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Abstract 

Structural characterization of proteins and their complexes is a fundamental part in 

understanding any biological phenomena. Yet, the experimental determination of the three-

dimensional structure of proteins and their complexes remains a challenging undertaking. In 

order to complement the experimental approaches, computational methods have been 

developed based on a variety of algorithms and models to fill the gap between the amount of 

sequences and structures. In this chapter, we review the most common methodological 

approaches currently used in the field, highlighting ab initio structure prediction methods and 

methods for the prediction and structural modelling of protein-protein interfaces. We 

particularly focus on the use of evolutionary information to guide the modelling process. 
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Introduction 

Proteins are the fundamental units of cells. They cover an extraordinary functional diversity, 

which can be closely associated with their three-dimensional structure, encoded within the 

protein sequence 1. Key aspects of proteins’ function are their interactions with a large variety 

of other molecules such as small ligands, peptides, other proteins and nucleic acids. For example, 

substrate binding is an essential step for catalysis in enzymes, peptide binding is necessary to 

trigger signalling cascades in the majority of receptors, and protein-protein interactions are 

fundamental for example in protein activation and deactivation through Post Translational 

Modifications (PTM) such as phosphorylation, or ubiquitination 2,3. Furthermore protein-nucleic 

acid interactions are paramount in maintaining the genome as well as in regulating gene 

expression 4. In this Chapter, we focus on proteins and their complexes. 

Interactions between proteins are determined by Protein-Protein Interfaces (PPIs) 5,6 . These are 

constituted of residues with specific chemical-physical properties which induce their coupling 7. 

Interactions between interface residues are thus fundamental, both from structural and 

functional point of views, making those a prime target of study 8. The highest level of detail that 

can be obtained for PPIs is the overall three-dimensional (3D) structure of the protein complex, 

as it reveals which residues are at the interface and what sort of interactions are occurring. Also, 

important residues such as Hot-Spots (HS), which are key determinant of the interaction 9,10,  can 

be inferred from the structure of the complex 11. 

Experimental structure determination is typically performed by one of the three main 

techniques, namely X-ray crystallography, Nuclear Magnetic Resonance (NMR) and Cryo-

Electron Microscopy (Cryo-EM). So far, the majority of structures have been determined by X-

ray crystallography. These are deposited in the Protein Data bank (PDB, www.rcsb.org/ or 

www.pdbe.org/) 12, the central repository for experimentally determined biomolecular 

structures. NMR has contributed about 10% of the experimental structures. Next to determining 

3D structure, one main advantage of NMR is its ability to characterise the dynamics of 

biomolecules 13. As such it is the method of choice to characterise intrinsically or partially 

disordered proteins. For large systems, however, spectral crowding becomes a limitation  14,15 

even though sophisticated data analysis methods 16 have been developed to tackle this problem. 

Cryo-EM is characterized by imaging radiation-sensitive entities – cells, viruses and 

macromolecules – under cryogenic conditions using a transmission electron microscope 17. 

While Cryo-EM does not require crystallisation, it used to have until recently relatively low 

resolution for proteins when compared to X-ray crystallography. This has been changing rapidly 
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in the last years thanks to breakthroughs in both software and hardware, in particular with the 

advent of direct electron detectors. The best resolution obtained so far for a Cryo-EM structure 

is 1.8 Å for glutamate dehydrogenase 18. Cryo-EM is of particular interest when studying 

membrane proteins (MPs) as these are challenging to determine by X-ray crystallography. 

Recent Cryo-EM methods have been able to determine the  structures of MPs with resolutions 

slightly above 3 Å. Examples are the transient receptor potential channel 1 at 3.4 Å 19 or the 

chloride conducting ion channel at 3.7 Å 20. X-ray crystallography has, however, achieved 

resolutions as low as 1.4 Å for membrane proteins 21. Cryo-electron tomography, a type of Cryo-

EM in which the sample is rotated and tilted to provide a more comprehensive overview of larger 

structures, has given valuable contributions for the understanding of cellular organization and 

substructures. This technique allows the study of large macromolecules and cellular 

components under conditions much more similar to the native state when compared with 

previous methods 22. The EMDataBank 23 – publicly available at 

http://emdatabank.org/index.html – collects the protein structures solved by Cryo-EM.  

While structural elucidation of proteins is the first approach to understand how they interact 

with different systems, experimental determination of their structure, and especially of their 

complexes, can be challenging 24. Next to the classical methods described above, high-

throughput methods providing limited structural information on the complex of interest, such 

as mass spectrometry, have emerged 25. Computational methods have also continuously evolved 

over the years, becoming a particularly advanced field. Both the variety of approaches as well 

as their efficiency are now reaching levels that allow to not only complement but also present a 

viable alternative to experimental methods 26-40. Computational structural modelling methods 

rely on various approaches, such as homology modelling, Molecular Dynamics (MD) 41 , or 

Machine-Learning (ML) algorithms 42,43. Integrative modelling methods that incorporate a 

variety of sparse data from both experimental and bioinformatics methods have also emerged 

in recent years 44-46. These integrative approaches are key in characterizing large and complex 

molecular machineries for which no single experimental technique can provide all the necessary 

information. Most methods, and in particular ML ones, have strongly benefited from the 

explosion in genomic sequence information, which, theoretically, should provide enough 

information to determine several aspects of protein structure and function. This has become 

particularly relevant with the determination of evolutionary aspects from sequence information, 

which allows researchers to identify important residues by their conservation profile 47:   

Residues or motives relevant for a protein’s function are more likely to be conserved. This 
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information has been used to analyse intra- 48 and inter-protein couplings 49, predict protein 

structure 50 and drive the docking processes 51.  

In the following sections, we: 1. Discuss the approaches used to assess evolutionary information 

in proteins, 2. provide a short overview of methods to predict protein 3D structure from 

sequence data, 3. provide a brief overview of computational methods for the characterization 

of soluble complexes and 4. of membrane protein-related complexes. Note that we do not claim 

to provide an exhaustive overview of all methods in the field but have selected some relevant 

ones to discuss in the context of this review 

 

1. Approaches to assess evolutionary information of protein sequences 

Structural prediction approaches benefit from both structural and sequence-related 

information. The latter has drawn great attention from a computational and biological 

perspective since it allows to determine how evolution drives protein structure and function 

from sequence. Two key concepts are the basis for understanding how protein sequence can 

determine structure and function of proteins: Multiple Sequence Alignments (MSA) and Position-

Specific Scoring Matrices (PSSMs). In short, MSAs match protein sequences from an evolutionary 

point of view, comparing and aligning them based on their similarity 52. PSSMs make use of MSA 

and provides an easy way of determining how likely an amino acid is to be represented at a given 

position. To do so, three different classifications for each aligned residue pair can be used – 

match (when the sequences share identical or a similar residues), mismatch (when the residues 

are different) and gap (when there is no corresponding residue). Given their central role, it is 

important to consider the general aspects underlying both methodologies.  

MSAs started off as techniques to perform global alignments 53 by matching sequences using 

their full length. Problems arose since sequences might share homology only on some regions 

and, even if there are several highly homologous regions, these can be shuffled, distant or 

repeated 54,55. To address this problem, local alignment techniques that do not require the full 

length of the protein or nucleic acid sequence were developed 56. These focus on finding only 

the common sub-sequences across different systems. Methods capable of finding sub-

sequences with common residue pairs 57 or using only “exclusive” residue pairs 58 – residue pairs 

which are not present in any other sub-sequence determined by the method – were developed. 

Even though the theory underlying local alignment makes them seem better algorithms to find 

common sub-sequences in different protein sequences, these methods often encounter 

problems in dealing with highly gapped common sub-sequences 59.  
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Simossis et al. 60 consider three essential steps when performing MSAs: i) selecting sequences 

(building a database of sequences to be aligned and compared), ii) selecting an adequate scoring 

function that allows the comparison of sequences or sub-sequences and iii) iteratively applying 

this scoring function to build and optimize the alignment. When comparing already known 

proteins, sequence selection is typically not needed, unless some sequences are detrimental for 

the result of the final MSA due to clear amino-acid differences. However, when using MSAs for 

example to calculate PSSMs, databases including thousands or millions 61 of sequences can be 

used to search for the right protein sequences. This search is usually done considering homology 

and by using methods such as the Basic Local Alignment Search Tool (BLAST) 62. Selecting the 

appropriate scoring function is key in constructing an optimal MSA. These typically work column-

wise (analysing each column of aligned residues at a time) and are usually the summation of all 

pair-wise scores. Several scoring functions are available to consequentially evaluate the MSA 

through iterations. From MSAs, evolution and conservation scores can be derived. They 

represent how evolution drove the conservation or absence of a residue at a position in the 

MSA. Several methods can be used and, for demonstration purposes, the Rate4Site algorithm 

for functional conservation calculation is briefly described in  

Figure 1. Rate4Site pipeline. Starting with an MSA, Rate4Site calculates phylogenetic trees using 

the Neighbour-Joining (NJ) algorithm 67. This algorithm sequentially joins sequences that are 

closer and therefore more similar, with each other by creating a new node in each iteration. This 

node always connects to the tree constructed up to that point in the algorithm. Considering that 

a single position in the MSA has the same evolutionary rate (score), Rate4Site determines the 

maximum conservation rate that would explain the conditional probability of the data given that 

rate. 
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Figure  to illustrate how computational calculation of residue conservation can be performed. 

The Rate4Site algorithm uses the maximum likelihood principle to determine the maximum rate 

of evolution that would explain the presence of a residue at a position of the MSA.  

<Figure 1 near here> 

Scoring matrices are used to assess the global score of the MSA, which either calculate the 

likelihood of a residue to be present at a given position based on the specific information of the 

aligned sequences (most reliable option) or use pre-calculated likelihoods (scoring matrices) to 

assign a score to each position. Possibly, the best-known pre-calculated scoring matrices are 

substitution matrices based on the observed substitution frequencies in sequence alignments. 

For example, mutations resulting in substitution between residues with identical nature – 

hydrophobic-hydrophobic mutations (leucine to isoleucine, for example) – can be considered 

more likely to occur than those that do not keep the nature of the amino-acid at that position. 

One of the earliest pre-calculated scoring matrices is the Point Accepted Mutation (PAM) matrix 
63, which generates each residue pair score considering the probability of one residue mutating 

to a different one considering all possible paths resulting in that specific substitution (e.g, 

alanine can mutate directly to arginine or it can first mutate to isoleucine and subsequently to 

arginine). It is based on the concept that each mutation acts as a Markov process – a process 

independent of any other previous processes. Several PAM matrices were created on this basis, 

such as PAM250, which considers 250 mutations for 100 residues in the sequence, or PAM1 
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which considers only 1 mutation for the same sequence length. BLOcks of amino acid 

Substitution Matrix (BLOSUM) 64 is another pre-calculated substitution matrix, used in BLAST. 

Instead of global alignments, local alignments are used. Several sequence databases with 

different homology percentages are available, generating different BLOSUMs, such as 

BLOSUM80, with a database composed of sequences with 80% homology, and BLOSUM52, with 

a database composed of sequences with 52% homology. Selecting the proper substitution 

matrix for a given problem is important: While PAMs consider the evolutionary process of similar 

proteins’ aligned sequences, BLOSUMs do not consider an explicit evolutionary model and are 

used only in very similar regions of the alignment 65. For example, when scoring similar 

sequences, BLOSUMs with higher homology or PAMs with fewer mutations per 100 mutations 

should be used. When scoring sequences that share little homology, BLOSUMs with little 

homology or PAMs with several mutations per 100 mutations should be used. To calculate 

likelihoods from the MSA itself and combine them with the information from the pre-calculated 

scoring matrices, the frequency or count of a given residue in a column can also be calculated 

and combined with the BLOSUM or PAM scores. The combination of both calculated and pre-

calculated counts or likelihoods is referred to as pseudocounts or pseudolikelihoods, 

respectively. This enables the combination of context information (from the MSA itself) and 

previously obtained knowledge. Additionally, it prevents scores from being 0 when the MSA-

derived counts and likelihoods are 0 (for example, if at a given position in an MSA no leucine 

residues are observed, its count and likelihood is 0, but its pseudocount and -likelihood is never 

0). This is important as it would be extremely unlikely for a residue to never be represented at a 

given position of an MSA if all sequences were considered.  

Hidden Markov Models (HMM) are increasingly popular algorithms in bioinformatics that can 

also be used to derive MSA profiles. They offer great advantage as theoretically, they can work 

with both aligned and unaligned data and provide a solid statistical basis to sequence alignment. 

To generate profiles, HMMs are trained with a set of sequences to determine how likely a 

transition from a residue to another residue or a gap – a position with no matched residue – is 

in an MSA, considering its current and next states. The available states are deletion – a position 

is skipped in the MSA for a single/minority of available sequences – insert – a position is skipped 

in the MSA for most available sequences – and match – all sequences have a residue in that 

position. By deriving these probabilities for each position and for each possible amino acid at 

that position, a HMM can be built to score a sequence and build its profile. Furthermore, if the 

HMM is good enough, it can also be used to actually build the alignment for new sequences, 

considering the transition probabilities for each state 66. After scoring all residues, techniques 
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such as the sum-of-pair score 64, which sums all residue pairs scores, can be used to obtain a 

global MSA score that effectively describes the fitness of a MSA. Upon selecting or constructing 

an appropriate scoring function, the MSA algorithm will then iteratively construct and improve 

the MSA.  

Phylogenetic trees can be used to define the order according to which the sequences are aligned 

by placing more homologous sequences closer to each other and sequentially aligning each 

sequence according to the previous 60. This leads to the generation of a local alignment in which 

the sub-sequences are taken as the starting points in the global alignment. Upon construction 

of this preliminary MSA, other techniques can be used, most of which function iteratively. An 

illustration of the generation of MSAs with the Tree-based Consistency Objective Function for 

alignment Evaluation (T-Coffee) algorithm is shown in Figure 2.  

<Figure 2 near here> 

Once an MSA has been obtained, a convenient and comprehensive way to represent it is to 

create so called “profiles”. Numerically, this can be done using PSSMs that construct vectors 

with 20 elements corresponding to each single amino acid at a specific position of the MSA. 

Platforms such as Consurf 50 use colour to represent the conservation of a residue at a specific 

position as illustrated in Figure 3. Although one can argue that there is some correlation 

between conservation and PSSMs, PSSMs are not the same as conservation. While a 

conservation score – such as the one provided by Rate4Site 67 – is a single value for each position 

in the provided sequence, a PSSM holds 20 different values describing all possible residues at a 

specific position. 

<Figure 3 near here>  

An important concept when dealing with the evolutionary information of protein sequences is 

co-evolution. From a structural point of view, it can be perceived as the coupled evolution of 

residue pairs in a protein sequence and it depends on homology, and therefore on sequence 

similarity, between the assessed protein sequences. Protein sequence similarity must be 

addressed carefully, since, for example, proteins that evolved in different species can converge 

on a similar amino acid sequence (orthologs), while other proteins can evolve from a same 

biological background and yet assume different functions (paralogs). These two particular cases 

can become an hindrance in co-evolutionary information assessment 68,69.  

Some of the common sequence-based co-evolution approaches currently available are: 
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- McLachlan-Based Substitution Correlation (McBASC) uses a similarity matrix to predict 

protein contacts (amino acid pairs within a given a distance threshold) conservation by 

analysing correlated mutations 70; 

- Mutual Information (MI) measures dependency and covariance between variables by 

calculating the ratio between their joint occurrence probability and their independent 

occurrence probability 71; 

- Chi-square describes coupling probabilities similar to MI. However, instead of using a 

logarithmical ratio, it uses the mathematical square 72;  

- Pearson correlation, considers the positions that are not gaps at the sequences and the 

similarity scores (originated from a PSSM matrix) for the possible positions as well as the 

standard deviation at those positions, in order to calculate amino acid pairs’ associated co-

evolutionary scores 72;  

- Joint Shannon Entropy is similar to MI and Chi-square and is used to define conservation 72;  

- Direct-Coupling Analysis (DCA) calculates the frequencies of residue couplings by assessing 

the amount of times a pair of residues is present in each alignment at specific locations and 

by calculating the frequency of the individual residues in each location. From this 

information, a covariance matrix is calculated, reporting on residue coupling conservation 
73;  

- Mean-field Direct-Coupling Analysis (mfDCA) uses an approach similar to the one used in 

DCA by combining it with the maximum entropy principle in order to minimize the biasing 

of the model 73; 

- Protein Sparse Inverse COVariance (PSICOV) starts by building a covariance matrix in which 

directly coupled sites are inferred according to an MSA alignment and from which 

covariance scores are calculated71,74.  

 

2. Prediction of protein structure from sequence data 

Compared to determining the 3D structure of a protein of interest, determining its sequence is 

rather straightforward. This is reflected by the availability of roughly 90.000.000 protein 

sequences in the UniProtKB database 75 compared to approximately 75.000 distinct 

experimental protein structures in the PDB 12. As already stated, given the challenges and costs 

associated with the experimental structure determination of proteins, predicting their putative 

structure from sequence can be a viable alternative. In this section, we briefly introduce 

computational methods and strategies to predict protein structure from sequence and how 
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evolutionary information can contribute to this. Table 1 lists all mentioned structure prediction 

methods as well as a short description for each.  

A. General approaches 

Starting from the sequence of a protein, the first step is to determine whether a structure or 

partial structure for this sequence has already been experimentally determined and deposited 

in the PDB. If no structure for the protein of interest exists, a search against the sequences of all 

structures deposited in the PDB is typically performed to identify homologues. Commonly used 

methods to search for these are BLAST 76 to identify close homologues or HHpred 77 for more 

remote ones. Based on the assumption that the fold of a protein is typically conserved between 

proteins sharing more than 20% sequence identity, the homologous structures can be used to 

model the structure of the protein of interest in a process referred to as homology modelling or 

Template Based Modelling (TBM). Note that there are examples in which a single mutation is 

capable of completely changing the fold of a protein78, and homology modelling will thus fail. 

But these are fortunately rare exceptions. A multitude of methods like MODELLER 79 or Rosetta 
80 exist that use the 3D coordinates of the template structures with various strategies on how to 

process these and how missing segments in the alignment are handled 79. The major challenges 

in this process are the identification of a suitable template and the generation of a correct 

alignment. This can be alleviated by running several rounds of TBM with several templates and 

selecting models from this pool. Other approaches include hybridization strategies where 

fragments from multiple templates are combined in the modelling protocol 81 or the use of 

restraints derived from template structures to guide de novo modelling approaches 82. 

In cases where no suitable template can be identified, structure prediction methods referred to 

as de novo or ab initio structure prediction methods present means of generating structural 

models for the target protein. Yet, these are generally less reliable especially for larger proteins 

above 100 amino acids in length 83. Strategies for the de novo structure prediction include in 

silico protein folding using MD approaches 84, fold recognition based on secondary structure 

prediction 85, and fragment assembly using a Monte Carlo search algorithm 86,87 88. The MD 

approach in particular is computationally expensive and requires simplifications and adaptations 

to be not only applicable to very small proteins. In contrast, the fold recognition approach is less 

demanding but requires a high-quality prediction of secondary structure and a resolved non-

homologous structure with a similar fold. The fragment-based approaches such as implemented 

by Rosetta 89,90 or iTasser 91 have proven quite successful for small proteins. However, given the 

large conformational space that needs to be sampled in de novo structure prediction even for 
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small proteins, these methods benefit from additional information to reduce the sampling 

space. These can be computational predictions like protein secondary structure based on 

position-specific scoring (e.g. Position-Specific Iterative-blast-based secondary structure 

PREDiction – PSIPRED 92 – or BCL:Jufo9d 93, a tool capable of predicting both secondary and  

transmembrane spans, which are highly relevant for membrane protein structure prediction) or 

predicted surface accessibility (e.g. SOLVPRED 94, SANN 95, or ACCpro 96). Of particular value is 

however the incorporation of experimental data like chemical crosslinks from mass 

spectrometry, NOE distances from NMR, or correlated mutations. In the following section we 

will focus on incorporation of predicted data from bioinformatics analysis. 

B. Use of evolutionary information in structure prediction 

Extracting information from evolution has also become a very popular approach to solve some 

structure prediction and characterization problems. An example is Consurf, which provides a 

way of evaluating the quality of a homology model by calculating evolutionary information and 

mapping this information onto the 3D structure. First Consurf performs a BLAST search to find 

homologous sequences to that of the input query. Then, a clustering method is used to search 

for redundant sequences, which are in turn excluded from the subsequent alignment step. The 

resulting sequences are aligned using an MSA method 50 . The alignment is used to construct a 

phylogenetic tree used to assess the velocity at which a residue at each specific position evolves 

by assigning a rank between 1 and 9. Residues with rank 5 evolve at an intermediate rate, those 

with rank 1 are the residues the fastest evolving and residues with rank 9 are the most 

conserved. The method used to attribute these scores involves a Bayesian algorithm that 

assesses residue evolution rates along the tree 50. 

EVFold 48,97 is another platform using evolutionary information for the prediction of protein 

structure. It uses predicted residue-residue contacts based on co-evolution analysis as restraints 

to calculate 3D models. Providing a protein sequence, the server fetches sequences of similar 

proteins and performs an MSA on these. The MSA is performed using HMMs allowing the 

construction of alignments of large protein sets. A mean-field direct-coupling analysis  (see 

section 1 above)  is performed to identify evolutionary couplings, pairs of conserved residues on 

the protein that consistently interact in the assessed homologues. The output comprises the 

number of Evolutionary Couplings (ECs), the overall evolutionary strength (cumulative strength), 

EC strength and residue conservation. Both EVFold and Consurf rely heavily on MSA 62,98-100. 

BCL::Fold, a method similar to EVFold has been developed mainly for membrane proteins. It 

combines evolutionary conservation with other features such as standard values for residue 
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volume, hydrophobicity, isoelectric points and PSSMs, among others. These are served to ML 

algorithms to predict the membrane protein structure 101.  

Especially in the last CASP experiment the combination of co-evolutionary coupling with ML 

algorithms dramatically improved the performance of residue-residue contact prediction 

algorithms 102. Precisions reaching over 90% were obtained for a substantial subset of targets 

for predefined numbers of predicted contacts (one fifth or half the target sequence length). Such 

predictions are a suitable source of information to drive de novo structure prediction and 

significantly increase the quality of the resulting 3D models as for example demonstrated by 

RaptorX 103 and illustrated in Figure 4. The most successful ab initio structure prediction methods 

combine such contact predictions with secondary structure predictions to fold the proteins. 

<Figure 4 near here> 

 

3. Structure prediction of soluble protein-protein complexes  

A large variety of computational methods were developed to study interface-related features in 

protein complexes and predict their 3D structure, which is a prerequisite to understand how 

proteins interact and what drives the formation of their complexes. Here, we highlight the use 

of evolutionary information and focus on methods for: a) Interface prediction, b) prediction of 

interface-related properties, and c) template-based modelling (TBM) of complexes. We do not 

review the docking field as it has been addressed in several other instances 104-108. Table 2 

summarizes all mentioned protein-protein complex structure prediction and characterization 

methods, as well as a short description for each. 

A. Interface Prediction  

An aspect of interface prediction that is widely regarded as critical for the identification of 

interfacial residues is evolutionary conservation – interfacial residues are typically more 

conserved than non-interfacial surface residues 109. In section 2 we have already discussed 

evolutionary conservation and how it can be used to predict 3D structure 47 . The same concepts 

are also relevant for the study of interfaces.  

A method which combines MSAs with interface prediction is EVComplex 49. Using sequences 

from two interacting proteins, EVComplex uses EVCouplings 74 to predict intramolecular and 

intermolecular residue-residue contacts. In the original paper 49, those were subsequently used 

to predict the structure of the protein complex by distance-restrained docking using 

HADDOCK127,128. A key aspect of EVComplex is that it considers co-occurring mutations as 
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accurate predictors of contacts at the interface, unlike EVFold, which considers intra-monomer 

interactions and mutations to predict intra-monomer couplings. Protein-Protein Interaction 

Prediction Platform (PPIPP) 110 uses propensity scores based on the presence of a given residue 

compared to any other residue at the interface. To solve the lack of partner information, the 

model was trained by comparing residues in intermolecular protein-protein interfaces with 

intra-protein contacts. PPIPP is built on 24 Artificial Neural Networks (ANN) and returns the 

average score as final score, using PSSMs as one of its main features.  

PS-HomPPI and NPS-HomPPI 111 use only sequence to predict interfacial residues based on 

homologous interacting proteins for which experimentally determined 3D structures exist. This 

method can be partner-specific (PS-HomPPI) or non-partner-specific (NPS-HomPPI), but data 

suggests that partner specificity increases the accuracy of the results. In fact, an important note 

made by Xue et al. in their 2015 review 112 is, that partner information is very valuable for protein 

interface prediction, which is often overlooked. A comparison of the results obtained through 

PPIPP 110 and PAIRpred 113 with the ones from PSIVER 114 (sequence-based) and SPPIDER 115 

(structure-based) proved that partner information greatly improves the predictions made. Some 

methods use structural information from the monomer in their predictions. For example, 

SPPIDER 115 is a ML approach that predicts interfacial residues based on the predicted relative 

solvent accessibility (which uses the unbound monomer solvent accessibility and other 

structural features). WHat Information Does Surface Conservation Yield? (WHISCY) 116 uses 

structure to define surface residues and to smooth the prediction, and calculates conservation 

for all surface residues. ProMate 117 is a structure-based method, which uses several features 

such as secondary structure, length of non-secondary structure protein regions and pairwise 

amino acid residues distribution to calculate an interface propensity value for each residue. Part 

of the development of ProMate involved the elimination of redundant or highly correlated 

features, which reduces computation and search space. PAIRpred 113 is a hybrid approach, using 

both sequence and structure-based features: the structure-based features consist of relative 

Solvent Accessible Surface Area (SASA), residue depth, half sphere amino acid composition and 

a protrusion index, while the sequence-based features are based on PSSMs and predicted 

relative accessible surface area. All these are combined through a Support Vector Machine 

(SVM) to predict protein-protein interactions. 

Another approach is that of meta-predictors, which combine multiple individual predictors to 

generate a consensus prediction 118,119.  One example is Consensus Prediction Of interface 

Residues in Transient complexes (CPORT) 119 , which combines the predictions of several different 

algorithms using a consensus strategy.  
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InterEvScore 120 is a tool used to predict protein-protein interactions with the use of multi-body 

interactions and co-evolutionary information. This software attributes scores based on 2 and 3-

body potentials (a quantification of how a residue interacts with one or two other residues, 

respectively), which are essentially co-evolution weighted residue-residue contact propensities. 

Evolutionary features, regardless of their popularity, have a considerable disadvantage – they 

are quite successful only when a high number of homologs is available 121,122. As such, methods 

that do depend less on evolutionary conservation are bound to be more robust across all sorts 

of protein sequences. This includes the method developed by Wang et al. 122 for intramolecular 

contact prediction, which processes sequences using an ultra-deep Artificial Neural Networks 

(ANN) and Convolutional Neural Networks (CNN) to improve the prediction of protein contacts 

obtained through evolutionary conservation, and NeBcon, a meta-server which uses both co-

evolution and ML methods to produce better classifications 121. 

The Server for Efficient Mapping Assessment (TSEMA) is based on protein sequence, but instead 

of predicting which residues interact for a single protein, it uses two protein families as input. It 

then uses this information to predict which proteins interact between each protein family. While 

not providing residue information, TSEMA is capable of providing partner information, which 

has proven to be quite relevant as will be discussed ahead in this section.  

B. Characterization of Interface-related properties  

There are plenty of interface-related properties that can be used to describe the interface of a 

complex, such as H-bonds, salt bridges, hydrophobic interactions, SASA, number of nearby 

atoms, total number of interface atoms, polar and apolar area in the interface, hot spots and 

hot-regions, among many others. Several interesting aspects of protein interface 

characterization and prediction are discussed in a recent review by Gromiha and Yugandhar 123. 

Servers such as bioCOmplexes COntact Maps (COCOMAPS) 124 allow easy calculations of various 

interface features such as the SASA, and its decomposition in per residue and per polar and 

apolar area, as well as H-bonds and number of nearby atoms, making it a relatively 

comprehensible and quick method for interface characterization. Intersurf 125, besides providing 

information on residue SASA, also outputs the numbers of surface and buried atoms. This 

information is reported for both monomers and complexes. All the information gathered about 

protein-protein interfaces can subsequently be used to predict which interface regions or 

residues are the most important for the binding, namely HS, as represented in Figure 6, and hot-

regions. Several methods have been developed for this purpose over the years, among which 

SpotOn 11 is the most recent one with the highest reported sensitivity (0.95) and accuracy (0.98) 
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for HS prediction so far. It uses both structural and sequence features such as SASA, H-bonds 

and PSSMs to predict which residues should be considered HS or NS 126. As for hot-regions – 

characterized as HS clusters (HS are not randomly distributed across the protein-protein 

interface but rather clustered 127) – HotRegion 128 can be used, and it is based on HotPoint 129 to 

predict HS across all PDB entries.  

<Figure 6 near here> 

C. Template-based modelling of protein-protein complexes  

Although many advances have been made in the field of ab-initio docking in the past decades, 

Template-based modelling (TBM) is still the most reliable way of modelling 3D structures of 

protein complexes 130. In fact, a 2012 article concluded that complex templates are available to 

model approximately all complexes from structural information on proteins, using large 

databases on protein-protein interactions 131. 

TBM is based on the assumption that homologous proteins interact in a similar way, even though 

this assumption is sometimes violated. TBM methods typically retrieve experimentally 

determined structures of protein complexes that are homologous to the query proteins, and use 

them as templates to infer the structure of the complex formed by the query proteins. For the 

sake of simplicity, we refer to the structure of the homologous complex as a template in this 

section even though it differs from templates used for single proteins. The development of TBM 

algorithms has to consider three aspects: i) How to retrieve reliable templates from the PDB, ii) 

how to use the template information (do we use the global structural information or only use 

the local interface information), and iii) how to determine which template is the best suited and 

which model is the best? Existing TBM methods can be largely grouped into five strategies: 

Superimposition, dimeric threading 132,133, direct homology modelling of the complex, e.g., with 

Modeller79, Interface Structure Alignment (ISA) based methods 134,135, and interface residues or 

contacts restrained docking approach136,137.  

Superimposition is the simplest among the five strategies. It takes the unbound structures of the 

query proteins and superimposes them onto the template structures by minimizing the RMSD 

(Root Mean Squared Deviation). This is essentially a global structure-structure alignment. 

Superimposition treats the unbound query structures as rigid and hence fails to model any 

conformational changes, which are quite common as protein molecules are flexible and often 

undergo various amounts of conformational changes upon binding. It also tends to generate 

many steric clashes and thus requires a subsequent refinement of the models.  
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Dimeric threading is essentially a sequence-structure alignment based approach. It “threads” 

the query protein sequences unto the templates by optimizing a scoring function (which can be 

energy- or conservation-based or hybrid). The advantage of dimeric threading is that the 

conformational changes upon binding are naturally taken into account provided they are 

reflected in the selected template. However, the nature of sequence-structure alignment 

ignores the rich information of the individual query protein structures and depends on the 

alignment quality, which also defines the quality of the final models.  

Direct homology modelling of a complex is also widely used, e.g. using MODELLER. Taking query-

template alignment files and the template structures as input, MODELLER predicts structures of 

protein complexes by satisfaction of spatial restraints. MODELLER can also model 

conformational changes if such changes are present in the templates.  

The interface structure alignment-based method superimposes the query protein structures 

onto template interfaces (as compared to the whole template structures used in 

superimposition), hence taking advantage of the structural and sequence conservation of the 

interface area.  

Interface residues and contacts restrained docking was introduced in HADDOCK 138,139, a flexible 

macromolecular docking software which treats external information as restraints to guide the 

docking process. In the context of template-based modelling of complexes, HADDOCK uses 

contacts derived from identified homologous templates as distance restraints to guide the 

docking process,131. Compared to structure superimposition approaches the resulting models 

are typically clash-free. This approach can also seamlessly integrate distance restraints from 

multiple templates: Templates can be clustered based their structural similarity, and from each 

cluster interfacial distance ranges can be calculated and used as input of HADDOCK. Another 

recent template-based approach models the quaternary protein structure of homo- and hetero-

oligomers by homology, combining interface conservation, structural clustering and other 

interface-related features 140.  

 

4. Structural characterization of membrane protein-protein complexes  

While several of the methods described above – especially those that use information about the 

interface, such as interface characterization methods and information-driven docking with 

HADDOCK 141 – can be applied to Membrane Proteins (MPs) without the need for any major 

adaptations, in general, interface prediction and modelling of MPs complexes are more 
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challenging. We only provide a short overview here and refer to Almeida et al. 142 for a more 

detailed review. Some approaches have been developed specifically for interfacial residue 

prediction in MPs. ML algorithms such as SVMs have been applied to this problem 143 . They use 

PSSMs and evolutionary rates as calculated by Robust EVolutionary COnservation Measure 

(REVCOM) 144, and information on membrane spanning regions as provided by the TMDET 

webserver 145. Other methods using similar features but other ML algorithm types such as 

Random Forests (RFs) 146 have been reported 146. TMH-Expo 147 is a method developed for intra-

monomer contact prediction in multi-spanning helical MPs using Artificial Neural Networks 

(ANNs). Even though this method was created for intra-monomer contacts, an adaptation of this 

algorithm for MP interfaces could be of great use in MP complex prediction. Table 3 contains 

the methods mentioned in this section, as well as a short explanation on each. 

 

Conclusions 

As illustrated in this review, the prediction of the structure of proteins and their complexes and 

the characterisation of their interfaces has greatly benefited from the development of 

algorithms and computational methods that can harvest information from sequence data. 

Sequence information alone has generated an incredible amount of mathematical- and 

informatics-based models and algorithms, capable of producing relevant information on 

sequence conservation. MSAs, PSSMs and (co-)evolutionary scores, in particular, have been key 

concepts in deciphering the information contained in sequence and adapting it to more complex 

bioinformatics tasks and to structure prediction of proteins and their complexes. 
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Tables 

 
Table 1. Structure prediction methods using sequence and evolutionary information described 
in Section 2. 
 

METHOD DESCRIPTION REFERENCE 
MODELLER MODELLER is a software for homology modelling and it features 

methods for homolog sequence with structural information 
search and retrieval  

79
 

RAPTORX RAPTORX performs secondary structure prediction and tri 
dimensional homology modelling 

154 

I-TASSER I-TASSER performs automated protein sequence and function 
predictions. Structure is generated by multiple threading 
alignments and function is inferred by matching the structural 
models with proteins of known function. 

155 

PSIPRED PSIPRED is a method for secondary structure prediction, using 
PSSMs and two feed-forward neural networks. 

92
 

BCL::JUFO9D BCL:Jufo9d is a method that predicts both protein structure and 
transmembrane spans from sequence. To do so, it uses PSSMs 
as input in a feed-forward neural network which outputs a 9*9 
matrix with information on two sets of three possible states – 
helix, strand and coil, and membrane core, interface and 
solution.   

156
 

CONSURF Consurf is a method used to calculate the evolutionary 
conservation of all residues in a protein by MSA. It uses the 
Rate4Site algorithm to calculate evolutionary rates from a MSA, 
and represents these results using alignments coloured 
regarding each residues conservation.   

157
 

EVFOLD EVFold is a method used to calculate residue coevolution for a 
protein sequence. This information is then used to predict the 
structure of the input protein sequence. 

158
 

BCL::FOLD BCL::Fold is a method that uses information and methods 
similar to EVFold, as well as idealized secondary structures to 
predict membrane protein structure. 

88
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Table 2. Methods for the structure prediction and characterisation of soluble protein-protein 
complexes from sequence information described in section 3. 
 

METHOD DESCRIPTION REFERENCE 
EVCOUPLINGS EVCouplings is a method to determine protein contacts. It has 

been adapted in both the EVFold and EVComplex pipelines. 

159
 

EVCOMPLEX EVComplex uses EVCouplings for inter- and intramonomer 
contact prediction, predicting a structure for a complex 
formed between two proteins. 

159
 

HADDOCK Haddock performs biomolecular complex modelling and 
refinement. 

139
 

JET JET detects protein interfaces, residues involved in the folding 
process as well as residues involved in molecular recognition. 

160
 

PPIPP Employs two stage neural networks based on the interacting 
pairs to predict single-protein residues. 

161
 

HOMPPI HomPPI employs sequence homology-based methods to 
predict protein-protein interface residues. There are two 
variants, partner-specific (PS-HomPPI) and non partner- 
specific (NPS-HomPPI) 

162
 

PAIRPRED PAIRPRED predicts residue pairs within a protein complex 
from sequence and structural information. 

163
 

PSIVER PSIVER predicts protein-protein interaction sites through 
Naïve Bayes classification with kernel density estimation. 

164
 

SPPIDER SPIDDER predicts interaction sites through relative solvent 
accessibility and the employment of machine learning 
approaches. 

165
 

WHISCY WHISCY predicts protein-protein interfaces through surface 
conservation and structural information. 

116
 

PROMATE ProMate Identifies protein-protein binding sites from surface 
properties. 

166
 

CPORT CPORT combines several interface predictors into a 
consensus prediction. 

167
 

INTEREVSCORE InterEvScore is a scoring function that uses a coarse-grained 
statistical potential including two and three-body 
interactions, which helps report on the structural 
environment. 

120
 

NEBCON NeBcon predicts a contact map using neural networks, Naïve 
Bayes classification and co-evolutionary approaches. 

168
 

COCOMAPS COCOMAPS predicts and scores interface residues as well as 
protein contacts between complexes. 

124
 

INTERSURF Intersurf analyses dynamic interfaces and energy of protein 
complexes. 

125
 

SPOTON SpotOn identifies HS in the interface with high precision by 
employing machine learning methodologies. 

152
 

HOTREGION HotRegion is a database of predicted HS clusters. 128
 

HOTPOINT HotPoint predicts HS on the interface using an empirical 
approach. 

129
 

INTEREVDOCK InterEvDock predicts protein-protein interactions using 
evolutionary information. 

51
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SOAP-PP SOPA-PP assesses protein interfaces and loops by optimized 
statistical potential inclusion on a Bayesian framework. 

169
 

FRODOCK FRODOCK performs fast rotational protein-protein docking to 
generate predictions of protein-protein complexes. 

170
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Table 3. Methods for the structural characterization of membrane protein-protein complexes 
described in section 4. 
 

METHOD DESCRIPTION REFERENCE 
REVCOM REVCOM estimates evolutionary conservation rates by 

employing Bayesian statistics. 

144
 

TMDET TMDET determines protein-membrane relative localization, 
identifying transmembrane regions using tri-dimensional 
coordinates. 

145
 

TMH-EXPO TMH-Expo maps contact numbers and identifies 
transmembrane helices interacting residues. 

171
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Figures 

 

 

 

Figure 1. Rate4Site pipeline. Starting with an MSA, Rate4Site calculates phylogenetic trees using 

the Neighbour-Joining (NJ) algorithm 67. This algorithm sequentially joins sequences that are 

closer and therefore more similar, with each other by creating a new node in each iteration. This 

node always connects to the tree constructed up to that point in the algorithm. Considering that 

a single position in the MSA has the same evolutionary rate (score), Rate4Site determines the 

maximum conservation rate that would explain the conditional probability of the data given that 

rate. 
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Figure 2. T-Coffee pipeline. First, T-Coffee retrieves the pairwise global and local alignments 

from ClustalW 148 and Lalign 149, respectively. These alignments are then weighted according to 

the pairwise sequence identity. To combine the two alignments, the scores for identical residue 

pairs from ClustalW and Lalgin at a given position are summed and considered as a single entry, 

while unique residue pairs at a given position are considered as separate entries. This creates a 

series of constraints providing a better MSA overall. Then, T-Coffee performs what the authors 

refer to as library extension, a heuristic process to calculate the likelihood of a pair based on 

triplets of matched residues – if two sequences share the same residue at a given position and, 

if other sequences have the same residue in that position, the weight for this residue pair will 

be as high as the number of triplets considering the initial residue pair. A weight of zero is 

attributed if a residue pair does not occur. By using a tree to calculate sequence similarity, the 

two most similar sequences are selected and the weights calculated during library extension are 

used to maximize the MSA score. Then, sequence pairs are added and residues are shifted until 

the final MSA is constructed. During this process, no gaps are removed after being added to the 

MSA. 
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Figure 3. Visual representations of residue evolutionary conservation from Consurf for the 

Galpha-protein AtGPA1 from Arabidopsis Thaliana. (a) Sequence visualization of conservation, 

with each residue colored according to its conservation value. (b) Structure visualization of 

conservation. Both use a white (lowest)-yellow (mid)-red (highest) color scheme to represent 

conservation. 
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Figure 4. Structure prediction of CASP target T0866 (PDB-ID: 5UW2 150) assisted by predicted 

intramolecular contacts. (a) The contact prediction by Deepfold-Contact with the top 156 

contacts (1.5* sequence length of the target) reaches a precision of 80% with the correct 

predictions (blue) distributed over all native contacts (blue and green), while the incorrect 

predictions (red) are mostly close to real contacts. (b) De novo structure prediction with Rosetta 

aided by this contact list yields a model (blue) closely matching the fold of the native protein 

(white). 
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Figure 5. PS-HomPPI: partner-specific template based protein-protein interface predictor 

(http://ailab1.ist.psu.edu/PSHOMPPIv1.3/, 111). PS-HomPPI v1.3 takes as input two protein 

sequences that are considered to interact with each other, and search the query against a 

protein-protein structure database (which is a subset of the PDB databank) for structural 

templates. For each structural template, PS-HomPPI calculates a confidence score based on the 

sequence similarity of the template to the query proteins. Based on the confidence score, 

templates are classified as Safe zone, Twilight zone and Dark zone templates. Only up to top K 

templates in the best available template zone are used for making interface predictions (K is 10 

by default or a user-specified value). When multiple templates are available, they are clustered 

based on their structure similarity. PS-HomPPI calculates the consensus interface from each 

template cluster and return the consensus interfaces to the user. Here, the example query is 

7CEI 151. Two sets of potential interfaces are predicted by PS-HomPPI v1.3. They are mapped 

onto the experimentally determined structure (pink and red patches). As we can see, the first 

set of predicted interface aligns very well with the experimental structure, while the second set 

of the predicted interface is either wrong or indicates an alternative binding mode.  
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Figure 6. Structural representations of Hot-spots (HS; sphere representation colored by 

monomer) as predicted by SpotOn 152 for a complex (PDBID: 1FC2 153) formed between Fragment 

B of Protein A (blue) and a fragment crystallisable region of a human antibody (green). HS are 

key players in protein-protein interfaces as their disruption is deleterious for complex binding. 

 


