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Abstract
We report the performance of HADDOCK in the 2018 iteration of the Grand Challenge organised by the D3R consortium. 
Building on the findings of our participation in last year’s challenge, we significantly improved our pose prediction protocol 
which resulted in a mean RMSD for the top scoring pose of 3.04 and 2.67 Å for the cross-docking and self-docking experi-
ments respectively, which corresponds to an overall success rate of 63% and 71% when considering the top1 and top5 models 
respectively. This performance ranks HADDOCK as the 6th and 3rd best performing group (excluding multiple submis-
sions from a same group) out of a total of 44 and 47 submissions respectively. Our ligand-based binding affinity predictor 
is the 3rd best predictor overall, behind only the two leading structure-based implementations, and the best ligand-based 
one with a Kendall’s Tau correlation of 0.36 for the Cathepsin challenge. It also performed well in the classification part 
of the Kinase challenges, with Matthews Correlation Coefficients of 0.49 (ranked 1st), 0.39 (ranked 4th) and 0.21 (ranked 
4th) for the JAK2, vEGFR2 and p38a targets respectively. Through our participation in last year’s competition we came to 
the conclusion that template selection is of critical importance for the successful outcome of the docking. This year we have 
made improvements in two additional areas of importance: ligand conformer selection and initial positioning, which have 
been key to our excellent pose prediction performance this year.

Keywords D3R · Drug Design Data Resource · Docking · Binding affinity · Ranking · HADDOCK

Introduction

The Drug Design Data Resource (D3R) Grand Challenge 
(GC) of 2018 is the third iteration of the major docking 
competition organised by the D3R consortium [1, 2] and 
similarly to previous years, it has two goals. The first, is the 
assessment of the ability of docking algorithms to accurately 
predict the binding poses of a protein against a diverse set 
of small molecules, and the second, the evaluation of the 
performance of binding affinity prediction algorithms.

The protein which is the focus of the pose prediction 
assessment is Cathepsin S—a member of the Cathepsin 

family. Cathepsins are proteases that are classified in three 
groups depending on the makeup of their catalytic site, 
with Cathepsin S being a member of the most populated 
group—cysteine proteases [3]. Its involvement in MHC class 
II antigen presentation is well established. Given that role, 
it should come as no surprise that it has been implicated in 
many pathological conditions such as cancer and diabetes. 
More recently it has been investigated for its role in pain 
perception [4] and cardiovascular and kidney [5] disease. It 
has long held an interest for the pharmaceutical industry [6] 
as evidenced by the plethora (more than 50 at time of writ-
ing) of human Cathepsin S structures with a bound ligand, 
that have been deposited in the Protein Data Bank (PDB) [7] 
over a time period that spans 15 years.

In addition to the Cathepsin S-centric assessment, which 
also includes a binding affinity prediction component, bind-
ing affinity prediction approaches are evaluated in four 
subchallenges that focus on kinases. Kinases catalyse the 
process of phosphorylation through which a phosphate 
group is covalently bound to a protein substrate. Their role 
in cell signalling has been well understood for decades and 
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they are involved in many aspects of cell differentiation and 
growth [8]. They are a primary target for cancer-related drug 
development [9].

Through our participation in last year’s GC [10] we 
came to the conclusion that template selection is of criti-
cal importance for the successful outcome of the docking. 
This year we have made improvements in two additional 
areas of importance: ligand conformer selection and initial 
positioning. The impact of this is reflected in our improved 
performance in GC3, the results of which are presented and 
discussed here.

Materials and methods

HADDOCK (High Ambiguity Driven DOCKing) is our 
information-driven docking platform [11, 12]. For an intro-
duction to HADDOCK and small molecule docking please 
review the contribution we made to last year’s special issue 
on the D3R GC [10]. The main conclusion from our partici-
pation in last year’s competition was that protein template 
selection is of crucial importance for the successful outcome 
of the docking. We used the protocol we came up with last 
year to select protein templates for this year’s competition 
as well. We made improvements to the ligand conformer 
selection and placement protocols. Similar to last year, all 
new and untested parts of the protocol were benchmarked on 
existing protein–ligand complexes extracted from the PDB.

In a departure from previous years, this year’s competi-
tion is further divided in five subchallenges. Subchallenge 1 
is the equivalent of the GC of previous competitions and has 
a pose and binding affinity prediction component. Subchal-
lenges 2–5 only have a binding affinity component. We par-
ticipated in subchallenges 1 and 2.

Subchallenge 1

This challenge focused on Cathepsin S. For the first part of 
the challenge—pose prediction—we had to predict the bind-
ing pose of Cathepsin S against a set of 24 small molecules 
that were known to bind to it. There is a cross-docking stage, 
during which the structures of the target proteins are not 
known and a self-docking stage for which the bound protein 
structures—but not those of the compounds—are known. 
The organisers provided us initially with SMILES strings for 
the small molecules and the FASTA sequence of the protein, 
and for the self-docking stage with the coordinates of the 
bound receptor for each ligand. Additionally, two publicly 
available structures of the protein with a dimethylsulfox-
ide (DMSO) molecule and a sulfate ion  (SO4) placed in the 
binding pocket were circulated to the participants because 
the aforementioned molecules were detected in some of 
the crystal structures. For the binding affinity prediction 

component of the challenge we had to rank the binding 
affinities of 136 compounds against the protein.

Protein template selection

This part of the protocol, as well as the reasoning behind 
it, are described in greater detail in our previous work and 
so will only be covered briefly. Using the provided FASTA 
sequence, we identified structures of Cathepsin S that had 
been deposited in the PDB. We filtered the results and kept 
only those structures where the protein was complexed with 
a non-covalently bound ligand, thus identifying 36 tem-
plates. We then proceeded to compare the crystallographic 
ligands to the target compounds using as a similarity meas-
ure the Tanimoto distance, as implemented in the fmcsR and 
chemmineR packages [13, 14]. In this way, we selected one 
protein template for each of the 24 target compounds, by 
identifying the template with the highest similarity ligand. 
The similarities of the crystallographic ligands to the predic-
tion set compounds are shown in S.I. Fig. 1.

For the self-docking challenge, we used the provided 
crystallographic structures retaining crystallographic waters 
and DMSO (target 14) or sulphate (targets 2, 17, 20, 22, 24 
and 24) molecules.

Ligand preparation

Three-dimensional (3D) conformations of the ligands were 
generated with OpenEye OMEGA (v20170613) [15] using 
the SMILES strings as input. For every molecule, we sam-
pled up to 500 conformers. We used the TanimotoCombo 
metric, as implemented in OpenEye ROCS [16], to com-
pare the generated conformers to their respective crystal-
lographic ligand in the identified templates (see “Protein 
template selection”). The TanimotoCombo metric combines 
shape and chemical similarity and allows us to select the 
conformers whose shape and chemical features resemble that 
of the crystallographic ligands. The top 10 scoring conform-
ers were selected for ensemble docking. Each conformer was 
superimposed onto the crystallographic ligand in the tem-
plate using the shape toolkit of the OpenEye suite.

This protocol was benchmarked with existing Cathepsin 
S-ligand structures identified in the PDB. This allowed us 
to evaluate the impact our choices had on the quality of our 
poses. We used four Cathepsin S structures (PDBids: 3IEJ, 
3KWN, 3MPE, 3MPF) [17–19] and their respective ligands. 
After selecting the protein template based on the protocol 
described in “Protein template selection”, we selected the 
ligand conformers by their TanimotoCombo score and 
after superimposing them to the site of the crystallographic 
ligand, proceeded to refine them (see “Docking” below).

For the self-docking challenge, we superimposed the pro-
tein template identified during the cross-docking challenge 
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on the prediction set crystallographic structure. That allows 
us to superpose the generated conformers on the crystal-
lographic ligand which is situated in the active site of the 
prediction set crystallographic structure because of the first 
superposition.

Docking

We refined the ensemble of ligand conformations superim-
posed on their respective protein templates using the water 
refinement protocol of HADDOCK. All hydrogen atoms 
were kept (by default HADDOCK removes the non-polar 
hydrogens to save computing time). Since the ligand confor-
mations were selected based on their similarity to the closest 
identified template (see above) and superimposed onto the 
ligand in the selected template, no exhaustive search was 
performed. Instead the initial poses were only subjected to 
a short energy minimization in which only interface residues 
were treated as flexible, followed by the explicit water refine-
ment stage of HADDOCK. For this the system is solvated 
using an 8 Å shell of TIP3P [20] water molecules. The water 
refinement protocol consists of a first heating phase (100 MD 
integration steps at 100, 200, and 300 K) with weak position 
restraints on all atoms except those which belong to the side-
chain of residues at the interface. The interface is defined as 
the set of residues whose atoms are within 5 Å of any atom 
of any binding partner. The second MD phase consists of 
2500 integration steps at 300 K with positional restraints 
on all non-hydrogen atoms excluding the interface residues. 
The number of MD steps was doubled compared to HAD-
DOCK’s default value (1250) because this yielded higher 
quality structures during our benchmarking with the four 
PDB structures described in “Ligand preparation”. The last 
cooling phase, consists of 500 integration steps at 300, 200 
and 100 K, respectively, during which positional restraints 
are only used for the backbone atoms of the non-interface 
residues. A 2 fs time-step is used throughout the protocol for 
the integration of equation of motions. The number of water 
refined models was set to 200. We also modified the default 
HADDOCK scoring function for the refinement stage by 
halving the weight of the electrostatic energy term:

This adjustment was motivated by internal benchmark-
ing our group has performed on small molecule–protein 
complexes (data not shown). This scoring function is used 
to rank the generated models. The various terms are the 
intermolecular van der Waals  (Evdw) and electrostatic  (Eelec) 
energies calculated with the OPLS force field and an 8.5 Å 
non-bonded cutoff [21], an empirical desolvation potential 
 (Edesolv) [22] and the ambiguous interaction restraints energy 

HADDOCK
score

= 1.0 × E
vdw

+ 0.1 × E
elec

+ 1.0 × E
desolv

+ 0.1 × E
AIR

 (EAIR) [11]. Note that in this case, since only refinement was 
performed without any restraints to drive the docking,  EAIR 
is effectively 0.

For the self-docking challenge, we follow the same proto-
col as for the cross-docking one, keeping all crystallographic 
waters and fixing the conformation of the protein, with the 
additional change of instructing HADDOCK to write PDB 
files containing the solvent molecules (water) present during 
the refinement stage.

Binding affinity

The binding affinity predictions are evaluated in two stages. 
The first stage takes place before the structures of the com-
plexes (protein and ligand) are released by the organisers, 
which means that either only ligand information is used, or 
models of the complexes, and the second after, which allows 
participants to make use of the newly available structural 
information.

For the first stage, we submitted both ligand-based and 
structure-based rankings and for the second only a struc-
ture-based one. Both approaches are described in detail in 
our previous D3R paper [10]. In short, the structure-based 
approach consists of the PRODIGY [23] method adapted for 
small molecules and trained on the 2P2I dataset [24] which 
makes use of the following function to score protein–ligand 
complexes by binding affinity:

where E
elec

 is the intermolecular electrostatic energy cal-
culated by the water refinement protocol of HADDOCK 
(see “Docking”) and AC

CC
 , AC

NN
 , AC

OO
 and AC

XX
 are the 

counts of atomic contacts between carbon–carbon, nitro-
gen–nitrogen, oxygen–oxygen and all other atoms and polar 
hydrogens between the protein and the ligand, within a dis-
tance cut-off of 10.5 Å. We used the mean △G

score
 of the 

top 10 models of the water refinement (see “Docking”) to 
rank the compounds.

The ligand-based approach rests on the hypothesis that 
similar ligands complexed to our proteins of interest should 
have similar binding affinities. Using the BindingDB data-
base [25] we identified 1839 compounds bound to Cath-
epsin S with IC50 values. We calculated the similarity of 
the prediction set to the training set using the Atom Pair 
measurement as a similarity measure. The similarity matri-
ces of the BindingDB set were used to train a Support Vector 
Regression model with the libSVM library for MatLab [26] 
that was, in turn, used to predict the binding affinities of the 
prediction set.

ΔG
score

= 0.343794 × E
elec

− 0.037597 × AC
CC

+ 0.138738 × AC
NN

+ 0.160043 × AC
OO

− 3.088861 × AC
XX

+ 187.011384
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Analysis

Fitting and RMSD calculations for generating the figures 
were performed using the McLachlan algorithm [27] as 
implemented in the program ProFit (http://www.bioin 
f.org.uk/softw are/profi t/) from the SBGrid distribution 
[28].

Subchallenge 2

Subchallenge 2 only had a binding affinity component. 
The participants had to predict binding affinities for three 
protein targets—the kinases vEGFR2, JAK2-SC2 and 
p38-α—and sets of 85, 89 and 72 compounds respectively. 
Some of the compounds were shared between the three 
targets. The organisers provided SMILES strings for all 
compounds along with FASTA sequences of the proteins.

For this challenge, we only submitted ligand-based 
binding affinity rankings. The method is the same as the 
one described in “Binding affinity” section for subchal-
lenge 1. The only difference was the training data avail-
ability. Using BindingDB we identified 7049, 4582 and 
4563 compounds with IC50 binding affinity measurements 
for the vEGFR2, JAK2-SC2 and p38a kinases respectively.

After the binding affinity rankings were released by the 
organisers, it quickly became apparent that for all three tar-
gets, the compounds could be classified into binding and 
non-binding sets since most compounds had the maximum 
detectable binding affinity of 10 µM. This prompted the 
organisers to alter the way the challenge would be evalu-
ated into a classification and regression problem, where 
the identification of the binding set (compounds with a 
Kd < 10 µM) would be treated as a classification prob-
lem and the ranking of the binding compounds by binding 
affinity as a regression problem.

Results and discussion

Subchallenge 1

Pose prediction

The binding pose prediction was evaluated for the cross- 
and self-docking experiments. Our performance in the cross-
docking experiment in terms of RMSD of the five submitted 
poses is shown in Fig. 1.

This analysis was carried out by superposing the inter-
face areas of the models and their respective reference struc-
tures and calculating the heavy-atom RMSD (excluding any 
halogen atoms) of the compounds. The mean RMSD val-
ues across all models and targets for this experiment are 
3.04 ± 2.03 Å, whereas for the self-docking experiment, the 
values improved to 2.67 ± 1.63 Å. Figure 2 highlights some 
of our top predictions.

At least one of the 5 models submitted was of acceptable 
quality (RMSD ≤ 2.5 Å) in 17 of the 24 targets (71% suc-
cess rate top5). Our scoring function is thus able to correctly 
rank the near-native solutions near the top as can be seen in 
S.I. Fig. 2. If one considers only the top-ranked pose, the 
performance remains impressive with 15 out of 24 targets 
with an acceptable quality model (63% success rate top1). 
Figure 3 shows the difference between the top and bottom 
ranked models for target 7. Despite these excellent results, 
there is still room for improvement, especially in scoring: if 
we only consider the targets for which we generated at least 
one acceptable model (17 out of 24), the top-scoring pose 
corresponds to the best pose in 5 of the 17 targets (29%). For 
the remaining 12 targets, the average difference between the 
top scoring and best poses is 0.55 ± 0.71 Å and 0.45 ± 0.61 Å 
for the cross- and self-docking experiments respectively.

The performance of HADDOCK relative to the other 
participants for both experiments can be seen in Fig. 4. 
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Fig. 1  Heavy-atom RMSD values of the cross-docking models from the reference structures. Every point corresponds to one model with five 
models per target. The models are ranked by HADDOCK score with the highest scoring ones being on the left of every block

http://www.bioinf.org.uk/software/profit/
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Note that if we would only consider one submission (the 
best) per group our rank would be 6th for the cross-docking 
experiment (top panel in Fig. 4). Our performance in the 
two experiments (cross- vs. self-docking) is broken down 
by target in Fig. 5, revealing that our protocol is not very 
sensitive to the starting template. In most cases only rather 
small improvements in terms of RMSD are obtained when 
starting from the bound receptor including water. The single 
target for which we observe a significant deviation in the 
self-docking results compared to the cross-docking ones is 
the first one (see Fig. 5). The average RMSD for that target 
is 2.54 ± 1.29 Å and 4.13 ± 3.46 Å for cross- and self-dock-
ing experiments respectively. Model 5 of the self-docking 
experiment submission is mostly responsible for this sig-
nificant change, since its RMSD is > 10. This is a repetition 
of what is shown in Fig. 3, with one of the models (model 5 
in both cases) which has a torsional angle that is rotated by 

180° compared to the rest of the submitted models and the 
reference structure.

Binding affinity prediction

Binding affinity predictions were performed in two stages—
one before the organisers released the poses to the partici-
pants and one after. We participated in stage 1 with both 
ligand-based and structure-based approaches, while for stage 
2 we only submitted a structure-based ranking. Figure 6 
shows our performance compared to all participants.

These results were rather surprising: The structure-
based approach which was one of the top performers in 
last year’s competition failed to produce an accurate rank-
ing of the compounds, while our ligand-based predictor 
now performs as one of the best (even if the quality of the 
prediction is still limited). There was also no improvement 

Fig. 2  Superpositions of HAD-
DOCK models on reference 
structures. Left: model 5 from 
target 1 (1.1 Å). Right: model 
1 from target 8 (1.5 Å). The 
reference protein structure is 
shown in cartoon representa-
tion in white. The compounds 
are shown in stick representa-
tion in white and blue for the 
reference and model molecules 
respectively. Figure created with 
PyMOL [29]

Fig. 3  Superpositions of HAD-
DOCK models on reference 
structures. Left: model 1 from 
target 7 (1.85 Å). Right: model 
5 from same target (9.31 Å). 
Our scoring function can dis-
tinguish the near native model 
from the wrong one. The differ-
ence between the two molecules 
is a single torsional angle that 
has been rotated ~ 180°. Figure 
created with PyMOL
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for the structure-based ranking between stages 1 and 2 in 
contrast to GC2 where we noticed a significant improve-
ment when using the crystallographic poses for ranking 
the compounds. One explanation for this could be that, 
compared to last year, we already had better quality poses 
for most of the targets for stage 1. On the other hand, our 

simple machine learning-based ligand-based approach is 
not only the most accurate ligand-based approach with a 
Kendall’s Tau of 0.36 but the third most accurate method 
for both stages, behind only the top performing structure-
based approaches.

Fig. 4  Heavy-atom RMSD 
values averaged over all models 
and all targets. Top: cross-
docking experiment. Bottom: 
self-docking experiment. Every 
bar corresponds to a single 
submission. The error bars indi-
cate the standard deviation of 
the mean RMSD. HADDOCK 
submission is represented by the 
dark-grey bar in both panels
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Fig. 5  Comparison between the 
performance of HADDOCK in 
the cross-docking and self-
docking stages. Every set of 
bars corresponds to the average 
heavy-atom RMSD of all five 
models for a target, with the 
light- and dark-grey coloured 
bars corresponding to the cross- 
and self-docking experiments 
respectively. The error bars 
indicate the standard deviation 
of the mean RMSD
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Subchallenge 2

This challenge revolved around kinase binding affinity pre-
diction. As was mentioned in “Materials and methods” sec-
tion, this is a regression-classification problem. The overall 
results can be seen in Fig. 7.

Despite the fact that our approach wasn’t trained with 
classification in mind, the classification performance is 
better than that of the regression. Specifically, the Mat-
thews Correlation Coefficient values are 0.49, 0.39 and 
0.21 respectively for JAK2-SC2, vEGFR2 and p38a (see 
S.I. Fig. 3 for the classification rankings). The respective 
Kendall’s Tau correlations are 0.15, 0.38 and 0.07. As is 
evident from the plot the two correlation metrics are not cor-
related. This means that an algorithm that accurately identi-
fies the binders and non-binders does not necessarily rank 
the binders accurately. The performance differences cannot 
be accounted for by the difference in training set size, since 

we identified roughly the same number of compounds for 
JAK2-SC2 and p38a. Additionally, vEGFR2 had the biggest 
training set size but that is not translated into better perfor-
mance for the classification or the regression.

Conclusions

GC3 has allowed to implement the lessons that we learned 
by participating in GC2 and further experiment with addi-
tional optimisations. The conclusions that we can draw with 
regards to the pose prediction challenges are the following:

1. Selecting the protein templates accurately has the larg-
est effect on the outcome of the docking. By identifying 
templates that already have a ligand bound to them and 
selecting the one that is most similar to the prediction 
compounds, we are ensuring a protein binding interface 
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that is highly compatible with the prediction compound. 
This removes the need for extensive sampling of the 
protein interface or ensemble docking. Moreover, this 
approach seems to be robust to low similarity (see S.I. 
Fig. 1) compounds. The majority of template ligands 
identified have a Tanimoto similarity of < 0.6.

2. Selecting the ligand conformations. Identifying struc-
tures with existing compounds has the additional benefit 
that they can be used to select the compound structures 
to be used during docking. Generating 3D models of 
compounds from 2D information entails generating 
hundreds of conformers. By comparing the shape and 
chemical similarity of the conformers to existing com-
pound structures we can reduce the number of conform-
ers needed during docking and ensure the starting con-
formations are closer to the experimental structures.

3. Making use of the template information by positioning 
the conformers in the binding interface. This last obser-
vation is only relevant for molecular simulation codes 
that, like HADDOCK, randomise the relative orientation 
and position of the partners prior to docking. We can use 
shape similarity to position the ensemble of conform-

ers at the binding site and bypass the first two stages of 
HADDOCK (rigid-body energy minimisation and flex-
ible refinement by simulated annealing in torsion angle 
space) and directly refine the complexes using a longer 
version of our water-refinement protocol.

The applicability of our approach was demonstrated by 
its performance, with mean RMSD values of 3.04 Å and 
2.67 Å for the cross-docking and self-docking experiments 
respectively. Our overall success rate when considering the 
top1 and top5 poses is 63% and 71%, respectively. These 
results place us as the 6th and 3rd best performers for the 
two challenges respectively.

The binding affinity experiments present a greater chal-
lenge to the community as whole. Despite our competitive 
rankings in the classification as well as the regression chal-
lenges, it appears that reliable binding affinity predictors are 
still not within grasp. This holds true for both ligand and 
structure-based approaches. However, the surprisingly good 
classification results (especially given that the algorithm was 
optimised for regression rather than classification problems) 
make us optimistic that this can be improved in the future.

Fig. 7  Binding affinity predic-
tion correlation coefficients. 
Top: JAK2-SC2. Middle: 
vEGFR2. Bottom: p38a. The 
bars and the corresponding 
error bars represent the Kend-
all’s Tau correlation between 
the binding affinity predictions 
and the binding set for every 
target. The black circles corre-
spond to the Matthews Correla-
tion Coefficient which was used 
to assess the accuracy of the 
classification of the compounds 
into binding and non-binding. 
The dark grey bars and their 
corresponding circles represent 
our submissions
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Additional Information

The data and code used to train the ligand-based binding 
affinity predictor and rank the compounds are freely avail-
able on GitHub, together with our in-house scripts developed 
during our participation in the last two GC competitions. 
These can be accessed at following URL: https ://githu b.com/
haddo cking /D3R-tools .
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