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Advances in commercial wearable devices are increasingly facilitating the collection and analysis of everyday physiological
data. This article discusses the theoretical and practical aspects of using such ambulatory devices for the detection of epi-
sodic changes in physiological signals as a marker for mental state in outdoor environments. A pilot study was conducted
to evaluate the feasibility of using commercial wearables in combination with location tracking technologies. The study
measured physiological signals for fifteen participants, including heart rate, heart rate variability, and skin conductance.
Participants’ signals were recorded during an outdoor walk that was tracked using a Global Positioning System logger.
The walk was designed to pass through various types of environments including green, blue, and urban spaces, as well as a
more stressful road crossing. The data that were obtained were used to demonstrate how biosensor information can be
contextualized and enriched using location information. Significant episodic changes in physiological signals under real-
world conditions were detectable in the stressful road crossing but not in the other types of environments. The article
concludes that despite challenges and limitations of current off-the-shelf wearables, the utilization of these devices offers
novel opportunities for evaluating episodic changes in physiological signals as a marker for mental state during everyday
activities including in outdoor environments. Key Words: electrodermal activity, GPS, mental state, stress, wearable.

商用可穿戴装置的进展, 正逐渐促进每日生理数据的搜集与分析。本文探讨运用此般行动装置来侦测作为户外环境中的心
灵状态记号之生理信号的片段改变的理论与实用面向。本研究事先进行先导研究来评估结合位置追踪技术来使用商业穿戴
装置的可行性。本研究测量十五位参与者的生理信号, 包括心率、心率变化及肤电反应。本研究记录参与者在一个由全球
定位系统记录器进行追踪的户外步行期间的信号。该步行设计用来穿越各种环境, 包括绿地、水体和城市空间, 以及较为
紧张的横越马路。取得的数据, 用来展现生物感测信息如何能够通过运用位置信息进行脉络化并使之更为丰富。在真实世
界条件中, 紧张横越马路时可侦测到生理信号的显着片段改变, 但在其他环境类型中则未侦测到。本文于结论中主张, 尽管
当前可穿戴装置现货面临挑战与限制, 这些装置的利用, 提供了崭新机会, 评估包含户外环境的每日活动中, 作为心理状态
记号的生理信号的片段改变。 关键词： 皮电活动, 全球定位系统, 心理状态, 压力, 可穿戴。

Los avances en los aparatos tecnol�ogicos port�atiles cada vez m�as facilitan la recopilaci�on y an�alisis de datos psicol�ogicos.
Este art�ıculo discute los aspectos te�oricos y pr�acticos de utilizar tales aparatos ambulatorios para detectar cambios epis�odi-
cos en las se~nales fisiol�ogicas a t�ıtulo de marcadores del estado mental en entornos exteriores. Se condujo un estudio piloto
para evaluar la viabilidad de usar este tipo de aparatos comerciales en combinaci�on con tecnolog�ıas de rastreo de local-
izaci�on. El estudio midi�o en quince participantes las se~nales fisiol�ogicas, que incluyeron pulsaciones card�ıacas, variabilidad
de la actividad cardiaca y conductancia epid�ermica. Estas se~nales se registraron durante una caminata de los participantes a
campo abierto monitoreada con una estaci�on m�ovil de Sistema de Posicionamiento Global. La caminata se dise~n�o para que
pasara a trav�es de varios tipos de entorno incluyendo espacios verdes, azules y urbanos, lo mismo que un cruce de carretera
susceptible de generar mayor estr�es. Los datos que se obtuvieron se usaron para demostrar c�omo la informaci�on del bio-
sensor puede ser contextualizada y enriquecida usando informaci�on locacional. Cambios epis�odicos significativos en las
se~nales fisiol�ogicas bajo condiciones del mundo real se detectaron en el cruce estresante de la carretera, pero no en los
dem�as tipos de entornos. El art�ıculo concluye que, a pesar de los retos y limitaciones de los accesorios portables de uso
corriente, la utilizaci�on de estos aparatos ofrece oportunidades novedosas para evaluar cambios epis�odicos en las se~nales
fisiol�ogicas, como marcadores del estado mental durante las actividades cotidianas propias de los entornos exteriores.
Palabras clave: accesorios portables, actividad electrod�ermica, estado mental, estr�es, GPS.
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Recent years have seen a steady increase in men-
tal health disorders worldwide (Whiteford et al.

2013). Interestingly, psychiatric disorders including
schizophrenia and mood and anxiety disorders are
commonly more prevalent in urban environments
(Peen et al. 2010; Lederbogen et al. 2011). This
emphasizes the relevancy of environmental expo-
sures to understanding mental state and raises ques-
tions as to the mechanisms through which
environments affect such health outcomes.
Environmental psychologists have already identified
the beneficial influence that natural green environ-
ments have on stress reduction and attention restor-
ation a few decades ago (Ulrich 1984; Kaplan and
Kaplan 1989). More recently, the discourse regard-
ing therapeutic and adverse environments and land-
scapes has been promoted in the geographical,
urban, and health literature (Evans 2003; Gong
et al. 2016). In this respect, the effect of greenery on
mental health outcomes is probably the single most
intensively researched environmental quality
(Bowler et al. 2010; Helbich et al. 2018). Other
environmental elements that were studied include
blue spaces such as canals and seashores (Wheeler
et al. 2012), traffic load (Healey and Picard 2005),
social environmental characteristics (Lorenc et al.
2012), and more.

With some exceptions, the investigation of the
association between the environment and mental
state relied mainly on aggregative and static environ-
mental factors (i.e., cross-sectional city or neighbor-
hood characteristics). There is growing agreement
in recent years, however, that to better understand
what the exact environmental elements and actual
mechanisms through which the environment affects
mental state are, a more dynamic investigation is
required (Chaix 2018; Helbich 2018). As a result,
researchers have been looking for tools that will
allow a closer and more objective examination of the
moment-by-moment environmental exposure and its
impact on health outcomes. A main facilitator of this
trend is the introduction of new sensing capabilities
both external (mainly the physical environment) and
internal (i.e., the personal context) that are becom-
ing more prevalent, especially in urban environ-
ments (Sagl, Resch, and Blaschke 2015). In
particular, location tracking technologies, most not-
ably the Global Positioning System (GPS), allow
collecting high spatiotemporal resolution informa-
tion about individuals’ locations and, hence, their
environmental exposure and obtain additional con-
textual information (Chaix 2018)

With the introduction of new wearable biosen-
sors in the market, efforts are being invested in
applying the continuous stream of physiological data
supplied by these devices to basic research, clinical
applications, and practices of “quantified self” (Swan
2013; Reeder and David 2016; Li et al. 2017;
Wright et al. 2017). Ambulatory, real-world

measurements of physiological signals through non-
invasive wearables pose several methodological chal-
lenges for researchers, however, especially in cases
in which signals are used as markers for mental
states. First, in most—if not all—cases, measure-
ment quality of ambulatory devices is inferior to
that of laboratory instruments due to technical con-
straints of battery life and physical dimensions. For
example, wearables are often equipped with inferior
technology such as photoplethysmography (a low-
cost, noninvasive optical technology in which skin
light absorption is measured to evaluate various car-
diovascular indicators) rather than the more reliable
electrocardiography that is commonly used in hospi-
tals (Lin et al. 2014) and worn in suboptimal loca-
tions such as the wrist (van Dooren et al. 2012).
Second, researchers using ambulatory devices have
less control over the environmental factors and
stimuli that their subjects are exposed to than do
those conducting experiments under laboratory con-
ditions. This in turn makes it difficult to isolate the
impact of specific stimuli. These types of deficien-
cies, typical to most field research, weaken the
internal validity of results (Wilhelm and Grossman
2010). Third, and related to the previous drawback,
real-world measurements of physiological signals—
especially those conducted outdoors—are often
fraught with noise and measurement errors, making
data interpretation even more demanding (Sun et al.
2010; Osborne and Jones 2017). For example, skin
conductivity, which rises during emotional arousal,
will also increase as a result of extraneous variables
such as high ambient temperature that increases
sweating. In addition, measurement errors are more
common outside of the lab and especially when par-
ticipants are engaged in physical activity (e.g., walk-
ing) that interrupts the smooth functioning of
the wearables.

Despite these challenges, researchers have shown
increased interest in ambulatory measurements of
physiological signals to detect changes in stress and
other mental states during everyday activities
(Hartig et al. 2003; Healey and Picard 2005;
Wilhelm, Pfaltz, and Grossman 2006; Bakker,
Pechenizkiy, and Sidorova 2011; Sharma and
Gedeon 2012; de Faria, da Silva, and Cugnasca
2016; Osborne and Jones 2017). Although a key
catalyst for the growing interest in this type of
measurement is the development of new wearable
biosensors that can be conveniently used in daily life
(Wright et al. 2017), an additional factor has pro-
moted the use of wearables in research: the
increased focus on ecological approaches in behavior
and health research in the last decade or so
(McLaren and Hawe 2005; Fahrenberg et al. 2007).
These approaches call into question researchers’
abilities to explain emotional functioning in real life
based on laboratory studies alone (Wilhelm and
Grossman 2010) and therefore facilitate the
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development of tools that can supply reliable infor-
mation about mental states in naturally occurring
environments (Fahrenberg et al. 2007; Eskes et al.
2016; Birenboim 2018).

In this regard, wearable biosensors have at least
four major advantages over traditional data collec-
tion methods such as surveys, questionnaires, and
one-time measurements of physiological signals:

� Real-time physiological signals recorded
by wearable sensors are considered more
objective than self-reported assessments,
which tend to be biased (Wilhelm and
Grossman 2010; Sharma and
Gedeon 2012).

� Wearables allow for continuous measure-
ment at a high temporal resolution of parts
of seconds (Healey and Picard 2005). This
resolution cannot be obtained when rely-
ing on one-time measurements or self-
report surveys alone.

� Wearables significantly reduce the burden
on participants, who are not required to
repeatedly complete surveys. This makes
an extended data collection period—rang-
ing from a few hours to several
months—possible.

� Finally, and of key importance to eco-
logical approaches, ambulatory measure-
ments facilitate the investigation of
people’s physiological signals during their
daily routines in real-life situations, offer-
ing greater ecological validity than lab
studies (Wilhelm and Grossman 2010).

With a few exceptions, though (see, e.g., Sun et al.
2010; Schnell et al. 2013; Osborne and Jones 2017;
Shoval, Schvimer, and Tamir 2018a, 2018b), real-
world measurements of physiological signals have by
and large been restricted to static postures such as a
sedentary driving position (Healey, Seger, and Picard
1999; Healey and Picard 2005) and to studies that
focus on long-term behavioral trends (i.e., hourly or
daily changes) rather than second-by-second physio-
logical reactions (Wilhelm and Grossman 2010).
There are two primary reasons for this. The first is
that the quality of physiological data is significantly
reduced when measuring subjects who move,
because, as mentioned earlier, movement increases
measurement errors on the part of the sensors. The
second is that the social and physical contexts, which
are essential for interpreting the results (Bakker,
Pechenizkiy, and Sidorova 2011; Osborne and Jones
2017), change frequently when people move. To
deal with this problem, contextual information needs
to be collected continuously (Sun et al. 2010), com-
plicating data collection and research design.
Contextual data might include, for example, infor-
mation about the surrounding environment, type

and intensity of activity, and social context (e.g.,
stressful job interview vs. enjoyable social event).

Emerging sensing technology that makes possible
convenient daily measurements of physiological sig-
nals in real life has significant clinical, research, and
commercial potential (Blaauw et al. 2016). It can be
used to detect changes in stress levels throughout
the day (Bakker, Pechenizkiy, and Sidorova 2011),
to study the association between environment and
momentary mental well-being (Hartig et al. 2003),
to serve as a diagnostic and intervention tool for
psychiatric problems (MacLean, Roseway, and
Czerwinski 2013), to enhance practices of quantified
self (Shin and Biocca 2017), and to support proc-
esses of urban planning and management (Resch
et al. 2015; Sagl, Resch, and Blaschke 2015). Here
we suggest augmenting biosensor data with spatial
information generated by location tracking technol-
ogies (e.g., GPS). The high spatiotemporal reso-
lution of location information that current
technologies generate in combination with geo-
graphical layers and other external sources of infor-
mation allows augmenting biosensors’ information
with contextual information about the surrounding
environment and about the activity in which one is
engaged. This might include additional information
about land use, building density, weather, and move-
ment parameters such as speed, all of which could
be essential for using biosensor data as a marker for
mental state.

Given both the potential and the challenges that
come with emerging sensing technology, this article
examines the adequacy of using current off-the-shelf
wearables in combination with location tracking
technologies to serve as a marker for mental state in
outdoor environments in high temporal resolution,
especially during walks in urban landscapes. For this
objective, we tested the functionality of two off-the-
shelf wearables, the Empatica E4 wristband and
Microsoft Band 2 (MS Band), in combination with
GPS information during a controlled outdoor walk
in an urban setting. This technique might allow a
close investigation of the impact of environmental
factors (e.g., green spaces) on our daily well-being.

Physiological Signals as Markers for

Mental States

The most commonly used physiological signals for
inferring changes in mental state are those associ-
ated with the activity of the autonomic nervous sys-
tem (Kreibig et al. 2007). The autonomic nervous
system—with its two branches, the sympathetic and
parasympathetic nervous systems—acts largely
unconsciously, taking part in the regulation of bod-
ily functions such as the activity of the heart and
lungs, digestion, pupillary response, and sexual
arousal. It is thought to play a major role in the
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fight-or-flight response during events that are con-
ceived to pose a threat to one’s survival (Cannon
1929; Kreibig et al. 2007). Emotional reactions
(Kreibig 2010) such as psychological stress (Jansen
et al. 1995) seem to correspond with this fight-or-
flight response.

Physiological signals from the autonomic nervous
system can be extracted from different bodily sys-
tems or organs to make inferences about an individ-
ual’s mental state. These include, but are not limited
to, the cardiovascular system (Appelhans and
Luecken 2006), skin (Rimm-Kaufman and Kagan
1996; Boucsein et al. 2012), respiratory system
(Boiten 1998), endocrine system (Almeida,
McGonagle, and King 2009), and eyes (Bradley
et al. 2008). Due to the ease of recording them out-
side the lab, the physiological signals of the cardio-
vascular system and skin are most commonly
recorded in research using ambulatory measure-
ments. Thus, in this study we analyzed the following
physiological signals from these two systems using
the E4 and the MS Band, which were used in other
studies to record physiological signals (Lopez-
Samaniego and Garcia-Zapirain 2016; Osborne and
Jones 2017):

� Heart rate (HR): This measure, often repre-
sented by the number of heartbeats per
minute, is the most commonly used physio-
logical signal for monitoring changes in
mental state. During a fight-or-flight
response, the sympathetic system increases
heart activity, allowing the body to respond
more efficiently to external threats.
Increased HR is associated with stress
(Taelman et al. 2009) and emotions of
anger, anxiety, embarrassment, fear, happi-
ness, joy, and surprise. In contrast, lower
HR levels are associated with a state of
serenity and emotions such as acute sadness,
affection, and contentment (Kreibig 2010).

� Heart rate variability (HRV): HRV takes
into account the variation between the
heart’s beat-to-beat intervals, also known
as interbeat intervals. A stimulated sympa-
thetic system results in lower HRV levels.
In contrast, when an individual is relaxed,
the tone of the parasympathetic system
increases; this, in turn, results in a greater
interbeat interval variation (Appelhans and
Luecken 2006). There are several indica-
tors that assess HRV (Appelhans and
Luecken 2006; Kreibig 2010). In this
study, we calculated three common indexes
using Kubious HRV 2.2 software
(Tarvainen et al. 2014):
� SDNN: The standard deviation of

interbeat intervals within a given
time window.

� pNN50: The ratio between the number
of successive pairs of interbeat intervals
that differ in more than 50 milliseconds
from one another and the total number
of interbeat intervals within a
time window.

� LF/HF: A frequency domain measure-
ment that divides the variance of con-
tinuous interbeat interval series into its
frequency components. The low-fre-
quency (LF) band is typically set to 0.04
to 0.15Hz and represents the activity of
both the sympathetic and parasympa-
thetic systems. The high-frequency
(HF), which is typically set to 0.15 to
0.40Hz, represents the activity of the
parasympathetic system alone. Thus, the
greater the LF/HF ratio, the greater the
tone of the sympathetic system.

HRV indexes can be extracted for both the long
(e.g., daily) and short (e.g., five-minute) term.
Whereas low HRV is associated with psycho-
logical stress (Appelhans and Luecken 2006) and
with emotions such as anger, anxiety, fear, and
happiness, high levels of HRV correlate with
more relaxed states but also with a sense of
amusement (Kreibig 2010).

� Electrodermal activity (EDA): Also known
as galvanic skin response, this refers to the
variation in the electrical properties of the
skin (i.e., skin conductance and resistance).
EDA is regulated by the sympathetic ner-
vous system through the sweat glands.
When stimulated (e.g., due to emotional
arousal), the sympathetic nervous system
will intensify sweating, which in turn will
increase skin conductivity. High EDA lev-
els are associated with psychological stress
(Healey and Picard 2005) and feelings of
anger, anxiety, fear, and amusement.
Lower EDA levels correlate with more
relaxed states and with acute sadness and a
sense of relief (Kreibig 2010). Raw EDA
data are typically divided into two compo-
nents: (1) the skin conductance level or the
tonic component, which represents the
baseline level of skin conductivity, and (2)
the skin conductance response (SCR),
which represents phasic increases in the
amplitude of skin conductivity. These
deflections are often a result of a psycho-
physiological response to discrete environ-
mental stimuli, although spontaneous
deflections that are not stimuli-related are
common for most people as well. The
Ledalab computer program (Benedek and
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Kaernbach 2010), a free MATLAB-based
software for the analysis of raw EDA data,
was used to calculate the following five
EDA indexes:
� nSCR: The number of significant

phasic SCRs within a chosen time win-
dow. Based on a trial-and-error proced-
ure, a threshold value of 0.1 lS
(microsiemens) was used to distinguish
between significant and nonsignificant
responses in outdoor environments.

� AmpSum: The sum in microsiemens of
the significant SCRs within the chosen
time window.

� PhasicMax: The local amplitude of the
largest SCR deflection in microsiemens
within a time window.

� GlobalMean: The average skin con-
ductivity level within the chosen
time window.

� MaxDeflection: The maximum level of
skin conductivity within this window.

The first three indexes take into account the magni-
tude of local deflections. Therefore, these indicators
are expected to be more useful in detecting
momentary changes in outdoor environments. On
the other hand, the last two indexes, GlobalMean
and MaxDeflection, are global in their nature,
meaning that they take into account absolute values
of EDA and overlook the local amplitude of SCRs.
They are expected to be less useful in out-of-the-lab
studies, in which environmental conditions are not
controlled and the absolute EDA levels could
change rapidly regardless of mental state (e.g., due
to increased heat leading to sweating).

Methods

The Wearables
Two commercial off-the-shelf wearables were
tested, Empatica’s E4 wristband and the MS Band
(see Figure 1). These bands were chosen due to
their large number of sensors and the simplicity of
installation, which allowed easy implementation for
participants in everyday conditions. To the best of
our knowledge, these were the only two devices to
offer such characteristics at the time when the study
took place. Both bands are designed to be worn on
the wrist and they include a comparable set of sen-
sors (Table 1). The physiological signals that the
bands can record include (maximum temporal reso-
lution of the data is given in parentheses where 1Hz
equals one sample every one second): HR (E4: 1Hz;
MS: 1Hz), interbeat intervals, EDA (E4: 4Hz; MS:
0.2Hz), skin temperature (E4: 1Hz; MS: 0.04Hz),
and blood volume pulse (E4: 64Hz; MS: n/a). Both
bands rely on photoplethysmography technology to
extract cardiovascular signals; they also include a

three-axis accelerometer. According to Microsoft’s
official manual, it should be noted, the EDA sensor
is meant to detect whether the band is worn on the
wrist and not to perform accurate EDA measure-
ments. Additional information that can be recorded
with the MS Band includes distance traveled, eleva-
tion, number of steps, and environmental data (i.e.,
ambient temperature, atmospheric pressure, and
brightness). In contrast to the E4 band, the MS
Band is equipped with a built-in GPS, although the
raw GPS data cannot be extracted. In this study we
used the HR, interbeat intervals (which are used to
extract HRV), and EDA physiological signals to
detect changes in mental state.

The E4 band was designed to record physiological
signals for research and clinical purposes. As such, it
includes a convenient interface through which data
can be uploaded to a secure cloud storage in both
streaming and offline modes. The MS Band, on the
other hand, does not claim to supply clinically tested
measurements. It is marketed as a smart band that
allows the wearer to monitor fitness and healthy life-
style on a daily basis. The band does not permit
straightforward raw data exportation. In this study, we
used a third-party Android mobile application called
Data Log for Microsoft Band to log the band’s meas-
urements. Table 1 presents the technical specifications
and performances of both bands in greater detail.

Procedure and Participants
A homogenous sample of fifteen male students (M
age¼ 21.8 years, SD¼ 1.74 years) was recruited.
Participants received a e25 voucher as an incen-
tive. Participants were asked to give informed and
written consent before the beginning of the
experiment. The research protocol was approved
by the Ethics Review Board of the Faculty of
Social and Behavioural Sciences at Utrecht
University (FETC17-086). Three participants
were excluded from the final sample due to miss-
ing data.

Figure 1 Empatica E4 band (top) and Microsoft’s MS
Band 2 (bottom). (Color figure available online.)
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The experiment included a walk along a prede-
fined route in the city center of Utrecht, The
Netherlands. The route was designed to include a
variety of urban landscapes ranging from green
spaces to a walk along a main road (see route and
segments in Figure 2). Participants arrived inde-
pendently at the meeting point at Utrecht’s central
train station. The E4 and MS Band were affixed to
their wrists, the E4 on the dominant hand and the
MS Band on the other hand. In addition, partici-
pants were equipped with a GPS logger (BT-
Q1000XT) that tracked their location every second.
Participants were instructed to follow a research
assistant on a 3-km-long walk while keeping a dis-
tance of 20 to 30 m. This strategy was applied for a
number of reasons. First, it allowed participants to
focus only on the walk while avoiding distractions
such as reading a map. Second, it guaranteed that all
participants took the same route and walked at a
similar speed. To stimulate a stressful situation, par-
ticipants had to cross a main road without a traffic

light. For reasons of safety, participants were
informed about the crossing in advance and the
crossing itself was controlled by the trained research
assistant, who walked side by side with the partici-
pant at that point. At the end of the walk, partici-
pants were asked to complete a questionnaire in
which they were asked to rank their subjective walk-
ing experience in each segment from 1 (most relax-
ing) to 8 (most stressful) based on a map of the trail.

Data Processing and Analysis
Using an overlay operation within a geographic
information system (GIS) environment, each GPS
sample of each participant was assigned with the
predefined characteristics of the walking route seg-
ments (see Figure 2). At the second phase, physio-
logical signals recorded by the biosensors were
matched with the GPS information based on the
timestamps of the data sets. Because GPS samples
were recorded at a 1-Hz rate (i.e., once every second)

Table 1 Technical specifications and performance comparison: The E4 versus the MS Band

Criteria E4 MS Band 2

Specifications Sensors/data Physiological signals: HR (1Hz),
interbeat intervals, EDA (4Hz),
skin temperature (1Hz), blood
volume pulse (64Hz)

Spatial/environmental: Three-axis
accelerometer

Other: Event mark button to
manually tag events

Physiological signals: HR (1Hz),
interbeat intervals, EDA
(0.2Hz), skin temperature
(0.04Hz)

Spatial/environmental: Three-axis
accelerometer, GPS (raw data
not accessible), ambient tem-
perature, atmospheric pressure
(barometer), brightness

User interface A convenient interface for
uploading logged data to
secure cloud storage

Live data streaming through
mobile devices is available

Third-party applications are
required to log raw data. To
maintain the integrity of the
data, participants are required
to stay within a short distance
of the recording smartphone at
all times

Other technical specifications
(published by manufacturer)

Battery (continuous sampling):
20þ hour streaming, 36þ hour
logger mode

Charging: <2hours
Storage: 60 hours of raw data can

be stored on the band (internal
memory). Includes a streaming
mode in which storage is not
limited
Water resistant (to splashes)

Battery (continuous sampling): N/A
Charging: <2hours

Storage: Raw data cannot be
stored on the internal memory
of the band. Data are stored in
the memory available on the
smartphone and are dependent
on it
Water resistant (to splashes)

Other features API that allows the development
of own applications (Android,
iOS)

API that allows the development
of own applications (Android,
iOS, Windows phone)

Price High price tag of�US$1,600 Relatively low price tag�US$250
makes it an affordable device

Performance EDA Our tests showed that EDA infor-
mation under both lab and real-
world conditions was useful

EDA information was found
unsuitable for detecting
changes in mental states

HR/HRV Static posture: High-quality inter-
beat interval data. However,
data series is incomplete;
many missing values

Walking: Incomplete data during
walking activity; insufficient for
the extraction of HRV indexes

Acceptable quality of heart signal
information during both static
and walking measurements

Note: For a detailed explanation about HR, interbeat intervals (which are used to extract HRV indexes) and EDA see “Physiological
Signals as Markers for Mental States” in the text. HR¼ heart rate; EDA¼electrodermal activity; GPS¼Global Positioning System;
API¼ application programming interface; HRV¼ heart rate variability.
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and EDA information of the E4 band was recoded at
a 4-Hz rate (i.e., four samples every second), the
mean EDA level of each four consecutive samples was
assigned to a GPS reading. HRV and several EDA
indexes that are aggregative in their nature and cannot
be calculated for each GPS position were calculated
per geographic segment. They were then compared
using a t test to detect significant differences in
physiological reactions. In particular, the analysis
focused on the stressful crossing episode (a thirty-
second time window with a five-second offset starting
from the point at which participants began the cross-
ing) that was compared with signals recorded a few
minutes earlier in one of the more neutral, less stress-
ful environments (segment 9; see Figure 2). In this
episode, EDA indexes—nSCR, AmpSum, PhasicMax,
GlobalMean, and MaxDeflection—as well as HRV
indexes—SDNN, pNN50, and LF/HF—were used
(for more details, see the earlier section “Physiological
Signals as Markers for Mental States”).

Results

Descriptive Statistics of Georeferenced
Physiological Signals
Figure 2 presents the walking route divided into seg-
ments and Table 2 summarizes the mean level of
the physiological signals recorded by the E4 band,

EDA level, and HR and the subjective ranking
scores of all participants for each walking segment.
Table 2 reveals that on average participants had a
steady increase in EDA levels along the walk (a simi-
lar trend was reported during outdoor measure-
ments in Osborne and Jones 2017). This is most
likely a result of the increase in body temperature
and sweating during the walking activity. Absolute
EDA levels of one participant are represented by the
color of the GPS sample points at the small figure
in the bottom. This figure shows the main fields of
data with which each GPS sample was assigned.
EDA level for this participants ranged between
0.060 lS (recorded in the central station) to 2.931
lS (during the bus ride).

Detecting the Impact of Stressful Urban Episodes
on Mental States

EDA Due to the low sampling rate (0.2Hz) and
poor performance of the MS Band in measuring
EDA (data hardly showed any variation), only the
results of the E4 are presented here. We could not
find significant differences that would indicate that a
momentary change in mental state occurred when
passing through the different types of environments,
except for the case of the crossing segment. Table 3
presents the results of five computed indexes
extracted from the raw EDA data for the stressful

Figure 2 The walking route divided into segments. The EDA levels along the route of one of the participants (inset).
EDA¼electrodermal activity. (Color figure available online.)
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crossing and compare them with a more neutral
walking environment. The number of significant
SCRs (nSCR index) shows that participants had 12.4
significant SCRs under neutral conditions and 17.87
SCRs during the more stressful street crossing. A
paired t test was employed to detect differences
between the baseline (i.e., neutral) condition and a
stressful one (i.e., road crossing). In accordance with
the hypothesis, the stressful condition resulted in a
significantly higher nSCR index (t ¼ –2.777,
p¼ 0.015), indicating increased activation of the
sympathetic nervous system. Table 3 also shows that
for ten out of fifteen participants (67 percent) the
nSCR index was higher during the stressful crossing
than it was in the more neutral setting; for these
individuals, the physiological response was in line
with our expectations. Similarly, the sum in micro-
siemens of the significant local SCRs (AmpSum
index) and the maximum local SCR amplitude within
the response window (PhasicMax) also supported the
hypothesized increase in EDA in response to a stress-
ful situation. Although significant and in the expected
direction, the results of both GlobalMean and
MaxDeflection should be carefully interpreted.
Because these indexes represent the absolute EDA

levels, they might reflect the gradual increase in skin
conductivity that participants experienced along the
walk. Such an increase might have occurred due to
the physical effort and environmental conditions that
participants encountered (i.e., increased sweating and
humidity) and not necessarily as a result of a psycho-
physiological reaction to a stressful event.

HR and HRV With both the E4 and the MS Band,
no significant difference was detected in HR level
between the walking segments, including the stress-
ful walking segments. In the case of HRV, the E4
band generated incomplete interbeat interval data
sets during the walks and thus did not allow for the
calculation of HRV indexes. We therefore used only
data from the MS Band to compute HRV indexes.
Similar to the EDA indexes, our analysis revealed no
significant differences between the different walking
segments except for the case of the stressful crossing
episode. In this segment, a statistically significant
difference (paired t test, t ¼ –2.459, p¼ 0.028)
between the neutral conditions and the stressful
ones was found in the frequency domain measure-
ment LF/HF index (see “Physiological Signals as
Markers for Mental States” section earlier). This

Table 3 A comparison between electrodermal activity indexes measured during participants’
outdoor walks in a neutral setting and in a more stressful situation using the E4 band

Neutral
setting (M)

Stressful
crossing (M)

Paired
t test

Percentage of participants
with expected response

nSCR 12.40 17.87 t ¼ 2.777
p ¼ 0.015

67

AmpSum (lS) 3.58 10.85 t ¼ 2.764
p ¼ 0.015

93

PhasicMax (lS) 1.65 3.56 t ¼ 3.828
p ¼ 0.002

87

GlobalMean (lS) 6.35 7.18 t¼ 2.190
p¼ 0.046

60

MaxDeflection (lS) 0.56 1.26 t¼ 2.464
p¼ 0.027

100

Table 2 Mean scores of HR (heartbeats per minute), EDA (lS), and subjective rank-
ing of stress level of each walking segment

No. Environment type EDA HR
Subjective
rankinga

1 Central station (indoor) 2.212 96.0 6.73
2 Busy junction 2.831 104.4 6.33
3 Neighborhood commercial street (Lombok) 3.443 101.3 5.27
4 Neighborhood street (Lombok) 3.888 103.1
5 Blue space 1 (canal) 4.262 102.7 2.73
6 Blue space 2 4.724 103.3
7 Green space (urban park) 4.757 103.5 1.20
8 Noncommercial street 2 5.445 105.1 3.47
9 Pedestrian street 5.804 102.9
10 Walk along a main road 6.254 102.2 5.27
11 Road crossing 6.625 103.1
12 Walk to bus station 7.135 97.4
13 Bus ride 6.992 84.5 5.00

Note: HR¼ heart rate; EDA¼ electrodermal activity.
aSubjective rankings of the walking segments attractiveness made by the participants. Lower
numbers indicate higher ranking of attractiveness. Some segments were clustered in the
questionnaire.
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finding indicates that momentary stressful situations
evoke physiological cardiovascular reactions (HRV
indicators) that could potentially be detected
through wearables.z

Discussion

The study demonstrated how the continuous stream
of georeferenced physiological signals can be con-
textualized and enriched using location tracking
technologies. This technique allows characterizing
the surrounding environment as well as some aspects
of the activity one is encountering (e.g., walking,
crossing a road, entering a shop, using public trans-
portation). Although biosensors are now becoming a
popular tool for the daily monitoring of physical
activity (El-Amrawy et al. 2015; Li et al. 2017;
Wright et al. 2017), extracting meaningful informa-
tion related to mental dimensions of behavior using
these sensors seems somewhat more complex.
Nonetheless, our findings seem to be in line with
other similar studies that indicated that although
limited and inferior to lab equipment, off-the-shelf
wearables can produce meaningful documentation of
physiological signals when enriched by spatial con-
text that is recorded by location technologies such as
GPS and subjective assessments of types of spaces
(El-Amrawy et al. 2015; Cormack et al. 2016;
Osborne and Jones 2017). More specifically, we
found EDA measurements of the E4 to be useful in
detecting stressful episodes in less controlled out-
door conditions. Although less conclusive, cardiovas-
cular signals were also found to be useful markers
for monitoring the change in mental state during
the stressful crossing. Indicators such as HRV, it
should be remembered, might be more ambiguous
in cases in which signals are recorded for short peri-
ods of less than five minutes (Healey and Picard
2005; Appelhans and Luecken 2006), as was the case
in our study. Moreover, even though we had a rela-
tively small sample of participants, some of the
results did support the feasibility of using heart indi-
cators in naturally occurring environments using
existing wearables.

Although we could detect changes in mental state
during the road crossing, an important question still
remains: Why did the exposure to other environ-
ments commonly known to have therapeutic qual-
ities (e.g., green and blue spaces) not result in
changes in mental state? From a technical-methodo-
logical perspective, it might be that the devices are
not sensitive enough to detect such changes. This
might require the implementation of more sensitive
devices or a larger sample. Similarly, it could be
that the specific changes in mental state that are
evoked by green and blue environments are not
reflected in EDA and cardiovascular indicators. In
this case, other physiological signals and

corresponding sensors should be employed (see, e.g.,
Aspinall et al. [2015], who implemented electroen-
cephalography). It could also be the case that the
environmental exposure in the study (a brief walk
through green, blue, and urban environments) did
not generate any therapeutic or adverse effect on
mental state. The attention restoration theory
(Kaplan and Kaplan 1989), for example, attributes
cognitive restoration qualities to natural environ-
ments, but in case a person is not cognitively over-
loaded, it might be that this person will not
experience changes in mental state. The theory also
suggests that to demonstrate therapeutic outcomes,
the environment should include specific characteris-
tics (e.g., “soft fascinations”) that might have been
absent from the environments in the study. Future
studies should therefore test the devices in different
environments or for longer exposure times. Finally,
it should be noted that the literature regarding the
beneficial qualities of green and blue spaces is often
ambiguous as to the actual impact of these environ-
ments on our mental state (see, e.g., Bowler et al.
2010; Gascon et al. 2015). Biosensing techniques
might help shed some light on this ambiguity.

The fact that some of the results were found sig-
nificant and in accordance with expectations is
promising, but it is important to note several limita-
tions of this study. First, our sample was relatively
small and homogeneous and future studies should
include larger, more diverse samples in terms of
gender, age, and socioeconomic background.
Nevertheless, because the focus of the study was
methodological and there is no reason to assume a
methodological bias between different groups of the
population, the results are expected to be useful for
other groups as well. Second, the outdoor measure-
ments were taken for short periods of time and
under highly controlled conditions. Although this
made the interpretation of the results easier, it raises
questions as to whether more natural and “noisy”
measurements could be similarly interpreted
(Osborne and Jones 2017). The implementation of
this technique under “real-world” uncontrolled con-
ditions for long periods of time will make the real
challenge of this method.

Although much has been learned about the ana-
lysis of physiological signals in lab experiments, best
practices for the utilization of such measurements in
naturally occurring environments is limited (some
exceptions include Hartig et al. 2003; Healey and
Picard 2005; Osborne and Jones 2017; Shoval,
Schvimer, and Tamir 2018a). In particular, it is
essential that researchers find ways to detect mean-
ingful psychophysiological reactions and to correctly
pair them with the evoking stimuli (Bakker,
Pechenizkiy, and Sidorova 2011). The need to find
valid methods that eliminate potential confounders
is also closely related to this issue. The latter is espe-
cially crucial in the case of stimuli-rich outdoor
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environments and when measurements are con-
ducted during physical activity. To achieve this,
researchers must collect rich contextual information
about the activity and the physical and social envi-
ronments with which the participants are engaging
continuously (Osborne and Jones 2017). In our
study, we used GPS information and geographical
layers to better understand the environmental con-
text of the situation. Implementing activity diaries
and using additional complementary data collection
tools such as smartphones (Birenboim et al. 2015;
Birenboim and Shoval 2016; Eskes et al. 2016) and
various other sensors (Sagl, Resch, and Blaschke
2015) might be required in less controlled settings.
Such information should allow researchers to con-
trol and eliminate potential cofounders and to reach
more reliable interpretations of the results garnered.

Future studies should take advantage of the
growing availability of detailed geographical infor-
mation to further enrich the environmental charac-
terization and spatiotemporal resolution of analysis.
For example, each GPS location can be assigned
relevant data such as the density level of the build-
ings within a specified radius, the number of trees
and green elements in sight, number of food and
commercial outlets, pollution levels, crowd (based
on cellular information), weather, and more, rather
than simply relying on predefined categories as was
done here. As noted earlier, however, the theoretical
and practical limitations of this approach should be
acknowledged.

Conclusions

With advances in wearable technology and increased
public awareness about healthy lifestyles, it seems
likely that in the near future we will witness a surge
in new commercial devices and complementary soft-
ware (Blaauw et al. 2016) both for more popular
self-monitoring and for clinical usage. This study
demonstrated that the potential of monitoring men-
tal states in real-world conditions using wearables
exists—but much work has yet to be done before
such devices can be used in standard research or
clinical procedures. From a technological point of
view, the reliability of wearables in measuring rele-
vant physiological signals during daily activity
should still be improved. Due to the numerous
applications that could use such technology, includ-
ing the monitoring of physical and mental well-
being, there is a strong commercial incentive for
manufacturers to develop such technology.

Finally, it is crucial to ascertain that ethical and
societal aspects related to sensing techniques are
being properly addressed. Privacy is obviously of
high concern when it comes to e-health in general
and sensing technologies more specifically. The field
raises techno-ethical questions regarding data own-
ership, storage, and management as well as legal

concerns regarding proper usage (Nissenbaum and
Patterson 2016). Other ethical concerns revolve
around the appropriate implementation of the tech-
nology. The utilization of the technology to discip-
line workers through wellness initiatives (Moore and
Piwek 2017) is only one example in which the tech-
nology could lead to dystopian outcomes.
Therefore, it is important that the expected techno-
logical development will be accompanied by social
and ethical research efforts regarding the impact of
technology adoption on human behavior and desir-
able societal usage (Sch€ull 2016; Moore and Piwek
2017). �
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