink-
driving (DD) is a serious problem in many countries in the world, including
the UK. It relates to driving (or attempting to drive) while being above the le-
gal alcohol limit. Typically, persons involved in an accident are sampled using
a breath-testing device. According to the Guardian from 30/December/2016 [The
Guardian (2016)], in Britain, there were 227,578 Driver & Vehicle License Agency
(DVLA) reported motorists between 2011 and 2015 of which 219,000 motorists
were caught once by the police, 8068 twice, etc. (see Table 1 below). These num-
bers are based on DR10 endorsements. A DR10 is a United Kingdom motoring
endorsement issued by the Driver and Vehicle Licensing Agency (DVLA) and UK
Police which means driving or attempting to drive with a blood alcohol level above
the allowable limit. Following an arrest for a DR10 one can expect a ban from driv-
ing and a fine. In more serious cases, a Community Order, or a prison term of up to
six months may be issued. It is clear that DD is largely a hidden activity as many
DD-drivers remain unidentified. Hence the cell f0 is empty as it is unknown from
the collected data.

Hence we model the count X of identifications of a driver with some count den-
sity p(x, θ) where x = 0,1,2, . . . and θ is a parameter or parameter vector. The
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TABLE 1
Frequency distribution of the count (per person) of DVLA reported drink-driving (DD) in Britain
between 2011 and 2015 (figures are based on DR10 endorsements; see also explanations in the

text); here fx is the frequency of drivers identified exactly x times

Count of DD f0 f1 f2 f3 f4 f5 f6 n

Frequency 219,008 8068 449 46 5 2 227,578

background population of drink-drivers can be enumerated from 1 to N , the latter
being unknown. Hence we have a sample of counts of identifications X1, . . . ,XN

arising in the observational period, where we do not observe Xi = 0: any zero-
counts remain hidden. Hence we consider the associated zero-truncated density
p+(x, θ) = p(x, θ)/[1 − p(0, θ)] to model the observational process. Let n de-
note the size of the observed zero-truncated counts with fx being the frequency
of observing exactly x counts. The largest observed count is denoted as m. Drink-
drivers (in general terminology called units) that are identified only once are also
called singletons, units that occur twice are called doubletons, and so forth. In Ta-
ble 1, there are 219,008 singletons, whereas there are only 8068 doubletons and
449 tripletons. This huge number of singletons might be easily explained as be-
ing caught once by the police might change the DD behavior considerably so that
such an event will not occur again (because of potential legal consequences). To
incorporate extra-ones or one-inflation into the modeling we consider

(1) p+1(x, θ) =
{
(1 − ω) + ωp+(x, θ), if x = 1,

ωp+(x, θ), if x > 1,

where 1 − ω, ω ∈ [0,1], is an extra mass at x = 1 that controls the amount of one-
inflation. We call this the zero-truncated, one-inflated density p+1(x, θ) arising
from count density p(x, θ) which we call the baseline density. We provide two
examples of baseline densities which are used frequently in count data modeling.
One is the Poisson distribution given as

p(x, θ) = exp(−θ)θx/x!
for x = 0,1,2, . . . and θ > 0. The other is the geometric given as

p(x, θ) = (1 − θ)xθ

for x = 0,1,2, . . . and θ ∈ (0,1). The geometric distribution is typically intro-
duced as a discrete time-to-event distribution although it also can be thought of as
flexible count data distribution as it occurs when a Poisson distribution is mixed
with an exponential distribution:

(1 − θ)xθ =
∫ ∞

0
exp(−λ)λx/x! × 1

ϑ
exp(−λ/ϑ)dλ,
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where θ = 1/(1 + ϑ). Note that the geometric distribution has the simple prop-
erty that p+(x, θ) = (1 − θ)x−1θ for x = 1,2, . . . and p++(x, θ) = p(x, θ)/[1 −
p(0, θ) − p(1, θ)] = (1 − θ)x−2θ for x = 2,3, . . . , implying that truncated geo-
metric distributions are also geometric distributions.

The associated likelihood is

(2) L+1 =
m∏

x=1

p
fx

+1 = [
(1 − ω) + ωp+(1, θ)

]f1
m∏

x=2

[
ωp+(x, θ)

]fx .

We also consider the zero-one-truncated density

p++(x, θ) = p+(x, θ)/
[
1 − p+(1, θ)

] = p(x, θ)/
[
1 − p(0, θ) − p(1, θ)

]
for x = 2,3, . . . with associated likelihood

(3) L++ =
m∏

x=2

p++(x, θ)fx .

We will show in the following that the zero-truncated one-inflated likelihood is
identical (up to a constant independent of θ ) to the zero-one truncated likelihood.
Working with the zero-one truncated likelihood simplifies inference considerably
as computational tools are readily available for standard count densities. We then
utilize these results in estimation the amount of drink-driving in Britain, including
the frequency f0 of hidden units in the population of drink-drivers.

In many applications, one-inflation can be explained as behavioral change af-
ter first identification as it is a plausible explanation in our application of drink-
driving. For other applications of one-inflation see Godwin and Böhning (2017).
Other ways of one-inflation occurrence are discussed in Bunge, Willis and Walsh
(2014). For a general introduction into capture-recapture problems see Borchers,
Buckland and Zucchini (2004), Bunge and Fitzpatrick (1993), McCrea and Mor-
gan (2015) or Böhning, Bunge and van der Heijden (2018).

The paper is organized as follows. In the next section, we show a more gen-
eral result. For any discrete density with one sample element, x0 say, truncated
and another element, x1 say, inflated it is shown that the x0-truncated, x1-inflated
likelihood is identical to the x0-x1-truncated likelihood. In Section 3, we consider
a likelihood ratio test for testing the null hypothesis of no x1-inflation against the
alternative of x1-inflation. For count densities, we then utilize these results in esti-
mation of the total population size, including the frequency f0 of hidden units in
the population in Section 4. For confidence interval estimation, we use the imputed
bootstrap in Section 5. Finally, we apply these results to estimate the magnitude of
DD in Britain in Section 6.

2. Identity. We intend to show the identity of the likelihoods (2) and (3) (up
to a parameter-independent constant). In fact, we prove a more general result. Let
X take one of the values in the sequence x0, x1, x2, . . . , xi �= xj for i �= j , not
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necessarily count values. Also, the associated probabilities P(X = xi) are given
by some parametric model p(xi, θ) where θ is a real parameter or vector. Let
us assume that there is one value of X which is not observable and we take this
value without limitation of generality to be x0. The associated x0-truncated discrete
density is then p+(xi, θ) = p(xi, θ)/[1 − p(x0, θ)] for any xi �= x0. Furthermore,
we assume that there is a second value, again without limitation of generality let
this value be x1, which is inflated:

(4) p+1(xi, θ) =
{
(1 − ω) + ωp+(xi, θ), if xi = x1,

ωp+(xi, θ), if xi �= x0, x1,

which we call the x0-truncated, x1-inflated density of the baseline distribution
p(x, θ).

Let f1, f2, . . . , fm be the observed sample frequencies of x1, x2, . . . , xm. Here
m denotes the last observed sample element in the lexicographical order. Then, we
have the associated likelihood as

(5) L+1 = [
(1 − ω) + ωp+(x1, θ)

]f1
m∏

i=2

[
ωp+(xi, θ)

]fi .

In addition, we consider the x0-x1-truncated density

p++(x, θ) = p+(x, θ)/
[
1 − p+(x1, θ)

] = p(x, θ)/
[
1 − p(x0, θ) − p(x1, θ)

]
for x = x2, x3, . . . with associated likelihood

(6) L++ =
m∏

i=2

p++(xi, θ)fi .

We have the following general result.

THEOREM 1. Let n = f1 + f2 + · · · + fm and n1 = n − f1. Then

(7) logL+1 = f1 log(f1/n) + n1 log(1 − f1/n) + logL++.

Furthermore, for any fixed θ ,

(8) ω̂ = 1 − f1/n

1 − p+(x1, θ)

and

(9) 1 − ω̂ + ω̂p+(x1, θ) = f1/n.

The result implies that fitting the zero-truncated one-inflated likelihood, for an
arbitrary count density, can be accomplished using the zero-one-truncated likeli-
hood. Furthermore, the fit of the one-inflated component will be identical to the
observed proportion f1/n. Hence this implies also that the fit of the model will
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entirely depend on the zero-one truncated part and any analysis can be restricted
to this.

We now give a proof of Theorem 1. From the x0-truncated, x1-inflated likeli-
hood (5) we get the log-likelihood

(10) logL+1(ω, θ) = f1 log
[
(1 − ω) + ωp+(x1, θ)

] +
m∑

i=2

fi log
[
ωp+(xi, θ)

]
.

Maximizing (10) for fixed θ leads to ω̂ = ω̂(θ) = (1 − f1/n)/(1 − p+(x1, θ))

which is (8) from where (9) follows. Hence the profile log-likelihood logL+1(θ) =
logL+1(ω̂(θ), θ) is

logL+1(θ) = f1 log(f1/n) + n1 log(1 − f1/n) − n1 log
[
1 − p+(x1, θ)

]
+

m∑
i=2

fi log
[
p+(xi, θ)

]
.(11)

Clearly, the second, θ -dependent part of (11) corresponds to

m∑
i=2

fi log
[
p+(xi, θ)/

(
1 − p+(x1, θ)

)] = logL++(θ),

which shows (7) of Theorem 1 and ends the proof.
It is clear that the estimate ω̂ in (8) must be nonnegative. However, it might

be larger than one in which case it will be truncated to one and the one-inflation
model reduces to the standard zero-truncated model p+(x, θ). Hence interest can
focus on the case that 0 < ω̂ < 1.

3. Likelihood ratio test. Clearly, the question of whether there is one-
inflation will depend on the choice of p(x, θ). Hence it needs to be investi-
gated whether there are more singletons than compatible with the baseline density
p(x, θ). A simple likelihood ratio test can be developed from the results of the pre-
vious section. Under the alternative model (1) of one-inflation the log-likelihood
is given as logL+1(θ̂) = f1 log(f1/n) + n1 log(1 − f1/n) + logL++(θ̂) where θ̂

maximizes the likelihood L++(θ) = ∏m
i=2 p++(xi, θ)fi . The log-likelihood under

the null-hypothesis of no one-inflation is given as logL+(θ̂0) where θ̂0 maximizes
logL+(θ) = ∑m

i=1 fi logp+(xi, θ). Hence the likelihood ratio statistics is given as

λ = 2
[
logL+1(θ̂) − logL+(θ̂0)

]
= 2

[
f1 log(f1/n) + n1 log(1 − f1/n) + logL++(θ̂) − logL+(θ̂0)

]
.(12)

Care has to be taken when referring to the null distribution of λ. In our case, the
one-inflation parameter ω is restricted to be not larger than one. Because the null
hypothesis is that this parameter is indeed one, which is on the boundary of the
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parameter space, the distribution of λ is a 50 : 50 mixture of a one-point distribu-
tion which puts all its point mass at zero and a χ2

(1) distribution with 1 degree of
freedom. Therefore, significance levels in the one-parameter case can be adjusted
accordingly. See Self and Liang (1987) for the appropriate theory. For example, the
p-value can be computed simply by dividing the p-value by 2 which is obtained
when applying the conventionally χ2

(1)-distributional result.
To demonstrate the likelihood ratio test for the case of a count density we

use the geometric density p(x, θ) = (1 − θ)xθ for x = 0,1, . . . . [We will see
in Section 6 that the geometric provides a good fit here.] Hence we have that
p+(x, θ) = (1 − θ)x−1θ for x = 1,2, . . . and p++(x, θ) = (1 − θ)x−2θ for
x = 2,3, . . . . The relevant log-likelihoods are readily obtained as logL+(θ) =
S1 log(1 − θ) + n log θ with maximum likelihood estimate θ̂0 = 1/(S1/n + 1)

and logL++(θ) = S2 log(1 − θ) + n1 log θ and maximum likelihood estimate
θ̂ = 1/(S2/n1 + 1), where S1 = ∑m

x=1 fx(x − 1) and S2 = ∑m
x=2 fx(x − 2). In

the case of the DD data, we find a value 117.70 for λ, supporting a strong evidence
for one-inflation.

4. Population size estimation. We are interested in estimating the total size
N of the population, in the application the total amount of DD in Britain in the
observational period. The population size N consists of the observed part n and
the unobserved part f0. The conventional Horvitz–Thompson estimator would es-
timate N as N̂ = n/[1 − p(x0, θ)], or in detail N̂ = ∑N

i=1 Ii/[1 − p(x0, θ)] where
Ii is the indicator function for the ith unit of the population. Every observed mem-
ber of the target population is up-weighted by the probability being observed, for
each observed unit an estimate of the associated unobserved units is computed.

The problem in the x1-inflated case is that also the extra-singletons, or in more
general terms, the extra-x1’s, would be up-weighted while only the nonextra-
singletons (nonextra-x1’s) should be up-weighted. We solve this problem by re-
moving the singletons (x1’s) completely and construct a Horvitz–Thompson esti-
mator for the target population with no extra-singletons (x1’s)

N̂nes = n1

1 − p(x0, θ) − p(x1, θ)
.

N̂nes is an unbiased estimator of the population size Nnes of the target population
with no extra-x1’s. Hence we are able to construct an estimator of the hidden units
f0 as

f̂0 = p(x0, θ)
n1

1 − p(x0, θ) − p(x1, θ)
.

Recall that n1 = n − f1, the observed sample size reduced by the frequency of
singletons. Ultimately, we achieve the Horvitz–Thompson estimator of the target
population of interest as

(13) N̂ = f̂0 + f1 + n1 = p(x0, θ)
n1

1 − p(x0, θ) − p(x1, θ)
+ f1 + n1.
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Again, this is an unbiased estimator of the population size N of interest. Typically,
θ is unknown and is best replaced with the maximum likelihood estimator θ̂ under
p+1(x, θ) leading to

(14) N̂ = f̂0 + f1 + n1 = p(x0, θ̂ )
n1

1 − p(x0, θ̂ ) − p(x1, θ̂)
+ f1 + n1.

5. Standard errors. Every population size estimator needs to be accompa-
nied by a measure of certainty. To keep the level of generality, we wish to apply
the nonparametric bootstrap as discussed, for example, in Efron and Tibshirani
(1993). However, bootstrapping is more complex in the capture-recapture setting,
as a simple random sample of size n with replacement will typically underestimate
the variability of the quantity of interest. In Böhning, van der Heijden and Bunge
(2018) an example is given where the conventional bootstrap delivers in all cases
the original sample. A correct application of nonparametric bootstrap would imply
taking a random sample of size N from the observed sample including the unob-
served zero counts. In Anan, Böhning and Maruotti (2017), this is called the true
bootstrap. As N is unknown, it is replaced by N̂ . Hence, a random sample of size
N̂ with replacement is drawn from the observed sample including the estimated
frequency f̂0 of zero counts. This is called the imputed bootstrap. In Anan, Böhn-
ing and Maruotti (2017) it is demonstrated, by means of extensive simulation work,
that the true and imputed bootstrap give an accurate estimate of the true standard
error. However, for imputed bootstrap it has to be assumed that the model, under
which θ is estimated, is correct. The idea has been originally suggested in van der
Heijden et al. (2003) in the Poisson setting. Formally, we apply the bootstrap in
this setting as follows.

1. Draw a sample of size ‖N̂‖ from the observed distribution defined by the prob-

abilities f̂0

N̂
,

f1

N̂
,

f2

N̂
, . . . ,

fm

N̂
. (Here ‖x‖ denotes the rounding of x to the nearest

integer.)
2. Derive θ̂ and N̂ for the bootstrap sample in step 1.
3. Repeat steps 1 and 2 B times, leading to a sample of estimates N(1), . . . ,N(B)

4. Calculate the bootstrap standard error as

SE∗ = 1

B

B∑
b=1

(
N(b) − N̄∗)2

,

where N̄∗ = 1
B

∑B
b=1 N(b).

We now apply these concepts to the drink-driving data from Britain.

6. Modeling and application to DD. We have seen that there is overwhelm-
ing evidence for a case of one-inflation in the data on drink-driving. Ignoring one-
inflation would lead to a serious overestimation of the population size. This can
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most easily be seen in the case of a Poisson distribution. Ignoring one-inflation
would pull the Poisson parameter estimate towards zero and thus increase the pop-
ulation size estimate, potentially quite largely. Fortunately, one-inflation can now
easily be coped with using the one-inflation model for any base distribution. As
there is perfect fit for the frequency of singletons for any base model, the fit of the
model will entirely rest on the base distribution. Modeling the base distribution is
an area in itself as the there are a diversity of approaches. We restrict ourselves here
on some simple, parametric distributions. If these are valid for the observed and
unobserved parts of the data, the associated population size estimates are consistent
and asymptotically unbiased under regularity assumptions outlined in Sanathanan
(1977). However, simple models like the Poisson are seldom valid models for the
count of identifications, as they are not able to cope with heterogeneity in the pa-
rameters across the target populations, for example in the case of the DD data
there might be differences in the distributional parameter according to the area or
time of the day or to demographic characteristics of the driver. Hence models that
incorporate these unobserved heterogeneities are likely to be more appropriate.
Mixture models are one class of models that naturally incorporate heterogeneity in
the modeling process. A typical mixture model for count distributions is

(15)
∫ ∞

0
exp(−θ)θx/x!g(λ)dλ,

where the mixture kernel is a Poisson density and the mixing distribution is left
unspecified with density g(λ). We have seen before that specific choices for the
mixing density g leads to particular distributions such as the exponential distribu-
tion leads to the geometric as marginal distribution, and, more generally, the choice
of a gamma distribution leads to the negative-binomial as marginal. We will con-
centrate on these simple distributions in the following. However, we also want to
point out that one can leave g unspecified and estimate it nonparametrically which
leads to discrete mixture distributions of the form

(16)
k∑

j=1

exp(−θj )θ
x
j /x!gj ,

where weights gj are giving positive mass to a finite number k of subpopulations.
Unfortunately, discrete mixtures have to be considered with care as there is a risk
of a boundary problem in which case large and spurious population size estimators
are generated by the mixture [Wang and Lindsay (2005, 2008)] indicating a con-
sistency problem as the regularity conditions given in Sanathanan (1977) fail to
hold for discrete mixture models. See also the comments by McCrea and Morgan
[(2015), pages 43, 52]. We will discuss this further below. Nevertheless, it is obvi-
ous that a mixture model is more likely to be close to a valid model than a model
just based on the mixture kernel, for example, a homogeneous Poisson. However,
it is shown in Puig and Kokonendji (2018) and van der Heijden et al. (2003) that,
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TABLE 2
Log-likelihood and model selection criteria (AIC and BIC) for drink-driving (DD) data in Britain

between 2011 and 2015 for the Poisson, geometric and negative-binomial distribution

Model Log-L AIC BIC N̂

Poisson −2127.9 4257.8 4264.9 666,746
Geometric −2116.8 4235.6 4242.6 2,333,519
Negative-binomial −2116.8 4237.6 4251.7 2,337,892

in the case of a valid mixture model, the population size estimator based on the
homogeneous model provides a lower bound to the true population size. Hence
simple models can provide still useful information about the population size even
though they might be not valid.

In Table 2, we consider model log-likelihoods as well as the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC) for the zero-one-
truncated Poisson, geometric, and negative-binomial distribution. Note that the
negative-binomial contains both, the Poisson and the geometric, as special cases.
For completeness we provide the density function of the negative-binomial with
θ = (μ,α):

p(x, θ) = �(x + 1
α
)

�(x + 1)�( 1
α
)

(
1/α

μ + 1/α

)1/α(
μ

μ + 1/α

)x

for x = 0,1,2, . . . using the mean parameterization, so that μ > 0 is the mean and
α > 0 is the dispersion parameter. The geometric occurs for α = 1 and the Poisson
for α → 0.

As Table 2 shows there is clear evidence to support the geometric distribution.
The fit of this model confirms evidence for the geometric density as also a 95%
confidence interval for the dispersion parameter is found as 0.9998−1.0002 which
very narrowly ensconce the value of one which corresponds to the geometric as
special case in the negative-binomial distribution.

Despite the difficulties involved in fitting discrete mixture models we have
looked into estimating discrete Poisson mixture models for the DD data set. Ta-
ble 3 shows the results for fitting Poisson mixture models for k = 1,2,3 com-
ponents. It appears that a two-component mixture provides good model selection
criteria values with an estimate of the population size of 993,790. However, if we
consider the model with k = 3 components the population size estimate jumps to
an unrealistic and spurious value. This occurs as the maximum likelihood estimate
attaches high mass of 0.999974 to a Poisson component with very low parameter
value of 0.000006 leading to very large estimate of 0.999987 for p(x0, θ) generat-
ing a largely inflated population size estimate as can be seen from (14). For more
details on this aspect see Wang and Lindsay (2005), pages 943–944.
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TABLE 3
Log-likelihood and mixture model selection criteria (AIC and BIC) for drink-driving (DD) data in

Britain between 2011 and 2015 using k = 1,2,3 subpopulations

k Log-L AIC BIC N̂

1 −2127.9 4257.8 4264.9 666,746
2 −2106.3 4218.7 4239.8 993,790
3 −2106.2 4222.3 4257.6 7.66 × 109

As we reach with the BIC-value of 4242.64 for the geometric distribution a
value which compares favorable with all others, we will use the geometric distri-
bution for the further inference. The two-component Poisson model achieves also
a BIC-value close to the BIC-value of the geometric model, but uses two more
parameters to achieve this. Note also that the BIC is the better suitable criterion
for the selection of mixture models in comparison to the AIC [Keribin (2000), Ray
and Lindsay (2008)]. Hence we are focusing here on the BIC for the selection of
the model. The geometric distribution provides also a reasonable fit here as Table 4
shows, at least clearly better than those achieved by fitting a Poisson distribution.
Only observed and fitted values are shown for x larger than one as the distribution
is one-inflated. The improved fit of the geometric distribution upon the Poisson
distribution might be explained as it occurs as a mixture of the Poisson with an
exponential distribution as was mentioned previously. Hence the geometric is able
to adjust for some of the potential, unobserved heterogeneity involved in a Poisson
distribution.

The estimate of the total of DD in Britain in the observational period is found to
be 2,333,519. This corresponds to 9.7% observed DD, so that about 90% of DD
remains hidden. We use the bootstrap with B = 10,000 to find a 95% confidence
interval. The histogram of the bootstrap distribution of N̂ is given in Figure 1 and
appears fairly symmetric so that a normal-based confidence interval seems rea-
sonable and is provided as 1,975,820–2,727,610, corresponding to a 95% confi-
dence interval of 8.7%–12.0% of the observed DD. The associate percentiles based
95% confidence interval is 2,008,895–2,756,244, corresponding to a 95% confi-

TABLE 4
Observed and fitted distributions for the count x of repeated drink-driving identifications

x Observed Geometric Poisson

2 8068 8040.8 8032.5
3 449 496.5 512.1
≥ 4 53 32.7 25.5
χ2 17.3 37.8
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FIG. 1. Histogram of the bootstrap distribution of the population size estimator.

dence interval of 8.8%–12.1% of the observed DD which is almost identical to the
normal-based confidence interval.

In the following, we are taking some plausibility checks on the estimated 9.7%
of observed DD. In 2017, 74% of the population of England over 17 years of
age were in the possession of a valid driving license leading to a number of 32.9
million [Department of Transport (2018)]. For Wales, this number corresponds
to 2.3 million, so that in total we have 35.9 million driving licenses. Using a
growth rate of 1% we achieve for the 5-year period from 2011 to 2015 a num-
ber of 34.3 + 33.9 + 33.6 + 33.3 + 32.9 = 168 million drivers with valid driving
licenses. Hence we can estimate the proportion of DD among the licensed pop-
ulation in Britain as 2.3/168 × 100% = 1.37%. In a similar period, namely for
the year 2016, road traffic casualties of all severity are given as 181,386 for Great
Britain of which 6080 are determined as DD-accidents leading to a percentage
of 3.35% of DD-driving among those with accidents (as for all those accidents
samples on alcohol levels are taken) [Road accidents and safety statistics (2018)].
Clearly, our estimated percentage of drink-driving is about 2.5 times lower than the
number derived from the road traffic accident statistics. However, drivers with an
accident, in particular those with several accidents, might not be representative for
the general population of licensed drivers. In addition, drink-driving and accident
occurrence are positively associated, so that it is quite plausible that the percentage
from the road traffic accident statistics lies higher than our estimate. On the other
hand, the denominator used in determining the 1.37% percent drink-driving among
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the general population might be too large as it will include drivers that rarely drive
or do not drive at all and are hence not prone to an accident. All in all, the derived
number of 2.3 million drink-drivers in the 5-year period or 460,000 p.a. do not
appear unrealistic.

In the article of the Guardian on the topic [The Guardian (2016)], the president
of the AA, the British Automobile Association, was cited as follows:

The fact that more than 8000 drivers have been caught twice in five years is all the more
astonishing when they should have been off the road for a year or more.

In addition, it is clearly potentially even more worrisome that a large number of
uncaught individuals exists as our model suggests that only 10% of DD is seen.

7. Discussion. We think that the result in Theorem 1 is interesting and useful
as it allows inference to focus on the x0-x1-truncated part, for count densities the
zero-one truncated part, of the distribution. If the latter is fairly simple, inference
can be straightforward as shown in the application of DD in Britain.

The argument used in proving Theorem 1 shows also that for any discrete
density, with one value x1 inflated but not necessarily another one truncated,
the inflated likelihood could be constructed from the x1-truncated likelihood. For
example, a zero-inflated Poisson or binomial likelihood could be found from the
associated zero-truncated Poisson or binomial likelihood. Unfortunately, Theo-
rem 1 does not generalize for continuous densities as truncation with the associated
truncated densities can only be defined for regions with positive mass and not for
single points as it would be required.

Coming to the application study, we use the geometric distribution as it provides
an acceptable fit, in fact, considerably better than the Poisson in this case. In ad-
dition, we find often that the geometric does provide reasonable fits in these kind
of applications. We see one reason for this finding in the fact that the geometric
is an exponential mixture of a Poisson density, hence it adjusts already for some
unobserved heterogeneity of the target population of drink-drivers in a natural way.

We need to emphasize that the population size estimate depends on the specifi-
cation of the model. The appropriateness of this distributional model can only be
evaluated on the basis of the observed counts, and the model, even if it provides an
acceptable fit, might not be appropriate for the unobserved part. Hence it is always
advisable to use other mechanisms, such as the plausibility check we have done
in the case study here, to investigate if the achieved population size is reasonable
at all. In addition, it would be helpful if covariate information would be available
which could improve the modelling considerably. Even demographic information
on age and gender composition would be useful to obtain as it is known that traffic
accident risks are differential with age and gender. We recommend that routinely
collected data by the police on DD do record these and other characteristics and
that these can be obtained on request. Clearly, especially with capture-recapture
data, it is important to be aware of the assumptions underlying the approach and
its limitations, especially, if its application is considered for other case studies in
different settings.
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